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Abstract: Infections are one of the main complications in arthroplasties. These infections are difficult
to treat because the bacteria responsible for them settle in the prosthesis and form a biofilm that does
not allow antimicrobials to reach the infected area. This study is part of a research project aimed at
developing 3D-printed spacers (temporary prostheses) capable of incorporating antibacterials for
the personalized treatment of arthroplasty infections. The main objective of this research was to
analyze the impact of the layer thickness of 3D-printed constructs based on polylactic acid (PLA) for
improved treatment of infections in arthroplasty. The focus is on the following parameters: resistance,
morphology, drug release, and the effect of antibacterials incorporated in the printed temporary
prostheses. The resistance studies revealed that the design and layer thickness of a printed spacer
have an influence on its resistance properties. The thickness of the layer used in printing affects
the amount of methylene blue (used as a model drug) that is released. Increasing layer thickness
leads to a greater release of the drug from the spacer, probably as a result of higher porosity. To
evaluate antibacterial release, cloxacillin and vancomycin were incorporated into the constructs.
When incorporated into the 3D construct, both antibacterials were released, as evidenced by the
growth inhibition of Staphylococcus aureus. In conclusion, preliminary results indicate that the layer
thickness during the three-dimensional (3D) printing process of the spacer plays a significant role in
drug release.

Keywords: 3D printing; fused deposition modeling (FDM); printing layer thickness; controlled drug
release; personalized prosthesis; polylactic acid (PLA); cloxacillin; vancomycin

1. Introduction

Prosthetic joint infection (PJI) is a formidable challenge in the field of arthroplasty [1].
Its prevalence ranges from 0.5% to 3%, and its repercussions include an escalating burden
of comorbidity and mortality [2]. PJI can manifest acutely or chronically over the years,
owing to the formation of persistent biofilms. Biofilms offer bacteria a protective haven,
rendering infections resistant to treatment [3]. A biofilm is formed by the aggregation
of microorganisms on the surface of the prostheses, where the bacterial colony becomes
encased in a complex extracellular matrix, providing a shield against antimicrobials. This
protective mechanism hinders the effectiveness of antibacterial treatment, contributing
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to the persistence of the infection over time [4]. The bacteria responsible for prosthesis
infection are predominantly Staphylococcus aureus (26.5%), followed by coagulase-negative
staphylococci (14.3%), Gram-negative microorganisms (8.2%), streptococci (4.4%), and
anaerobes (3.4%) [5,6]. In addition, PJI is associated with symptoms such as local redness,
warmth to touch, swelling, or joint stiffness and pain, with the appearance of wound
leakage [7]. Microbiological diagnosis is made by culture of synovial fluid aspirate or
periprosthetic tissue, and the treatment protocol includes debridement, administration
of antibacterials, and implant retention surgery [8,9]. Several studies suggest combining
systemic and local antibacterial prophylaxis, the latter by incorporating antibacterials into
bone cements [10,11]. This methodology involves both topical and systemic antibacterial
action [1,12]. Antibacterial-loaded bone cement (ALBC), particularly polymethylmethacry-
late (PMMA) bone cement, has gained widespread usage in orthopedics for antibacterial
treatment [13]. The patient’s knee joint needs to be kept free of any infected foreign pros-
thetic material during eradication of the infection. In addition, experts agree that some
level of joint stability needs to be maintained, often with the help of a spacer [14]. Chemical
stability and bactericidal properties, even at low concentrations, are desirable character-
istics of antibacterials, which should not cause allergic reactions or facilitate the growth
of resistant microbes. Tobramycin, gentamycin, vancomycin, and cephalosporines are the
most popular antibacterials used for cement impregnation [15–17]. The use of ALBC has
been linked to antibacterial resistance after repeated use of antibacterial-containing cements,
which makes subsequent treatment, if required, more challenging [18,19]. Additionally,
the compressive and flexural strengths of today’s bone cements are still rather low and, in
some cases, insufficient to adequately stabilize the prosthesis [20].

Advances in three-dimensional (3D) printing offer a promising avenue for producing
biomedical and pharmaceutical products. It involves the building up of multiple layers
from a previously designed model that allows to build personalized structures [21]. The
most common printing techniques are fused deposition modeling (FDM), ink-jet printing,
and stereolithography (SLA) [22,23]. In FDM, a thermoplastic polymer is heated until it
reaches a liquid state to be extruded and ejected into a printer bed, layer by layer. Each
layer connects to the others below and solidifies as it cools [24]. The selection of suitable
polymers is necessary to obtain an optimal printed material. Polylactic acid (PLA) has
proved to be one of the strongest and most biocompatible materials using the FDM printing
method. It is an FDA-approved polymer that is listed as safe and biodegradable [25]. PLA
impregnated with antibacterials has been used and has shown promising antibacterial
effects [26,27].

3D printing can be customized and fine-tuned by modifying printing parameters,
such as layer thickness, filling percentage, and thermal processing parameters [28–30]. The
vertical axis (z-axis) divides the printing layer’s thickness into segments. When the layer
thickness decreases, the number of layers increases to achieve the printed structure. This
leads to a higher z-axis resolution. In 3D printing, the layer thickness parameter is critical
because it has an immediate effect on print quality, resolution, and printing time [31]. Using
a higher layer thickness can speed up printing but may reduce the precision and quality of
the finished product [32–34]. In addition, a lower layer thickness implies printing more
layers. Since the layers are thinner, a lower layer thickness results in finer details and a
smoother surface finish. This is significant because it allows for a higher level of accuracy
when printing intricate designs or objects with complex geometries. As a result, choosing
the right layer thickness requires striking a balance between print speed and resolution. The
strength and durability of the printed object may increase as the layer thickness is reduced
due to improved layer bonding [35]. This customization capability is particularly relevant
for designing spacers that not only support the joint during the treatment of the infection
but also deliver therapeutic agents directly to the infection site. Thus, understanding how
variations in layer thickness affect the release of antibacterials from 3D-printed constructs is
essential for optimizing their design and functionality. The main goal of this research was
to investigate how varying the layer thickness and the predefined design of a 3D-printed
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PLA spacer affects the release of antibacterials for knee arthroplasty. To accomplish this
objective, we conducted three separate studies using different print layer thicknesses (0.2,
0.3, and 0.4 mm): one focused on physical characterization, another on in vitro release
assessments, and the third on microbiological studies.

2. Materials and Methods
2.1. Materials

The PLA polymer used in this study was purchased from BQ® (Huesca, Spain),
while methylene blue (MB) was obtained from Guinama (Valencia, Spain). Cloxacillin
(CLOX) and vancomycin (VAN) were acquired from Sigma Aldrich Chemical Co. (St.
Louis, MO, USA), and Mueller Hinton medium broth and agar from Scharlab (Barcelona,
Spain). Phosphate buffered solution (PBS) was composed of disodium hydrogen phosphate,
sodium dihydrogen phosphate, sodium chloride, and bi-distilled water, all of which were
supplied by Sigma Aldrich Chemical Co. (St. Louis, MO, USA). The pH of this solution was
adjusted to 7.4 ± 0.1 by adding 5 N hydrochloric acid or 5 N sodium hydroxide, as required.

2.2. Design and 3D Printing

The process of design and 3D printing is depicted in Figure 1. To create the 3D-
printed structure, a femur was first printed (Figure 1A). The diameters of several male
and female human femurs were measured at our university’s anatomy department. The
average measurements were found to be 33.29 ± 1.55 mm for males and 28.48 ± 0.57 mm
for females. Subsequently, a spacer that could resemble these dimensions was designed
(Figure 1B). Finally, a structure that could be inserted into the spacer was developed, and
for this reason, a cylinder form was selected (Figure 1C). This cylindrical structure is
intended to store antibacterials and provide controlled release during PJI. Different filling
patterns were first tested until an optimal design was achieved. The resulting design
consisted of a cylinder-shaped spacer with an interior pattern of crisscrossed overlapping
beams and a 10% infill percentage (Figure 1D,E). The external volume of the cylinder was
23.12 cm3, closely resembling the dimensions of a human femur [36]. However, a smaller
cylinder (1.20 cm3) was also designed and printed to carry out antibacterial release studies.
Physical characterizations were carried out with both cylinders, whereas in vitro release
and microbiological experiments were conducted only with the 1.20 cm3 structure.
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Figure 1. Digitalized femur (A) from human femur measurements, spacer (B) intended to be placed
in the knee during PJI, and designed test construct (C) intended to contain antibacterials and spacer
fill pattern of cross-linked overlapping beams (D,E) using “Rhinoceros 3D” software [36].

The chosen printing polymer was PLA. Previous studies demonstrated that PLA
exhibits superior strength and biocompatibility compared to other polymers such as
polypropylene (PP), polyethylene terephthalate glycol (PET-G), and acrylonitrile buta-
diene stirene (ABS) plastic when using the FDM printing method [36–38].

To fabricate the 3D-printed construct used in this study, PLA filaments (BQ®, Huesca,
Spain) were used with a standard fused-deposition modeling (FDM) 3D printer, Flashforge
Creator Pro (Zhejiang Flashforge 3D Technology Co., Jinhua, China). The design of the
printing template was created using Rhinoceros 3D software and exported as an FPP file
(.fpp). Table 1 provides the main printing parameters of the Flashforge Creator Pro printer,
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which include the print and platform temperatures, print speed, infill percentage, and the
different layer thicknesses tested in this study: 0.2, 0.3, and 0.4 mm.

Table 1. Principal printing parameters of Flashforge Creator Pro printer and cylinder dimensions.

Printing temperature 200 ◦C

Platform temperature 60 ◦C

Print speed 60 mm/s

Layer thickness 0.2, 0.3, and 0.4 mm

Infill 10%

Small cylinder

Height: 11.00 mm
Diameter: 11.80 mm

External wall thickness: 1.35 mm
Total volume: 1.20 cm3

Capacity up to fill: 268 µL

Large cylinder

Height: 30.14 mm
Diameter: 31.26 mm

External wall thickness: 1.37 mm
Total volume: 23.12 cm3

Total capacity up to fill: 16.5 mL

2.3. Physical Characterizations

The physical characterization of PLA 3D-printed constructs includes two main tests:
resistance and morphology studies using model constructs in two sizes, namely 1.20 cm3

and 23.12 cm3.
The compressive strength test was carried out to determine the potential influence of

layer thickness in the printed model on the mechanical properties of the structure. The
point at which each layer superimposes the next was considered in the printing process
so that they were aligned in the design. Empty constructs were subjected to a force that
caused up to a 10% change in the original dimensions of structure. For each layer thickness,
12 constructs of each size were tested in both vertical and horizontal orientations. The com-
pression tests of the constructs were carried out on a computer-controlled Zwick/Roell Z005
dynamometer (Barcelona, Spain), equipped with a load cell capacity of 5 KN (equivalent to
500 kg-force or kiloponds (Kp)). The test was conducted with a crosshead displacement
speed of 0.005 mm/s [36]. The test conditions were maintained at room temperature
(25 ◦C) and 50% humidity. The dynamometer was used to measure the load applied at
breaking point (kg) and the compression (mm) before breaking. The breaking point was
established with a force change threshold of 5%, a preload of 0.01 MPa, a compression speed
of 1 mm/min, a test speed of 10 mm/min, and a maximum deformation in compression of
10% of its original dimensions.

The surface morphology of the 3D-printed model constructs was analyzed using an
optical microscope (Leica EZ4 HD, Wetzlar, Germany) and scanning electron microscopy
(SEM). Briefly, the samples were mounted on double carbon adhesive tape, securely fixed
to brass holders, and coated with a thin layer of platinum. Imaging was conducted using
a HITACHI S-4800 scanning electron microscope (Tokyo, Japan) equipped with a field
emission gun (FEG) and a Bruke RX detector (Billerica, MA, USA) at an accelerating voltage
of 5 KV. The imaging resolution achieved was 1.4 nm at 1 KV.

2.4. In Vitro Release Studies

To investigate the influence of layer thickness on antibacterial release, firstly in vitro
release studies were carried out using 1.20 cm3 cylinders.

The in vitro release studies were performed using a dissolution testing apparatus
(Erweka DT-80 Series, Langen, Germany). The 3D-printed constructs were loaded with
250 µL of a 1 mg/mL solution of MB used as a model drug. The choice of MB as a drug
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model was driven by its well-established utility as a model compound for the preliminary
analysis of release profiles via spectrophotometric methods [36,39]. This approach allows
for the rapid, reliable, and reproducible quantification of release kinetics, providing a
foundational basis for subsequent, more targeted investigations [40–42]. As the 3D structure
printed is enclosed, when the printing process reached 97% completion of the construct, the
printing was paused and the cylinder was filled with 250 µL of a 1 mg/mL PBS (pH 7.4)
solution of MB. After introducing the desired volume into the construct, the printing
process was resumed, thereby retaining the solution inside the model for the temporary
prosthesis. This ensures that once printing is complete, the solution is contained within
the structure.

The equipment vessels were filled with 100 mL of phosphate buffer solution (PBS) at
pH 7.4 and maintained at 37 ◦C (body temperature) with constant movement of the fluid
(agitation rate of 75 rpm). It was carried out in this low volume to ensure detection of
MB in the spectrophotometer, as large volumes can dilute the MB so much that it is not
detected during the first moments of release. Samples of 1 mL were taken at predetermined
intervals of 0.5, 1, 2, 4, 6, 24, 30, 48, and 54 h. Following each sample collection, 1 mL of
fresh PBS solution was added to the corresponding vessel to maintain a constant volume.
The amount of MB in the samples was quantified by UV spectrophotometry (Thermo Fisher
Scientific GENESYS 20S, Waltham, MA, USA) at 660 nm. Calibration curves were obtained
at concentrations of 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 µg/mL. The cumulative amounts
were determined by adding up the measured values to establish the MB release curve.
Subsequently, the percentage of MB release was calculated.

Different mathematical models were employed to study drug release from the 3D-
printed models. The zero-order, first-order, Higuchi, and Korsmeyer–Peppas models were
evaluated to fit the experimental data. These equations are commonly used for drug release
kinetic modeling [43,44].

2.5. Microbiological Studies

Microbiological studies were performed to evaluate the inhibition effect of antibacteri-
als (CLOX and VAN) released from spacers printed with different layer thicknesses. Upon
reaching 97% completion of the printing process, a brief pause allowed for the introduction
of 250 µL of a 1 mg/mL antibacterial solution (in PBS, pH 7.4) into the cylindrical con-
structs. After the desired volume was added, the printing process was resumed, effectively
encapsulating the solution within the model intended for use as a temporal prothesis.

Constructs, both with and without antibacterials, were immersed in a liquid nutrient
broth (Mueller–Hinton), which contained a 1/10 solution of Staphylococcus aureus CET 239
at 0.5 McFarland (1.50 × 108 CFU/mL). The 0.5 McFarland solution was prepared using a
nephelometer (CristalSpecTM, Becton-Dickinson, Franklin Lakes, NJ, USA) and diluted
by adding 4.5 mL of Mueller–Hinton medium to 0.5 mL. The studies included a total of
6 constructs for each layer thickness. The experiments were conducted for each antibacterial
(CLOX and VAN) tested separately. The Mueller–Hinton broth was prepared according to
ISO standards (Scharlab, Sentmenat, Barcelona, Spain). The samples were incubated for
24 h at 37 ◦C. To quantify the bacterial proliferation, the broth was diluted 1/100 and spread
onto an agar plate. The plate was then incubated overnight at 37 ◦C to facilitate the growth
and counting of colony-forming units (CFUs) [45,46]. Each experiment had two control
solutions, both inoculated with a 1/10 solution of S. aureus at 0.5 McFarland: a negative
control containing 250 µL of antibacterial solution (1 mg/mL) and a positive control with
no antibacterials added. Bacterial growth was determined using turbidimetry, measured
with a UV spectrophotometer (Thermo Fisher Scientific GENESYS 20S) at a wavelength of
600 nm [47].

2.6. Statistical Analysis

Microbiological data were expressed as mean ± standard variation. Statistical analysis
was carried out by means of the Kruskal–Wallis tests with post hoc comparisons using
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the Mann–Whitney test with Bonferroni’s correction. In all case, the significance level was
p < 0.05.

3. Results and Discussion

Some authors have extensively examined the influence of layer thickness in 3D print-
ing. Meiabadi et al. found that a layer thickness of 0.28 mm was the optimal setting
to enhance the reproducibility of PLA printed parts [48]. Another study using different
printing materials concluded that a layer thickness of 0.3 mm was optimal for their printed
belts [49]. However, other important considerations in 3D printing include material selec-
tion, infill density, and print orientation [50]. These parameters were previously studied in
order to select a 3D-printed construct with adequate characteristics [36]. In this study, three
separate investigations were conducted: physical characterization, in vitro release studies,
and microbiological studies. These studies examined three different print layer thicknesses:
0.2, 0.3 and 0.4 mm.

3.1. Physical Characterizations

The 3D-printed constructs were subjected to vertical and horizontal testing to evaluate
their load-bearing capacity. The force was applied using the Zwick/Roell Z005 dynamome-
ter. When the properties of the 3D-printed constructs were tested in a horizontal orientation,
differences in strength were observed. This can be attributed to the alignment of the force
vectors. Specifically, in vertical force applications, resistance is enhanced as the forces
are distributed over the base of the cylinder. Additionally, it has been noted that layers
printed horizontally throughout the cylindrical structure exhibit a tendency to separate
more readily under force compared to those aligned vertically.

Table 2 presents the mean breaking load and compression values for the two sizes of
the 3D constructs examined, at the various layer thicknesses tested, in both horizontal and
vertical orientations.

Table 2. Values of breaking load and compression of the two sizes of the 3D constructs (1.20 and
23.12 cm3) at different layer thicknesses (0.2, 0.3, and 0.4 mm) in horizontal and vertical orientation.

Construct Size Orientation Test Layer Thickness
(mm)

Breaking Load
(Mean ± sd)

(Kp)

Compression
(Mean ± SD)

(mm)

23.12 cm3

Horizontal
0.2 137.1 ± 5.9 3.6 ± 0.9

0.3 140.0 ± 17.7 1.8 ± 0.6

0.4 244.4 ± 23.2 3.2 ±0.9

Vertical
0.2 490.6 ± 7.4 0.8 ± 0.1

0.3 500.3 ± 2.3 0.9 ± 0.2

0.4 472.5 ± 13.9 1.2 ± 0.1

1.20 cm3

Horizontal
0.2 92.6 ± 5.1 1.5 ± 0.3

0.3 99.0 ± 3.8 1.6 ± 0.1

0.4 125.0 ± 7.7 1.6 ± 0.1

Vertical
0.2 202.5 ± 6.3 1.0 ± 0.1

0.3 158.1 ± 4.1 1.5 ± 0.1

0.4 147.4 ± 5.4 1.5 ± 0.1

For components experiencing tension or compression, understanding the mechanical
properties of stress and strain is crucial for assessing their ability to withstand applied loads.
Stress represents the force exerted on a material per unit area, while strain measures the re-
sulting deformation or displacement caused by this stress. The stress–strain representation
serves as a critical tool, offering insights into the material’s capacity to resist external forces
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before undergoing permanent deformation or failure. The stress-strain representations for
the two PLA cylinders tested, as shown in Figures 2 and 3, exhibit noticeable differences.
This emphasizes the impact of the cylinders’ volume size and layer height on the material’s
ability to withstand external forces prior to undergoing permanent deformation or fracture.
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The test was conducted with two force limits: one was automatically stopped when
the resistance of the force exerted decreased by 5% and the other at 15% (was deformed or
broken) (n = 6). Both figures show different results between the two constructs, which only
differ in their volume, the large one being more resistant to compression. These differences
may be explained by the number of layers. Reducing the size of a printed product derived
from a larger one results in a reduced number of layers, as the filament ratio remains
consistent regardless of the chosen layer thickness. Thus, a smaller structure results in
lower strength, as it has to rely upon fewer layers for its reinforcement [34].

In the 23.12 cm3 constructs, the horizontal tests showed that the constructs with a
layer thickness of 0.4 mm required greater force to rupture. In the case of the vertical
test, all cylinders were able to sustain the maximum force (500 Kp or 0.734 N/mm2) that
the dynamometer could apply in the experiment without breaking. In the case of the
1.20 cm3 constructs, the results also showed that horizontally, the 0.4 mm constructs were
more resistant to breakage. In the vertical test, the cylinders with a layer thickness of
0.2 mm were the most resistant. Figure 3 reveals that when the force is applied horizontally,
the thicker the layer, the lower the force required for deformation, and therefore less
resistant. These findings are particularly relevant for the design of prosthetic spacers, as
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they provide insights into the load-bearing capacity of 3D-printed constructs at different
layer thicknesses, mimicking real-world scenarios.
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Figure 3. Representation of stress–strain for the 1.20 cm3 spacers in horizontal (A) and vertical
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In summary, by increasing the layer thickness horizontally in both sizes, the force is
better distributed, with constructions of a layer thickness of 0.4 mm being the most resistant.
This finding aligns with previous studies that have explored the impact of layer thickness
on the strength of PLA printed materials, suggesting that adjustments in layer thickness
can significantly influence the strength of the material [51,52]. However, our results also
indicate complex behavior depending on the orientation and volume of the constructs. For
the larger, 23.12 cm3 constructs, the variation in layer thickness does not appear to impact
resistance significantly, whereas the smaller 1.20 cm3 constructions exhibit maximum
resistance at a layer thickness of 0.2 mm. These observations contribute to the current
understanding by providing insight into the complexity of how layer thickness affects the
mechanical properties of 3D-printed materials. Unlike the uniform trend suggested by
prior research, our findings underscore the importance of considering the dimensions and
orientation of the printed object. This is particularly relevant in the context of another study
that developed rock-like specimens using sand powder 3D printing, which found that an
increase in layer thickness led to interlayer overlapping, adversely affecting properties such
as weight, density, and uniaxial compressive strength [53]. The reduction in peak strength
and elastic modulus observed at layer thicknesses of 0.3 and 0.4 mm, compared to 0.2 mm,
highlights the potential resistance involved in selecting layer thickness for optimizing the
physical and mechanical properties of 3D-printed constructs. Furthermore, Kuznetsov and
colleagues identified layer thickness as a critical factor influencing intralayer cohesion, with
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resistance decreasing as layer thickness increases [54]. This complements our findings and
helps to elucidate, at least partially, the underlying mechanisms that may contribute to
the observed differences in material resistance based on layer thickness and orientation.
In short, while thicker layers might provide certain structural benefits, they could also
compromise material cohesion and, by extension, mechanical integrity.

Figure 4 shows layers of 1.20 cm3 cylinders with different layer thicknesses viewed
with optical microscopy. Figure 5 (SEM) shows how the layers of 23.12 mm cylinders
superimpose with a layer thickness of 0.3 mm. With the layer thickness, printing speed,
and number of layers, the porosity surface could be modified, allowing the control of drug
release to achieve its therapeutic target. SEM allows visualization of the superimposition of
the printed layers as well as the pores.
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Figure 5. Electron microscope images of (A) 0.2 mm layer at 150× magnification and (B) 0.3 and
(C) 0.4 mm layer at 300× magnification to show how each layer of filament superimposes over the
next to create pores.

From the SEM images, it can be seen that the PLA building layers are well surface-
bonded. The regions where layers intersect function as porous conduits. The intricate
arrangement of the lines creates a network of interconnected channels that allows for the
controlled and gradual release of the introduced substances. Previous research studies
have demonstrated the effective incorporation of silver nanoparticles, contraceptive drugs,
and chitosan/sodium alginate into 3D-printed structures, each exhibiting unique morpho-
logical characteristics and drug dispersion behavior upon analysis in SEM microscopic
studies [55–57]. In summary, SEM microscopy has allowed us to confirm that pores are
formed at the points at which the filament layers superimpose one another.

Using SEM, a detailed analysis of the pores present in the structures as well as
pore measurements were performed. The pore size calculated for each cylinder was
390.00 ± 20.60 µm2 for the 0.2 mm layer height, 1540.50 ±14.11 µm2 for the 0.3 mm layer
height, and 2691.50 ± 12.98 µm2 for the 0.4 mm layer height. When multiplied by the total
number of layers, this resulted in 23.40 mm2, 61,62 mm2, and 80.74 mm2 for 0.2 mm, 0.3 mm,
and 0.4 mm, respectively. This represents 3.43%, 9.05%, and 11.80% of the total cylinder
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surface area, respectively. All these calculations were made according to Bueno-López
(2021) [36].

These results correlate with the increase in release as the layer height increases with
the antimicrobial effect and provide valuable information on the morphology and potential
functionality of 3D-printed constructs in relation to their ability to release antibiotics.

3.2. Release Studies

An evaluation of the in vitro release of substances was carried out to assess the release
capacity of the constructs upon contact with an aqueous medium. The amount of methylene
blue (MB) released was calculated from a calibration curve with concentrations ranging
from 0.01 to 10 µg/mL of MB. The release profiles of the 3D constructs are presented in
Figure 5.

The results are expressed as the cumulative percentage of MB released at each time
point analyzed (n = 3, mean ± sd, Figure 6). The release kinetics were examined using
several mathematical models, with the Korsmeyer–Peppas model being identified as the
most suitable equation to characterize MB release from 3D constructs with different layer
thicknesses. Figure 6 displays the percentage of MB released according to this mathematical
model. The MB release during the first two hours reached 1.260 ± 0.327% when the layer
thickness was 0.2 mm, 25.225 ± 1.827% for a thickness of 0.3 mm, and 31.193 ± 3.338%
when the layer thickness was 0.4 mm. After 54 h, the highest percentage of release obtained
with the 0.2 mm thickness was 31.333 ± 4.997%, while 50.258 ± 4.938% and 66.013 ± 2.760%
were released from the 0.3- and 0.4-layer thickness, respectively. The observed release
profiles have direct implications for the development of drug-eluting prosthetic spacers,
where controlling drug release is crucial for therapeutic efficacy. As can be seen in Figure 6,
the amount of MB was released differently depending on the layer thickness. Our results
are in agreement with several release studies using 3D printing models that demonstrate
that this type of construct provides sustained release over time [58–60].
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Figure 6. Percentage of MB released from the 1.20 cm3 3D constructs printed with a layer thickness
of 0.2 mm, 0.3 mm, and 0.4 mm for up to 54 h. The regression lines are fitted using the Korsmeyer–
Peppas model.

It is crucial to acknowledge that while our experimental setup does not directly
simulate clinical conditions—given that the constructs were immersed in a liquid medium
rather than interacting with the complex biological environment surrounding a temporary
prosthesis—the methodology employed effectively demonstrates the capacity for controlled
drug release from the pores of the cylinder. Other aspects such as building patterns are
critical in determining the physical and mechanical properties of the printed structures, as
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well as their functional performance in terms of pore characteristics of the structure and the
release profiles [61–63]. However, our research establishes that layer thickness is a decisive
factor in shaping the release profile, a principle that is in line with the results of previous
studies investigating the influence of layer thickness in PLA 3D-printed structures [64–68].
Yang et al. developed a 3D-printed implant using PLA with a cytotoxic agent inside and
concluded that the thicker the layer, the greater the release, being 86–97% in the first 2 h [64].
Other authors conducted a release study using multicompartmental PVA capsules for
oral administration and obtained different results (78–81%) depending on this impression
parameter [65]. Others tested the release profile of 0.3, 0.2, and 0.1 mm printed tablets and
reported that an increase in the layer thickness resulted in a faster dissolution rate, being
released over 65–96%, depending on layer thickness after 8 h of release [66]. Additional
research found a high percentage of drug release at 10 min by increasing the layer thickness
from 80 to 120 µm in solid 3D-printed oral forms [67]. In summary, increasing the layer
thickness provides a higher level of porosity.

3.3. Microbiological Studies

In our study, microbiological tests were carried out to evaluate whether antibacterials
incorporated into 3D constructs were released and were able to inhibit bacterial growth.

Figure 7 shows the turbidity of the negative (Figure 7A) and positive (Figure 7B)
control samples compared to those containing the 3D constructs with CLOX (Figure 7C)
and without the antibacterial (Figure 7D). The turbidity of the sample with the constructs
containing cloxacillin (Figure 7C) is similar to that of the negative controls (Figure 7A). This
situation occurs in all the 3D constructs printed with the three different layer thicknesses
tested and with both CLOX and VAN. This indicates that the antibacterials present in the
cylinders (CLOX and VAN) have permeated through and inhibited bacterial growth.
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Figure 7. 0.5 McFarland standard 1/10 dilution of Staphylococcus aureus test tubes after 24 h of
incubation. (A) negative control (S. aureus and CLOX in solution); (B) positive control (S. aureus,
no antibacterial); (C) 3D constructs loaded with CLOX; (D) 3D constructs without CLOX. The 3D
constructs in this image have been printed with a layer thickness of 0.2 mm.

The bacterial presence was determined using turbidimetry at a wavelength of 600 nm [41].
The results are illustrated in Figure 8, which shows the mean absorbance for each 3D
construct printed with different layer thicknesses (0.2, 0.3, and 0.4 mm) with VAN and
CLOX and without antibacterials (n = 6).

Samples containing antibacterials displayed minimal absorbance, implying that the
antibacterials had diffused from the constructs, thereby inhibiting bacterial growth and
a decrease in turbidity. In contrast, samples with no antibacterials displayed absorbance
values of approximately 0.3. No statistical differences were observed among the CLOX
constructs. Significant differences were observed in the VAN experiments comparing the 3D
constructs printed with different layer thicknesses (p = 0.01; Kruskal–Wallis test). However,
post hoc tests (Mann–Whitney test applying Bonferroni’s correction) found significant
differences between 0.4 and 0.2 mm, but failed to detect significant differences between
layer thicknesses of 0.2 and 0.3 mm. These findings underscore the potential of 3D-printed
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prosthetic spacers loaded with antibacterials to effectively inhibit bacterial growth, a critical
aspect in preventing post-operative infections in joint replacement surgeries.
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Figure 8. Absorbance for each 3D construct printed with different layer thicknesses (0.2, 0.3, and
0.4 mm) loaded with the antibacterials VAN and CLOX and constructs without loaded antibacterials
(no antibacterials) after being incubated for 24 h to allow bacterial growth. * Indicates the statistical
differences between the three layer thicknesses (p = 0.01); # indicates the differences between 0.2 and
0.4 mm (p < 0.05).

VAN and CLOX are structurally distinct antibacterials. VAN is a glycopeptide and has
a complex structure characterized by a large cyclic heptapeptide core with various sugar
residues. CLOX, on the other hand, belongs to the penicillin class of antibacterials, featuring
a β-lactam ring and a side chain. The structure of methylene blue is a heterocyclic aromatic
ring system with a central nitrogen atom. Therefore, VAN has a far more complex structure
than CLOX and MB. As such, the molar mass for CLOX and MB is 435.882 g/mol and
319.85 g/mol respectively, whereas VAN has a molar mas of 1449.3 g/mol. The different
microbiological results of the antibacterials show a faster release of CLOX, resulting in a
decrease in turbidity compared to that of VAN. This may be due to the difference in the
structural complexity of VAN compared to CLOX.

Positive control samples, containing bacteria without any antibacterials, displayed
massive growth, underscoring the efficacy of the antibacterial agents when incorporated
into the 3D constructs. These findings were further supported by the absence of bacterial
colonies in samples with antibacterials, highlighting the potential of 3D-printed constructs
as carriers for sustained antibacterial delivery. This research aligns with previous studies
demonstrating the utility of 3D printing technology in creating drug delivery systems and
medical devices with antibacterial agents incorporated. Aldrich and co-workers conducted
microbiological trials with polycaprolactone scaffolds infused with rifampicin and dapto-
mycin for the treatment of infections in craniotomies. Results in mice studies revealed a
reduction in colony-forming units (CFUs) in samples treated with the antibacterial-infused
design compared to systemic treatment [69]. Other authors used a 3D-printed patch design
with three different antibacterials (amoxicillin, kanamycin, and ampicillin). They achieved
sustained antibacterial release for up to 336 h and observed inhibition halos for S. aureus
and E. coli, demonstrating the antimicrobial activity of these antibacterial-incorporated
designs [52]. In another study, 3D-printed dental materials were tested for antimicrobial ac-
tivity with and without antibacterial incorporation, and statistically significant differences
in the number of bacterial colonies (CFU) were observed between these two groups [70].
The differential release patterns observed in our study underscore the importance of con-
sidering the physical and chemical properties of both antibacterial agents and printing
materials to optimize therapeutic outcomes.
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4. Conclusions

This study evaluated the effects of different layer thicknesses in a defined spacer 3D
construct (0.2, 0.3, and 0.4 mm). Physical characterization studies showed that increasing
layer thickness results in a higher force required to reach the breaking point in a horizontal
position, with constructions of a layer thickness of 0.4 mm being the most resistant. Different
results were obtained depending on the construct dimensions when the force was applied in
the vertical position. The PLA 3D-printed constructs were found to have sufficient strength
to withstand a force of 500 kg-force, which is more than they would be subjected to if they
were to be used in vivo as prosthesis. The in vitro release of MB, used as a model drug,
varied depending on layer thickness. Specifically, thicker layers result in greater quantities
of drugs being released from the constructs used as model spacers, which is related to an
increase in porosity. In terms of the effects of antibacterials incorporated into the model
spacers, CLOX and VAN were released from the 3D constructs and inhibited bacterial
growth effectively. These findings demonstrate that adjusting layer thickness, a 3D printing
parameter, enables the generation of varying profiles for antimicrobial release, affecting
its efficacy. Overall, these findings show the significance of optimizing layer thickness
in 3D-printed prosthetic spacers to achieve good mechanical properties, controlled drug
release, and effective antimicrobial potency.
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