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Abstract: In this paper, we investigated the monitoring and characterization of the pest Magnaporthe
oryzae, known as rice blast, in the Bomba rice variety at the Albufera Natural Park, located in Valencia,
Spain during the 2022 and 2023 seasons. Using reflectance data from different Sentinel-2 satellite
bands, various vegetative indices were calculated for each year. Significant differences in reflectance
in the visible (B4), infrared (B8), red-edge (B6 and B7), and SWIR (B11) bands were detected between
healthy and unhealthy fields. Additionally, variations were observed in the vegetation indices, with
RVI and IRECI standing out for their higher accuracy in identifying blast-affected plots compared
to NDVI and NDRE. Early differences in band values, vegetative indices, and spectral signatures
were observed between the unhealthy and healthy plots, allowing for the anticipation of control
treatments, whose effectiveness relies on timely intervention.

Keywords: rice; Magnaporthe oryzae; remote sensing; vegetative indices

1. Introduction

Rice is a fundamental and essential food for global food security [1], especially
in developing countries [2]. It is one of the three most relevant crops in the world [3]
and serves as one of the main sources of energy in the diets of more than half of the
population [4]. Since the 12th century, rice has been grown in L’Albufera de Valencia,
making it the first place in Spain where rice was cultivated and from which it expanded
to other areas in the country [5]. Among all the cultivated varieties, Bomba is a well-
recognized landrace that has been cultivated since the end of the 19th century [6]. The
Bomba plants show an old morphological aspect; they are tall plants with few and weak
stems and low yields. Today, Bomba rice is highly valued in the Spanish market for its
grain, cooking, and eating qualities.

Fungal infections are one of the most worrying diseases of the crop, because in addition
to causing reductions in yield [7] and losses in the quality of rice [8], they can generate
compounds that become toxic for consumption [9]. The disease caused by Magnaporthe
oryzae is considered the most important fungal disease in rice cultivation worldwide due
to its distribution and high destructive power [10]. Furthermore, the pathogen is highly
contagious and can spread rapidly, affecting nearby plants. It can be found throughout
the field and causes significant yield losses [11], with estimates of up to a 30% yield loss
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worldwide [12]. Additionally, the fungus is responsible for a reduction in the surface area
of the plant, which in turn results in a significant reduction in yield. This is due to the
fungus affecting the weight of the grain as well as the percentage of mature spikelets and
mature grains [13]. The fungus affects the entire aerial part of the plant, including the
leaves, stems, panicle neck, and the panicle itself [14]. M. oryzae, along with other varieties
of this fungus, has been and is currently a serious threat to rice production around the
world [15], with reports indicating yield losses up to 35% [16]. Even under favorable crop
growth conditions, the fungus tends to destroy the entire rice plant within 20 days, which
can lead to a 100% yield loss [17].

A 2005 study concluded that M. oryzae destroyed enough rice each year to feed
60 million people and that 50% of the production could be lost in infested plots [18].
The impact that the fungus has on the crop highlights the need to look for effective and
environmentally friendly solutions. The traditional method is chemical control, i.e., the use
of pesticides, especially fungicides [19]. Their effectiveness depends on several factors, such
as the substance itself, the application method, the degree of development of the infestation,
the forecasting system and, above all, the time at which the treatment is applied [20]. It
should be considered that, in spite of its effectiveness, chemical control must be used
correctly, since improper use, such as human exposure, can cause intoxication and harmful
side effects in people [21]. Good work practices are essential when applying products such
as fungicides in order to guarantee the safety of exposed workers during the application
of these types of chemical products [22]. The extent of the disease, as well as the level
of infestation, is traditionally assessed visually on symptomatic plants, which is time-
consuming and labor-intensive [23]. Integrated pest management (IPM), i.e., knowing the
pathogen and monitoring its appearance, is a tool to apply control measures before yield
losses exceed the cost of control [12].

Remote sensing data provide the possibility of detecting changes in plant biophysical
properties caused by pathogens [24,25], since reflectance is determined by the chemical and
morphological characteristics of the plant surface [26]. The study of the unique spectral
signature of the crop makes it possible to recognize its coverage and condition, facilitating
assessments and analysis using remote sensing techniques [27]. Plant responses to initial
crop infestation are difficult to quantify visually, however, these infestations usually affect
the quantity and quality of electromagnetic radiation reflected in the spectral signature
of the crop [28,29]. Previous studies have reported on the relationship between spectral
reflectance and satellite sensors regarding the biophysical parameters of the crop [30].
The application of remote sensing technology for early detection of infested plants is
being extensively investigated [31]. However, the effectiveness of this method may vary
depending on the type of pest and crop. Therefore, it is essential to evaluate the sensitivity
of remote sensing characteristics to ensure successful monitoring.

Early detection of M. oryzae is crucial in rice farming to prevent significant damage
and production losses. Traditional field monitoring of crop damage caused by diseases
and pests can be time-consuming and labor-intensive [32]. Furthermore, the reliability of
the assessments carried out by individual field advisors, who carry out visual surveys of
symptomatic plants, is questionable, leading to considerable discrepancies in the outcomes
obtained [29]. Remote sensing can be used as a tool to objectively characterize infected
crops [28], providing more accurate and consistent measurements than those obtained by
field assessors [32–37]. This monitoring and classification are possible because diseases
cause chemical and biological changes in plants, which can be detected using remote
sensing technology. The interaction of leaf tissue with light is determined by its structural
and chemical properties. During pathogenesis, leaf pathogens alter these properties, which
in turn affects the leaf optics. As a result, the spectral reflectance of vegetation is determined
by the morphological and chemical characteristics of the leaf surface or organ. This was
previously reported by Mahlein [28] and also discussed by Zhang et al. [26]. Reflectance
data can detect changes in the pathogen-related biophysical properties of plants and
canopy [24,25,38–40].
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Therefore, the use of remote sensing techniques can provide a record of the severity of
the disease and allows the level of infestation to be assessed more objectively [37,38] before
it becomes visibly evident. The results obtained in the study by San Bautista et al. [32]
demonstrated the importance and need to evaluate all reflectance regions to study the
sensitivity of any change in any of the bands as a new index.

Based on the critical moment for initiating an Integrated Pest Management program
in rice and with the beginning of the appearance of differences between affected and
unaffected canopies, the spectral signature is unique to each crop and is fundamental
for the recognition of plant canopies. Therefore, in order to carry out crop studies with
remote sensing techniques, it is essential to start by obtaining spectral signatures [27]. The
dynamics between reflectance in the visible and NIR bands follow the crop dynamics
proposed by San Bautista et al. [32]. Other previous studies in other species, such as wheat
stripe rust [41], wheat powdery mildew [42], kiwi gray mold [43], tomato late blight [44],
and leafroll of vine [45] demonstrated that the analysis and representation of the spectral
signature could anticipate the detection of the disease due to changes in the reflectance
spectrum of some of the bands studied.

The objective of this work is to study the monitoring of M. oryzae infection in the
Bomba variety at L’Albufera Natural Park (Valencia, Spain) in the years 2022 and 2023.
For this, the reflectance values of different bands obtained from the Sentinel-2 satellite
were used and, from these values, different vegetative indices used in rice cultivation
were obtained for each year. From the results obtained, it is possible to quantify the
degree of infestation before it is visually evident, which is of utmost importance in pest
control. The crop response to M. oryzae infestation is also characterized by relating the
evolution of reflectance and the different vegetative indices with field sampling. The results
obtained in the early detection of the incidence of blast in rice crops could be the basis
for advancements in the detection of the disease at the intra-field level. In this way, the
proposed monitoring during the process of rice cultivation could be considered a digital
tool capable of generating objective information to achieve Precision Agriculture.

2. Materials and Methods
2.1. Study Area

The present study was performed during the years 2022 and 2023 in the Natural
Park of Albufera in the region of Valencia, Spain (39◦16′ N, 0◦22′ W), a traditional rice
crop-producing area at sea level. The expansive Albufera lake extends over an area of more
than 211 km2 and is flanked by the Jucar River to the south and the Turia River to the north.
This region is characterized by its large surrounding fields dedicated to rice cultivation,
with a rice planting area of approximately 200 km2. Figure 1 shows the location of the
experiment region.
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The climate is classified as subtropical Mediterranean [46], with dry and hot summers.
Table 1 shows the temperatures (T), relative humidity (RH), and rainfall (mm) during 2022
and 2023.

Table 1. Average values of maximum daily temperature (T max), mean daily temperature (T mean),
and minimum daily temperature (T min); maximum daily relative humidity (RH max), mean daily
relative humidity (RH mean), and minimum daily relative humidity (RH min); and maximum daily
rainfall (Rainfall max), mean daily rainfall (Rainfall mean), and minimum daily rainfall (Rainfall min)
for the years 2022 and 2023.

Years of the Study

Climatic Variable 2022 2023

T mean (◦C) 18.02 18.21
T max (◦C) 24.02 24.48
T min (◦C) 13.15 12.62
RH mean (%) 77.58 73.63
RH max (%) 97.33 95.24
RH min (%) 49.79 45.04
Rainfall mean (mm) 64.28 27.32
Rainfall max (mm) 354.75 135.87
Rainfall min (mm) 1.22 0.41

Figure 2 shows the mean temperatures and relative humidity for the 2022 and 2023
seasons. Graphically indicated temperatures between 17 ◦C and 28 ◦C and a relative
humidity higher than 93% are optimal for the growth of rice blast [47].
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Figure 2. Mean daily temperature (T mean) and humidity (HR meand) from March to September in
the experimental area for 2022 and 2023 and optimal conditions for the development of rice blast.

The soil in the area is characterized as sandy loam with a pH of 7.8, 3% organic
matter, and an electrical conductivity (EC) of 3.2 ds/m. At a depth of up to 15 cm, it
encompasses approximately 0.15% N, 30 parts per million (ppm) P, and 234 ppm K [48].
The irrigation water comes from the Albufera lake and has no restrictions on the salinity of
the rice field (pH: 7.5; EC: 3.2 ds/m) [49]. Water management is carried out by continuous
flooding (to depth of 10–15 cm) during the whole season (direct water-seeing), except
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for three periods, when the fields are traditionally dried for treatments such as herbicide
top-dress fertilization, pesticides, and harvest, over an entire irrigation sector.

2.2. Experimental Design

Rice was sown on 8 June 2022 and 4 May 2023 (0, DAS, Day After Sowing), with a sow-
ing rate of 190 kg/ha, and harvests took place on 27 September 2022 and on 28 August 2023
(110 DAS). Phenological stages were classified according to the BBCH scale (Biologische
Bundesanstalt, Bundessortenamt und Chemische Industrie) [50]. Figure 3 shows the pheno-
logical cycle of the crop in the experimental plot and the periods when the fields are dried.
Nitrogen, phosphorus, and potassium were applied as described by Osca [51].
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Figure 3. Phenological cycle of the Bomba variety rice crop in days after sowing.

The experiment consisted of 21 plots of the Bomba rice variety over a total surface
area of 777,000 m2 for 2022 and 16 plots with a total surface area of 525,000 m2 for 2023,
which are shown in the Table 2. The availability of study plots fluctuates depending on the
growing activities of producers each season (Figure 4), as these plots are not designated
as experimental. The current count of fields available for the experiment is 37. Therefore,
different plots were studied both for the year 2022 and the year 2023, independently,
which represents a study of a total of 1,292,000 m2. Growers followed the same crop
management practices (plant nutrition, water requirement, and cultural practice), following
the recommendations described by Osca [51].
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Table 2. Total plots, areas, and dates of sowing and harvest for 2022 and 2023.

Year 2022 2023 Total

Number of plots 21 16 37
Area (m2) 777,000 525,000 1,292,000
Sowing 8 June 9 May -
Harvest 27 Septemeber 28 August -

2.3. Field Parameters: Determination of M. oryzae Effects

To evaluate M. oryzae infestation, disease symptoms were evaluated according to
the Standard Evaluation System for rice (SES) from the IRRI (International Rice Research
Institute) [52] every two weeks during July, August, and September. The following parame-
ters were recorded: leaf incidence, leaf severity (affected area in percentage), percentage
of panicle infestation, panicle collar in percentage, percentage of affected nodes, and the
presence of Brown Spot (Helminthosporium). The dates of the field evaluation are presented
in Table 3.

Table 3. Evaluating dates of the pest infestation.

DAS Dates

30
9 July 2022
9 June 2023

45
24 July 2022
24 June 2023

60
8 August 2022

9 July 2023

90
7 September 2022

8 August 2023

2.4. Remote Sensing Data

Satellite images obtained by the Multi-Spectral Instrument (MSI) on board the Sentinel-
2A/B constellation of the T30SYJ tile were used [53]. Sentinel-2 level 2A provides atmo-
spherically corrected surface reflectance images with 13 different spectral bands:

• 10 m spatial resolution bands: B2-Blue (490 nm), B3-Green (560 nm), B4-Red (665 nm),
and B8-NIR (842 nm).

• 20 m spatial resolution bands: B5-Vegetation Red Edge (705 nm), B6-Vegetation Red
Edge (740 nm), B7-Vegetation Red Edge (783 nm), B8a-Vegetation Red Edge (865 nm),
B11-SWIR (1610 nm), and B12-SWIR (2190 nm).

In this study, both the bands with the highest spatial resolution (10 m) and quality, as
well as those with the lowest resolution (20 m), were considered, although the small size of
rice fields in Spain makes it difficult to take advantage of the latter.

The study used cloud-free images from sowing to harvest in the 2022 and 2023 seasons.
Dates in both years were carefully selected based on days after sowing and phenology
(Table 4). The downloadable product offers surface reflectance [53]. The obtained values
were combined for the different fields that were previously identified as Bomba rice.

The analysis focused on examining band values obtained from Sentinel-2 and
derived plant indices (Table 5). These test results were used to investigate the evolution
of the crop cycle and the spectral signature on dates identified as critical for blast
infestation in the crop.
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Table 4. Dates of Sentinel-2 cloud-free images for the 2022 and 2023 seasons.

2022 2023

DAS Date DAS Date

30 9 July 30 9 June
35 14 July 35 14 June
40 19 July 45 24 June
45 24 July 55 4 July
55 3 August 60 9 July
60 8 August 65 14 July
70 18 August 80 29 July
75 23 August 95 13 August
85 2 September 100 18 August
90 7 September 105 23 August

110 27 September 110 28 August

Table 5. Vegetative indices and equations used for the analysis of the evolution of the rice cycle.

Index Equation Reference

NDVI: Normalized Difference Vegetation Index B8−B4
B8+B4 [54]

RVI: Ratio Vegetation Index B8
B4 [55]

NDRE: Normalized Difference Red Edge Index B7−B4
B7+B4 [56]

IRECI: Inverted Red-Edge Chlorophyll Index B7−B4
B5
B6

[57]

2.5. Statistics

The statistical analysis carried out was a simple ANOVA (analysis of variance) analysis
performed to compare both groups based on the classification and the seasons under study
(2022 and 2023), according to the F-Snedecor test with a p-value < 0.05. A mean separation
table was made using the LSD test (Least significant difference), with a p-value < 0.05,
based on the mean values of the plots according to their classification in the field, healthy
or unhealthy, in order to relate the values obtained from samplings and satellite data.

2.6. Software

Statistical analyses were performed with Matlab software 7.10.0 [58]. The processing
of satellite images obtained from the Sentinel-2 GEE (Google Earth Engine) [59] was carried
out with the QGIS 3.10.14 software [60].

3. Results
3.1. Classification of the Plots According to M. oryzar Affectation

During the field sampling process using SES, all Bomba plots in this study were
classified into two groups—healthy and unhealthy. Classification was based on specific
conditions: plots with a value lower than 5 on the leaf (typical blast lesions infecting
between 4 and 10% of the leaf area) and panicle (lesion partially around the node or the
uppermost internode or the lower part of panicle axis near the base) severity scales were
classified as healthy, while plots with a value higher than 5 were classified as unhealthy. In
each plot, during field work, 27 control points were taken, regularly distributed throughout
the plot (each plot was divided into three blocks with three repetitions in each block and
three control points in each block). The criterion we adopted is that if the 27 points are
healthy, the plot is healthy. Otherwise, it is unhealthy. The resulting classification with the
number of plots and total area for the 2022 and 2023 seasons is presented in Table 6.
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Table 6. Number of healthy and unhealthy plots and areas under cultivation for the years 2022
and 2023.

2022 2023

Healthy Unhealthy Healthy Unhealthy

Plots number 11 10 9 7
Area (m2) 374,000 403,000 287,000 238,000

3.2. Spectral Reflectance
3.2.1. Sentinel Bands

From 30 DAS until the day of harvest (110 DAS), the evolution of the bands at 10 and
20 m of spectral resolution were analyzed by averaging the mean value of each group of
plots for 2022 and 2023.

Figure 5 displays the progression of the plots classified as healthy and unhealthy in the
visible RED (B4) and NIR (B8) bands, both at 10 m spectral resolution. From the beginning
to 60 DAS, the reflectance in the red band decreased slightly due to plants becoming
greener (Figure 5A). Reflectance stabilized up to 75 DAS but then increased due to the
loss of green color, accelerating after 90 days. According to the scientific literature [33,34],
the increased reflectance and loss of green color would indicate a reduction in chlorophyll
content. Figure 6 shows the evolution of band B4 and the differences between two fields
with different classifications. Variations in the highest level of crop greenness may be an
early sign of blast disease. However, the study did not find any statistically significant
differences between the healthy and unhealthy plots.
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Figure 5. Evolution of healthy and unhealthy plots in the 10 m spectral resolution bands: B4 (A) and
B8-NIR (B) in days after sowing (DAS). Vertical bars indicate standard error interval.

The pattern observed in both years was similar. However, the red reflectance values
recorded in 2022 were higher than in 2023. As seen in the results, both healthy and
unhealthy groups of plants wilted earlier and more severely in 2022.

Regarding the temporal evolution of B8-NIR, an opposite trend to red, increasing
the reflectance value up to 70 DAS, was observed in both healthy and unhealthy plots
(Figure 5B). Thereafter, the reflectance values in B8-NIR, in 2022 and 2023, decreased until
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reaching values close to 0.2. According to the agronomic interpretation of this band, the
rice crop increased its coverage as the phenological stages progressed. With the arrival of
the gleaning and flowering stages, a loss of reflectance began.
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Figure 6. Evolution of B4 band of healthy and unhealthy fields over the course of a season.

As in the case of red reflectance evolution, the B8-NIR values reached in 2022 were
higher than those recorded in 2023. According to the results of the scientific literature, the
crop showed higher vigour and canopy in 2022. However, contrary to what was observed
for red reflectance, in the case of B8-NIR statistically significant differences were found for
B8-NIR between healthy and unhealthy plots (p < 0.05). Clearly, a lower plant biomass was
evident in the blast-affected plots, from the early tillering stage.

Figure 7 shows bands B6 (Figure 7A) and B7 (Figure 7B), both with a spectral resolution
of 20 m. The reflectance of B6 and B7 bands followed a similar evolution to the B8-NIR band,
showing significant differences throughout the cycle. Although the spectral resolution is
lower, both bands could be used to separate healthy and infected plots. Therefore, they
could also help us study both groups, with vegetative indices calculated by combining
these bands. Differences between years and between varieties were maintained, as was the
case for reflectance in B8-NIR at 10 m spectral resolution.
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Figure 7. Evolution of the healthy and unhealthy plots in the 20 m spectral resolution bands: B6 (A)
and B7 (B) in days after sowing (DAS). The vertical bars indicate standard error interval.
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3.2.2. Vegetative Indices

The indices analyzed allow us to study the performance of healthy and unhealthy rice
plots. Vegetation indices are widely studied and applied to assess the health of different
crops. Figure 8 shows the evolution of the NDVI, RVI, NDRE, and IRECI of all the plots
according to their disease classification.
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Figure 8. Evolution of the VI NDVI (A), RVI (B), NDRE (C), and IRECI (D) of the healthy and
unhealthy plots in DAS of the 2022 and 2023 seasons. Vertical bars indicate the standard error interval.

NDVI is the most commonly employed index in the scientific literature [61], as it
combines the red and NIR bands to yield a value ranging from −1 to 1. This index is highly
useful for correcting and improving crop management. As shown in Figure 6, in general
terms, NDVI saturation was observed from 45 to 80 DAS (end of tillering to the flowering
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stage) in 2022 and 2023. These results did not change the limitations of using this vegetation
index in agriculture due to saturation as the crop grows. Thus, no statistically significant
differences were found between healthy and unhealthy plots during most days of the
growth season. Similar results were obtained with the NRDE vegetation index, calculated
from the reflectance in B7 instead of the value recorded in B8-NIR. Saturation was reached
up to 60–80 DAS, in both years, and the differences were reduced in most of the growing
season, except for the last days (dough and mature stage).

Different results were obtained with the vegetation indices RVI and IRECI, as they
did not follow the degree of saturation of the previous indices. The values recorded with
these new indices reached maximum values between 60–80 DAS (from the end of tillering
to flowering) in 2022 and 2023. Therefore, they could be used as good leading indicators
for the separation of plots into healthy or unhealthy. Figure 9 shows the evolution of the
RVI index in two different fields that were studied. At 60 DAS the differences are visible.
However, it should be noted that during most of the growing season statistically significant
differences, p < 0.05, were found between healthy and unhealthy plots. Only at the end of
the growing session were no differences detected. The values recorded for all vegetation
indices were higher in 2022 compared to those obtained in 2023, a trend followed by the
values recorded in the bands.
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3.2.3. Analysis of Spectral Signature

In the analysis of the evolution of the spectral bands and the most important vegetation
indices, it should be noted that the most significant differences appear at the tillering stage,
which represents a critical moment for the design of blast control strategies for the season.
For this reason, it may be interesting to know the spectral signature at 45 DAS to confirm
the main bands that can register differences in the reflectance of healthy and unhealthy
plots. The results of this spectral signature analysis are shown in Figure 10 for both 2022 and
2023. From the spectral signature study, it was found that in the visible bands (B2, B3, and
B4), no statistically significant differences were detected between healthy and unhealthy
plots. On the other hand, in the infrared bands (B5, B6, B7, and B8-NIR), statistically
significant differences (p < 0.05) were found in the two years analyzed. Finally, in the bands
with the longest wavelength in reflectance, significant differences were found only in B11
band. However, there is a lower proportion of reflectance between healthy and unhealthy
plots with respect to the proportions reached in the infrared bands. Finally, no significant
differences were found in B12 band.
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Figure 10. Spectral signature at 45 DAS during the 2022 and 2023 seasons.

Finally, the analysis of covariance was used to study the influence of year and disease
incidence on reflectance. The analysis included reflectance in the bands studied at 20 m, as
well as the main vegetation indices related to disease incidence. The study factors were
year and disease, as presented in Tables 7 and 8. In this statistical analysis, a statistically
significant influence of the year was detected in the reflectance recorded in bands B2, B4,
B7, and B8-NIR at 45 DAS (p < 0.05), with higher values in 2023 with respect to 2022. In
contrast, the analysis of the disease factor indicated that it was only statistically significant
in the reflectance data for B2, B4, B6, B7, B8-NIR, B8A, and B11 bands (p < 0.05). This
revealed that reflectance values were higher in the healthy plots for these infrared bands, as
well as in the unhealthy plots for B2 and B4 bands. In relation to the influence of the studied
factors, the total variability explained by the year in B2 and B4 bands was remarkable,
representing 38.12% and 33.32%, respectively, indicating the high influence of the year on
the visible reflectance. However, the significant effect of the explained variability over the
total was that obtained by the disease factor, reaching values between 41.68% and 49.33%
in the infrared bands. Finally, the most outstanding result of the ANOVA was the absence
of interaction between year and disease factor for any of the bands studied. Therefore, the
statistically significant differences between healthy and unhealthy plots are not conditioned
by the variability associated with the year factor.

Table 7. Mean reflectance values in bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 at 45 DAS,
and analysis of variance. Significance level: ** p ≤ 0.01, * p < 0.05 and ns not significant. Mean ± SE
followed by different letters are statistically different at p < 0.05 (LSD test).

Factor B2 B3 B4 B5 B6 B7 B8 B8A B11 B12

Year
2022 307.74 b 775.77 321.41 b 1221.26 3419.50 4145.94 b 4113.98 b 4135.74 1790.74 908.64
2023 351.51 a 793.54 391.90 a 1253.74 3188.51 3711.57 a 3672.64 a 3735.20 1830.86 948.35

Disease
Healthy 314.36 b 778.43 320.52 b 1213.93 3618.50 a 4397.21 b 4374.23 b 4455.93 b 1933.02 a 964.07

Unhealthy 343.89 a 790.88 392.79 a 1261.07 2989.56 b 3460.30 a 3411.39 a 3415.02 a 1688.61 b 892.92

ANOVA

Factor
Year (Y) 38.12 ** 3.51 33.32 ** 4.18 5.62 9.54 * 10.32 ** 6.84 0.50 2.36
Disease (D) 16.58 ** 1.72 35.02 ** 8.80 41.68 ** 44.37 ** 49.33 ** 46.23 ** 18.64 * 7.59
Y × D 4.05 0.42 3.57 0.15 1.27 2.72 1.65 2.38 0.13 0.10
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Table 8. Mean reflectance values in NDVI, RVI, NDRE, and IRECI at 45 DAS, and analysis of variance.
Significance level: * p ≤ 0.05 and ns not significant. Mean ± SE followed by different letters are
statistically different at p ≤ 0.05 (LSD test).

Factor NDVI RVI NDRE IRECI

Year
2022 0.85 a 13.27 a 0.85 a 10,965.20 a
2023 0.80 b 9.78 b 0.80 b 8694.37 b

Disease
Healthy 0.86 a 14.08 a 0.86 a 12,317.70 a

Unhealthy 0.79 b 8.97 b 0.79 b 7341.83 b
ANOVA

Factor
Year (Y) 24.00 * 23.38 * 20.02 * 10.73 *
Disease (D) 48.72 * 50.39 * 46.78 * 51.51 *
Y × D 1.34 0.54 0.79 32.13

The analysis of variance performed on the values determined in the vegetation indices
studied to determine the statistical influence of year and disease is shown in Table 8. The
results obtained in this ANOVA confirmed the absence of interaction between the year and
the disease factor, as occurred with the bands. The variability explained by year was high,
reaching maximum values of 24% of the total NDVI. However, the disease factor obtained
the highest values of explained variability over the total, with values between 46.78% and
51%. These results confirm the relevance of the study carried out in this work because the
set of factors studied reached values close to 75% of the total variability to characterize
the incidence of blast on the rice crop. The highest values for the four indices studied
were recorded in the healthy plots with statistically significant differences (p < 0.05). The
four indices, NDVI, RVI, NDRE, and IRECI, are also significant, reaching values of more
than 60%, explaining the variance of the system. The NDVI and NDRE values obtained
are similar, so each of them would be valid for the study of the evolution of the crop, as
well as the RVI and IRECI, of which the resulting values are different, but they also reach
high values in the calculation of the factor (df), demonstrating that these indices are valid
for the study of the impact of blast infestation on the crop. The RVI and IRECI indices,
although different in their calculation, follow a similar evolution. For both indices, the
largest significant differences between the two groups are obtained throughout the crop
cycle. These are very useful indices for monitoring and detecting diseases. NIR bands and
indices combining visible and NIR spectra could be of great interest for disease monitoring.

4. Discussion

The analysis of the results presented in this work on how the frames have evolved
across the different Sentinel-2 bands has proven to be helpful in categorizing them based
on their health status, especially in the B8-NIR and Red Edge (B6 and B7) bands. This
categorization was carried out throughout the growing season in the two years analyzed
(2022 and 2023). These findings are in agreement with those reported by Zhang et al. [31],
who stated that VIS-NIR sensors are the most commonly used remote sensing systems for
tracking diseases and pests in plants.

Several studies have found that the green, red, and near-infrared (NIR) spectral regions
are sensitive to various plant diseases and pests [62,63]. In our study, there were statistical
differences in reflectance in the B8-NIR band throughout the entire cycle for both years (2022
and 2023). The plants affected by blast showed a loss of biomass and plant cover, as was
shown by the lowest values in the reflectance of B8-NIR band. The relationship between
radiation in the red band and green biomass has an inverse nonlinear relationship, whereas
in the near-infrared, the nonlinear relationship is directly due to the strong absorption of
incident radiation by chlorophyll [64]. The near-infrared (NIR) spectral region does not
absorb much solar radiation and does not have a significant correlation with vegetation
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pigments [32]. However, it is highly correlated with crop biomass and leaf area index
(LAI) [65]. This means that a higher biomass results in greater reflectance in B8-NIR and
therefore in plants free of M. oryzae.

Vegetation indices were used to track the evolution according to the classification
of plots according to disease incidence. VIs combining visible and NIR bands improve
the sensitivity of green vegetation detection [66]. Therefore, several indices have been
studied: NDVI, RVI, NDRE, and IRECI. NDVI, despite being widely used due to its
positive correlation with LAI (Leaf Area Index), has a saturation issue. NDVI is not very
sensitive to high vegetation densities. However, NDRE improved the discretization of
healthy vegetation, coinciding with the results reported by Frampton et al. [41]. The RVI,
calculated with the NIR and Red region as NDVI, allows for the study of disease stress [32].
The results obtained in this work show that it could be considered as a VI amplifier of the
differences between fields affected and not affected by blast. This ratio, used for monitoring
crop growth and development, is highly sensitive to any changes in vegetation that may
occur during the peak growth period [67]. Finally, IRECI, compared to the rest of the indices,
showed more significant differences between healthy and unhealthy fields, as reported in
other works [68]. Since its calculation consists of the three red edge bands, it decreases the
saturation with respect to NDVI on high-density crops, such as rice. Moreover, it should be
remembered that the red edge reflectance was already an excellent indicator to separate
healthy and unhealthy plots. Based on the study of the VIs, the results indicate that NDVI
is not a reliable indicator for distinguishing plots affected by blast, even though it is the
most commonly used VI for studying agronomic conditions, developmental stages, and
crop biomass [69].

The spectral signature analysis at 45 DAS showed significant differences in reflectance
in the visible (B4), infrared (B8), Red Edge (B6 and B7), and SWIR (B11) bands. The highlight
of the results is the separation of the reflectance between blast-affected and unaffected
fields, regardless of the year. Likewise, this separation can be evidenced with the RVI and
IRECI vegetation indices, reaching a total variability close to 70% between the two factors
considered in the statistical analysis (year and disease). These results in band reflectance
coincide with those obtained by Zhang et al. [31] in the study of powdery mildew in wheat.
In this study, higher values were recorded in the visible region and lower values in the NIR
region in infested areas at the canopy level.

5. Conclusions

The results obtained in this study demonstrate the great usefulness of remote sensing
and the data it provides for monitoring disease in rice crops. M. oryzae is a fungus that
affects the crop worldwide and it is considered one of the major concerns affecting yield,
however, other factors such as climatic factors greatly condition the crop.

From the study of VIs, the results obtained indicate that the NDVI, despite being the
most commonly used VI for the study of development stages and crop biomass, is not
a reliable indicator to distinguish affected plots by blast. The highlight of the observed
results is that the spectral signature at 45 DAS showed significant differences in reflectance
in the visible (B4), infrared (B8), Red Edge (B6 and B7), and SWIR (B11) bands between
fields affected and non-affected by blast. Likewise, these differences are observed with the
RVI and IRECI vegetation indices, reaching a total variability close to 70% between the two
factors considered in the statistical analysis (year and disease). This is why the RVI and
the IRECI are more reliable than the NDVI or the NDRE for the purpose of distinguishing
plots affected by blast.

The early difference in the values of bands, indices, and spectral signatures between
infected plots with respect to healthy ones constitutes a promising result in the agronomic
management of rice crops to anticipate and solve the problem. Consequently, the proposed
monitoring during rice cultivation could be regarded as a tool in IPM, with the objective
of enhancing the effectiveness of fungicide treatments. This is because it is not dependent
only on the active substances, but also on the timing of application, which conditions
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the development and progression of the infestation in rice cultivation. The analysis of
reflectance bands and VIs should be studied in other areas and in additional plots, to carry
out a more exhaustive study. Furthermore, it would be interesting to study the evolution of
the fungus and the band values in smaller areas within the same plot in order to be able to
compare smaller plots.
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