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Abstract

We present a comprehensive report on the relationships between vari-
ations of the Menger and Rothberger selection properties with respect
to ω-covers and k-covers in the most general topological setting and
address the finite productivity of some of these properties. We collect
various examples that separate certain properties and we carefully iden-
tify which separation axioms simplify aspects of these properties. We
finish with a consolidated list of open questions focused on topological
examples.
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1. Introduction

The purpose of this paper is to bear the relationships, summarized in Figures
1 and 2, between standard variations of the Menger and Rothberger properties
in the most general topological settings and to identify unresolved questions.
En route to proving the implications of the above-mentioned figures, we also
prove novel results about the productivity of certain properties related to se-
lection principles using k-covers (Theorems 4.25, 4.27, and 4.30). The implica-
tions of Figure 1 are mostly established with Theorem 4.43; the implications of
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Figure 2 have been established previously, but in some cases under certain as-
sumptions about separation axioms. Our contribution to this line is to remove
those assumptions and still obtain the implications.

As an example, relationships between some variants of the Menger and Roth-
berger properties have originally surfaced in the context of Cp-theory, where
one usually assumes every space considered is Tychonoff. One may wish to
apply such equivalences to, for example, Hausdorff spaces, and consequently
wonder if the Tychonoff assumption is necessary. Such equivalences, as well as
others, will be proved herein without assuming any separation axioms.

We note that this work was inspired by updating the π-base [32], a database
that started as a digital expansion of [44], and identifying certain gaps. As
such, some examples presented here will bear the names used in [44] and their
ID in the π-base, where applicable.

The paper is structured as follows. Sections 2 and 3 review the notions we’ll
be working with in this manuscript. Section 4 contains most of the theory
which culminates in Theorem 4.43, though many results are presented for their
own interest. Section 4 is developed through various subsections: Section 4.1
covers the relationships between the ω-variants and finite powers of a space,
Section 4.2 discusses the k-cover analogues, and Section 4.3 summarizes some
basic conclusions based on the previous two sections. Sections 4.1 and 4.2
are organized in terms of increasing strength, in a sense, and that order is
motivated by the fact that traditional selection principles are the most widely
studied of the levels included here and so should appear sooner rather than
later. We also typically lead with the finite-selection versions before single-
selection versions, a choice also motivated by strength. Once the implications
and equivalences have been proved, Section 5 provides a list of examples that
show that certain implications do not reverse. Lastly, Section 6 collects some
questions the authors have not been able to answer, and is mostly a search
for examples of topological spaces that separate what seem to be very similar
properties.

Unless otherwise noted, no separation axioms are assumed, so when we say
“for any space X,” there is no implicit assumption that X is, for example,
Hausdorff. When we do require separation axioms, we will use the term regular
without assuming T1; we will use T3 for regular and T1. Any terms used without
being defined are to be understood as in [15].

2. Three perspectives on cover collections

The definition of O, the collection of all open covers of a space X, is standard
and used consistently through the literature (with few exceptions, where X is
excluded from open covers; e.g. [30]). However, the reader should note that
there are two standard definitions for Ω, one which merely requires that for
each W ∈ Ω and finite F ⊆ X, there exists W ∈ W with F ⊆ W [19], and
another which additionally disallows X ∈ W for each W ∈ Ω [39]; i.e., the
cover is not “trivial”. And on occasion, authors find it necessary to consider
covers as sequences rather than sets [4].
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This ambiguity can result in some heartburn for the careful mathematician:
do results for one Ω hold for the other? And why is this discrepancy in the
literature in the first place?

To understand this better, we present several characterizations used in the
literature for the standard cover collections O,Λ,Ω,Γ,K.

Definition 2.1. Let O1 = O2 collect all open covers of a topological space X.
Let O3 collect all transfinite sequences of open sets 〈Uβ〉β<α such that {Uβ :

β < α} forms an open cover of X.

Definition 2.2. Let Λ1 collect all open covers L of X such that for each x ∈ X,
{L ∈ L : x ∈ L} is infinite.

Let Λ2 collect all open covers L of X such that either, for each x ∈ X,
{L ∈ L : x ∈ L} is infinite, or X ∈ L.

Let Λ3 collect all transfinite sequences of open sets 〈Lβ〉β<α such that either
for each x ∈ X, {β < α : x ∈ Lβ} is infinite, or X = Lβ for some β < α.

These are known as large or λ-covers.

Definition 2.3. Let Ω1 collect all open coversW of X such that for each finite
F ⊆ X, there exists W ∈ W with F ⊆W , and X 6∈ W.

Let Ω2 collect all open coversW of X such that for each finite F ⊆ X, there
exists W ∈ W with F ⊆W .

Let Ω3 collect all transfinite sequences of open sets 〈Wβ〉β<α such that for
each finite F ⊆ X, there exists β < α with F ⊆Wβ .

These are known as ω-covers.

Definition 2.4. Let Γ1 collect all open covers C of X such that for each x ∈ X,
{C ∈ C : x ∈ C} is infinite and co-finite, and X 6∈ C.

Let Γ2 collect all open covers C of X such that either for each x ∈ X,
{C ∈ C : x ∈ C} is infinite and co-finite, or X ∈ C and C is finite.

Let Γ3 collect all transfinite sequences of open sets 〈Cβ〉β<α such that either
for each x ∈ X, {β < α : x ∈ Cβ} is infinite and co-finite.

These are known as γ-covers.

Definition 2.5. Let K1 collect all open covers V of X such that for each
compact K ⊆ X, there exists V ∈ V with K ⊆ V , and X 6∈ V.

Let K2 collect all open covers V of X such that for each compact K ⊆ X,
there exists V ∈ V with K ⊆ V .

Let K3 collect all transfinite sequences of open sets 〈Vβ〉β<α such that for
each compact K ⊆ X, there exists β < α with K ⊆ Vβ .

These are known as k-covers.

We have then the following relationships.

Proposition 2.6. For each i ∈ {1, 2, 3}, Ki ⊆ Ωi and Γi ⊆ Ωi ⊆ Λi ⊆ Oi.

Perhaps motivating the disqualification of X from an ω-cover as in Ω1 is the
guarantee that it disallows all finite ω-covers.

Proposition 2.7. If W ∈ Ω2 is finite, then X ∈ W (and thus W 6∈ Ω1).
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Proof. We prove the contrapositive by assuming X 6∈ W = {W0, . . . ,Wn}.
Choose xi ∈ X \Wi; it follows that {x0, . . . , xn} 6⊆Wi for any i ≤ n; therefore
W 6∈ Ω2. �

It is the preference of the authors of this manuscript to assume i ∈ {2, 3};
the literature is filled with minor errata that arise when disallowing X in the
open cover. (E.g., a common technique to obtain an ω-cover from an arbitrary
open cover is to close it under finite unions; however, if the open cover contains
a finite subcover, this would not obtain an ω-cover in the sense of i = 1.)
Furthermore, while it’s out of scope to explore in-depth here, the case where X
belongs to a cover has a nice analog in Cp-theory: the γ-covers in X correspond
to the sequences converging to 0 in Cp(X), and when X belongs to the γ-cover,
we may consider a trivial sequence in Cp(X).

Regardless, all results proven in this paper can be shown true no matter what
characterization is considered, and we will not specify a subscript i ∈ {1, 2, 3}.
For references cited, while the distinctions can generally be hand-waved away,
the reader should be aware that most authors consider at most one of these
three characterizations.

3. Background and Preliminaries

We will use the standard definition of ω where n ∈ ω is {m ∈ ω : m ∈ n}.
Hence, given A ⊆ ω and n ∈ ω, we may write A ⊆ n. We let [X]<ω denote
the set of all finite subsets of a set X. We will use πX : X × Y → X and
πY : X × Y → Y to denote the usual coordinate projection mappings.

We will use OX to denote the collection of all open covers of X, viewing
O as a topological operator. A topological operator is a class function defined
on the class of all topological spaces. Another topological operator that will
appear here is T , the topological operator that produces all non-empty open
subsets of a space X.

When a topological space X is given and A ⊆ X, we denote the neighbor-
hood system {U ∈ TX : A ⊆ U} about A with NA. For x ∈ X, we use the
simplified notation Nx instead of N{x}, if there is no risk of confusion. Also,
for a collection A of subsets of X, N (A) = {NA : A ∈ A}.

We will consider two other kinds of open covers.

Definition 3.1. For a space X, an open cover U of X is said to be

• an ω-cover of X if every finite subset of X is contained in a member
of U .

• a k-cover of X if every compact subset of X is contained in a member
of U .

We will let Ω (resp. K) be the topological operator which produces ΩX (resp.
KX), the set of all ω-covers (resp. k-covers) of a space X.

The notion of ω-covers is commonly attributed to [19], but they were already
in use in [25] where they are refereed to as open covers for finite sets. The notion
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of k-covers appears as early as [26] in which they are referred to as open covers
for compact subsets.

We remind the reader of a generalization of the above-mentioned cover types.

Definition 3.2. Let A be a collection of subsets of a space X. Then we define
the A-covers, denoted by OX(A), to be the collection of all open covers U of
X such that, for each A ∈ A, there is some U ∈ U such that A ⊆ U .

We recall the usual selection principles. For more details on selection prin-
ciples and relevant references, see [37, 23, 41, 42].

Definition 3.3. Let A and B be sets. Then the single- and finite-selection
principles are defined, respectively, to be the properties

S1(A,B) ≡ (∀A ∈ Aω)

(
∃B ∈

∏
n∈ω

An

)
{Bn : n ∈ ω} ∈ B

and

Sfin(A,B) ≡ (∀A ∈ Aω)

(
∃B ∈

∏
n∈ω

[An]<ω

) ⋃
{Bn : n ∈ ω} ∈ B.

Following [42], for a space X and topological operators A and B, we write
X |= S�(A,B), where � ∈ {1,fin}, to mean that X satisfies the selection
principle S�(AX ,BX).

Using this notation, recall that a space X is Menger (resp. Rothberger) if
X |= Sfin(O,O) (resp. X |= S1(O,O)).

Selection principles have naturally corresponding selection games, which in-
clude types of topological games. Topological games have a long history, much
of which can be gathered from Telgársky’s survey [47]. In this paper, we con-
sider the traditional selection games for two players, P1 and P2, of countably
infinite length.

Definition 3.4. Given sets A and B, we define the finite-selection game
Gfin(A,B) for A and B as follows. In round n ∈ ω, P1 plays An ∈ A and P2
responds with Fn ∈ [An]<ω. We declare P2 the winner if

⋃
{Fn : n ∈ ω} ∈ B.

Otherwise, P1 wins.

Definition 3.5. Given sets A and B, we analogously define the single-selection
game G1(A,B) for A and B as follows. In round n ∈ ω, P1 plays An ∈ A and
P2 responds with xn ∈ An. We declare P2 the winner if {xn : n ∈ ω} ∈ B.
Otherwise, P1 wins.

Definition 3.6. By selection games, we mean the class consisting of G�(A,B)
where � ∈ {1,fin}, and A and B are sets. So, when we say G is a selection game,
we mean that there exist � ∈ {1,fin} and sets A,B so that G = G�(A,B).

The study of games naturally inspires questions about the existence of var-
ious kinds of strategies. Infinite games and corresponding full-information
strategies were both introduced in [16]. Some forms of limited-information
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strategies came shortly after, like positional (also known as stationary) strate-
gies [12, 43]. For more on stationary and Markov strategies, see [18].

Definition 3.7. We define strategies of various strengths below.

• A strategy for P1 in G1(A,B) is a function σ : (
⋃
A)<ω → A. A

strategy σ for P1 is called winning if whenever xn ∈ σ〈xk : k < n〉 for
all n ∈ ω, {xn : n ∈ ω} 6∈ B. If P1 has a winning strategy, we write
I ↑ G1(A,B).
• A strategy for P2 in G1(A,B) is a function σ : A<ω →

⋃
A. A strategy

σ for P2 is winning if whenever An ∈ A for all n ∈ ω, {σ(A0, . . . , An) :
n ∈ ω} ∈ B. If P2 has a winning strategy, we write II ↑ G1(A,B).
• A predetermined strategy for P1 is a strategy which only considers the

current turn number. Formally it is a function σ : ω → A. If P1 has a
winning predetermined strategy, we write I ↑

pre
G1(A,B).

• A Markov strategy for P2 is a strategy which only considers the most
recent move of P1 and the current turn number. Formally it is a
function σ : A × ω →

⋃
A. If P2 has a winning Markov strategy,

we write II ↑
mark

G1(A,B).

• If there is a single element A0 ∈ A so that the constant function with
value A0 is a winning strategy for P1, we say that P1 has a constant
winning strategy, denoted by I ↑

cnst
G1(A,B).

These definitions can be extended to Gfin(A,B) in the obvious way.

Note that, for any selection game G,

II ↑
mark

G =⇒ II ↑ G =⇒ I 6↑ G =⇒ I 6↑
pre
G =⇒ I 6↑

cnst
G.

Definition 3.8. For two selection games G and H, we write G ≤II H if each
of the following hold:

• II ↑
mark

G =⇒ II ↑
mark

H,

• II ↑ G =⇒ II ↑ H,
• I 6↑ G =⇒ I 6↑ H, and
• I 6↑

pre
G =⇒ II 6↑

pre
H.

If, in addition,

• I 6↑
cnst
G =⇒ II 6↑

cnst
H,

we write that G ≤+
II H.

Note that, for any sets A and B,

G1(A,B) ≤+
II Gfin(A,B).

We use the notation≤II to emphasize the fact that this partial order transfers
winning plays for P2. As an example, note that I 6↑ G means that, for any
strategy that P1 employs, there exists a play by P2 that wins against that
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strategy. Then the implication in the definition of ≤II would indicate that P2
can accordingly win against any strategy employed by P1 in H.

Below, we will write statements such as G�(A,A) ≤II G�(B,B) where A
and B are topological operators to mean that, for every topological space X,
G�(AX ,AX) ≤II G�(BX ,BX).

Remark 3.9. The following are mentioned in [9, Prop. 15] and [3, Lem. 2.12]
for � ∈ {1,fin}.

• I 6↑
pre

G�(A,B) is equivalent to S�(A,B).

• I 6↑
cnst

G�(A,B) is equivalent to the property that, for every A ∈ A,

there is B ∈ [A]≤ω so that B ∈ B.

Note that the property I 6↑
cnst

G�(A,B) is a Lindelöf-like principle and falls in

the category of what Scheepers [42] refers to as Bar-Ilan selection principles.

In particular, note that, if G�(A,B) ≤II G�(C,D) where � ∈ {1,fin}, then,
for any space X, X |= S�(A,B) =⇒ X |= S�(C,D).

Following [23], we will employ the following terminology. A space X is

• ω-Lindelöf (referred to as ε-spaces in [19]) if every ω-cover has a count-
able subset which is an ω-cover; equivalently, if I 6↑

cnst
Gfin(ΩX ,ΩX).

• k-Lindelöf if every k-cover has a countable subset which is a k-cover;
equivalently, if I 6↑

cnst
Gfin(KX ,KX).

Proposition 3.10. Every second-countable space is k-Lindelöf and ω-Lindelöf.

Proof. Let B0 be a countable basis for a space X and let

B =
{⋃

F : F ∈ [B0]
<ω
}
.

Notice that B is also countable. Since we will establish with Theorem 4.43
that every k-Lindelöf space is ω-Lindelöf, we prove here that X is k-Lindelöf,
though the direct proof of ω-Lindelöfness in this case is identical in form to
what follows.

So let U be a k-cover of X, and, for each compact K ⊆ X, let U ∈ U be
such that K ⊆ U . We can then find FK ∈ [B0]

<ω
such that K ⊆

⋃
FK ⊆ U .

Note then that
⋃

FK ∈ B. Now,

V :=
{⋃

FK : K ⊆ X is compact
}
⊆ B,

and is thus countable. Make a choice UV ∈ U for each V ∈ V with V ⊆ UV
and note that {UV : V ∈ V } is the desired countable subset of U . �

We recall some P1 strategy reduction theorems, the first of which are the
celebrated theorems of Hurewicz [20] and Pawlikowski [31]. For more on the
proofs of the theorems of Hurewicz and Pawlikowski, we refer the reader to
[45]; for a pointless (that is, lattice-theoretic) approach, see [27].
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Theorem 3.11 (Hurewicz [20]/Pawlikowski [31]). For � ∈ {1,fin},
I ↑ G�(O,O) ⇐⇒ I ↑

pre
G�(O,O).

Theorem 3.12 (Scheepers [38]). For � ∈ {1,fin},
I ↑ G�(Ω,Ω) ⇐⇒ I ↑

pre
G�(Ω,Ω).

Theorem 3.13 (Caruvana & Holshouser [3]). For � ∈ {1,fin},
I ↑ G�(K,K) ⇐⇒ I ↑

pre
G�(K,K).

With these results, the properties considered in this paper “collapse” for P1
and we need only have terminology for the corresponding selection principles.
So, following the notation above, we will say a space X is

• ω-Menger (resp. ω-Rothberger) ifX |= Sfin(Ω,Ω) (resp. X |= S1(Ω,Ω)).
• k-Menger (resp. k-Rothberger) ifX |= Sfin(K,K) (resp. X |= S1(K,K)).

We will, however, have distinguishing terminology for the situation on P2’s
side of things.

Definition 3.14. For the properties P discussed above, we will say that X
is strategically P if P2 has a winning strategy in the game corresponding to
P. Analogously, we will say a space is Markov P if P2 has a winning Markov
strategy in the corresponding game to P.

4. General Results

4.1. Characterizations using finite powers. An important characteriza-
tion of the ω-variants is found in finite powers. We will collect these character-
izations in each of their strategic levels.

Theorem 4.1 ([19, p. 156]). A space X is ω-Lindelöf if and only if each of
its finite powers is Lindelöf.

Theorem 4.2. For any space X,

(1) X is ω-Menger if and only if each of its finite powers is Menger ([22,
Thm. 3.9]).

(2) X is ω-Rothberger if and only if each of its finite powers is Rothberger
([36, p. 918]).

To characterize the “strategically P” level without any separation axiom
assumptions, we recall that being strategically Rothberger (resp. Menger) is
finitely productive. The single-selection version of the equivalence referred to
here will appear here as Theorem 4.5(2) and was originally proved in [10] by
passing through a related game on Cp(X) under the assumption that X is
Tychonoff. We will see that one direction of the general equivalence will be the
result of Theorem 4.3 and a bijection ω2 → ω.

Theorem 4.3. Let X and Y be spaces.
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(1) If X and Y are strategically Menger, then X×Y is strategically Menger
([14, Prop. 5.1]).

(2) If X and Y are strategically Rothberger, then X × Y is strategically
Rothberger ([14, Cor. 4.9]).

As an immediate consequence, if a space X is strategically Menger or strate-
gically Rothberger, then each of its finite powers is, too.

To obtain the reverse direction of Theorem 4.5(2), we use a generalized idea
of Galvin [17] below, which is proved by a straightforward diagonalization, and
a basic unfolding argument.

Lemma 4.4. Let X be a space, A be a collection of subsets of X, and suppose
ϕ : OX(A) → TX . If ϕ(U ) ∈ U for every U ∈ OX(A), then there exists
A ∈ A such that NA ⊆ ϕ[OX(A)].

Proof. By way of contrapositive, suppose that, for every A ∈ A, there exists
U ∈ NA such that U 6∈ ϕ[OX(A)]. So let UA ∈ NA witness this property
for each A ∈ A. Note that U := {UA : A ∈ A} ∈ OX(A). It follows, by
construction, that ϕ(U ) 6∈ U . �

Theorem 4.5. Let X be a space.

(1) X is strategically ω-Menger if and only if it is strategically Menger.
(2) X is strategically ω-Rothberger if and only it is strategically Rothberger.

Proof. The content of (1) is [8, Thm. 35].
Now we address (2). Suppose X is strategically Rothberger. By Theorem

4.3(2), Xn+1 is strategically Rothberger for every n ∈ ω. So let σn be a
winning strategy for P2 in the Rothberger game on Xn+1 for each n ∈ ω, and
let β : ω2 → ω be a bijection with the property that 〈β(n, k) : k ∈ ω〉 is strictly
increasing for n ∈ ω. Now define the strategy σ in the ω-Rothberger game on
X in the following way. Given n ∈ ω and a sequence 〈Uj : j < n〉 of ω-covers
of X, let (m, k) ∈ ω2 be such that β(m, k) = n. Note that, for each ` ≤ k,

U
(m+1)
β(m,`) :=

{
Um+1 : U ∈ Uβ(m,`)

}
∈ OXm+1 .

So we can define

σ(〈Uj : j ≤ n〉) = πm+1

[
σm

(〈
U

(m+1)
β(m,`) : ` ≤ k

〉)]
,

where πm+1 is the projection mapping. From here, it’s straightforward to check
that σ is winning.

Now we assume that X is strategically ω-Rothberger. So let σ0 be a winning
strategy for P2 in the ω-Rothberger game. We define a strategy σ for P2 in
the Rothberger game as follows.

By Lemma 4.4, we let

F0 ∈ [X]<ω

be such that

NF0 ⊆ {σ0(W ) : W ∈ ΩX} .
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Let M0 = −1 + #F0 and enumerate it as F0 = {x0, . . . , xM0
}. Now suppose

〈Uj : j ≤ M0〉 is a given sequence of open covers of X. For each k ≤ M0,
choose σ(〈Uj : j ≤ k〉) ∈ Uk to be such that

xk ∈ σ(〈Uj : j ≤ k〉).
Then, we can choose W0 ∈ ΩX to be such that

σ0 (W0) =

M0⋃
k=0

σ(〈Uj : j ≤ k〉).

Now let n ∈ ω be given and suppose we have 〈Fj : j ≤ n〉, 〈Mj : j ≤ n〉,
〈Wj : j ≤ n〉, and 〈Uj : j ≤ Mn〉 defined. As above, we can let Fn+1 ∈ [X]<ω

be such that

NFn+1 ⊆ {σ0 (W0, . . . ,Wn,W ) : W ∈ ΩX} .
Let Mn+1 = Mn + #Fn+1 and enumerate Fn+1 as {xMn+1, . . . , xMn+1

}. Then,
given a sequence

〈Uj : Mn < j ≤Mn+1〉
of open covers of X, we define, for Mn < k ≤Mn+1,

σ(〈Uj : j ≤ k〉) ∈ Uk

to be such that

xk ∈ σ(〈Uj : j ≤ k〉).
Then, we set Wn+1 ∈ ΩX to be such that

σ0(W0, . . . ,Wn+1) =

Mn+1⋃
k=Mn+1

σ(〈Uj : j ≤ k〉).

This defines σ.
To see that σ is winning, consider a play 〈Un : n ∈ ω〉 of the game according

to σ and let x ∈ X be arbitrary. Since σ0 is winning in the ω-Rothberger game,
there is some n ∈ ω such that

{x} ⊆ σ0(W0, . . . ,Wn) =

Mn+1⋃
k=Mn+1

σ(〈Uj : j ≤ k〉).

Hence, there is some Mn < k ≤Mn+1 such that

x ∈ σ(U0, . . . ,Uk).

That is, σ is winning. �

To characterize the Markov properties of interest in this paper, we will need
some other notions.

Definition 4.6. A space X is said to be topologically countable if there exists
{xn : n ∈ ω} ⊆ X such that X =

⋃
n∈ω

⋂
Nxn .

Lemma 4.7. If X is a T1 space, then, for A ⊆ X, A =
⋂
NA. Consequently,

any T1 space that is topologically countable is countable.
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Proof. Clearly A ⊆
⋂
NA. On the other hand, for x 6∈ A, X \ {x} ∈ NA since

X is T1. Hence, x 6∈
⋂
NA. �

Example 4.8 (S421). The right-ordered reals X is an example of an uncount-
able T0 space which is topologically countable. Indeed, since the basis for X
consists of intervals (a,∞) for a ∈ R, the set of integers witnesses topological
countability.

Definition 4.9. For a subset A of a space X, A is said to be relatively compact
(in X) if every open cover of X admits a finite subset which covers A. A
space X is said to be σ-relatively compact if there exists a countable collection
{An : n ∈ ω} of relatively compact subsets of X such that X =

⋃
n∈ω An.

The usual Tube Lemma idea applies to show that the property of relative
compactness is also productive.

Lemma 4.10. If A and B are relatively compact subsets of X and Y , respec-
tively, then A×B is relatively compact in X × Y .

Proof. Without loss of generality, we consider only basic covers. So let W be
an open cover of X × Y consisting of rectangles. Note that, for any x ∈ X,
{x} ×B is relatively compact in {x} × Y viewed as a subspace of X × Y . So,
for each x ∈ X, we can let Fx ∈ [W ]<ω be such that {x} × B ⊆

⋃
Fx. Then

let Ux =
⋂
{πX [W ] : W ∈ Fx}. Now, {Ux : x ∈ X} is an open cover of X so

we can find F ∈ [X]<ω such that A ⊆
⋃
{Ux : x ∈ F}. Define W0 =

⋃
x∈F Fx.

To finish the proof, we need only show that A × B ⊆
⋃

W0. So let 〈x, y〉 ∈
A × B be arbitrary. There is some a ∈ F so that x ∈ Ua. Since y ∈ B, there
is some W ∈ Fa so that 〈a, y〉 ∈ W . Note then that x ∈ Ua ⊆ πX [W ] which
establishes that 〈x, y〉 ∈W . �

Lemma 4.11. The closure of any relatively compact subset in a regular space
is compact. (See [1] and also [7, Prop. 4.4].)

An immediate consequence is

Corollary 4.12. Every regular σ-relatively compact space is σ-compact.

Example 4.13 (S59). The indiscrete irrational extension of the reals is σ-
relatively compact but not σ-compact (see [7, Ex. 5.8]).

With eyes toward generality, we define the following types of cofinality.

Definition 4.14. Let X be a set and supposeA and B are collections of subsets
of X. We say that cofX(A,B) ≤ ω if there exists {An : n ∈ ω} ⊆ A such that,
for every B ∈ B, there exists n ∈ ω such that B ⊆ An.

In words, the condition cofX(A,B) ≤ ω is asserting that A is of cofinality
type ω relative to B.

We also use a slightly weaker version, inspired by the notion of being topo-
logically countable.

1Throughout, we will refer to spaces by their ID in the π-base [32].
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Definition 4.15. Let X be a space and suppose A and B are collections of

subsets of X. We say that ĉofX(A,B) ≤ ω if there exists {An : n ∈ ω} ⊆ A
such that, for every B ∈ B, there exists n ∈ ω such that B ⊆

⋂
NAn

.

Note that, if we identify X with the set of singletons and let A be the
collection of relatively compact subsets of X, then X is

• σ-relatively compact if and only if cofX(A, X) ≤ ω.

• topologically countable if and only if ĉofX(X,X) ≤ ω.

Lemma 4.16. For any space X and a collection A of subsets of X, ĉofX(A,A) ≤
ω if and only if II ↑

mark
G1(OX(A),OX(A)).

Proof. Let {An : n ∈ ω} ⊆ A witness that ĉofX(A,A) ≤ ω. For each n ∈ ω
and U ∈ OX(A), choose σ(U , n) ∈ U such that An ⊆ σ(U , n). To see that
σ is winning, let {Un : n ∈ ω} ⊆ OX(A) and A ∈ A. Choose n ∈ ω to be such
that A ⊆

⋂
NAn

. Then

A ⊆
⋂
NAn

⊆ σ(Un, n).

Hence, {σ(Un, n) : n ∈ ω} ∈ OX(A).

Now suppose that ĉofX(A,A) 6≤ ω and let σ be a Markov strategy for P2 in
G1(OX(A),OX(A)). By Lemma 4.4, we can choose, for each n ∈ ω, An ∈ A
such that

NAn
⊆ {σ(U , n) : U ∈ OX(A)}.

Now, by the assumption, there is some A ∈ A such that A \
⋂
NAn 6= ∅ for

each n ∈ ω. Hence, for each n ∈ ω, there is some Un ∈ OX(A) such that
A \ σ(Un, n) 6= ∅. Note then that

{σ(Un, n) : n ∈ ω} 6∈ OX(A).

That is, σ is not winning. �

Theorem 4.17. Let X be a space.

(1) The following are equivalent.
(a) X is Markov ω-Menger.
(b) X is Markov Menger.
(c) X is σ-relatively compact.

(2) The following are equivalent.
(a) X is Markov ω-Rothberger.
(b) X is Markov Rothberger.
(c) X is topologically countable.

Proof. We start by addressing (1). The fact that X is σ-relatively compact
if and only if X is Markov Menger is [7, Cor. 4.7]. Also note that the X
being Markov ω-Menger immediately implies that X is Markov Menger by
considering the closure under finite unions of open covers of X. So, to finish
this portion of the proof, we show that being σ-relatively compact guarantees
that the space is Markov ω-Menger. So suppose X is σ-relatively compact. By

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 531



C. Caruvana, S. Clontz and J. Holshouser

Lemma 4.10, Xn+1 is σ-relatively compact for each n ∈ ω. So let {An,k : k ∈ ω}
witness the σ-relative compactness of Xn+1. Given U ∈ ΩX and j ≤ n, let
σj(U , n) ∈ [U ]<ω be such that

n⋃
`=0

Aj,` ⊆
⋃
{U j+1 : U ∈ σj(U , n)}.

Then, let

σ(U , n) =

n⋃
j=0

σj(U , n).

Observe that σ(U , n) ∈ [U ]
<ω

. This completes the definition of σ. To see
that σ is winning, let 〈Un : n ∈ ω〉 be a sequence of ω-covers of X and consider
{x0, . . . , xn} ⊆ X. Note that 〈x0, . . . , xn〉 ∈ Xn+1. Then, there is some k ∈ ω
such that

〈x0, . . . , xn〉 ∈ An,k.
Let N = max{n, k} and notice that

〈x0, . . . , xn〉 ∈ An,k ⊆
N⋃
j=0

An,j ⊆
⋃
{Un+1 : U ∈ σn(UN , N)}.

Hence, there must be some U ∈ σn(UN , N) such that 〈x0, . . . , xn〉 ∈ Un+1.
Observe that

{x0, . . . , xn} ⊆ U ∈ σ(UN , N).

Now for (2). Note that the equivalence of being Markov Rothberger and
topologically countable follows immediately from Lemma 4.16. The equiva-
lence of being Markov ω-Rothberger and topologically countable also follows
from Lemma 4.16 since the lemma asserts that being Markov ω-Rothberger is

equivalent to the condition that ĉofX([X]<ω, [X]<ω) ≤ ω. We need only verify
this last condition is equivalent to being topologically countable.

Suppose X is topologically countable and let {xn : n ∈ ω} be the witnessing
set. Note that Fn := {xk : k ≤ n} constructs a countable set of finite subsets
of X. Consider any other F ∈ [X]<ω. For each y ∈ F , let ny ∈ ω be such that
y ∈

⋂
Nxny

. Let M = max{ny : y ∈ F} and observe that

F ⊆
⋂
NFM

.

Hence, ĉofX([X]<ω, [X]<ω) ≤ ω.

Finally, assume that ĉofX([X]<ω, [X]<ω) ≤ ω and let {Fn : n ∈ ω} be the
witnessing set of finite subsets of X. Now, since

⋃
n∈ω Fn is countable, we can

set {xn : n ∈ ω} =
⋃
n∈ω Fn. To see that this set satisfies the definition of

topological countability, let x ∈ X and note that {x} is a finite subset of X.
Then there is some n ∈ ω such that {x} ⊆

⋂
NFn

. To see that there must be
some y ∈ Fn such that x ∈

⋂
Ny, suppose z ∈ X is such that, for each y ∈ Fn,

z 6∈
⋂
Ny. For each y ∈ Fn, let Uy ∈ Ny be such that z 6∈ Uy. Note then

that U :=
⋃
y∈Fn

Uy ∈ NFn and that z 6∈ U . Hence, z 6∈
⋂
NFn

. It follows
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that there must be some y ∈ Fn such that x ∈
⋂
Ny. Thus, X is topologically

countable. �

Corollary 4.18. Let X be a space.

(1) If X is T1, then the following are equivalent:
(a) X is Markov ω-Rothberger.
(b) X is Markov Rothberger.
(c) X is countable.

(2) If X is regular, then the following are equivalent:
(a) X is Markov ω-Menger.
(b) X is Markov Menger.
(c) X is σ-compact.

Proof. This follows immediately from Theorem 4.17, Lemma 4.7, and Corollary
4.12. �

Corollary 4.19. Let P be any of the properties Markov Menger, Markov ω-
Menger, Markov Rothberger, or Markov ω-Rothberger. If X and Y are both P,
then X × Y is, too.

Proof. By Theorem 4.17, we have only two cases to consider.
First, suppose both X and Y are topologically countable. Let {xn : n ∈ ω}

and {yn : n ∈ ω} be the witnessing sets for topological countability for X and
Y , respectively. Note that {(xn, ym) : n,m ∈ ω} is a countable subset of X×Y .
For any (x, y) ∈ X × Y , we can let j ∈ ω and k ∈ ω be such that x ∈

⋂
Nxj

and y ∈
⋂
Nyk . Now, consider any open neighborhood W of (xj , yk). There

are open sets U and V of X and Y , respectively, with xj ∈ U , yk ∈ V , and
U × V ⊆ W . Note then that (x, y) ∈ U × V ⊆ W . Since W was arbitrary,
(x, y) ∈

⋂
N(xj ,yk).

Secondly, assume both X and Y are σ-relatively compact. Let {An : n ∈ ω}
and {Bn : n ∈ ω} be the witnessing families of relatively compact subsets
of X and Y , respectively. Note that {An × Bm : n,m ∈ ω} is a countable
set of relatively compact subsets of X × Y by Lemma 4.10. Now, for any
(x, y) ∈ X × Y , we can let j ∈ ω and k ∈ ω be such that x ∈ Aj and y ∈ Bk;
hence, (x, y) ∈ Aj ×Bk. �

4.2. Considering compact subsets. Throughout the rest of the paper, we’ll
use K(X) and Krel(X) to denote the collections of non-empty compact and non-
empty relatively compact subsets of X, respectively.

We start this section by addressing the preservation of various k-variant
properties under finite powers. To this end, we provide the following, as an
easy application of The Wallace Theorem, which will allow us to restrict our
attention to basic covers when dealing with k-covers of product spaces.

Lemma 4.20. If W is a k-cover of X × Y , then there is a k-cover of X × Y
consisting of rectangles U × V that refines W .
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Proof. Suppose W is a k-cover of X×Y . For each K ∈ K(X×Y ), let WK ∈ W
be such that πX [K] × πY [K] ⊆ WK . By The Wallace Theorem [15, Thm.
3.2.10], there are open sets UK ⊆ X and VK ⊆ Y such that

πX [K]× πY [K] ⊆ UK × VK ⊆WK .

Hence, {UK × VK : K ∈ K(X × Y )} is a k-cover of X × Y which consists of
rectangles and refines W . �

In the case of finite powers, we can refine k-covers of the finite product space
with cubes.

Lemma 4.21 ([13, Lemma 3]). If W is a k-cover of Xn for a positive integer
n, then there is a k-cover U of X with the property that {Un : U ∈ U } is a
k-cover of Xn which refines W .

Theorem 4.22. Every finite power of a k-Lindelöf space is k-Lindelöf.

Proof. Let n be a positive integer and suppose W is a k-cover of Xn. By
Lemma 4.21, we can let U ∈ KX be such that {Un : U ∈ U } is a k-cover
of Xn which refines W . Since X is assumed to be k-Lindelöf, we can choose
{Uk : k ∈ ω} ⊆ U such that {Uk : k ∈ ω} ∈ KX . For each k ∈ ω, we can choose
Wk ∈ W such that Unk ⊆Wk. To finish the proof, we verify that {Wk : k ∈ ω}
is a k-cover of Xn. So let K ⊆ Xn be compact and note that L =

⋃n
j=1 πj [K]

is a compact subset of X. Then there must be k ∈ ω such that L ⊆ Uk. It
follows that K ⊆ Ln ⊆ Unk ⊆Wk. �

The proof of Theorem 4.22 presented here is identical in spirit to those of
the following results from [13].

Theorem 4.23. Let X be a space.

(1) If X is k-Menger, then every finite power of X is, too ([13, Thm. 6]).
(2) If X is k-Rothberger, then every finite power of X is, too ([13, Thm.

5]).

Before we prove the analogous results to Theorem 4.3 for k-covers, we estab-
lish a combinatorial lemma that will be useful. The generality of Lemma 4.24
is such that it may be adapted to Lemma 4.26 for use in the finite-selection
context.

Throughout, we’ll use _ for the ordered concatenation of words. If s is a
word and x is an element of the alphabet, we’ll use s_x in place of s_〈x〉,
when there is little doubt of ambiguity.

Lemma 4.24. Suppose s : ω → ω<ω is an injection where s0 = 〈〉. Suppose
further that we have a function r : {sn : n ∈ ω} → [ω]<ω such that r(sn) ⊆
range(sn) and, for each m ≥ 1, {n ∈ ω : r(sn) ⊆ m} is infinite. Then there is
a bijection β : ω2 → ω such that, for each n ∈ ω, 〈β(n, k) : k ∈ ω〉 is strictly
increasing and r(sn) ⊆ β(n, 0).
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Proof. For n ∈ Z+, let pn be the nth prime and set β∗(n, k) = pkn. Then let
〈β∗(0, k) : k ∈ ω〉 be the increasing enumeration of

ω \ {pn : p is prime and n ∈ Z+}.

Note that, for each n ∈ ω, 〈β∗(n, k) : k ∈ ω〉 is strictly increasing. Moreover,
the sequence of initial points, 〈β∗(n, 0) : n ∈ ω〉, is also strictly increasing.

Define γ : ω → ω recursively as follows. Suppose, for n ∈ ω, that 〈γk : k < n〉
is defined. Let

γn = min{λ ∈ ω \ {γk : k < n} : r(sn) ⊆ β∗(λ, 0)}.

The claim is that n 7→ γn, ω → ω, is a bijection. γ is clearly injective. To
show surjectivity, first note that γ0 = 0. We proceed by induction. Let m ≥ 1
and suppose that {k ∈ ω : k < m} ⊆ range(γ). Then let

M = min{λ ∈ ω : {k ∈ ω : k < m} ⊆ {γj : j < λ}}.

If m ∈ {γj : j < M}, we have nothing to show. Otherwise, we can consider

A = {λ ∈ ω : λ ≥M ∧ r(sλ) ⊆ β∗(m, 0)}.

Since m ≥ 1, β∗(m, 0) > 0. Hence, A 6= ∅ since {λ ∈ ω : r(sλ) ⊆ β∗(m, 0)} is
infinite. Then we can let ` = minA.

If m ∈ {γj : j < `}, we are done. Otherwise, we claim that γ` = m. By
definition,

γ` = min{λ ∈ ω \ {γj : j < `} : r(s`) ⊆ β∗(λ, 0)}.
Since ` ∈ A, we know that r(s`) ⊆ β∗(m, 0). Moreover, since m 6∈ {γj : j < `},
we see that

m ∈ {λ ∈ ω \ {γj : j < `} : r(s`) ⊆ β∗(λ, 0)}.
So γ` ≤ m.

Now, for k < m, notice that there exists j < M so that γj = k by the
inductive hypothesis. Since γ is injective, γ` 6= k. Since this is true for any
k < m, we have that γ` = m.

Finally, define β : ω2 → ω by the rule β(n, k) = β∗(γn, k). This completes
the proof. �

The proof of the finite productivity of the strategically k-Rothberger prop-
erty can be seen as an exercise toward the proof of the finite-selection version.
The idea of the proof is identical in spirit to the analogous result in [14]; the
reason it is not a direct application of the results of that paper is that K(X×Y )
and K(X) × K(Y ) are, in general, topologically distinct objects. Recall that
K(X) denotes the set K(X) endowed with the Vietoris topology. See [28] for
more on this topological space.

Theorem 4.25. If X and Y are strategically k-Rothberger, then X × Y is
strategically k-Rothberger. In other words, the property of being strategically
k-Rothberger is finitely productive.
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Proof. Let 〈sn : n ∈ ω〉 be an enumeration of ω<ω where s0 = 〈〉. By Lemma
4.24, we can let β : ω2 → ω be a bijection such that range(sn) ⊆ β(n, 0) and
〈β(n, k) : k ∈ ω〉 is strictly increasing for each n ∈ ω. Let σX and σY be
winning strategies for P2 in the k-Rothberger game in X and Y , respectively.
Without loss of generality, we consider only basic k-covers of X×Y by Lemma
4.20. In particular, let

TX ⊗TY = {U × V : 〈U, V 〉 ∈ TX ×TY }

and

BK = {W ⊆ TX ⊗TY : W ∈ KX×Y } .
We define a winning strategy σ for P2 in the k-Rothberger game on X × Y

recursively as follows. Let n ∈ ω be given and suppose we have 〈Wp : p < n〉,
〈W ′

p : p < n〉, 〈Vp : p < n〉, 〈Wp : p < n〉, 〈Up : p < n〉, and 〈Kp : p < n〉
defined. Also set 〈j, k〉 ∈ ω2 to be so that β(j, k) = n. Note that

range(sj) ⊆ β(j, 0) ⊆ β(j, k) = n.

Given Wn ∈ BK, define W ′
n : K(X) → ℘(Wn) by W ′

n(K) = {W ∈ Wn : K ⊆
πX [W ]}. Then, define Vn : K(X) → KY by Vn(K) = πY [W ′

n(K)] = {πY [W ] :
W ∈ W ′

n(K)}. Let Wn(K) ∈ W ′
n(K) be such that

πY [Wn(K)] = σY
(〈

Vsj(p)(Ksj(p)) : p ∈ dom(sj)
〉
_Vn(K)

)
.

Note that Un := {πX [Wn(K)] : K ∈ K(X)} ∈ KX so we can let Kn ∈ K(X) be
such that

πX [Wn(Kn)] = σX
(〈

Uβ(j,p) : p ≤ k
〉)
.

We define

σ (〈Wp : p ≤ n〉) = Wn(Kn).

The final thing to show is that σ is winning. So let A ∈ K(X × Y ) be
arbitrary and then let K = πX [A] and L = πY [A]. For n ∈ ω, suppose we have
〈`p : p < n〉, 〈Mp : p < n〉, and 〈mp : p < n〉 defined. Let mn ∈ ω be so that
smn = 〈`p : p < n〉. Observe that〈

σX
(〈

Uβ(mn,p) : p ≤ N
〉)

: N ∈ ω
〉

corresponds to a play of the k-Rothberger game on X according to σX . Since
σX is winning, there is some Mn ∈ ω so that

K ⊆ σX
(〈

Uβ(mn,p) : p ≤Mn

〉)
.

Let `n = β(mn,Mn).
This defines sequences 〈`n : n ∈ ω〉, 〈mn : n ∈ ω〉, and 〈Mn : n ∈ ω〉.

Observe that 〈
σY
(〈

V`p(K`p) : p ≤ N
〉)

: N ∈ ω
〉

corresponds to a run of the k-Rothberger game on Y corresponding to σY .
Since σY is winning, there is some w ∈ ω so that

L ⊆ σY
(〈

V`p(K`p) : p ≤ w
〉)
.
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Behold that, since smw
= 〈`p : p < w〉,

L ⊆ σY
(〈

V`p(K`p) : p ≤ w
〉)

= σY
(〈

V`p(K`p) : p < w
〉
_V`w(K`w)

)
= σY

(〈
Vsmw (p)(Ksmw (p)) : p ∈ dom(smw)

〉
_Vβ(mw,Mw)(Kβ(mw,Mw))

)
= πY

[
Wβ(mw,Mw)(Kβ(mw,Mw))

]
.

By construction,

K ⊆ σX
(〈

Uβ(mw,p) : p ≤Mw

〉)
= πX

[
Wβ(mw,Mw)(Kβ(mw,Mw))

]
.

Therefore,

A ⊆ K × L ⊆Wβ(mw,Mw)(Kβ(mw,Mw)) = σ (〈Wp : p ≤ β(mw,Mw)〉) ,

finishing the proof. �

Lemma 4.26. Suppose we have an enumeration 〈sn : n ∈ ω〉 of
⋃
n∈ω ω

n×ωn
where s0 = 〈〈〉, 〈〉〉. For each n ∈ ω, let s−n , s

+
n ∈ ωlen(sn)/2 be such that

sn = s−n
_s+

n . Then there is a bijection β : ω2 → ω such that, for each n ∈ ω,
〈β(n, k) : k ∈ ω〉 is strictly increasing and range(s−n ) ⊆ β(n, 0).

Proof. Note that n 7→ sn, ω → ω<ω, is an injection. Then let r : {sn :
n ∈ ω} → [ω]<ω be defined by r(sn) = range(s−n ). For m ≥ 1, note that
{n ∈ ω : r(sn) ⊆ m} is infinite since there are arbitrarily long sequences of 0s.
Hence, Lemma 4.24 applies. �

Theorem 4.27. If X and Y are strategically k-Menger, then X ×Y is strate-
gically k-Menger. In other words, the property of being strategically k-Menger
is finitely productive.

Proof. Let σX and σY be winning strategies for P2 in the k-Menger game in X
and Y , respectively. Without loss of generality, we consider only basic k-covers
of X × Y by Lemma 4.20. So let BK be defined as in the proof of Theorem
4.25.

We will recursively define a strategy σ for P2 in the k-Menger game on
X × Y . First, fix a choice function ~· : [K(X)]<ω → K(X)ω to be such that

K = range
(
~K
)

. Also, let 〈sn : n ∈ ω〉 and β : ω2 → ω be as in Lemma 4.26.

Now, let n ∈ ω be given and suppose we have 〈Wp : p < n〉, 〈W ′
p : p < n〉,

〈Vp : p < n〉, 〈Gp : p < n〉, 〈Up : p < n〉, and 〈Fp : p < n〉 defined. Also set
〈j, k〉 ∈ ω2 such that β(j, k) = n. Note that

range(s−j ) ⊆ β(j, 0) ⊆ β(j, k) = n.

Given Wn ∈ BK, define W ′
n : K(X) → ℘(Wn) by W ′

n(K) = {W ∈ Wn : K ⊆
πX [W ]}. Then, define Vn : K(X)→ KY by Vn(K) = πY [W ′

n(K)].

We let Gn(K) ∈ [W ′
n(K)]

<ω
be so that

πY [Gn(K)] = σY

(〈
Vs−j (p)

(
~Fs−j (p)

(
s+
j (p)

))
: p ∈ dom(s−j )

〉
_Vn(K)

)
.
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Then define

Un =
{⋂

πX [Gn(K)] : K ∈ K(X)
}
∈ KX

and let Fn ∈ [K(X)]<ω to be such that

σX
(〈

Uβ(j,p) : p ≤ k
〉)

=
{⋂

πX [Gn(K)] : K ∈ Fn

}
.

Finally, we define

σ (〈Wp : p ≤ n〉) =
⋃

K∈Fn

Gn(K).

To finish the proof, we need to show that σ is a winning strategy. So let
A ∈ K(X × Y ) be arbitrary and let K = πX [A] and L = πY [A]. For n ∈ ω,

suppose we have 〈mp : p < n〉, 〈Mp : p < n〉, ~̀= 〈`p : p < n〉, ~u = 〈up : p < n〉,
and 〈Kp : p < n〉 defined. Then we can let mn ∈ ω be so that smn

= 〈~̀, ~u〉.
Observe that 〈

σX
(〈

Uβ(mn,p) : p ≤ N
〉)

: N ∈ ω
〉

corresponds to a play of the k-Menger game on X according to σX . Since σX
is winning, there is some Mn ∈ ω and U ∈ σX

(〈
Uβ(mn,p) : p ≤Mn

〉)
such that

K ⊆ U . It follows that there is some un ∈ ω such that

K ⊆
⋂
πX

[
Gβ(mn,Mn)

(
~Fβ(mn,Mn) (un)

)]
.

Let `n = β(mn,Mn) and Kn = ~Fβ(mn,Mn) (un). Note that Kn ∈ Fβ(mn,Mn).
This defines sequences 〈mn : n ∈ ω〉, 〈Mn : n ∈ ω〉, 〈`n : n ∈ ω〉, 〈un : n ∈

ω〉, and 〈Kn : n ∈ ω〉. Note that〈
σY
(〈

V`p (Kp) : p ≤ N
〉)

: N ∈ ω
〉

corresponds to a play of the k-Menger game on Y according to σY . Since σY
is winning, there is some w ∈ ω and V ∈ σY

(〈
V`p (Kp) : p ≤ w

〉)
such that

L ⊆ V .
Note that smw

= 〈〈`p : p < w〉, 〈up : p < w〉〉. Then

πY [G`w(Kw)]

= πY

[
Gβ(mw,Mw)

(
~Fβ(mw,Mw)(uw)

)]
= σY

(〈
Vs−mw (p)

(
~Fs−mw (p)

(
s+
mw

(p)
))

: p ∈ dom(s−mw
)
〉
_Vβ(mw,Mw)(Kw)

)
= σY

(〈
V`p

(
~F`p (up)

)
: p < w

〉
_Vβ(mw,Mw)

(
~Fβ(mw,Mw) (uw)

))
= σY

(〈
V`p

(
~F`p (up)

)
: p ≤ w

〉)
.

Hence, there is some V ∈ πY [G`w (Kw)] such that L ⊆ V . Thus, there is some

W ∈ G`w (Kw)

such that L ⊆ πY [W ]. Observe that, since Kw ∈ F`w ,

W ∈
⋃

u∈F`w

G`w(u) = σ (〈Wp : p ≤ `w〉) .
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Finally, note that

K ⊆
⋂
πX [G`w (Kw)] ⊆ πX [W ].

Therefore, A ⊆ K × L ⊆W . �

When it comes to k-covers, hemicompactness plays an important role.

Proposition 4.28 ([6, Prop. 5]). For any T1 first-countable space X, the
following are equivalent:

(a) X is hemicompact.
(b) X |= Sfin(K,K).
(c) X |= S1(K,K).

The reader would observe that the T1 assumption is expressly used in the
proof of [6, Prop. 5] though it is not explicitly mentioned in the hypotheses.

Even if we relax first-countability, we still get a related characterization of
hemicompactness.

Corollary 4.29. For any space X, the following are equivalent:

(a) X is hemicompact.

(b) ĉofX(K(X),K(X)) ≤ ω.
(c) II ↑

mark
G1(KX ,KX).

Proof. The equivalence of (b) and (c) follows from Lemma 4.16. The im-
plication (a) =⇒ (b) is evident, so we show that (b) =⇒ (a). Suppose

ĉofX(K(X),K(X)) ≤ ω and let 〈Kn : n ∈ ω〉 be the witnessing family of
compact sets.

We finish the proof by showing that
⋂
NKn is compact, following an ar-

gument of [21, Lemma 31]. Let U be a cover of
⋂
NKn

by sets open in X

and note that Kn ⊆
⋂
NKn ⊆

⋃
U . Then there must be F ∈ [U ]

<ω
with

Kn ⊆
⋃

F by compactness of Kn. Then
⋃

F ∈ NKn
which implies that⋂

NKn
⊆
⋃

F . �

To prove Theorem 4.30(2), we can recycle, as we did for Theorem 4.27,
the idea behind the proof of Theorem 4.3(1) of Dias and Scheepers [14], in
which they thank L. Aurichi. In the Markov case, as one would expect, the
combinatorial obstacles are significantly reduced.

We would like to compare the current proofs of parts (1) and (2) in Theorem
4.30 in light of the similarity between the proofs of Theorems 4.25 and 4.27. As
can be seen, having the covering characterization of Corollary 4.29 significantly
simplifies matters.

Theorem 4.30. Let X and Y be spaces.

(1) If X and Y are both Markov k-Rothberger, then so is X × Y . In other
words, the property of being Markov k-Rothberger is finitely productive.

(2) If X and Y are both Markov k-Menger, then so is X × Y . In other
words, the property of being Markov k-Menger is finitely productive.
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Proof. Part (1) follows from Corollary 4.29. So we prove (2). Let σX and σY
be Markov strategies for P2 in the k-Menger games on X and Y , respectively.
Let β : ω2 → ω be a bijection, BK be as it was defined in Theorem 4.25, and
n = β(j, k). For each W ∈ BK and K ∈ K(X), define

W |K = {W ∈ W : K ⊆ πX [W ]}.

Fix a choice function γ : BK × K(X) × ω → [TX×Y ]<ω to be such that

γ(W ,K, k) ∈ [W |K ]
<ω

for each (W ,K) ∈ BK× K(X) and

πY [γ(W ,K, k)] = σY (πY [W |K ] , k) .

Note that

W X,k :=
{⋂

πX [γ(W ,K, k)] : K ∈ K(X)
}
∈ KX .

Let F (W , j, k) ∈ [K(X)]<ω be such that

σX(W X,k, j) =
{⋂

πX [γ(W ,K, k)] : K ∈ F (W , j, k)
}
.

Then define

σ(W , n) = σ(W , β(j, k)) =
⋃
{γ(W ,K, k) : K ∈ F (W , j, k)} ∈ [W ]

<ω
.

Note that σ is a Markov strategy for P2 in the k-Menger game on X × Y . We
will show that it is winning.

Let 〈Wn : n ∈ ω〉 be a sequence of BK and let E ⊆ X × Y be compact. For
every k ∈ ω, ⋃{

σX

(
W X,k
β(j,k), j

)
: j ∈ ω

}
∈ KX .

So we can choose jk ∈ ω and Kjk,k ∈ F (Wβ(jk,k), jk, k) for every k ∈ ω such
that

πX [E] ⊆
⋂
πX
[
γ
(
Wβ(jk,k),Kjk,k, k

)]
.

Now, ⋃{
σY

(
πY

[
Wβ(jk,k)

∣∣
Kjk,k

]
, k
)

: k ∈ ω
}
∈ KY ,

so we can fix m ∈ ω and W ∈ γ
(
Wβ(jm,m),Kjm,m,m

)
such that

πY [E] ⊆ πY [W ] ∈ σY
(
πY

[
Wβ(jm,m)

∣∣
Kjm,m

]
,m
)
.

Note also that, since W ∈ γ
(
Wβ(jm,m),Kjm,m,m

)
,

πX [E] ⊆
⋂
πX
[
γ
(
Wβ(jm,m),Kjm,m,m

)]
⊆ πX [W ].

Hence,

E ⊆ πX [E]× πY [E] ⊆ πX [W ]× πY [W ] = W.

Finally, by construction W ∈ σ(Wβ(jm,m), β(jm,m)), so σ is winning. �

Inspired by the property equivalent to being Markov ω-Menger, the property
of being σ-relatively compact, we introduce modifications to hemicompactness.
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Definition 4.31. A space X is relatively hemicompact if

cof(Krel(X),Krel(X)) ≤ ω;

in other words, if there exists a countable set {An : n ∈ ω} of sets that are
relatively compact in X such that, for every relatively compact E in X, there
is some n ∈ ω such that E ⊆ An.

Definition 4.32. A space X is weakly relatively hemicompact if

cof(Krel(X),K(X)) ≤ ω;

in other words, if there exists a countable set {An : n ∈ ω} of relatively
compact subsets of X such that, for each compact K ⊆ X, there exists n ∈ ω
with K ⊆ An.

We use the adjective “weakly” here since every compact set is relatively
compact. Hence, every relatively hemicompact space is weakly relatively hemi-
compact, but the converse may not obtain.

Remark 4.33. In general, every hemicompact space is weakly relatively hemi-
compact; every relatively hemicompact space is weakly relatively hemicompact;
and every weakly relatively hemicompact space is σ-relatively compact.

Lemma 4.34. In the realm of regular spaces, the properties of being hemicom-
pact, relatively hemicompact, and weakly relatively hemicompact are all equiv-
alent.

Proof. If X is regular and relatively hemicompact, we start by letting {An :
n ∈ ω} be a sequence of relatively compact subsets witnessing relative hemi-
compactness for X. Since X is regular, clX(An) is compact for each n ∈ ω
by Lemma 4.11. To see that X is hemicompact, consider any K ⊆ X com-
pact. Since K is also relatively compact, there is some n ∈ ω such that
K ⊆ An ⊆ clX(An). So X is hemicompact.

Now assume X is regular and hemicompact. Let {Kn : n ∈ ω} be a set
of compact subsets witnessing the hemicompactness of X. Note that each Kn

is also relatively compact. So consider A ⊆ X which is relatively compact.
Since X is regular, clX(A) is compact, and thus, there is some n ∈ ω such that
A ⊆ clX(A) ⊆ Kn. That is, X is relatively hemicompact.

Now that we’ve shown that the properties of being hemicompact and rel-
atively hemicompact are equivalent in the realm of regular spaces, we finish
the proof by showing that a regular weakly relatively hemicompact space is
hemicompact. This follows immediately from the fact that the closure of a
relatively compact subset of a regular space is compact. �

To make some general connections to the property of being Markov k-
Menger, we introduce a natural modification to the notion of k-covers relative
to the family of relatively compact subsets of a space.

Definition 4.35. Let Krel
X = OX(Krel(X)), the collection of all open covers

U such that, for every relatively compact A in X, there is some U ∈ U such
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that A ⊆ U . We will refer to these covers as relative k-covers; we will refer
to Gfin(Krel

X ,Krel
X ) and G1(Krel

X ,Krel
X ) as the relative k-Menger game and the

relative k-Rothberger game on X, respectively.

The following lemma follows immediately from the definitions.

Lemma 4.36. If U is an open cover of a space X, then

U fin :=
{⋃

F : F ∈ [U ]
<ω
}
∈ Krel

X .

Lemma 4.37. For any space X, if ϕ : Krel
X → [TX ]

<ω
is such that ϕ(U ) ∈

[U ]
<ω

for each U ∈ Krel
X , then

A :=
⋂{⋃

ϕ
(
U fin

)
: U ∈ OX

}
is relatively compact in X.

Proof. By Lemma 4.36, A is defined. So we need only show that A is relatively
compact in X. Indeed, consider any open cover U of X. Then A ⊆

⋃
ϕ
(
U fin

)
.

Since ϕ
(
U fin

)
∈
[
U fin

]<ω
, we see that A is covered by a finite subset of U . �

Proposition 4.38. For any space X, the following are equivalent:

(a) cofX(Krel(X),B) ≤ ω.
(b) II ↑

mark
Gfin(Krel

X ,OX(B)).

(c) II ↑
mark

G1(Krel
X ,OX(B)).

Proof. (a) =⇒ (c): Let {An : n ∈ ω} ⊆ Krel(X) witness that cofX(Krel(X),B) ≤
ω and define σ in the following way. Given U ∈ Krel

X , let σ(U , n) ∈ U be such
that An ⊆ σ(U , n). Then σ is a winning Markov strategy. Indeed, for any
sequence 〈Un : n ∈ ω〉 of relative k-covers of X, if B ∈ B, there is some n ∈ ω
such that B ⊆ An ⊆ σ(Un, n).

(c) =⇒ (b) is obvious.
To prove (b) =⇒ (a), we proceed by the contrapositive. Let σ be a Markov

strategy for P2 in Gfin(Krel
X ,OX(B)) and define

An =
⋂{⋃

σ
(
U fin, n

)
: U ∈ OX

}
.

By Lemma 4.37, An is relatively compact for each n ∈ ω.
By hypothesis, there is some B ∈ B that is not covered by any An. So let

xn ∈ B \ An for each n ∈ ω. In the nth inning, let P1 choose Un ∈ OX such
that

xn 6∈
⋃
σ
(
U fin
n , n

)
.

It follows that 〈U fin
n : n ∈ ω〉 is a play by P1 that beats σ. �

Lemma 4.39. If X is Markov k-Menger, then X is weakly relatively hemi-
compact.
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Proof. First, note that

II ↑
mark

Gfin(KX ,KX) =⇒ II ↑
mark

Gfin(Krel
X ,KX)

since Krel
X ⊆ KX (which follows from the fact that every compact set is relatively

compact). So then Proposition 4.38 applies to assert that cofX(Krel(X),K(X)) ≤
ω; that is, X is weakly relatively hemicompact. �

We now collect some particular applications of Proposition 4.38.

Corollary 4.40. Let X be a space.

(1) The following are equivalent:
(a) X is relatively hemicompact.
(b) II ↑

mark
Gfin(Krel

X ,Krel
X ).

(c) II ↑
mark

G1(Krel
X ,Krel

X ).

(2) The following are equivalent:
(a) X is weakly relatively hemicompact.
(b) II ↑

mark
Gfin(Krel

X ,KX).

(c) II ↑
mark

G1(Krel
X ,KX).

(3) The following are equivalent:
(a) X is σ-relatively compact.
(b) II ↑

mark
Gfin(Krel

X ,OX).

(c) II ↑
mark

G1(Krel
X ,OX).

Corollary 4.41. For any regular space X, the following are equivalent:

(a) X is hemicompact.
(b) II ↑

mark
Gfin(KX ,KX).

(c) II ↑
mark

G1(KX ,KX).

Proof. By Corollary 4.40(1) and Lemma 4.34, it suffices to show that KX = Krel
X

when X is regular.
Since every compact set is relatively compact, Krel

X ⊆ KX . We show that
KX ⊆ Krel

X under the assumption that X is regular. So let U ∈ KX and
suppose A ⊆ X is relatively compact. By Lemma 4.11, clX(A) is compact, so
there is some U ∈ U such that clX(A) ⊆ U . That is, U ∈ Krel

X . �

4.3. Relating the various games. The following proposition appears as [3,
Lemma 3.7], but we offer it here as a consequence of the investigations of this
paper without any separation axiom assumptions; it also summarizes many of
the implications in Figure 2.

Theorem 4.42. In general,

G1(Ω,Ω) ≤+
II G1(O,O).
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Proof. This follows immediately from Theorems 4.1, 4.2(2), 4.5(2), and 4.17(2).
�

As will be established with Example 5.3,

G1(K,K) �+
II G1(Ω,Ω),

generally. However, for finite selections, we have the following theorem which
proves the “k-Menger =⇒ ω-Menger” variations that appear in Figure 1.

Theorem 4.43. In general,

Gfin(K,K) ≤+
II Gfin(Ω,Ω) ≤+

II Gfin(O,O).

Proof. The

Gfin(Ω,Ω) ≤+
II Gfin(O,O)

portion is [3, Lemma 3.4], but also follows immediately from Theorems 4.1,
4.2(1), 4.5(1), and 4.17(1).

Now we show that

Gfin(K,K) ≤+
II Gfin(Ω,Ω).

First, assume that X is Markov k-Menger. By Lemma 4.39, X is weakly
relatively hemicompact which implies that X is σ-relatively compact (Remark
4.33). Hence, by Theorem 4.17, X is Markov ω-Menger.

Assume X is strategically k-Menger. By Theorem 4.5, it suffices to show
that X is strategically Menger. To see this, just take the closure of open covers
under finite unions to create k-covers. When you apply P2’s strategies to
these k-covers, P2’s selections can be seen as finite selections from the original
open covers. Since P2’s selections win in the k-Menger game, the decomposed
collections in the Menger game must still cover the space.

Assume X is k-Menger. Note that any space which is k-Menger is Menger.
This follows from similar reasoning as above by closing open covers under finite
unions. Then, by Theorem 4.23(1), every finite power of X is Menger. So, by
Theorem 4.2(1), X is ω-Menger.

Lastly, assume X is k-Lindelöf. Note that any space which is k-Lindelöf
is Lindelöf by taking an open cover and closing it under finite unions, just as
above. Then, by Theorem 4.22, every finite power of X is Lindelöf. Hence, by
Theorem 4.1, X is ω-Lindelöf. �

5. Examples

In this section, we provide some examples that separate some of the prop-
erties in Figures 1 and 2; we also answer a question posed in [2].

Note that G1(N (K(X)),¬KX) is a variant of the compact-open game, the
game in which P1 chooses a compact set and P2 responds with an open set
containing that compact set, where P2 is trying to avoid forming a k-cover of
X.

Recall also that the finite-open game on X, which corresponds to the game
G1(N ([X]<ω), ¬OX) in our notation, is the game in which P1 chooses a finite
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set and P2 responds with an open set containing that finite set, where P2 is
trying to avoid forming a cover of X.

In [2], it was asked if there is a space X for which P1 has a winning strategy
in G1(N (K(X)),¬KX), but P1 doesn’t have a winning strategy in the finite-
open game on X and P1 doesn’t have a predetermined winning strategy in
G1(N (K(X)),¬KX). We can provide a straightforward answer in the affirma-
tive.

Example 5.1. There is a T5 space for which P1 has a winning strategy in
G1(N (K(X)),¬KX), but P1 doesn’t have a winning strategy in the finite-
open game on X and P1 doesn’t have a predetermined winning strategy in
G1(N (K(X)),¬KX).

Proof. Let X0 be the Fortissimo space on the reals (S22). Recall that this
topology adds a point ∞ 6∈ R to Rd, the set of the real numbers with the
discrete topology, so that the neighborhood basis at∞ consists of co-countable
subsets of R. Finally, let X be the disjoint union, [0, 1]tX0, of the closed unit
interval [0, 1] with X0. As the disjoint union of two T5 spaces (see [44]), X is
T5.

The winning strategy for P1 in the game G1(N (K(Y )),¬KY ) where Y is the
Fortissimo space on discrete ω1 is described in [2, Ex. 3.24]. We will verify
that a modification to this idea works for X. Throughout, we will use the
identification A 7→ NA, A → N (A).

P1 starts by playing

σ(∅) = K0 = {∞} ∪ [0, 1].

Then, for n ∈ ω, suppose we have 〈Kj : j ≤ n〉 and 〈Aj : j < n〉 defined
where K0 ⊆ Kj for each j ≤ n, and Aj = {xj,k : k ∈ ω} ⊆ X \ Kj for each
j < n. P2 must respond to Kn with some open set that covers Kn. Since
{∞} ∪ [0, 1] ⊆ Kn, P2’s move can be written as X \An where

An = {xn,j : j ∈ ω} ⊆ X \Kn ⊆ X0.

P1 responds to X \An with

σ(〈X \Aj : j ≤ n〉) = Kn+1 = K0 ∪ {xj,k : j, k ≤ n}.
This defines the strategy σ for P1.

We now show that σ is winning. So consider any run of the game according
to σ, as coded above with 〈Kn : n ∈ ω〉 and 〈An : n ∈ ω〉 where An = {xn,k :
k ∈ ω} ⊆ X0. Let A =

⋃
{An : n ∈ ω} and note that A is countable. Let K be

a compact subset of X. Since X0 is anticompact (every compact subset of X0

is finite), there must be some n ∈ ω for which K ∩A ⊆ Kn ⊆ Un := X \An.
We show that K ⊆ Un. We already have that K ∩ A ⊆ Un. Also, observe

that K ∩ [0, 1] ⊆ Kn ⊆ Un. Now, for any x ∈ (K ∩X0) \A,

x ∈ X0 \
⋃
j∈ω

Aj =
⋂
j∈ω

X0 \Aj ⊆ X0 \An ⊆ Un.

Hence, σ is a winning strategy for P1 in G1(N (K(X)),¬KX).
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We now argue that P1 cannot win G1(N (K(X)),¬KX) with a pre-determined
strategy. By the results of [9], G1(N (K(X)),¬KX) is dual to G1(KX ,KX); a
particular application of that duality is that P1 has a pre-determined winning
strategy in G1(N (K(X)),¬KX) if and only if P2 has a winning Markov strategy
in G1(KX ,KX). Since X0 is anticompact and uncountable, X is not hemicom-
pact. Hence, by Corollary 4.29, P2 does not have a winning Markov strategy
in the k-Rothberger game on X. Thus, P1 does not have a pre-determined
winning strategy in G1(N (K(X)),¬KX).

Lastly, we argue that P1 doesn’t have a winning strategy in the finite-open
game on X. We do this by showing that P2 actually has a winning Markov
strategy in this game. Suppose P1 has played Fn ∈ [X]<ω. Let Vn = X0 and
Wn ⊆ [0, 1] be an open set with Fn∩[0, 1] ⊆Wn such that the Lebesgue measure

of Wn is less than
1

2n+2
. Then let P2 respond to Fn with Un := Vn∪Wn. Since

the Lebesgue measure of
⋃
n∈ωWn is less than 1/2, P2 has won the finite-open

game. �

Example 5.2 (S43). The Sorgenfrey line is an example of a space which is
Lindelöf but not ω-Lindelöf. This follows from the fact that the Sorgenfrey
plane is not Lindelöf; see [44] and Theorem 4.1.

Example 5.3 (S25). The space of reals R is an example of a space which is

(1) Markov ω-Menger and not Markov ω-Rothberger (see Theorems 4.17
and 4.2 and the fact the reals are not even Rothberger, which is wit-
nessed by any sequence of open covers consisting of intervals with ex-
ponentially decreasing diameters),

(2) Strategically ω-Menger and not strategically ω-Rothberger (same as in
(1)),

(3) ω-Menger and not ω-Rothberger (same as in (1)),
(4) Markov k-Rothberger and not Markov ω-Rothberger (see Corollary

4.41, Theorem 4.2 and the fact that the reals are not even Rothberger),
(5) Strategically k-Rothberger and not strategically ω-Rothberger (same

as in (4)), and
(6) k-Rothberger and not ω-Rothberger (same as in (4)).

Example 5.4 (S27). The space of rationals Q is an example of a space which
is

(1) Markov ω-Menger and not Markov k-Menger,
(2) Strategically ω-Menger and not strategically k-Menger,
(3) ω-Menger and not k-Menger,
(4) Markov ω-Rothberger and not Markov k-Rothberger,
(5) Strategically ω-Rothberger and not strategically k-Rothberger, and
(6) ω-Rothberger and not k-Rothberger.

Proof. See Theorem 4.17, Proposition 4.28, and the fact that Q is not hemi-
compact [44]. �
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The following is well-known, but we record a proof of it here for inclusion in
the literature.

Proposition 5.5. The space of irrationals R \Q is not Menger.

Proof. Using continued fraction expansions, the irrationals are homeomorphic
to the Baire space ωω. Let Un = {[t] : t ∈ ω<ω}, where [t] = {f ∈ ωω :
f extends t}. Suppose that Fn ⊆ Un are finite. We can find an f ∈ ωω

so that f /∈
⋃
n Fn, which shows that the irrationals are not Menger. First

pick f(0) so that [〈f(0)〉] /∈ F0. Then if f(0), · · · , f(n) have been chosen
so that [〈f(0), · · · , f(k)〉] /∈ Fk for k ≤ n, we can choose f(n + 1) so that
[〈f(0), · · · , f(n + 1)〉] /∈ Fn+1. Continue recursively in this way to produce f
as desired. �

Example 5.6 (S28). The space of irrationals R \ Q is an example of a space
which is

(1) ω-Lindelöf and not ω-Menger (the irrationals are second-countable, so
by Proposition 3.10 are ω-Lindelöf; from Proposition 5.5 the irrationals
are not Menger, so by Theorem 4.2, cannot be ω-Menger), and

(2) k-Lindelöf and not k-Menger (the irrationals are second-countable, so
by Proposition 3.10 are k-Lindelöf, and they are not Menger as before).

Example 5.7 (S22). The Fortissimo space on the reals is an example of a
space which is

(1) Strategically k-Menger and not Markov k-Menger,
(2) Strategically k-Rothberger and not Markov k-Rothberger,
(3) Strategically ω-Menger and not Markov ω-Menger, and
(4) Strategically ω-Rothberger and not Markov ω-Rothberger.

Proof. By similar reasoning to the argument in Example 5.1, X is strategically
k-Rothberger and strategically ω-Rothberger. These in turn, imply that it is
strategically k-Menger and strategically ω-Menger. However, the Fortissimo
space is not hemicompact and is not countable, so by Corollaries 4.18 and 4.41
it is not Markov for any of those games. �

Let K(X) be the set K(X) endowed with the Vietoris topology (see [28]), as
mentioned above. Let Pfin(X) denote the set [X]<ω viewed as a subspace of
K(X). There are many equivalences between properties studied in this paper
and these hyperspaces in [3]. For example, a space X is ω-Rothberger if and
only if Pfin(X) is Rothberger. Analogous equivalences hold at the Lindelöf level
and also for finite-selections. Notably, the equivalence that fails is that of X
being k-Rothberger and K(X) being Rothberger, as witnessed by R.

From results discussed in this work, every k-Lindelöf space is ω-Lindelöf.
As a consequence, if K(X) is Lindelöf, then the dense subspace Pfin(X) is also
Lindelöf. However,
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Example 5.8. There is a T5 space X such that K(X) is strategically k-
Rothberger and strategically ω-Rothberger, but not hereditarily Lindelöf. Con-
sequently, none of the Menger or Rothberger variants discussed in this paper,
excluding the Markov levels, are necessarily hereditary for K(X).

Proof. Let X be the Fortissimo space on the reals and let Rd be the reals
with the discrete topology. As asserted in [44], X is T5. Since X is anti-
compact, K(X) = Pfin(X). As mentioned in Example 5.7, X is strategically k-
Rothberger and strategically ω-Rothberger. By [3, Thm. 4.8], K(X) = Pfin(X)
is strategically ω-Rothberger; consequently, by anticompactness, K(X) is also
strategically k-Rothberger. Indeed, if K ⊆ K(X) is compact,

⋃
K ⊆ X is

compact (see [28]), hence finite. That means that K is finite, as well. Lastly,
[Rd]<ω is an uncountable relatively discrete subspace of K(X), so K(X) is not
hereditarily Lindelöf; moreover, K(X) is neither hereditarily Rothberger nor
hereditarily Menger. �

Recall that a Luzin subset of R is an uncountable set X such that X ∩ F
is countable for every closed and nowhere dense F . Evidently, no Luzin set is
meager.

Rothberger [34] showed that every Luzin set is Rothberger. Hence, if a Luzin
set exists, it is a non-meager Rothberger subset of R.

As a response to a question of Galvin, Rec law [33] showed that every Luzin
set is undetermined in the point-open game. By duality (see [17, 9]), Luzin
sets are undetermined for the Rothberger game, as well. We now collect some
facts about Luzin sets related to other properties investigated in this work.

Lemma 5.9. No Luzin set is strategically Menger or k-Rothberger. Conse-
quently, every Luzin set is an example of a Menger space which is not strate-
gically Menger; an example of a Rothberger space which is not strategically
Rothberger.

Proof. We first argue that a Luzin set cannot be σ-compact. So let X ⊆ R be
a Luzin set and note that X cannot have a non-empty interior since any open
subset of R contains a copy of the Cantor set. Hence, every compact subset of
X is nowhere dense. By definition, it follows that every compact subset of X
must be countable. Hence, X is not σ-compact.

As a subspace of R, X is second-countable and regular. Note that [7, Lemma
4.10] asserts that any second-countable strategically Menger space is Markov
Menger. By Corollary 4.18, a regular Markov Menger space is σ-compact.
Hence, since X is not σ-compact, it cannot be Markov Menger and hence, X
cannot be strategically Menger.

Now, since X is not σ-compact, it is certainly not hemicompact. As a
subspace of R, X is T1 and first-countable, so X cannot be k-Rothberger by
Proposition 4.28.

Lastly, by Rothberger’s result [34], every Luzin set is Rothberger, hence
Menger. So the final assertion holds. �
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In fact, a bit more is true about Luzin sets. As discussed in [29], every
Luzin set is universally null, which means that they have outer measure zero
with respect to every continuous Borel probability measure on R. Combining
this with [5, Thm. 3.9], no Luzin set can even have the Baire property.

In a separate line of investigation, Scheepers [40] discusses selection principle
properties of Luzin sets involving families of open sets with the property that
their closures cover the space in question.

Example 5.10. Assuming CH, there is a Luzin set which is not ω-Rothberger.
Indeed, [22, Lemma 2.6 and Thm. 2.8] shows that there is a Luzin subset L of
the reals such that L does not satisfy a selection principle Ufin(Γ,Ω). According
to [22, Fig. 3], S1(Ω,Ω) =⇒ Ufin(Γ,Ω). Hence, L is not ω-Rothberger.
Now, since every Luzin set is Rothberger, L is Rothberger without being ω-
Rothberger. Note, moreover, by Theorem 4.2(2), L has some finite power which
fails to be Rothberger.

Example 5.11. Assuming CH, [22, Thm. 2.13] proves the existence of a Luzin
set which is ω-Rothberger. Observe that, by Theorem 4.5 and Lemma 5.9, this
Luzin set is not strategically ω-Rothberger; by the same results, this Luzin set
is ω-Menger but not strategically ω-Menger.

Example 5.12. In [11, Ex. 6.4], under MA, a countable space is constructed
which is not k-Lindelöf. Since every countable space is trivially ω-Lindelöf, this
is an example of a space which is ω-Lindelöf but not k-Lindelöf.

6. Open Questions

We finish with a list of questions.

Question 6.1. Are there spaces X for which the games G1(KX ,KX) and
Gfin(KX ,KX) are undetermined (that is, that neither player has a winning
strategy)?

This two-fold question may reduce to a single question if the single- and
finite-selection versions turn out to be the same.

Question 6.2. Does (strategically) k-Menger imply (strategically) k-Rothberger?

Note that, by Proposition 4.28 and Corollary 4.41, no metrizable space can
be an affirmative response to Question 6.1.

It is shown in [46, Thm. 2.16] that, consistently, there are two sets X and
Y of reals which are ω-Menger, but that X × Y is not even Menger. That is,
it is consistent with ZFC that the property of being ω-Menger is not finitely
productive.

Question 6.3. Is it consistent with ZFC that any of the properties ω-Lindelöf,
ω-Menger, or ω-Rothberger are (finitely) productive?

Question 6.4. Are any of the properties k-Lindelöf, k-Menger, or k-Rothberger
(finitely) productive?
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Corollary 4.41 asserts that the properties of being Markov k-Menger and
being Markov k-Rothberger are equivalent for regular spaces.

Question 6.5. Are the properties of being Markov k-Menger and Markov k-
Rothberger equivalent for all topological spaces? Alternatively, is there an exam-
ple of a (preferably T1 or T2) space which is Markov k-Menger but not Markov
k-Rothberger (equivalently, not hemicompact, by Corollary 4.29)?

As a related group of questions,

Question 6.6. Is there an example of a space which is hemicompact, but not
relatively hemicompact? Is there an example of a space which is relatively
hemicompact, but not hemicompact?

As pointed out in Example 5.12, [11, Ex. 6.4] offers an example of a space,
assuming MA, that is ω-Lindelöf but not k-Lindelöf.

Question 6.7. Is there a ZFC example of an ω-Lindelöf space which is not
k-Lindelöf?

As Example 5.10 demonstrates, it is consistent with ZFC that there exists
a Rothberger subset of the reals which is not ω-Rothberger. As a contrast to
this, it is well-known that, in Laver’s model [24], every Rothberger subset of
the reals is countable, and hence ω-Rothberger (see [49] and [35]). Since these
assertions are about subsets of reals, one can ask about more general settings.

Question 6.8. Is it consistent with ZFC that every Rothberger space is ω-
Rothberger?

In [48], it is shown to be consistent with ZFC that, for all metrizable spaces,
the properties of being Menger and ω-Menger are equivalent. Of course, every
ω-Menger space is Menger without any separation axiom assumptions. So we
are left with

Question 6.9. Is it consistent with ZFC that every Menger space is ω-Menger?
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[47] R. Telgársky, Topological games: on the 50th anniversary of the Banach-Mazur game,

Rocky Mt. J. Math. 17 (1987), 227–276.

[48] L. Zdomskyy, Products of Menger spaces in the Miller model, Adv. Math. 335 (2018),
170–179.

[49] Ly. Zdomskyy, Selection principles in the Laver, Miller, and Sacks models, Centenary of
the Borel conjecture, Providence, RI: American Mathematical Society, 2020, pp. 229–

242.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 552


