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Abstract

If f is a continuous selection for the Vietoris hyperspace F (X) of the
nonempty closed subsets of a space X, then the point f(X) ∈ X is
not as arbitrary as it might seem at first glance. In this paper, we
will characterise these points by local properties at them. Briefly, we
will show that p = f(X) is a strong butterfly point precisely when

it has a countable clopen base in U for some open set U ⊂ X \ {p}
with U = U ∪ {p}. Moreover, the same is valid when X is totally
disconnected at p = f(X) and p is only assumed to be a butterfly
point. This gives the complete affirmative solution to a question raised
previously by the author. Finally, when p = f(X) lacks the above local
base-like property, we will show that F (X) has a continuous selection
h with the stronger property that h(S) = p for every closed S ⊂ X
with p ∈ S.
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1. Introduction

All spaces in this paper are infinite Hausdorff topological spaces. Let F (X)
be the set of all nonempty closed subsets of a space X. We endow F (X) with
the Vietoris topology τV , and call it the Vietoris hyperspace of X. Let us recall
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that τV is generated by all collections of the form

〈V 〉 =
{
S ∈ F (X) : S ⊂

⋃
V and S ∩ V 6= ∅, whenever V ∈ V

}
,

where V runs over the finite families of open subsets of X. Also, let us recall
that a map f : F (X)→ X is a selection for F (X) if f(S) ∈ S for every
S ∈ F (X), and f is called continuous if it is continuous with respect to the
Vietoris topology on F (X). The set of all continuous selections for F (X) will
be denoted by Vcs [F (X)].

The following question was posed by the author in an unpublished note.

Question 1.1. Let X = (ω1 + 1) ∪ω1=0 [0, 1] be the adjunction space obtained
by identifying the first uncountable ordinal ω1 and 0 ∈ [0, 1] into a single point
p ∈ X. Does there exist a continuous selection f : F (X)→ X with f(X) = p?

David Buhagiar has recently proposed, in a private communication to the
author, a negative solution to this question. However, his arguments were
heavily dependent on stationary sets in ω1 and the pressing down lemma.

In this paper, we will give a purely topological description of the points
p ∈ X with the property that p = f(X) for some f ∈ Vcs [F (X)]. To this end,
let us recall that a point p ∈ X of a connected space X is cut if X \ {p} is
not connected or, equivalently, if X \ {p} = U ∪ V for some subsets U, V ⊂ X
with U ∩ V = {p}. Extending this interpretation to an arbitrary space X, a
point p ∈ X was said to be cut [14], see also [6, 13], if X \ {p} = U ∪ V and
U∩V = {p} for some subsets U, V ⊂ X. Cut points were also introduced in [3],
where they were called tie-points. A somewhat related concept was introduced
in [7], where p ∈ X was called countably-approachable if it is either isolated
or has a countable clopen base in U for some open set U ⊂ X \ {p} with
U = U ∪ {p}. In these terms, we consider the following two subsets of X:{

XΘ = {f(X) : f ∈ Vcs [F (X)]} ,
XΩ = {p ∈ X : p is countably-approachable}.

(1.1)

Intuitively, XΘ can be regarded as the X-‘Orbit’ with respect to the ‘action’ of
Vcs [F (X)] on the hyperspace F (X). The non-isolated countably-approachable
points were called ω-approachable in [7], so XΩ is also intuitive.

Each non-isolated countably-approachable point p ∈ X is a cut point of X,
see the proof of [14, Corollary 3.2]. Going back to the adjunction space X in
Question 1.1, it is evident that the point p ∈ X is cut, but it is not countably-
approachable (i.e. p /∈ XΩ). The reason for the negative answer to this question
(i.e. for the fact that p /∈ XΘ) is now fully explained by our first main result.

Theorem 1.2. Let X be a space with Vcs [F (X)] 6= ∅. Then

XΩ = {p ∈ XΘ : p is either isolated or cut}. (1.2)

Regarding the proper place of Theorem 1.2, let us remark that the inclusion
XΩ ⊂ XΘ was actually established in [7, Lemma 4.2], see also [12, Lemma
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2.3]. It is included in (1.2) to emphasise on the equality. The other inclusion
is naturally related to the so called butterfly points. A point p ∈ X is called
butterfly (or, a b-point) [21] if F \ {p} ∩ G \ {p} = {p} for some closed sets
F,G ⊂ X. Evidently, p ∈ X is butterfly precisely when it is a cut point of
some closed subset of X. In fact, in some sources, cut points (equivalently,
tie-points) are often called strong butterfly points. Finally, let us agree that a
space X is totally disconnected at p ∈ X if the singleton {p} is an intersection
of clopen sets.

A crucial role in the proof of Theorem 1.2 will play the following result.

Theorem 1.3. A point p ∈ XΘ is butterfly if and only if it is the limit of
a sequence of points of X \ {p}. Moreover, if X is totally disconnected at a
butterfly point p ∈ XΘ, then p is also a cut point of X.

Evidently, each p ∈ X which is the limit of a nontrivial sequence of points
of X is also a butterfly point. Thus, the essential contribution in the first part
of Theorem 1.3 is that each butterfly point p ∈ XΘ is the limit of a nontrivial
sequence of points X. However, butterfly points p ∈ XΘ are not necessarily cut
(i.e. strong butterfly). For instance, the endpoints 0, 1 ∈ [0, 1] are noncut, they
belong to [0, 1]Θ and are both butterfly. In contrast, according to Theorem 1.2,
the second part of Theorem 1.3 implies the following consequence which settles
[9, Problem 4.15] in the affirmative.

Corollary 1.4. If X is totally disconnected at a butterfly point p ∈ XΘ, then
p ∈ XΩ or, equivalently, this point is countably-approachable.

Let us remark that [9, Problem 4.15] was stated for a space X which has
a clopen π-base. A family P of open subsets of X is a π-base (called also a
pseudobase, Oxtoby [20]) if every nonempty open subset of X contains some
nonempty member of P. In our case, we also have that Vcs [F (X)] 6= ∅ and
according to [7, Corollary 2.3], such a space X must be totally disconnected.

Our second main result deals with the elements of the set XΘ \XΩ. To this
end, let us recall that a point p ∈ X is called selection maximal [14], see also
[5, 12], if there exists a continuous selection f for F (X) such that f(S) = p for
every S ∈ F (X) with p ∈ S. In this case, the selection f is called p-maximal.
Evidently, each selection maximal point of X belongs to XΘ, and each point
of X which has a countable clopen base belongs to XΩ. So, consider the sets:{

X∗Θ = {p ∈ XΘ : p is selection maximal} ,
X∗Ω = {p ∈ XΩ : p has a countable clopen base} .

(1.3)

In this paper, we will also prove the following theorem.

Theorem 1.5. Let X be a space with Vcs [F (X)] 6= ∅. Then

XΘ \XΩ ⊂ X∗Θ and X∗Θ ∩XΩ = X∗Ω. (1.4)

Theorem 1.5 is also partially known, the equality X∗Θ∩XΩ = X∗Ω was estab-
lished in [14, Theorem 3.1 and Corollary 3.2]. It is included to emphasise on the
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fact that XΘ \XΩ is not necessarily equal to X∗Θ. According to Theorem 1.2,
the set XΘ \XΩ cannot contain a cut point of X. A point p ∈ X which is not
cut will be called noncut, see Section 6. Thus, the inclusion XΘ \XΩ ⊂ X∗Θ in
(1.4) actually states that each noncut point p ∈ XΘ is selection maximal. The
crucial property to achieve this result is that the connected component of each
noncut point p ∈ XΘ has a clopen base (Theorem 6.1).

The paper is organised as follows. Theorem 1.3 is proved in Section 2. A con-
dition for a point p ∈ XΘ to be countably-approachable is given in Lemma 3.2
of Section 3. Based on this condition, the proof of Theorem 1.2 is accomplished
in Sections 4 and 5. The final Section 6 contains the proof of Theorem 1.5.

2. Butterfly Points and Convergent Sequences

A nonempty subset S of a partially ordered set (P,≤) is up-directed if for
every finite subset T ⊂ S there exists s ∈ S with t ≤ s for every t ∈ T . For
a space X, the set F (X) is partially ordered with respect to the usual set-
theoretic inclusion ‘⊂’, and each up-directed family in F (X) is τV -convergent.

Proposition 2.1. Each up-directed family S ⊂ F (X) is τV -convergent to⋃
S .

Proof. Let V be a finite family of open subsets of X with
⋃

S ∈ 〈V 〉. Then⋃
T ∈ 〈V 〉 for some finite subfamily T ⊂ S . Since S is up-directed, it

follows that
⋃

T ⊂ S for some S ∈ S , and each S ∈ S with this property
also belongs to 〈V 〉. �

Complementary to Proposition 2.1 is the following further observation about
τV -convergence of usual sequences in the hyperspace F (X).

Proposition 2.2. Let Un ⊂ X, n < ω, be a pairwise disjoint family of proper
open sets. Then the sequence Sn = X \ Un, n < ω, is τV -convergent to X.

Proof. Take a finite open cover V of X with X ∈ 〈V 〉. If Sk ∩V0 = ∅ for some
V0 ∈ V and k < ω, then V0 ⊂ Uk. Since {Un : n < ω} is pairwise disjoint, this
implies that ∅ 6= V0 ⊂ Uk ⊂ Sn for every n 6= k. Since V is finite, there exists
n0 < ω such that Sn ∩ V 6= ∅ for every V ∈ V and n ≥ n0. In other words,
Sn ∈ 〈V 〉 for every n ≥ n0. �

In what follows, for a set Z, let

Σ(Z) = {S ⊂ Z : S is nonempty and finite}. (2.1)

The following two general observations about local bases generating nontrivial
convergent sequences furnish the first part of the proof of Theorem 1.3.

Proposition 2.3. Let p = f(X) be a non-isolated point for some selection
f ∈ Vcs [F (X)], and B be a local base at p such that f((X \B) ∪ {p}) ∈ X \B
for every B ∈ B. Then X \ {p} contains a sequence convergent to p.
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Proof. For B0 ∈ B and q = f ((X \B0) ∪ {p}) 6= p, there are disjoint open sets
Op, Oq ⊂ X with q ∈ Oq and p ∈ Op ⊂ B0. Hence, by continuity of f , there is a
finite family V of open subsets of X with (X\B0)∪{p} ∈ 〈V 〉 and f(〈V 〉) ⊂ Oq.
Take B1 ∈ B such that B1 ⊂ Op and B1 ⊂

⋂
{V ∈ V : p ∈ V }. If S ∈ Σ(B1),

then f ((X \B0) ∪ S) ∈ X\B0 because (X\B0)∪S ∈ 〈V 〉 and S ⊂ Op ⊂ X\Oq.
Since {(X \B0) ∪ S : S ∈ Σ(B1)} is an up-directed family and

⋃
Σ(B1) = B1,

by Proposition 2.1, f
(
(X \B0) ∪B1

)
∈ X \ B0. Thus, by induction, there is

a decreasing sequence {Bn} ⊂ B such that f
(
(X \Bn) ∪Bn+1

)
∈ X \Bn for

every n < ω. Then Bn\Bn+1, n < ω, is a pairwise disjoint family of proper open
subsets of X. Hence, by Proposition 2.2, the sequence Tn = (X \Bn) ∪Bn+1,
n < ω, is τV -convergent to X. So,

p = f(X) = lim
n→∞

f(Tn) and f(Tn) /∈ Bn 3 p, n < ω. �

Proposition 2.4. Let p = f(X) be a butterfly point for some f ∈ Vcs [F (X)],
and B be a local base at p such that f((X \ B) ∪ {p}) = p for every B ∈ B.
Then X \ {p} contains a sequence convergent to p.

Proof. By definition, F \ {p}∩G \ {p} = {p} for some closed sets F,G ⊂ X. Set
U = F \ {p} and V = G \ {p}, and take B0 ∈ B. Since f ((X \B0) ∪ {p}) = p
and p ∈ B0 ∩ U , there is x0 ∈ B0 ∩ U such that f ((X \B0) ∪ {x0}) = x0.
For the same reason, taking B1 ⊂ B0 \ {x0}, there is a point x1 ∈ B1 ∩ V
with f ((X \B1) ∪ {x1}) = x1. Hence, by induction, there exists a sequence
{Bn} ⊂ B and a sequence {xn} ⊂ X such that Bn+1 ⊂ Bn \ {xn} and

f ((X \B2n) ∪ {x2n}) = x2n ∈ U and f ((X \B2n+1) ∪ {x2n+1}) = x2n+1 ∈ V.

Since Tn = (X \Bn) ∪ {xn}, n < ω, is an increasing sequence of closed sets, it
is τV -convergent. Evidently, limn→∞ xn = limn→∞ f(Tn) ∈ U ∩ V = {p}. �

Let F2(X) = {S ⊂ X : 1 ≤ |S| ≤ 2}. A selection σ for F2(X) is called
a weak selection for X. It generates a relation ≤σ on X defined for x, y ∈ X
by x ≤σ y if σ({x, y}) = x [17, Definition 7.1]. This relation is both total
and antisymmetric, but not necessarily transitive. We write x <σ y whenever
x ≤σ y and x 6= y, and use the standard notation for the intervals generated
by ≤σ. For instance, (←, p)≤σ will stand for all x ∈ X with x <σ p; (←, p]≤σ
for that of all x ∈ X with x ≤σ p; the intervals (p,→)≤σ , [p,→)≤σ , etc., are
defined in a similar way. The intervals (←, p)≤σ and (p,→)≤σ , p ∈ X, form a
subbase for a natural topology Tσ on X, called a selection topology [11].

A weak selection σ for X is continuous if it is continuous with respect to
the Vietoris topology on F2(X), equivalently if for every p, q ∈ X with p <σ q,
there are open sets U, V ⊂ X such that p ∈ U , q ∈ V and x <σ y for every
x ∈ U and y ∈ V , see [11, Theorem 3.1]. Thus, if σ is continuous and p ∈ X,
then the intervals (←, p)≤σ and (p,→)≤σ are open in X and (←, p]≤σ and
[p,→)≤σ are closed in X, see [17]. However, the converse is not necessarily
true [11, Example 3.6], see also [15, Corollary 4.2 and Example 4.3]. The
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following property is actually known, it will be found useful also in the rest of
this paper.

Proposition 2.5. Let X be a space which has a continuous weak selection σ
and is totally disconnected at a point p ∈ X. If ∆p is one of the intervals
(←, p)≤σ or (p,→)≤σ , and p is the limit of a sequence of points of ∆p, then p

is a countable intersection of clopen subsets of ∆p.

Proof. According to [5, Theorem 4.1], see also [10, Remark 3.5], p is a Gδ-
point in ∆p with respect to the selection topology Tσ. Hence, since X is
totally disconnected at this point, it follows from [15, Proposition 5.6] that p
is also a countable intersection of clopen subsets of ∆p. �

The remaining part of the proof of Theorem 1.3 now follows from the fol-
lowing observation.

Proposition 2.6. Let X be a space which is totally disconnected at a point
p ∈ X. If X has a continuous weak selection and p is the limit of a nontrivial
convergent sequence, then p is a cut point of X.

Proof. Let σ be a continuous weak selection for X. Then, by condition, p is
the limit of a sequence of points of ∆p ⊂ X, where ∆p is one of the intervals
(←, p)≤σ or (p,→)≤σ . Hence, by Proposition 2.5, there is a decreasing sequence

{Hn} of clopen subsets of ∆p and a sequence {xn} ⊂ ∆p convergent to p
such that

⋂
n<ωHn = {p} and xn ∈ Hn, n < ω. Taking subsequences if

necessary, we can further assume xn ∈ Sn = Hn \ Hn+1 for all n < ω. Then
U =

⋃
n<ω S2n ⊂ ∆p ⊂ X \ {p} is an open set with U = U ∪ {p} because

{x2n} ⊂ U . Accordingly, for the set V = X \ U ⊂ X \ {p} we also have that
V = V ∪ {p} because {x2n+1} ⊂ V . Thus, p is a cut point of X. �

3. Countably-Approachable Points

For a space X, the components (called also connected components) are the
maximal connected subsets of X. They form a closed partition C of X, and
each element C [x] ∈ C containing a point x ∈ X is called the component of
this point.

Proposition 3.1. Let X be a space and T,Z ∈ F (X) be such that Z is
connected. If f ∈ Vcs [F (X)] and q = f(T ∪ D) for some D ∈ F (Z), then
f(T ∪ S) ∈ C [q] for every S ∈ F (Z).

Proof. Define a continuous map fT : F (Z) → X by fT (S) = f(T ∪ S) for
every S ∈ F (Z). Then Q = fT (F (Z)) is a connected subset of X because
F (Z) is τV -connected, see [17, Theorem 4.10]. Accordingly, Q ⊂ C [q] because
q ∈ Q. �

We now have the following relaxed condition for countably-approachable
points.
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Lemma 3.2. Let X be a space, p = f(H) for some f ∈ Vcs [F (X)] and
H ∈ F (X), and U ⊂ X \ {p} be an open set with U = U ∪ {p}. Also, let
{Hn} ⊂ F (X) be a sequence which is τV -convergent to H such that for every
n < ω,

f(Hn) ∈ Hn ∩ U ⊂ Hn+1 ∩ U and Hn ∩ U is clopen. (3.1)

Then p is countably-approachable.

Proof. The sets Ln = Hn ∩ U and Fn = Ln ∪ (Hn+1 \ U), n < ω, will play
a crucial role in this proof. According to (3.1), f(Hn) ∈ Ln ⊂ Ln+1 for
every n < ω. Since limn→∞ f(Hn) = f(H) = p /∈ U , taking a subsequence if
necessary, we can assume that

f(Hn+1) ∈ Ln+1 \ Ln = Hn+1 \ Fn for every n < ω. (3.2)

Moreover, let us observe that

{Fn} ⊂ F (X) is τV -convergent to H. (3.3)

Indeed, by (3.1), {Ln} ⊂ F (X) is τV -convergent to L =
⋃
n<ω Ln ⊂ H. Take

a finite open cover V of H with H ∈ 〈V 〉, and set VL = {V ∈ V : V ∩L 6= ∅}.
Then there is k < ω such that Ln ∈ 〈VL〉 and Hn ∈ 〈V 〉 for every n ≥ k.
If n ≥ k and Ln ∩W = ∅ for some W ∈ V , then W /∈ VL and, therefore,
(Hn+1 \ U) ∩W 6= ∅. Accordingly, Fn = Ln ∪ (Hn+1 \ U) ∈ 〈V 〉.

Now, as in the proof of [7, Lemma 4.4], for every n < ω we will construct a
closed set Tn ⊂ X and a nonempty clopen set Sn ⊂ Ln+1 \ Ln such that

Fn ⊂ Tn ⊂ Hn+1 \ Sn and f(Tn ∪ {x}) = x, for every x ∈ Sn. (3.4)

Briefly, Fn ⊂ Hn+1 and by (3.1), Hn+1 \ Fn = Ln+1 \ Ln is clopen. Moreover,
by (3.2), f(Hn+1) ∈ Hn+1 \ Fn and, therefore, q = f(Fn ∪ E) ∈ E for some
finite set E ⊂ Hn+1 \ Fn. Accordingly, we also have that C [q] ⊂ Hn+1 \ Fn.
Thus, setting D = E ∩ C [q], K = E \ C [q] and Tn = Fn ∪K, it follows that
D ⊂ C [q] ⊂ Hn+1 \ Tn. Hence, by Proposition 3.1, f(Tn ∪ {y}) = y for every
y ∈ C [q] because f(Tn ∪D) = f(Fn ∪ E) = q. Finally, since K is a finite set
and Hn+1 \ Fn is clopen, C [q] ⊂ S for some clopen set S ⊂ Hn+1 \ Tn. Thus,
the sets Tn and Sn = {x ∈ S : f(Tn ∪ {x}) = x} are as required in (3.4).

To finish the proof, it only remains to show that {Sn} ⊂ F (X) is τV -
convergent to {p}, see [7, Section 4]. So, take an open set W containing p and
a finite family V of open sets such that H ∈ 〈V 〉 and f(〈V 〉) ⊂ W . Then
by condition and the property in (3.3), there is k < ω with Fn, Hn ∈ 〈V 〉
for every n ≥ k. Accordingly, for n ≥ k and x ∈ Sn, it follows from (3.4)
that x = f(Tn ∪ {x}) ∈ W because Fn ⊂ Tn ∪ {x} ⊂ Hn+1 implies that
Tn ∪ {x} ∈ 〈V 〉. The proof is complete. �

4. Approaching Trivial Components

The quasi-component Q[p] of a point p ∈ X is the intersection of all clopen
subsets of X containing this point. Evidently, C [p] ⊂ Q[p] for every p ∈ X, but
the converse is not necessarily true. However, these components coincide for
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spaces with continuous weak selections, see [12, Theorem 4.1]. Hence, in this
case, X is totally disconnected at p ∈ X precisely when C [p] = {p} is trivial.

Here, we will prove the special case of Theorem 1.2 when the component of
X at p ∈ XΘ is trivial. So, throughout this section, f ∈ Vcs [F (X)] is a fixed
selection such that p = f(X) is a cut point of X, and X is totally disconnected
at p. In this setting, the trivial case is when p is a Gδ-point of X.

Proposition 4.1. If p is a countable intersection of clopen subsets of X, then
it is countably-approachable.

Proof. By condition, U = X \ {p} =
⋃
n<ωHn for some increasing sequence

{Hn} ⊂ F (X) of clopen sets. Hence, the property follows from Lemma 3.2 by
taking H = X. �

The rest of this section deals with the nontrivial case when p is not a count-
able intersection of clopen sets. To this end, we shall say that a pair (U, V ) of
subsets of X is a p-cut of X if X \ {p} = U ∪ V and U ∩ V = {p}.

Proposition 4.2. If p is not a countable intersection of clopen subsets of X,
then X has a p-cut (U, V ) such that

(i) p is a countable intersection of clopen subsets of U ,
(ii) V doesn’t contain a sequence convergent to p.

Proof. Since p ∈ XΘ is a cut point, by Theorem 1.3, it is the limit of a sequence
of points of X \{p}. Therefore, p is the limit of a sequence of points of U ⊂ X,
where U is one of the intervals (←, p)≤f or (p,→)≤f . Hence, by Proposition 2.5,

p is a countable intersection of clopen subsets of U . This implies that V = X\U
is not clopen in X because p is not a countable intersection of clopen subsets
of X. For the same reason, V doesn’t contain a sequence convergent to p.
Accordingly, this p-cut (U, V ) of X is as required. �

The following two mutually exclusive cases finalise the proof of Theorem 1.2
when C [p] = {p}. They are based on two alternatives for the selection f with
respect to the p-cut (U, V ), constructed in Proposition 4.2, the set Y = V and
a fixed increasing sequence {Tn} ⊂ F (X) of clopen sets with

⋃
n<ω Tn = U .

Proposition 4.3. Suppose that for every S ∈ F (Y ) with p /∈ S,

f(Tn ∪ {p} ∪ S) 6= p for all but finitely many n < ω. (4.1)

Then p is countably-approachable.

Proof. We proceed as in the proof of Proposition 2.3. Namely, take a local
base B at p in Y and B0 ∈ B with S0 = Y \ B0 6= ∅. Then by (4.1),
there exists n0 ≥ 0 such that f(Tn0

∪ {p} ∪ S0) 6= p. Next, using continuity
of f , take B1 ∈ B such that B1 ⊂ B0 and f (Tn0

∪K ∪ S0) ∈ Tn0
∪ S0 for

every K ∈ Σ(B1), see (2.1). Hence, by Proposition 2.1, we also have that
f
(
Tn0 ∪B1 ∪ S0

)
∈ Tn0

∪S0. We can repeat the construction with S1 = Y \B1
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and some n1 > n0. Thus, by induction, there exists a subsequence {Tnk} of
{Tn} and a decreasing sequence {Bk} ⊂ B such that for Sk = Y \Bk, k < ω,

f
(
Tnk ∪Bk+1 ∪ Sk

)
∈ Tnk ∪ Sk for every k < ω. (4.2)

By Proposition 2.2, the sequence Bk+1 ∪ Sk, k < ω, is τV -convergent to Y be-
cause

{
Bk \Bk+1 : k < ω

}
is a pairwise disjoint family of proper open subsets

of Y . Moreover, {Tnk} is τV -convergent to U being a subsequence of {Tn}.
Hence, Hk = Tnk ∪ Bk+1 ∪ Sk, k < ω, is τV -convergent to X. Accordingly,
p = f(X) = limk→∞ f(Hk). However, by (4.2), f(Hk) 6= p for every k < ω.
Therefore, by (ii) of Proposition 4.2, f(Hk) ∈ U for all but finitely many k < ω.
Thus, by Lemma 3.2, the point p is countably-approachable. �

Proposition 4.4. Suppose that there exists S ∈ F (Y ) with p /∈ S, and a
subsequence

{
Tnj
}

of {Tn} such that

f
(
Tnj ∪ {p} ∪ S

)
= p for all j < ω. (4.3)

Then p is countably-approachable.

Proof. Evidently, we can assume that (4.3) holds for all n < ω. Next, using
Theorem 1.3 and (ii) of Proposition 4.2, take a sequence {xn} ⊂ U which is
convergent to p and xn ∈ Tn for every n < ω. Since f is continuous and the
sequence T0 ∪ {xn} ∪ S, n < ω, is τV -convergent to T0 ∪ {p} ∪ S, it follows
from (4.3) that f(T0 ∪ {xn0

} ∪ S) = xn0
for some n0 < ω. We can repeat

this with Tn0
. Namely, the sequence Tn0

∪ {xn} ∪ S, n > n0, is τV -convergent
to Tn0

∪ {p} ∪ S. Hence, for the same reason, f(Tn0
∪ {xn1

} ∪ S) = xn1
for

some n1 > n0. Thus, by induction, there are subsequences {xnk} of {xn} and
{Tnk} of {Tn} such that f(Tnk ∪ {xnk+1

} ∪ S) = xnk+1
for every k < ω. Then

Hk = Tnk ∪ S, k < ω, is a τV -convergent sequence with limk→∞ f(Hk) = p,
because Hk ⊂ Hk ∪ {xnk+1

} ⊂ Hk+1 for every k < ω. Furthermore, by (ii) of
Proposition 4.2, f(Hk) ∈ U for all but finitely many k < ω. Therefore, just
like before, Lemma 3.2 implies that p is countably-approachable. �

5. Approaching Nontrivial Components

Here, we will finalise the proof of Theorem 1.2 with the remaining case
when X is not totally disconnected at p. To this end, let us recall that a
space X is weakly orderable if there exists a coarser orderable topology on
X with respect to some linear order on it (called compatible for X). The
weakly orderable spaces were introduced by Eilenberg [4], and are often called
“Eilenberg orderable”.

Each connected space Z with a continuous weak selection σ is weakly order-
able with respect to ≤σ, see [17, Lemmas 7.2]. The following simple observation
was implicitly present in the proof of [12, Theorem 1.5]. In this observation,
and what follows, nct(Z) are the noncut points of a connected space Z, and
ct(Z) — the cut points of Z.
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Proposition 5.1. Let X be a space and p = f(X) for some f ∈ Vcs [F (X)].
Then p ∈ nct(C [p]).

Proof. Set Z = C [p] and assume that p ∈ H = ct(Z). Since H is open in X
(see [8, Corollary 2.7]) and f is continuous, f(〈U 〉) ⊂ H ⊂ Z for some finite
open cover U of X. Take a finite set T ⊂ X \Z with Y = T ∪Z ∈ 〈U 〉. Then
it follows from Proposition 3.1 that g(S) = f(T ∪ S) ∈ S for every S ∈ F (Z).
Accordingly, g : F (Z) → Z is a continuous selection with g(Z) ∈ H = ct(Z).
However, this is impossible because Z is weakly orderable with respect to ≤g
and g(Z) is the first ≤g-element of Z, see [17, Lemmas 7.2 and 7.3] and [8,
Corollary 2.7]. �

In the rest of this section, p ∈ XΘ is a cut point such that the component C [p]
is not a singleton. In this case, by Proposition 5.1, p is a noncut point of C [p].
Thus, we can also fix a p-cut (U, V ) of X such that C [p] ⊂ V . Accordingly,
Y = U is totally disconnected at p. In this setting, the remaining part of the
proof of Theorem 1.2 consists of showing that p is countably-approachable in
Y . To this end, we will first show that V can itself be assumed to be connected.

Proposition 5.2. Let f : F (X)→ X be a continuous selection with f(X) = p.
Then there exists a nondegenerate connected subset Z ⊂ C [p] such that p ∈ Z
and X∗ = Y ∪Z has a continuous selection f∗ : F (X∗)→ X∗ with f∗(X∗) = p.

Proof. Since H = C [p] has a continuous weak selection and p ∈ nct(H), the
space H is weakly orderable with respect to a linear order ≤ such that p ≤ x
for every x ∈ H, see [17, Lemma 7.2] and [8, Corollary 2.7]. Accordingly, each
closed interval Zx = [p, x]≤ ∈ F (H), x ∈ ct(H), is a connected subset of H, see

[16, Theorem 1.3]. Moreover, if T = V \H, then f(Y ∪H∪T ) = f(X) = p ∈ H.
Thus, by Propositions 3.1 and 5.1,

f(Y ∪ Zx ∪ T ) ∈ nct(Zx) ∪ T = {p, x} ∪ T for every x ∈ ct(H). (5.1)

Evidently, the resulting family S = {Y ∪ Zx ∪ T : x ∈ ct(H)} is up-directed.

Therefore, by Proposition 2.1, it is τV -convergent to
⋃

S = X. Hence, by
(5.1), f(Y ∪Zq ∪T ) = p for some q ∈ ct(H) because limS∈S f(S) = f(X) = p.
Finally, let Z = Zq, X∗ = Y ∪Z and T = {S ∈ F (X∗) : f(S ∪ T ) ∈ T}. Then
T is a τV -clopen set in F (X∗) because T is clopen in X∗ ∪ T . So, we may
define a continuous selection f∗ : F (X∗)→ X∗ by letting for S ∈ F (X∗) that

f∗(S) =

{
f(S) if S ∈ T , and

f(S ∪ T ) if S /∈ T .

Since f(X∗∪T ) = f(Y ∪Z∪T ) = f(Y ∪Zq∪T ) = p /∈ T , we get that X∗ /∈ T .
Accordingly, we also have that f∗(X∗) = f(X∗ ∪ T ) = p. �

Since the space X∗ = Y ∪ Z in Proposition 5.2 has all properties of X
relevant to our case, we can identify X with this space. In this refined setting,
the fixed p-cut (U, V ) of X has the extra property that Z = V is connected,
while Y = U is the same as before.
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Proposition 5.3. If f : F (X)→ X is a continuous selection with f(X) = p,
then f(Y ) = p. Moreover,

f(Y ∪ {q}) = p for every q ∈ Z. (5.2)

Proof. Since Z is connected, it follows from Proposition 3.1 that f(Y ∪S) ∈ Z
for every S ∈ F (Z). Accordingly, f(Y ) = f(Y ∪ {p}) = p. Regarding (5.2),
we argue by contradiction. Namely, assume that

f(Y ∪ {q}) = q for some q ∈ Z with q 6= p. (5.3)

Next, as in the proof of Proposition 5.2, using that Z is weakly orderable
and p ∈ nct(Z), take a compatible linear order ≤ on Z such that p ≤ z for
every z ∈ Z. Then by (5.3), p < q and we now have that

f(Y ∪ S) ∈ S, whenever S ∈ F ([z,→)≤) for some z > p. (5.4)

Briefly, for z > p and S ∈ F ([z,→)≤), it follows that either S ⊂ [q,→)≤ or
q ∈ [z,→)≤. Since all ≤-intervals of Z are connected, (5.4) follows from (5.3)
and Proposition 3.1.

This now implies that the continuous map g(T ) = f(Y ∪ T ), T ∈ F (Z), is
a selection for F (Z). Indeed, for T ∈ F (Z) with T 6= {p}, set

S =
{
T ∩ [z,→)≤ : z ∈ T \ {p}

}
.

Since the family S is up-directed in F (Z), by Proposition 2.1, it is τV -

convergent to
⋃

S . Moreover, by (5.4), g(S) = f(Y ∪ S) ∈ S for every

S ∈ S . Therefore, g(T ) ∈
⋃

S ⊂ T because Y ∪
(⋃

S
)

= Y ∪ T . How-

ever, according to [17, Lemma 7.3], F (Z) has at most two continuous se-
lections — taking the minimal element, or taking the maximal element of
each T ∈ F (Z). Therefore, g(T ) = min≤ T for every T ∈ F (Z) because
g(Z) = f(Y ∪ Z) = f(X) = p = min≤ Z. But this is impossible because by
(5.3), q = g({q}) = f(Y ∪ {q}) = min≤{p, q} = p. �

The following final observation completes the proof of Theorem 1.2.

Proposition 5.4. If f : F (X)→ X is a continuous selection with f(X) = p,
then Y \{p} contains a sequence convergent to p. In particular, p is a cut point
of Y , and is therefore also countably-approachable.

Proof. Let B be a local base at p in Y with Y /∈ B. Then there exists B0 ∈ B
such that

f ((Y \B) ∪ {p}) ∈ Y \B for every B ∈ B with B ⊂ B0. (5.5)

Indeed, assume that (5.5) fails, and let B∗ be the collection of all B ∈ B such
that f ((Y \B) ∪ {p}) = p. Then B∗ is also a local base at p ∈ Y . Hence,
S = {Y \B : B ∈ B∗} is an up-directed cover of Y \{p} and by Proposition 2.1,
it is τV -convergent to Y . Moreover, by assumption, f(S ∪ {p}) = p for every
S ∈ S . Therefore, by Proposition 3.1, we also have that f(S ∪ {q}) = q for
every q ∈ Z and S ∈ S . Accordingly, f(Y ∪ {q}) = limS∈S f(S ∪ {q}) = q for
every q ∈ Z. However, by (5.2) of Proposition 5.3, this is impossible.
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Having already established (5.5), it follows from Propositions 5.3 and 2.3
that p is the limit of a sequence of points of Y \{p}. Hence, by Proposition 2.6,
p is a cut point of Y . Therefore, by the already proven case of Theorem 1.2,
the point p is also countably-approachable in Y . Since Y = U = U ∪ {p} and
U ⊂ X \ {p} is open, p is countably-approachable in X as well. �

6. Point-Maximal Selections

Recall that a point p ∈ X in an arbitrary space X is noncut if it is not a cut
point. The prototype of such points can be traced back to Michael’s nowhere
cuts defined in [18]. In his terminology, a subset A ⊂ X nowhere cuts X [18]
if A has an empty interior (i.e. A is thin) and whenever p ∈ A and U is a
neighbourhood of p in X, then U \A does not split into two disjoint open sets
both having p in their closure. Evidently, the singleton {p} nowhere cuts X
for each noncut point p ∈ X. A slight variation of this concept was considered
in [2] (under the name ‘does not cut’) and in [19] (under the name ‘nowhere
disconnects’).

As commented in the Introduction, the equality X∗Θ ∩XΩ = X∗Ω in (1.4) of
Theorem 1.5 is known, see (1.1) and (1.3). Here, we will prove the following
refined version of this theorem showing that the members of XΘ \XΩ possess a
similar property with respect to the connected components. To this end, let us
recall that a (closed) subset C ⊂ X has a clopen base if for each neighbourhood
U of C there exists a clopen set H ⊂ X with C ⊂ H ⊂ U . In case C = {p} is
a singleton, we simply say that X is zero-dimensional at p ∈ X.

Theorem 6.1. Let X be a space with Vcs [F (X)] 6= ∅ and p ∈ XΘ \XΩ. Then
C [p] has a clopen base and p ∈ X∗Θ.

Evidently, the essential case in Theorem 6.1 is when C [p] is not a clopen set,
otherwise the property follow easily from known results and Proposition 3.1.
Thus, in the rest of this section, C [p] will be assumed to be not clopen.

The next lemma covers the case of C [p] = {p} in Theorem 6.1.

Lemma 6.2. Let X be a space with Vcs [F (X)] 6= ∅. If X is totally disconnected
at some point p ∈ XΘ \XΩ, then X is zero-dimensional at p and p ∈ X∗Θ.

The proof of this lemma is base on the following two simple observations.

Proposition 6.3. Let f : F (X) → X be a continuous selection, p ∈ X with
C [p] = {p}, and K ∈ F (X) be such that p /∈ K and f(K ∪ S) = p for every
closed set S ⊂ X with p ∈ S. Then X has a clopen base at p.

Proof. We follow the idea in the proof of [12, Theorem 1.4], see also [1]. Take
an open set U ⊂ X with p ∈ U ⊂ X \K, and set F = X \ U . Since f(F ) 6= p,
there exists a clopen set T ⊂ X with f(F ) ∈ T and p /∈ T . Then f−1(T ) is
a τV -clopen subset F (X). Take a maximal chain M ⊂ f−1(T ) with F ∈M .

Then M =
⋃

M is the maximal element of M , and therefore M is clopen in
X because f−1(T ) is τV -clopen. Moreover, K ⊂ F ⊂ M because F ∈ M .
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Finally, M doesn’t contain p because f(M) 6= p. Indeed, p ∈ M will imply
that f(M) = f(K ∪M) = p, but this is impossible. Thus, H = X \M is a
clopen set with p ∈ H ⊂ U . �

Proposition 6.4. Let f : F (X) → X be a continuous selection, p ∈ X with
C [p] = {p}, and K ∈ F (X) be such that p /∈ K and f(K ∪ S) = p for every
closed set S ⊂ X with p ∈ S. Then p ∈ X∗Θ.

Proof. Since f(K∪{p}) = p /∈ K, there is a finite family V of open subsets of X
such that K ∪ {p} ∈ 〈V 〉 and f(〈V 〉) ⊂ X \K. Then by Proposition 6.3, there
exists a clopen set H such that p ∈ H ⊂ X \K and H ⊂

⋂
{V ∈ V : p ∈ V }.

Accordingly, f(K∪S) ∈ S for every S ∈ F (H). We can now define a continuous
selection h : F (X)→ X by letting for S ∈ F (X) that

h(S) =

{
f(S) if S ∩H = ∅, and

f(K ∪ SH) if SH = S ∩H 6= ∅.

Then h is p-maximal. Indeed, p ∈ S ∈ F (X) implies that p ∈ SH = S ∩ H
and by the property of K, we have that h(S) = f(K ∪ SH) = p. �

Proof of Lemma 6.2. According to Propositions 6.3 and 6.4, it suffices to show
that there exists K ∈ F (X) such that

p /∈ K and f(K ∪ S) = p, for every S ∈ F (X) with p ∈ S. (6.1)

To this end, let O be the collection of all open subsets containing p, and
B ⊂ O be that one of those B ∈ O for which f((X \ B) ∪ {p}) 6= p. If B is a
local base at p, then by Proposition 2.3, X \{p} contains a sequence convergent
to p. Hence, by Proposition 2.6, p must be a cut point of X. However, by
Theorem 1.2, this is impossible because p /∈ XΩ. Accordingly, there exists
U ∈ O such that K = X \ U 6= ∅ and the family V = {V ∈ O : V ⊂ U}
doesn’t contain any member of B, namely f((X \ V ) ∪ {p}) = p for every
V ∈ V . To see that this K is as in (6.1), take a closed set S ⊂ X with
p ∈ S, and set L = {S \ V : V ∈ V }. Then X \ (K ∪ L) ∈ V , L ∈ L , and
therefore f(K ∪ L ∪ {p}) = p for every L ∈ L . Moreover, by Proposition 2.1,

H = {K ∪ L ∪ {p} : L ∈ L } is τV -convergent to
⋃

H = K ∪ S = K ∪ S
being an up-directed cover of K ∪ S. Since f is continuous, this implies that
f(K ∪ S) = p and the proof is complete. �

The other case of Theorem 6.1 is covered by the following lemma.

Lemma 6.5. Let X be a space with Vcs [F (X)] 6= ∅, and p ∈ XΘ \XΩ be such
that C [p] 6= {p}. Then C [p] has a clopen base and p ∈ X∗Θ.

In this lemma, according to Theorem 1.2 (see also Proposition 5.1), p is both
a noncut point of X and a noncut point of C [p]. Since C [p] is not clopen in X, it

has another noncut point q ∈ C [p] defined by the property that q ∈ X \ C [p].
In particular, q is a cut point of X. Thus, in this case, U = X \ C [p] and
V = C [p] \ {q} form a q-cut of X such that Y = U is totally disconnected at q
and Z = V = C [p]. In this setting, Y and Z have the following properties.
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Proposition 6.6. There exists a nonempty finite set K ⊂ U such that for
every closed set S ⊂ Y , the map f(K,S)(T ) = f(K ∪ S ∪ T ), T ∈ F (Z), is a
continuous p-maximal selection for F (Z).

Proof. Since f(X) = p ∈ V , there exists a finite open cover W of X with
X ∈ 〈W 〉 and f(〈W 〉) ⊂ V . Take a finite set K ⊂ U such that K ∩W 6= ∅ for
every W ∈ W with W ∩ Y 6= ∅. Then K has the property that

f(K ∪ S ∪ Z) = p for every closed set S ⊂ Y . (6.2)

Indeed, in this case, f(K ∪ S ∪ Z) ∈ V ⊂ C [p] because K ∪ S ∪ Z ∈ 〈W 〉.
Hence, by Proposition 5.1, f(K ∪ S ∪ Z) = p because q /∈ V .

For a closed subset S ⊂ Y , the map f(K,S) is continuous and by Propo-
sition 3.1, f(K,S)(T ) = f(K ∪ S ∪ T ) ∈ Z for every T ∈ F (Z). Hence, by
(6.2) and [17, Lemmas 7.2 and 7.3], it only suffices to show that f(K,S) is a
selection for F (Z). If T ∈ F (Z) and q /∈ S, then f(K,S)(T ) ∈ T because
K ∪ S ⊂ U ⊂ X \ Z. Otherwise, if q ∈ S, we set F = S \ {q} and distinguish
the following two cases:

(i) If F is a closed set, as remarked above, f(K,F ) is a selection for F (Z). There-
fore, by (6.2), f(K,F ) is ‘q-minimal’ in the sense that f(K,F )(T ) = q precisely
when T = {q} because q ∈ nct(C [p]), see [17, Lemma 7.3] and [8, Corollary
2.7]. In other words, f(K,S)(T ) = f(K,F )(T ∪ {q}) ∈ T for every T ∈ F (Z).

(ii) If F is not closed, by (i), f(K,E)(T ) = f(K ∪ E ∪ T ) ∈ T for every
E ∈ Σ(F ), see (2.1). Moreover, by Proposition 2.1, H = {K ∪ E : E ∈ Σ(F )}
is an up-directed family which is τV -convergent to K ∪ S. Accordingly,

f(K,S)(T ) = f(K ∪ S ∪ T ) = lim
H∈H

f (H ∪ T ) ∈ T = T. �

Proof of Lemma 6.5. According to Proposition 6.6, there exists a nonempty
finite set K ⊂ U = X \ C [p] such that f(K ∪ S ∪ {q}) = q for every closed set
S ⊂ Y = U . Since Y is totally disconnected at q, it follows from Proposition 6.3
that q has a clopen base in Y . This implies that C [p] has a clopen base in X.
To show the remaining part of this lemma, as in the proof of Proposition 6.4,
take a clopen set H ⊂ Y such that q ∈ H ⊂ Y \ K and f(K ∪ S) ∈ S for
every S ∈ F (H). Then L = H ∪ Z is a clopen subset of X with the same
property. Indeed, take any S ∈ F (L). If S ⊂ Y , then S ⊂ H and therefore
f(K ∪ S) ∈ S. If S \ Y 6= ∅, set D = S ∩ Y and T = S ∩ Z. Then by
Proposition 6.6, f(K ∪ S) = f(K ∪D ∪ T ) ∈ T ⊂ S. Hence, just like before,
we can define a continuous p-maximal selection h : F (X)→ X by

h(S) =

{
f(S) if S ∩ L = ∅, and

f(K ∪ SL) if SL = S ∩ L 6= ∅.

Indeed, if p ∈ S ∈ F (X), then p ∈ SL = S ∩ L. Moreover, DL = SL ∩ Y
is closed in Y and p ∈ TL = SL ∩ Z ∈ F (Z). According to Proposition 6.6,
h(S) = f(K ∪ SL) = f(K ∪DL ∪ TL) = p. �
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