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ABSTRACT

If f is a continuous selection for the Vietoris hyperspace .#(X) of the
nonempty closed subsets of a space X, then the point f(X) € X is
not as arbitrary as it might seem at first glance. In this paper, we
will characterise these points by local properties at them. Briefly, we
will show that p = f(X) is a strong butterfly point precisely when
it has a countable clopen base in U for some open set U C X \ {p}
with U = U U {p}. Moreover, the same is valid when X is totally
disconnected at p = f(X) and p is only assumed to be a butterfly
point. This gives the complete affirmative solution to a question raised
previously by the author. Finally, when p = f(X) lacks the above local
base-like property, we will show that .%(X) has a continuous selection
h with the stronger property that h(S) = p for every closed S C X
withp € S.
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1. INTRODUCTION

All spaces in this paper are infinite Hausdorff topological spaces. Let % (X)
be the set of all nonempty closed subsets of a space X. We endow % (X) with
the Vietoris topology Ty, and call it the Vietoris hyperspace of X. Let us recall
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that 7y is generated by all collections of the form
(V) = {SG?(X):SCU”/ and SNV # o, WheneverVE”f/}7

where ¥ runs over the finite families of open subsets of X. Also, let us recall
that a map f: #(X) — X is a selection for F(X) if f(S) € S for every
S e Z(X), and f is called continuous if it is continuous with respect to the
Vietoris topology on .% (X). The set of all continuous selections for .#(X) will
be denoted by % [Z (X)].

The following question was posed by the author in an unpublished note.

Question 1.1. Let X = (w1 + 1) Uy, =0 [0, 1] be the adjunction space obtained
by identifying the first uncountable ordinal wy and 0 € [0, 1] into a single point
p € X. Does there exist a continuous selection f : F(X) — X with f(X) =p?

David Buhagiar has recently proposed, in a private communication to the
author, a negative solution to this question. However, his arguments were
heavily dependent on stationary sets in w; and the pressing down lemma.

In this paper, we will give a purely topological description of the points
p € X with the property that p = f(X) for some f € 9,[#(X)]. To this end,
let us recall that a point p € X of a connected space X is cut if X \ {p} is
not connected or, equivalently, if X \ {p} = U UV for some subsets U,V C X
with U NV = {p}. Extending this interpretation to an arbitrary space X, a
point p € X was said to be cut [14], see also [6, 13], if X \ {p} = U UV and
UNV = {p} for some subsets U, V C X. Cut points were also introduced in [3],
where they were called tie-points. A somewhat related concept was introduced
in [7], where p € X was called countably-approachable if it is either isolated
or has a countable clopen base in U for some open set U C X \ {p} with
U = U U {p}. In these terms, we consider the following two subsets of X:

{Xe ={f(X): f e n[FX)]},

1.1
Xq = {p € X : p is countably-approachable}. (L.1)

Intuitively, Xo can be regarded as the X-‘Orbit’ with respect to the ‘action’ of
Y [-7 (X)] on the hyperspace .#(X). The non-isolated countably-approachable
points were called w-approachable in [7], so Xq is also intuitive.

Each non-isolated countably-approachable point p € X is a cut point of X,
see the proof of [14, Corollary 3.2]. Going back to the adjunction space X in
Question 1.1, it is evident that the point p € X is cut, but it is not countably-
approachable (i.e. p ¢ Xq). The reason for the negative answer to this question
(i.e. for the fact that p ¢ Xg) is now fully explained by our first main result.

Theorem 1.2. Let X be a space with V,[F (X)] # &. Then
Xa = {p € Xo : p is either isolated or cut}. (1.2)

Regarding the proper place of Theorem 1.2, let us remark that the inclusion
Xq C Xe was actually established in 7, Lemma 4.2], see also [12, Lemma
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2.3]. It is included in (1.2) to emphasise on the equality. The other inclusion
is naturally related to the so called butterfly points. A point p € X is called
butterfly (or, a b-point) [21] if F'\ {p} N G\ {p} = {p} for some closed sets
F,G C X. Evidently, p € X is butterfly precisely when it is a cut point of
some closed subset of X. In fact, in some sources, cut points (equivalently,
tie-points) are often called strong butterfly points. Finally, let us agree that a
space X is totally disconnected at p € X if the singleton {p} is an intersection
of clopen sets.

A crucial role in the proof of Theorem 1.2 will play the following result.

Theorem 1.3. A point p € Xg is butterfly if and only if it is the limit of
a sequence of points of X \ {p}. Moreover, if X is totally disconnected at a
butterfly point p € Xg, then p is also a cut point of X.

Evidently, each p € X which is the limit of a nontrivial sequence of points
of X is also a butterfly point. Thus, the essential contribution in the first part
of Theorem 1.3 is that each butterfly point p € Xg is the limit of a nontrivial
sequence of points X. However, butterfly points p € Xg are not necessarily cut
(i.e. strong butterfly). For instance, the endpoints 0,1 € [0, 1] are noncut, they
belong to [0, 1]e and are both butterfly. In contrast, according to Theorem 1.2,
the second part of Theorem 1.3 implies the following consequence which settles
[9, Problem 4.15] in the affirmative.

Corollary 1.4. If X is totally disconnected at a butterfly point p € Xg, then
p € Xq or, equivalently, this point is countably-approachable.

Let us remark that [9, Problem 4.15] was stated for a space X which has
a clopen m-base. A family &2 of open subsets of X is a 7-base (called also a
pseudobase, Oxtoby [20]) if every nonempty open subset of X contains some
nonempty member of &. In our case, we also have that 7[.#(X)] # @ and
according to [7, Corollary 2.3], such a space X must be totally disconnected.

Our second main result deals with the elements of the set Xo \ Xq. To this
end, let us recall that a point p € X is called selection mazimal [14], see also
[5, 12], if there exists a continuous selection f for #(X) such that f(S) = p for
every S € .Z(X) with p € S. In this case, the selection f is called p-maximal.
Evidently, each selection maximal point of X belongs to Xg, and each point
of X which has a countable clopen base belongs to Xq. So, consider the sets:

{ch) = {p € Xo : p is selection maximal}, (13)
X& = {p € Xq : p has a countable clopen base} .
In this paper, we will also prove the following theorem.
Theorem 1.5. Let X be a space with Y[F(X)] # @. Then
Xo\XaqC X5 and X§NXaq=X§. (1.4)

Theorem 1.5 is also partially known, the equality X N Xq = X{, was estab-
lished in [14, Theorem 3.1 and Corollary 3.2]. It is included to emphasise on the
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fact that Xg \ Xgq is not necessarily equal to X§. According to Theorem 1.2,
the set Xgo \ X cannot contain a cut point of X. A point p € X which is not
cut will be called noncut, see Section 6. Thus, the inclusion X \ Xq C X§ in
(1.4) actually states that each noncut point p € Xg is selection maximal. The
crucial property to achieve this result is that the connected component of each
noncut point p € Xg has a clopen base (Theorem 6.1).

The paper is organised as follows. Theorem 1.3 is proved in Section 2. A con-
dition for a point p € Xg to be countably-approachable is given in Lemma 3.2
of Section 3. Based on this condition, the proof of Theorem 1.2 is accomplished
in Sections 4 and 5. The final Section 6 contains the proof of Theorem 1.5.

2. BUTTERFLY POINTS AND CONVERGENT SEQUENCES

A nonempty subset S of a partially ordered set (P, <) is up-directed if for
every finite subset T C S there exists s € S with ¢ < s for every ¢t € T'. For
a space X, the set % (X) is partially ordered with respect to the usual set-
theoretic inclusion ‘C’, and each up-directed family in % (X) is 7y -convergent.

Proposition 2.1. FEach up-directed family . C F(X) is Ty -convergent to

Us.

Proof. Let ¥ be a finite family of open subsets of X with [J.# € (¥). Then
U € (¥) for some finite subfamily 7 C /. Since .¥ is up-directed, it
follows that | J.7 C S for some S € ., and each S € .¥ with this property
also belongs to (¥). O

Complementary to Proposition 2.1 is the following further observation about
Ty-convergence of usual sequences in the hyperspace % (X).

Proposition 2.2. Let U, C X, n < w, be a pairwise disjoint family of proper
open sets. Then the sequence S, = X \ Uy, n < w, is Ty -convergent to X.

Proof. Take a finite open cover ¥ of X with X € (¥). If SNV, = & for some
Vo € ¥ and k < w, then Vi C Uy. Since {U, : n < w} is pairwise disjoint, this
implies that @ # Vo C Uy C S, for every n # k. Since ¥ is finite, there exists
ng < w such that S, NV # @ for every V € ¥ and n > ng. In other words,
Sp € (V) for every n > nyg. O

In what follows, for a set Z, let
¥(Z)={S C Z: S is nonempty and finite}. (2.1)

The following two general observations about local bases generating nontrivial
convergent sequences furnish the first part of the proof of Theorem 1.3.

Proposition 2.3. Let p = f(X) be a non-isolated point for some selection
f € YU[F(X)], and B be a local base at p such that f((X \ B)U{p}) € X\ B
for every B € B. Then X \ {p} contains a sequence convergent to p.
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Proof. For By € # and ¢ = f ((X \ Bo) U {p}) # p, there are disjoint open sets
Op,04 C X with g € Oy and p € O, C By. Hence, by continuity of f, there is a
finite family ¥ of open subsets of X with (X\By)U{p} € (¥) and f((¥)) C O.
Take By € # such that By COp and By C ({Ve¥ :peV} If S e X(By),
then f ((X \ Bo) US) € X\By because (X\By)US € (¥)and S C O, C X\O,.
Since {(X \ Byp) U S : S € ¥(By)} is an up-directed family and |JX(B;) = By,
by Proposition 2.1, f ((X \ Bo) UE) € X \ By. Thus, by induction, there is
a decreasing sequence {B,} C 4 such that f (X \ B,) UBy,11) € X \ B, for
every n < w. Then B, \B,+1,n < w, is a pairwise disjoint family of proper open
subsets of X. Hence, by Proposition 2.2, the sequence T,, = (X \ B,) U B,11,
n < w, is Ty-convergent to X. So,

p=f(X)= lim f(T,) and f(T,) ¢ Bn3p, n<w. O

Proposition 2.4. Let p = f(X) be a butterfly point for some f € Y[F(X)],
and B be a local base at p such that f((X \ B) U {p}) = p for every B € AB.
Then X \ {p} contains a sequence convergent to p.

Proof. By definition, F'\ {p}NG \ {p} = {p} for some closed sets F, G C X. Set
U=F\{p}and V =G\ {p}, and take By € #A. Since f ((X \ Bo)U{p}) =»p
and p € By N U, there is 19 € By N U such that f((X \ Bo) U{xo}) = zo.
For the same reason, taking By C By \ {xo}, there is a point 1 € By NV
with f (X \ B1) U{x1}) = z1. Hence, by induction, there exists a sequence
{Bn} C # and a sequence {z,} C X such that B, C B, \ {z,} and

J (X \ Ban) U{z2n}) = 22, € U and f ((X \ Bany1) U{Zoni1}) = v2n41 € V.

Since T;, = (X \ Bp) U{zn}, n < w, is an increasing sequence of closed sets, it
is Ty-convergent. Evidently, lim, oo p = lim, 00 f(Th) e UNV = {p}. O

Let Z(X) ={S Cc X :1 < |S] < 2}. A selection o for %#5(X) is called
a weak selection for X. It generates a relation <, on X defined for z,y € X
by x <, y if o({z,y}) = x [17, Definition 7.1]. This relation is both total
and antisymmetric, but not necessarily transitive. We write x <, y whenever
r <, y and z # y, and use the standard notation for the intervals generated
by <,. For instance, (+—,p)<, will stand for all z € X with z <, p; (+—, pl<,
for that of all z € X with x <, p; the intervals (p,—)<_, [p, =)<, etc., are
defined in a similar way. The intervals (+—,p)<, and (p,—=)<,, p € X, form a
subbase for a natural topology 7, on X, called a selection topology [11].

A weak selection o for X is continuous if it is continuous with respect to
the Vietoris topology on .%5(X), equivalently if for every p,q € X with p <, ¢,
there are open sets U,V C X such that p € U, ¢ € V and = <, y for every
x €U and y € V, see [11, Theorem 3.1]. Thus, if o is continuous and p € X,
then the intervals (+,p)<, and (p,—)<, are open in X and (+,p]<, and
[p, =)<, are closed in X, see [17]. However, the converse is not necessarily
true [11, Example 3.6], see also [15, Corollary 4.2 and Example 4.3]. The
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following property is actually known, it will be found useful also in the rest of
this paper.

Proposition 2.5. Let X be a space which has a continuous weak selection o
and is totally disconnected at a point p € X. If A, is one of the intervals
(«<-,p)<, or (p,—)<,, and p is the limit of a sequence of points of A,, then p
is a countable intersection of clopen subsets of A,.

Proof. According to [5, Theorem 4.1], see also [10, Remark 3.5], p is a Gs-
point in A, with respect to the selection topology 7,. Hence, since X is
totally disconnected at this point, it follows from [15, Proposition 5.6] that p
is also a countable intersection of clopen subsets of A,,. O

The remaining part of the proof of Theorem 1.3 now follows from the fol-
lowing observation.

Proposition 2.6. Let X be a space which is totally disconnected at a point
p € X. If X has a continuous weak selection and p is the limit of a nontrivial
convergent sequence, then p is a cut point of X.

Proof. Let ¢ be a continuous weak selection for X. Then, by condition, p is
the limit of a sequence of points of A, C X, where A, is one of the intervals
(«<,p)<, or (p,—)<,. Hence, by Proposition 2.5, there is a decreasing sequence
{H,} of clopen subsets of A, and a sequence {z,} C A, convergent to p
such that (., H, = {p} and z, € H,, n < w. Taking subsequences if
necessary, we can further assume z, € S,, = H,, \ Hp11 for all n < w. Then
U= U,cy,S2n C A, C X\ {p} is an open set with U = U U {p} because
{29,} C U. Accordingly, for the set V = X \ U C X \ {p} we also have that
V =V U {p} because {z2,11} C V. Thus, p is a cut point of X. O

3. COUNTABLY-APPROACHABLE POINTS

For a space X, the components (called also connected components) are the
maximal connected subsets of X. They form a closed partition % of X, and
each element €[z] € € containing a point x € X is called the component of
this point.

Proposition 3.1. Let X be a space and T,Z € F(X) be such that Z is
connected. If f € Y [F(X)] and ¢ = f(T' U D) for some D € F(Z), then
f(TuUSs) e €lq| for every S € F(Z).

Proof. Define a continuous map fr : #(Z) — X by fr(S) = f(T'US) for
every S € % (Z). Then Q = fr(F(Z)) is a connected subset of X because
F(Z) is Ty-connected, see [17, Theorem 4.10]. Accordingly, @ C €[q] because

q€Q. a

We now have the following relaxed condition for countably-approachable
points.
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Lemma 3.2. Let X be a space, p = f(H) for some f € YJ[F(X)] and
HeZ(X), and U C X \ {p} be an open set with U = U U {p}. Also, let
{H,} C F(X) be a sequence which is Ty -convergent to H such that for every
n<w,

f(H) e H,NU C Hyp 1 NU and H,NU is clopen. (3.1)
Then p is countably-approachable.

Proof. The sets L, = H, NU and F,, = L, U (H,4+1 \U), n < w, will play
a crucial role in this proof. According to (3.1), f(H,) € L, C Lyt for
every n < w. Since lim, o f(H,) = f(H) = p ¢ U, taking a subsequence if
necessary, we can assume that

f(Hn+1> € Ln+1 \Ln = In+41 \Fn for every n < w. (32)
Moreover, let us observe that
{F,} C #(X) is Ty-convergent to H. (3.3)

Indeed, by (3.1), {L,} C #(X) is Tv-convergent to L = J,,, Ln C H. Take
a finite open cover ¥ of H with H € (¥), andset ¥, ={V € ¥ : VN L # @}.
Then there is k < w such that L, € (¥1) and H,, € (¥) for every n > k.
If n > kand L, NW = & for some W € ¥, then W ¢ ¥}, and, therefore,
(Hpt1 \U)NW # @. Accordingly, F,, = L, U (H,41 \U) € (¥).

Now, as in the proof of [7, Lemma 4.4], for every n < w we will construct a
closed set T;, C X and a nonempty clopen set S, C Ly,41 \ Ly such that

F,CcT,CHy1\S, and f(T,U{z}) =z, forevery z € S,. (3.4)

Briefly, F,, C Hp41 and by (3.1), Hp11 \ Fyy = Lyt1 \ Ly, is clopen. Moreover,
by (3.2), f(Hpt1) € Hypt1 \ F,, and, therefore, ¢ = f(F, U E) € E for some
finite set £ C H,41 \ F,. Accordingly, we also have that €[q] C Hp41 \ Fh.
Thus, setting D = EN€|q], K = E\ €¢[q] and T,, = F,, UK, it follows that
D c ¥[q] C Hpt1 \ T,,. Hence, by Proposition 3.1, f(T,, U{y}) = y for every
y € €[q] because f(T,,UD) = f(F,UE) = q. Finally, since K is a finite set
and H,y1 \ F,, is clopen, €[q] C S for some clopen set S C Hy41 \ T,. Thus,
the sets T,, and S,, = {z € S: f(T,, U{z}) = x} are as required in (3.4).

To finish the proof, it only remains to show that {S,} C Z(X) is 7y -
convergent to {p}, see [7, Section 4]. So, take an open set W containing p and
a finite family ¥ of open sets such that H € (¥) and f((¥)) C W. Then
by condition and the property in (3.3), there is k¥ < w with F,,, H, € (¥)
for every n > k. Accordingly, for n > k and z € S,, it follows from (3.4)
that « = f(T,, U {z}) € W because F,, C T, U{z} C H,y; implies that
T, U{z} € (¥). The proof is complete. O

4. APPROACHING TRIVIAL COMPONENTS

The quasi-component 2[p] of a point p € X is the intersection of all clopen
subsets of X containing this point. Evidently, €[p] C 2[p] for every p € X, but
the converse is not necessarily true. However, these components coincide for
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spaces with continuous weak selections, see [12, Theorem 4.1]. Hence, in this
case, X is totally disconnected at p € X precisely when €[p] = {p} is trivial.

Here, we will prove the special case of Theorem 1.2 when the component of
X at p € Xp is trivial. So, throughout this section, f € 9,[Z(X)] is a fixed
selection such that p = f(X) is a cut point of X, and X is totally disconnected
at p. In this setting, the trivial case is when p is a Gg-point of X.

Proposition 4.1. If p is a countable intersection of clopen subsets of X, then
it is countably-approachable.

Proof. By condition, U = X \ {p} = U,,.,, Hn for some increasing sequence
{H,} C Z#(X) of clopen sets. Hence, the property follows from Lemma 3.2 by
taking H = X. (I

The rest of this section deals with the nontrivial case when p is not a count-
able intersection of clopen sets. To this end, we shall say that a pair (U, V') of
subsets of X is a p-cut of X if X \ {p} =U UV and UNV = {p}.

Proposition 4.2. If p is not a countable intersection of clopen subsets of X,
then X has a p-cut (U, V) such that

(i) p is a countable intersection of clopen subsets of U,
(il) V doesn’t contain a sequence convergent to p.

Proof. Since p € Xg is a cut point, by Theorem 1.3, it is the limit of a sequence
of points of X \ {p}. Therefore, p is the limit of a sequence of points of U C X,
where U is one of the intervals (<, p)<, or (p, —)<,. Hence, by Proposition 2.5,
p is a countable intersection of clopen subsets of U. This implies that V' = X\U
is not clopen in X because p is not a countable intersection of clopen subsets
of X. For the same reason, V doesn’t contain a sequence convergent to p.
Accordingly, this p-cut (U, V) of X is as required. O

The following two mutually exclusive cases finalise the proof of Theorem 1.2
when ¢’[p] = {p}. They are based on two alternatives for the selection f with
respect to the p-cut (U, V), constructed in Proposition 4.2, the set Y =V and

a fixed increasing sequence {7;,} C . (X) of clopen sets with {J,,_, T = U.
Proposition 4.3. Suppose that for every S € F(Y) withp ¢ S,
f(T, U{ptUS)#p for all but finitely many n < w. (4.1)

Then p is countably-approachable.

Proof. We proceed as in the proof of Proposition 2.3. Namely, take a local
base # at p in Y and By € & with Sop = Y \ By # @. Then by (4.1),
there exists ng > 0 such that f(T,,, U {p} U So) # p. Next, using continuity
of f, take By € A such that By C By and f (T,,, UK USy) € Ty, U Sy for
every K € X(By), see (2.1). Hence, by Proposition 2.1, we also have that
f (Tno UBU S’o) € Ty, USy. We can repeat the construction with S; = Y'\ By
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and some n; > ng. Thus, by induction, there exists a subsequence {7}, } of
{T,} and a decreasing sequence { By} C Z# such that for S, =Y \ By, k < w,
f (Tnk U Bg41 U Sk) €T, US; forevery k < w. (4.2)

By Proposition 2.2, the sequence By11 U Sk, k < w, is Ty-convergent to Y be-
cause {Bk \ Bgy1: k< w} is a pairwise disjoint family of proper open subsets

of Y. Moreover, {T},,} is Ty-convergent to U being a subsequence of {T},}.
Hence, Hy = T, U Byy1 U Sk, k < w, is Ty-convergent to X. Accordingly,
p = f(X) = limg_ o0 f(Hy). However, by (4.2), f(Hy) # p for every k < w.
Therefore, by (ii) of Proposition 4.2, f(Hj) € U for all but finitely many k < w.
Thus, by Lemma 3.2, the point p is countably-approachable. O

Proposition 4.4. Suppose that there exists S € F(Y) with p ¢ S, and a
subsequence {Ty,, } of {T,} such that

f(Th, U{ptuS) =p forallj<w. (4.3)
Then p is countably-approachable.

Proof. Evidently, we can assume that (4.3) holds for all n < w. Next, using
Theorem 1.3 and (ii) of Proposition 4.2, take a sequence {x,} C U which is
convergent to p and z,, € T,, for every n < w. Since f is continuous and the
sequence Tp U {z,} U S, n < w, is Ty-convergent to Ty U {p} U S, it follows
from (4.3) that f(Tp U {z,,} US) = zp, for some ny < w. We can repeat
this with T,,,. Namely, the sequence T, U {x,} U S, n > ng, is Ty-convergent
to Tn, U {p} US. Hence, for the same reason, f(T,, U {zn,}US) = z,, for
some ng > ng. Thus, by induction, there are subsequences {z,, } of {z,} and
{T,} of {T5,} such that f(T,, U{zpn,  }US) = xy,,,, for every k < w. Then
H, =T, US, k < w, is a Ty-convergent sequence with limy_, f(Hg) = p,
because Hy C Hy U{wy, ,} C Hyyq for every k < w. Furthermore, by (ii) of
Proposition 4.2, f(Hg) € U for all but finitely many k& < w. Therefore, just
like before, Lemma 3.2 implies that p is countably-approachable. O

5. APPROACHING NONTRIVIAL COMPONENTS

Here, we will finalise the proof of Theorem 1.2 with the remaining case
when X is not totally disconnected at p. To this end, let us recall that a
space X is weakly orderable if there exists a coarser orderable topology on
X with respect to some linear order on it (called compatible for X). The
weakly orderable spaces were introduced by Eilenberg [4], and are often called
“Eilenberg orderable”.

Each connected space Z with a continuous weak selection o is weakly order-
able with respect to <,, see [17, Lemmas 7.2]. The following simple observation
was implicitly present in the proof of [12, Theorem 1.5]. In this observation,
and what follows, nct(Z) are the noncut points of a connected space Z, and
ct(Z) — the cut points of Z.
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Proposition 5.1. Let X be a space and p = f(X) for some f € Y [F(X)].
Then p € nct(€[p]).

Proof. Set Z = €[p] and assume that p € H = ct(Z). Since H is open in X
(see [8, Corollary 2.7]) and f is continuous, f((%)) C H C Z for some finite
open cover % of X. Take a finite set TC X\ Z withY =T UZ € (%). Then
it follows from Proposition 3.1 that g(S) = f(T'US) € S for every S € F(Z).
Accordingly, g : #(Z) — Z is a continuous selection with ¢(Z) € H = ct(Z).
However, this is impossible because Z is weakly orderable with respect to <,
and g(Z) is the first <g-element of Z, see [17, Lemmas 7.2 and 7.3] and [8,
Corollary 2.7]. O

In the rest of this section, p € Xg is a cut point such that the component € [p]
is not a singleton. In this case, by Proposition 5.1, p is a noncut point of €[p].
Thus, we can also fix a p-cut (U,V) of X such that ¢[p] C V. Accordingly,
Y = U is totally disconnected at p. In this setting, the remaining part of the
proof of Theorem 1.2 consists of showing that p is countably-approachable in
Y. To this end, we will first show that V can itself be assumed to be connected.

Proposition 5.2. Let f : % (X) — X be a continuous selection with f(X) = p.
Then there exists a nondegenerate connected subset Z C €[p] such that p € Z
and X, =Y UZ has a continuous selection f. : F(X,) = X, with f.(X.) =p.

Proof. Since H = %[p] has a continuous weak selection and p € nct(H), the
space H is weakly orderable with respect to a linear order < such that p < x
for every x € H, see [17, Lemma 7.2] and [8, Corollary 2.7]. Accordingly, each
closed interval Z, = [p,z]< € F(H), x € ct(H), is a connected subset of H, see
[16, Theorem 1.3]. Moreover, if T' =V \ H, then f(YUHUT) = f(X)=p € H.
Thus, by Propositions 3.1 and 5.1,

fYUZ,UT)€enct(Z,)UT ={p,xa}UT for every x € ct(H). (5.1)

Evidently, the resulting family ¥ = {Y U Z, UT : z € ct(H)} is up-directed.
Therefore, by Proposition 2.1, it is 7y-convergent to |J.¥ = X. Hence, by
(5.1), f(YUZ,UT) = p for some ¢ € ct(H) because limgec » f(S) = f(X) = p.
Finally,let Z=Z,, X, =Y UZ and 7 ={S € F(X,): f(SUT) € T}. Then
T is a Ty-clopen set in % (X,) because T is clopen in X, UT. So, we may
define a continuous selection f, : .7 (X.) — X, by letting for S € .7 (X.) that

£(S) = {f(S) if Se 7, and

f(SuT) ifS¢ 7.
Since f(X,UT) = f(YUZUT) = f(YUZ,UT) =p ¢ T, we get that X, ¢ 7.
Accordingly, we also have that f.(X.) = f(X. UT) =p. O

Since the space X, = Y U Z in Proposition 5.2 has all properties of X
relevant to our case, we can identify X with this space. In this refined setting,
the fixed p-cut (U, V) of X has the extra property that Z = V is connected,
while Y = U is the same as before.
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Proposition 5.3. If f : F(X) — X is a continuous selection with f(X) = p,
then f(Y) = p. Moreover,

fYu{q}) =p foreveryqe Z. (5.2)

Proof. Since Z is connected, it follows from Proposition 3.1 that f(YUS) € Z
for every S € Z(Z). Accordingly, f(Y) = f(Y U{p}) = p. Regarding (5.2),
we argue by contradiction. Namely, assume that

fY U{q}) =q forsome q € Z with g # p. (5.3)
Next, as in the proof of Proposition 5.2, using that Z is weakly orderable

and p € nct(Z), take a compatible linear order < on Z such that p < z for
every z € Z. Then by (5.3), p < ¢ and we now have that

fYus)esS, whenever S e .Z ([z,—)<) for some z > p. (5.4)
Briefly, for z > p and S € Z ([2,—)<), it follows that either S C [¢,—)< or

q € [2,—)<. Since all <-intervals of Z are connected, (5.4) follows from (5.3)
and Proposition 3.1.
This now implies that the continuous map ¢(T) = f(Y UT), T € F(Z), is

a selection for #(Z). Indeed, for T € % (Z) with T # {p}, set

S ={TNn[z,—=)<:2€T\{p}}.
Since the family .# is up-directed in .#(Z), by Proposition 2.1, it is 7y-
convergent to |J.. Moreover, by (5.4), ¢g(S) = f(Y US) € S for every
S € .#. Therefore, g(T) € |J C T because Y U (W) =Y UT. How-

ever, according to [17, Lemma 7.3], .#(Z) has at most two continuous se-
lections — taking the minimal element, or taking the maximal element of
each T' € #(Z). Therefore, g(T) = min< T for every T € .#(Z) because
9(Z) = f(YUZ) = f(X) =p = minc Z. But this is impossible because by
(5:3), ¢ = g({a}) = f(Y U {q}) = min<{p, ¢} = p. O

The following final observation completes the proof of Theorem 1.2.

Proposition 5.4. If f : F(X) — X is a continuous selection with f(X) = p,
then Y\ {p} contains a sequence convergent to p. In particular, p is a cut point
of Y, and is therefore also countably-approachable.

Proof. Let 2 be a local base at p in Y with Y ¢ . Then there exists By € &
such that

fF(Y\B)U{p}) e Y\ B forevery B € % with B C By. (5.5)

Indeed, assume that (5.5) fails, and let 4, be the collection of all B € % such
that f((Y \ B)U{p}) = p. Then A, is also a local base at p € Y. Hence,
& ={Y\B: B € 4.} is an up-directed cover of Y\ {p} and by Proposition 2.1,
it is Ty -convergent to Y. Moreover, by assumption, f(S U {p}) = p for every
S € . Therefore, by Proposition 3.1, we also have that f(S U {q}) = ¢ for
every ¢ € Z and S € . Accordingly, f(Y U{q}) =limges f(SU{q}) = q for
every q € Z. However, by (5.2) of Proposition 5.3, this is impossible.
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Having already established (5.5), it follows from Propositions 5.3 and 2.3
that p is the limit of a sequence of points of Y\ {p}. Hence, by Proposition 2.6,
p is a cut point of Y. Therefore, by the already proven case of Theorem 1.2,
the point p is also countably-approachable in Y. Since Y = U = U U {p} and
U C X \ {p} is open, p is countably-approachable in X as well. O

6. POINT-MAXIMAL SELECTIONS

Recall that a point p € X in an arbitrary space X is noncut if it is not a cut
point. The prototype of such points can be traced back to Michael’s nowhere
cuts defined in [18]. In his terminology, a subset A C X nowhere cuts X [18]
if A has an empty interior (i.e. A is thin) and whenever p € A and U is a
neighbourhood of p in X, then U \ A does not split into two disjoint open sets
both having p in their closure. Evidently, the singleton {p} nowhere cuts X
for each noncut point p € X. A slight variation of this concept was considered
in [2] (under the name ‘does not cut’) and in [19] (under the name ‘nowhere
disconnects’).

As commented in the Introduction, the equality X& N Xq = X& in (1.4) of
Theorem 1.5 is known, see (1.1) and (1.3). Here, we will prove the following
refined version of this theorem showing that the members of Xg \ Xq possess a
similar property with respect to the connected components. To this end, let us
recall that a (closed) subset C' C X has a clopen base if for each neighbourhood
U of C there exists a clopen set H C X with C C H C U. In case C = {p} is
a singleton, we simply say that X is zero-dimensional at p € X.

Theorem 6.1. Let X be a space with V[ F(X)] # @ and p € Xo \ Xq. Then
€'[p] has a clopen base and p € X§.

Evidently, the essential case in Theorem 6.1 is when €[p] is not a clopen set,
otherwise the property follow easily from known results and Proposition 3.1.
Thus, in the rest of this section, €'[p] will be assumed to be not clopen.

The next lemma covers the case of €[p] = {p} in Theorem 6.1.

Lemma 6.2. Let X be a space with Y [.# (X)] # @. If X is totally disconnected
at some point p € Xo \ Xq, then X is zero-dimensional at p and p € X§.

The proof of this lemma is base on the following two simple observations.

Proposition 6.3. Let f: #(X) — X be a continuous selection, p € X with
€lp] = {p}, and K € F(X) be such that p ¢ K and f(KUS) = p for every
closed set S C X withp € S. Then X has a clopen base at p.

Proof. We follow the idea in the proof of [12, Theorem 1.4], see also [1]. Take
an open set U C X withpe U C X \ K, and set F = X \ U. Since f(F) # p,
there exists a clopen set T C X with f(F) € T and p ¢ T. Then f~1(T) is
a Ty-clopen subset .Z(X). Take a maximal chain .2 C f~1(T) with F € ..
Then M = | 4 is the maximal element of .#, and therefore M is clopen in
X because f~(T) is Ty-clopen. Moreover, K C F C M because F € /.
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Finally, M doesn’t contain p because f(M) # p. Indeed, p € M will imply
that f(M) = f(K U M) = p, but this is impossible. Thus, H = X \ M is a
clopen set withpe H C U. (]

Proposition 6.4. Let f: F(X) — X be a continuous selection, p € X with
Clp] = {p}, and K € F(X) be such that p ¢ K and f(KUS) = p for every
closed set S C X withp e S. Thenp € X§.

Proof. Since f(KU{p}) = p ¢ K, there is a finite family ¥ of open subsets of X
such that KU {p} € (¥) and f({¥)) C X \ K. Then by Proposition 6.3, there
exists a clopen set H suchthat pe HC X\ Kand HC ({(Ve ¥ :peV}
Accordingly, f(KUS) € S for every S € % (H). We can now define a continuous
selection h : #(X) — X by letting for S € .Z#(X) that

h(S):{f(S) if SN H =2, and
F(KUSy) ifSy=SNH#o.

Then h is p-maximal. Indeed, p € S € F(X) implies that p € Sy = SN H
and by the property of K, we have that h(S) = f(K U Sg) =p. a

Proof of Lemma 6.2. According to Propositions 6.3 and 6.4, it suffices to show
that there exists K € .#(X) such that

p¢ K and f(KUS)=p, forevery S € .Z(X) withpe S. (6.1)

To this end, let & be the collection of all open subsets containing p, and
P C O be that one of those B € & for which f((X \ B)U{p}) #p. If Bis a
local base at p, then by Proposition 2.3, X \ {p} contains a sequence convergent
to p. Hence, by Proposition 2.6, p must be a cut point of X. However, by
Theorem 1.2, this is impossible because p ¢ Xq. Accordingly, there exists
U € 0 such that K = X\ U # @ and the family ¥ = {V € ¢ : V C U}
doesn’t contain any member of %, namely f((X \ V) U {p}) = p for every
V € ¥. To see that this K is as in (6.1), take a closed set S C X with
pe S, andset £ ={S\V:V € ¥} Then X\ (KUL)e ¥, Lec ¥, and
therefore f(K UL U{p}) = p for every L € ¥. Moreover, by Proposition 2.1,
H ={KULU{p}: L e L} is ry-convergent to | J# = KUS = KUS
being an up-directed cover of K U S. Since f is continuous, this implies that
f(KUS) =p and the proof is complete. O

The other case of Theorem 6.1 is covered by the following lemma.

Lemma 6.5. Let X be a space with V[.F(X)] # @, and p € Xo \ Xq be such
that €[p| # {p}. Then €[p] has a clopen base and p € X§.

In this lemma, according to Theorem 1.2 (see also Proposition 5.1), p is both
a noncut point of X and a noncut point of €[p]. Since €[p] is not clopen in X, it
has another noncut point ¢ € €[p] defined by the property that ¢ € X \ €[p].
In particular, ¢ is a cut point of X. Thus, in this case, U = X \ €[p| and
V =%[p]\ {¢} form a g-cut of X such that Y = U is totally disconnected at g

and Z =V = €[p]. In this setting, Y and Z have the following properties.
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Proposition 6.6. There exists a nonempty finite set K C U such that for
every closed set S C'Y, the map fx )(T) = f(KUSUT), T € F(Z), is a
continuous p-mazimal selection for F(Z).

Proof. Since f(X) = p € V, there exists a finite open cover # of X with
X e (#)and f((#)) C V. Take a finite set K C U such that K NW # & for
every W € # with WNY # &. Then K has the property that

f(KUSUZ)=p forevery closed set S CY. (6.2)

Indeed, in this case, f(KUSUZ) € V C €]p] because KUSUZ € (¥#).
Hence, by Proposition 5.1, f(K USU Z) = p because ¢ ¢ V.

For a closed subset S C Y, the map f(x g) is continuous and by Propo-
sition 3.1, fik,s)(T) = f(KUSUT) € Z for every T € #(Z). Hence, by
(6.2) and [17, Lemmas 7.2 and 7.3], it only suffices to show that f(x g) is a
selection for .#(Z). If T € Z#(Z) and q ¢ S, then fx s)(T) € T because
KuS cUcCX\Z. Otherwise, if ¢ € S, we set F' = S\ {¢} and distinguish
the following two cases:

(i) If Fis a closed set, as remarked above, f k. ) is a selection for .#(Z). There-
fore, by (6.2), f(k,r) is ‘g-minimal’ in the sense that f(x p)(T) = ¢ precisely
when T = {q} because g € nct(%€[p]), see [17, Lemma 7.3] and [8, Corollary
2.7]. In other words, fx,)(T) = fix,m (T U{q}) € T for every T' € F(Z).

(ii) If I is not closed, by (i), fix,p)(T) = fF(KUEUT) € T for every
E € 3(F), see (2.1). Moreover, by Proposition 2.1, # = {K UE : E € ¥(F)}
is an up-directed family which is 7y -convergent to K U S. Accordingly,

fues)(T) = f(KUSUT) = lim f(HUT) €T =T. O

Proof of Lemma 6.5. According to Proposition 6.6, there exists a nonempty
finite set K C U = X \ €[p] such that f(K USU{q}) = g for every closed set
S CY =U. SinceY is totally disconnected at g, it follows from Proposition 6.3
that ¢ has a clopen base in Y. This implies that €[p] has a clopen base in X.
To show the remaining part of this lemma, as in the proof of Proposition 6.4,
take a clopen set H C Y such that ¢ € H C Y\ K and f(KUS) € S for
every S € #(H). Then L = H U Z is a clopen subset of X with the same
property. Indeed, take any S € . (L). If S C Y, then S C H and therefore
f(KUS) e S If S\Y #@,set D=SNY and T = SN Z. Then by
Proposition 6.6, f(KUS) = f(KUDUT) e T C S. Hence, just like before,
we can define a continuous p-maximal selection h : #(X) — X by

h(S):{f(S) if SN =02, and
FIKUSL) itS,=SNL+#a.

Indeed, if p € S € F(X), then p € S, = SN L. Moreover, D;, = S, NY
isclosedinY and p € T;, = S, NZ € % (Z). According to Proposition 6.6,
h(S):f(KUSL):f(KUDLUTL):p. O
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