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Abstract

In this article, we introduce and study the concept of a semi-strongly
irreducible ideal, a natural generalization of a strongly irreducible ideal.
We say an ideal I of a commutative ring R is semi-strongly irreducible
if for ideals J and K of R, the inclusion J ∩K ⊆ I implies that either
J2 ⊆ I or K2 ⊆ I. After some general results, the article focuses on
semi-strongly irreducible ideals in rings of continuous functions.
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1. Introduction

An ideal I of a commutative ring R is called strongly irreducible if for ideals
J and K of R, the inclusion J ∩K ⊆ I implies that either J ⊆ I or K ⊆ I.
Obviously, an ideal I is strongly irreducible if and only if for all x, y ∈ R, Rx∩
Ry ⊆ I implies that x ∈ I or y ∈ I. Prime ideals are strongly irreducible. Every
ideal in a valuation domain is strongly irreducible. Strongly irreducible ideals
were first studied by Fuchs, [13], under the name primitive ideals. Apparently,
the name “strongly irreducible” was first used by Blair in [7]. In [8, p. 177,
Exercise 34], the strongly irreducible ideals are called quasi prime. We refer
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the reader to [4], [18], and [23] for more information about strongly irreducible
ideals. Throughout this paper, all rings are commutative with 1 6= 0. A ring
R is called reduced if it has no non-zero nilpotent elements. Everything needed
about rings can be found in [21].

In the following, we introduce the concept of a semi-strongly irreducible
ideal, as a generalization of the notion of a strongly irreducible ideal.

Definition 1.1. We say an ideal I of a ring R is semi-strongly irreducible if
for ideals J and K of R, the inclusion J ∩K ⊆ I implies that either J2 ⊆ I or
K2 ⊆ I.

Obviously, every strongly irreducible ideal is semi-strongly irreducible. How-
ever, the converse is not true (even in a Noetherian domain). Take I =
(x2, xy, y2) in K[x, y] where K is a field. From I = (x, y2)∩ (x2, y), we deduce
that I is not strongly irreducible. It is not hard to see that I is a semi-strongly
irreducible ideal.

An ideal I of a ring R is said to be irreducible if I is not the intersection of
two ideals of R that properly contain it. It is known that every strongly irre-
ducible ideal is irreducible, see [18, Lemma 2.2(1)] for example. The example
in the above paragraph shows that a semi-strongly irreducible ideal need not
be irreducible.

This note aims to investigate semi-strongly irreducible ideals with a view
towards rings of continuous functions.

2. Semi-strongly irreducible ideals

We begin with a few results about semi-strongly irreducible ideals.

Lemma 2.1. Let I be an ideal in a ring R. The following statements hold.

(1) If I is a strongly irreducible ideal, then I2 is semi-strongly irreducible.
(2) If I is a semi-strongly irreducible ideal of R, then I is a prime ideal if

and only if I is semiprime.
(3) For each proper ideal I of R, there is a minimal semi-strongly irre-

ducible ideal over I.
(4) If I is a semi-strongly irreducible ideal in R containing an ideal H,

then I/H is a semi-strongly irreducible ideal of R/H. Moreover, if R
is an arithmetical ring (that is, a ring in which for every three ideals I,
J and K, we have I + (J ∩K) = (I + J)∩ (I +K)), then the converse
also holds.

(5) Every semi-strongly irreducible ideal of a von Neumann regular ring is
strongly irreducible.

Proof. (1) Assume J and K are two ideals of R such that J ∩K ⊆ I2 (and so
J ∩K ⊆ I). Since I is a strongly irreducible ideal, we infer that either J ⊆ I
or K ⊆ I. From this, we deduce that J2 ⊆ I2 or K2 ⊆ I2, as desired.
(2) If I is a prime ideal, then there is nothing to prove. Assume that I is a
semiprime ideal and JK ⊆ I. A result due to Fuchs [11] states that an ideal I
of a commutative ring R is semiprime if and only if it contains the intersection
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of two ideals whenever it contains their product. From this, J ∩K ⊆ I. Since
I is a semi-strongly irreducible ideal, we deduce that either J2 ⊆ I or K2 ⊆ I.
Since I is semiprime ideal, we conclude that either J ⊆ I or K ⊆ I, as desired.
(3) Let Λ = {J : J is a semi-strongly irreducible ideal of R containing I}.
Since every maximal ideal is semi-strongly irreducible, Λ 6= ∅. By Zorn’s
lemma Λ has a minimal element with respect to ⊇.
(4) For the first assertion, let J and K be ideals of R such that J/H ∩K/H ⊆
I/H. Then J ∩K ⊆ I, and since I is semi-strongly irreducible it follows that
either J2 ⊆ I or K2 ⊆ I. Therefore, either (J/H)2 ⊆ I/H or (K/H)2 ⊆
I/H, i.e., I/H is semi-strongly irreducible. For the last assertion in (4), let
J ∩K ⊆ I. Then H + (J ∩K) = (H + J) ∩ (H + K) ⊆ I and consequently
(H + J)/H ∩ (H + K)/H ⊆ I/H. Since I/H is semi-strongly irreducible, we
infer that either (H+J)2 ⊆ I or (H+K)2 ⊆ I, and so either J2 ⊆ I or K2 ⊆ I.
Thus I is semi-strongly irreducible.
(5) Let us first recall that a ring R is said to be von Neumann regular if for
every a ∈ R there is an x ∈ R for which a = a2x. It is known that a ring R is
von Neumann regular if and only if every ideal of R is an idempotent, see [21,
Ex. 10.19]. By this fact, we infer that every semi-strongly irreducible ideal of
a von Neumann regular ring is strongly irreducible. �

We mention here that if J and K are semi-strongly irreducible ideals of a
ring R, then J ∩ K and JK need not be semi-strongly irreducible of R. For
example, in the ring of integers Z, 2Z and 3Z are prime (so are semi-strongly
irreducible) but 2Z× 3Z = 2Z ∩ 3Z = 6Z is not semi-strongly irreducible.

Theorem 2.2. Let R = R1 ×R2, where R1 and R2 are two rings. Let J be a
proper ideal of R. The following statement are equivalent:

(1) J is a semi-strongly irreducible ideal.
(2) Either J = I1×R2 for some semi-strongly irreducible ideal I1 of R1 or

J = R1 × I2 for some semi-strongly irreducible ideal I2 of R2.

Proof. (1) ⇒ (2) Assume (1). Let J = I1 × I2 be an ideal of R1 × R2. First,
we show that either I1 = R1 or I2 = R2. Assume, for a contradiction, I1 6= R1

and I2 6= R2. Take the ideal (R1 × 0) ∩ (0 × R2) ⊆ J . This implies that
either (R1 × 0) ⊆ J or (0 × R2) ⊆ J , a contradiction. Now suppose that
J = I1 × R2 where I1 is an ideal of R1. We show that I1 is semi-strongly
irreducible. Assume that K ∩ H ⊆ I where K and H are two ideals of R1.
From this, we deduce that (K × R2) ∩ (H × R2) ⊆ I1 × R2 = J . Since J is
semi-strongly irreducible, either K2 × R2 ⊆ J or H2 × R2 ⊆ J . Thus, either
K2 ⊆ I or H2 ⊆ I, as desired. A similar proof works for when J = R1 × I2
where I2 is an ideal of R2.
(2)⇒ (1) Straightforward. �

Let R be a ring and let S be a multiplicatively closed subset of R. For each
ideal I of the ring S−1R, we consider

Ic =
{
x ∈ R :

x

1
∈ I
}

= I ∩R and C =
{
Ic : I is an ideal of S−1R

}
.
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Theorem 2.3. Let R be a ring and S be a multiplicatively closed subset of R.
Then there is a one-to-one correspondence between the semi-strongly irreducible
ideals of S−1R and the semi-strongly irreducible ideals of R contained in C
which do not meet S.

Proof. The proof is an analogue of [4, Theorem 3.1]. We write out all the detail
for the convenience of the reader. Let I be a semi-strongly irreducible ideal of
S−1R. Obviously, Ic 6= R, Ic ∈ C, and Ic ∩ S = ∅. Let A ∩ B ⊆ Ic, where
A and B are ideals of R. Then we have (S−1A) ∩ (S−1B) = S−1(A ∩ B) ⊆
S−1(Ic) = I . Hence, S−1A2 ⊆ I or S−1B2 ⊆ I, and so A2 ⊆ (S−1A2)c ⊆ Ic

or B2 ⊆ (S−1B2)c ⊆ Ic. Thus, Ic is a semi-strongly irreducible ideal of R.
Conversely, let I be a semi-strongly irreducible ideal of R, I ∩ S = ∅, and
I ∈ C. Since I ∩ S = ∅, S−1I 6= S−1R. Let A ∩ B ⊆ S−1I, where A and B
are ideals of S−1R. Then Ac ∩ Bc = (A ∩ B)c ⊆ (S−1I)c. Now since I ∈ C,
(S−1I)c = I. So Ac ∩ Bc ⊆ I. Consequently, (Ac)2 ⊆ I or (Bc)2 ⊆ I. Thus,
A2 = S−1((Ac)2) ⊆ S−1I or B2 = S−1((Bc)2) ⊆ S−1I. Therefore, S−1I is a
semi-strongly irreducible ideal of S−1R. �

Let R and T be two rings, let J be an ideal of T and let f : R → T be a
ring homomorphism. According to [10], the following ring construction called
the amalgamation of R with T along J with respect to f is a subring of R× T
defined by

R ./f J := {(r, f(r) + j)|r ∈ R , j ∈ J} .
This construction generalizes amalgamated duplication of a ring along an ideal
that introduced and studied by D’Anna and Fontana in [9], which is the subring
of R×R given by

R ./ I := {(r, r + i)|r ∈ R , i ∈ I} .

Our next results establish the transfer of semi-strongly irreducible ideals in
amalgamation of rings.

Theorem 2.4. Let R and T be two rings and f : R → T be a ring homo-
morphism. For an ideal I of R and an ideal J of T , the ideal I ./f J is a
semi-strongly irreducible ideal of R ./f J if and only if I is a semi-strongly
irreducible ideal of R.

Proof. Assume that I ./f J is a semi-strongly irreducible ideal of R ./f J . Let
K and L be two ideals of R satisfy K ∩ L ⊆ I. Thus, (K ./f J) ∩ (L ./f

J) ⊆ I ./f J . By our assumption, we deduce that either (K ./f J)2 ⊆ I ./f J
or (L ./f J)2 ⊆ I ./f J and so either K2 ⊆ I or L2 ⊆ I. This means
that I is a semi-strongly irreducible ideal of R. Conversely, assume that I
is a semi-strongly irreducible ideal of R. Let H be an ideal of R ./f J and
set IH = {a ∈ R|(a, f(a) + j) ∈ H for some j ∈ J}. Let H1 ∩ H2 ⊆ I ./f J .
Obviously, IH1 ∩ IH2 ⊆ I. By our assumption, we infer that either I2H1

⊆ I or

I2H2
⊆ I. and hence we conclude that either H2

1 ⊆ I ./f J or H2
2 ⊆ I ./f J , as

desired. �
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Theorem 2.5. Let R be a ring in which 2 is invertible. The following state-
ments are equivalent for an ideal I:

(1) I is a semi-strongly irreducible ideal.
(2) For all x, y ∈ R, Rx ∩Ry ⊆ I implies that either x2 ∈ I or y2 ∈ I.

Proof. (1)⇒ (2) It is clear.
(2) ⇒ (1) Assume J ∩ K ⊆ I for some ideals J,K of R and J2 6⊆ I. Thus,
there exists z =

∑n
i=1 xiyi ∈ J2 \ I where xi, yi ∈ J for 1 ≤ i ≤ n. From this,

there exist x, y ∈ J such that xy /∈ I. Since 4xy = (x+ y)2− (x− y)2, we infer
that either (x + y)2 /∈ I or (x − y)2 /∈ I. Without loss of generality, we may
assume that (x+ y)2 /∈ I. From J ∩K ⊆ I, we have R(x+ y)∩Rk ⊆ I and so
k2 ∈ I for each k ∈ K. This implies that k1k2 = 2−1((k1 + k2)2 − k21 − k22) ∈ I
for k1, k2 ∈ K. This means that K2 ⊆ I, as desired. �

Remark 2.6. Following [6], an ideal I of a ring R is called 2-prime if whenever
a, b ∈ R and ab ∈ I, then either a2 ∈ I or b2 ∈ I. Let S be a ring in which 2
is invertible. Theorem 2.5 shows that every 2-prime ideal of S is semi-strongly
irreducible.

Lemma 2.7. Let R be a ring. The following statement are equivalent:

(1) Every ideal of R is a semi-strongly irreducible ideal.
(2) For every pair of ideals I and J of R, we have either J2 ⊆ I or I2 ⊆ J .

Proof. (1)⇒ (2) Let I and J be two ideals of R. Assume (1). The ideal I ∩ J
is a 2-strongly irreducible ideal. From I ∩ J ⊆ I ∩ J , we deduce that either
I2 ⊆ I ∩ J or J2 ⊆ I ∩ J . Hence, we infer that either I2 ⊆ J or J2 ⊆ I, as
desired.
(2)⇒ (1) Let I be an ideal of R. Assume that J ∩K ⊆ I where J and K are
two ideals of R. Assume (2). We have either J2 ⊆ K or K2 ⊆ J . Hence, we
have J2 ⊆ I or K2 ⊆ I, as desired. �

To state the next corollary, we will need the following lemma.

Lemma 2.8. Let R be a ring where 2 is invertible. The following statement
are equivalent:

(1) Every ideal of R is a semi-strongly irreducible ideal.
(2) For every pair of elements x and y of R, we have either x|y2 or y|x2.

Proof. (1) ⇒ (2) Let x, y ∈ R. Assume (1). The ideal Rx ∩ Ry is a semi-
strongly irreducible ideal. From Rx ∩ Ry ⊆ Rx ∩ Ry, we deduce that either
x2 ⊆ Rx∩Ry or y2 ⊆ Rx∩Ry. Hence, we infer that either x2 ∈ Ry or y2 ∈ Rx.
Thus, we have either y|x2 or x|y2, as desired.
(2) ⇒ (1) Let I be an ideal of R. Assume that Rx ∩ Ry ⊆ I for x, y ∈ R.
Assume (2). We have either Ry2 ⊆ Rx or Rx2 ⊆ Ry. Hence, we have Ry2 ⊆ I
or Rx2 ⊆ I. Theorem 2.5, completes the proof. �

Badawi [5, Theorem 1] proved that the prime ideals of a ring R are linearly
ordered if and only if for every pair of elements x and y of R, there is is an
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n ≥ 1 such that x|yn or y|xn. In view of Lemma 2.8, we make the following
observation.

Corollary 2.9. If every ideal of a ring R is semi-strongly irreducible, then the
prime ideals of R are linearly ordered.

The concept of weakly irreducible ideal, which is a generalization of strongly
irreducible ideal, was introduced and investigated by Samiei and Fazaeli Moghimi
[22]. They defined a nonzero proper ideal I of R to be a weakly irreducible ideal
of R, if for each pair of ideals A and B of R, A ∩ B ⊆ I implies that either
A ⊆

√
I or B ⊆

√
I. It is easy to check that every semi-strongly irreducible

ideal is weakly irreducible.
In view of [5, Theorem 1] and [22, Theorem 3.5], we have the following.

Corollary 2.10. The following statement are equivalent:

(1) Every ideal of R is weakly irreducible.
(2) For x, y ∈ R, there is an n ≥ 1 such that either x|yn or y|xn.

We close this section with a result about pm-rings. Let us recall that a
ring R is called a pm-ring (also known as Gelfand ring) if every prime ideal
is contained in a unique maximal ideal. Examples of pm-rings include von
Neumann regular rings and rings of continuous functions.

Corollary 2.11. The following statements are equivalent for a reduced ring
R:

(1) R is a pm-ring.
(2) Every weakly irreducible ideal is contained in a unique maximal ideal.
(3) Every semi-strongly irreducible ideal is contained in a unique maximal

ideal.
(4) Every strongly irreducible ideal is contained in a unique maximal ideal.

Proof. (1)⇒ (2) First, let us recall a fact. A ring R is a pm-ring if and only if
for each pair of distinct maximal ideals M1 and M2 there exist a /∈M1, b /∈M2

such that ab = 0. Let I be a weakly irreducible ideal. Assume that I ⊆ M1

and I ⊆M2 where M1,M2 are two maximal ideals of R. From this, there exist
x /∈ M1, y /∈ M2 such that xy = 0. Since R is reduced, we have Rx ∩ Ry = 0.
Hence, we conclude that either Rx ⊆

√
I ⊆ M1 or Ry ⊆

√
I ⊆ M2. That is a

contradiction.
(2)⇒ (3)⇒ (4) Clear.
(4)⇒ (1) It follows from the fact that every prime ideal is strongly irreducible.

�

3. Applications to C(X)

In this section, we concern ourselves with rings of real-valued continuous
functions on a topological space. Throughout, topological spaces are assumed
to be Tychonoff, that is, completely regular Hausdorff, while C(X) will de-
note the ring of real-valued continuous functions on a space X. The notation,
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terminology and results of the Gillman-Jerison text [16] will be used always.
The reader is referred to [20] and [14] for more details regarding C(X) and its
subrings.

Following [17], an ideal I of a ring R is called pseudoprime if for a, b ∈ R,
ab = 0 implies, a ∈ I or b ∈ I. Trivially, all prime ideals are pseudoprime. Any
ideal containing a pseudoprime ideal is pseudoprime. In particular, any ideal
containing a prime ideal is pseudoprime. The converse of this fact is also true
for C(X) , see [17, Theorem 4.1]. Note that the ideal 6Z of the ring of integers
Z is a pseudoprime but not prime.

Lemma 3.1. Every semi-strongly irreducible ideal of C(X) is pseudoprime.

Proof. Let I be a semi-strongly irreducible ideal of C(X). Suppose that fg = 0

for f, g ∈ C(X). Hence, f
1
3 g

1
3 = 0. It is easy to see (f

1
3 )∩ (g

1
3 ) = 0. Thus, we

infer that 0 = (f
1
3 )∩(g

1
3 ) ⊆ I. Since I is semi-strongly irreducible, we conclude

that either f
2
3 ∈ I or g

2
3 ∈ I. Thus, either f ∈ I or g ∈ I, as desired. �

Remark 3.2. Lemma 2.8 implies that C(X) always contains an ideal which is
not a semi-strongly irreducible ideal, unless C(X) = R. For this, let |X| > 1
and take x, y ∈ X. Define f ∈ C(X) such that f(x) = 1 and f(y) = −1. Now
consider two elements f + |f | and f − |f |. Clearly, neither (f − |f |)

∣∣(f + |f |)2
nor (f + |f |)

∣∣(f − |f |)2. In fact, if (f − |f |)2 = (f + |f |)h for some h ∈ C(X),

then (f − |f |)3 = 0 implies f = |f |, a contradiction. Now Lemma 2.8 states
that C(X) has an ideal which is not semi-strongly irreducible. In particular
the zero ideal of C(X), where |X| > 1, is not semi-strongly irreducible, since
(f − |f |)(f + |f |) = 0.

Proposition 3.3. The following statements are equivalent:

(1) Every ideal of C(X) is semi-strongly irreducible.
(2) Every ideal of C(X) is weakly irreducible.
(3) |X| = 1.
(4) C(X) = R.

Proof. Clearly (3) and (4) are equivalent and (4) implies (1) and (2), because
C(X) = R is a field. It is enough to show that (1) implies (3) and also (2)
implies (3). Suppose on the countrary, that |X| > 1. Then using the Remark
3.2, the zero ideal is not semi-strongly irreducible, a contradiction. This shows
(1) implies (3). Again if assume that |X| > 1, then applying the function f as
in the Remark 3.2, we have (f−|f |)∩(f+ |f |) ⊆ (0), but neither (f−|f |)n = 0
nor (f + |f |)n = 0 for all n ≥ 1, since f(x) + |f(x)| = 2 and f(y)−|f(y)| = −2.
Thus (2) implies (3) and we are done. �

Remark 3.4. Following [12], a proper ideal I of R is called quasi-primary if√
I is prime. As it mentioned in [22], every quasi-primary ideal is weakly

irreducible. By [17, Theorem 4.1], an ideal I of C(X) is pseudoprime if and
only if it is quasi-primary. From this, every pseudoprime ideal of C(X) is
weakly irreducible.
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Our next goal is to characterize spaces X for which every pseudoprime ideal
of C(X) is semi-strongly irreducible. To begin our investigations in this direc-
tion, we recall a definition from [19] and make a definition. A space X is an
SV -space if for every prime ideal P of the ring C(X), the ordered integral do-
main C(X)/P is a valuation ring (i.e., of any two nonzero elements of C(X)/P ,
one divides the other).

Definition 3.5. We say an integral domain R is semi-valuation if every pair of
ideals I and J of R, we have either J2 ⊆ I or I2 ⊆ J . A space X is a semi-SV -
space if for every prime ideal P of the ring C(X), C(X)/P is a semi-valuation
ring.

Hereafter we assume that C(X) satisfies the property: (J ∩K) + P = (J +
P )∩ (K+P ) for two ideals J,K and a prime ideal P . The next theorem is the
counterpart of [15, Proposition 4.6] and [2, Proposition 4.14].

Theorem 3.6. Let X be a topological space. The following statements are
equivalent:

(1) X is a semi-SV -space.
(2) Every pseudoprime ideal of C(X) is semi-strongly irreducible.

Proof. (1) ⇒ (2) Let X be a semi-SV -space and let I be a pseudoprime ideal
of C(X). Assume that J ∩ K ⊆ I for ideals J and K of C(X). By [17,
Theorem 4.1], there is a prime ideal P where P ⊆ I. Clearly, (J + P )/P ∩
(K + P )/P ⊆ I/P . By hypothesis, C(X)/P is a semi-valuation ring and so
either (K + P )2/P ⊆ (J + P )/P or (J + P )2/P ⊆ (K + P )/P . Without loss
of generality, we may assume that (K + P )2/P ⊆ (J + P )/P . This yields
(K + P )2/P ⊆ I/P and so (K + P )2 ⊆ I. Since P 2 = P ⊆ I, we infer that
K2 ⊆ I, as desired.
(2)⇒ (1) Let P be a prime ideal of C(X). Suppose that P ⊆ I and P ⊆ J are
two ideals of C(X). By [17, Theorem 4.1], we infer that I ∩J is a pseudoprime
ideal. By hypothesis, I ∩ J is semi-strongly irreducible. This yields either
I2 ⊆ I∩J or J2 ⊆ I∩J . Hence, we have P = P 2 ⊆ I2 ⊆ J or P = P 2 ⊆ J2 ⊆ I.
This means that C(X)/P is a semi-valuation ring. �

Obviously, every SV -space is a semi-SV -space. We do not know whether
there is a semi-SV -space that is not an SV -space. In this direction, we make
the following.

Corollary 3.7. Let X be a topological space. The following statements are
equivalent:

(1) X is an SV -space.
(2) X is a semi-SV -space such that every semi-strongly irreducible ideal of

C(X) is strongly irreducible.
(3) X is a semi-SV -space such that every semi-strongly irreducible ideal of

C(X) is 2-prime.

Proof. (1) ⇒ (2) Assume (1). It is clear that X is a semi-SV -space. In view
of [15, Proposition 4.6], we deduce that every pseudoprime ideal of C(X) is
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strongly irreducible. By Lemma 3.1, we infer that every semi-strongly irre-
ducible of C(X) is strongly irreducible, as desired.
(2)⇒ (1) Assume (2). Theorem 3.6 yields every pseudoprime ideal of C(X) is
semi-strongly irreducible. Thus, every pseudoprime ideal of C(X) is strongly
irreducible. Using [15, Proposition 4.6], we conclude that X is an SV -space.
(1)⇒ (3) It suffices to show that every semi-strongly irreducible ideal of C(X)
is 2-prime. In [1, Theorem 5.7(2)], it is shown that a space X is an SV -space if
and only if every pseudoprime ideal of C(X) is 2-prime. Assume (1). With the
help of Lemma 3.1 and [1, Theorem 5.7(2)], we deduce that every semi-strongly
irreducible ideal of C(X) is 2-prime, as desired.
(3) ⇒ (1) Assume X is a semi-SV -space. By Theorem 3.6, we conclude that
every pseudoprime ideal is 2-prime. Using [1, Theorem 5.7(2)], we deduce that
X is an SV -space. �

A ring R is a Bézout ring if every finitely generated ideal is principal. A
subspace S of X is called C∗-embedded in X if every function in C∗(S) can
be extended to a function in C∗(X), where C∗(X) is the subring of C(X)
consisting of all members of C(X). A space X is called an F -space if every
cozero-set in X is C∗-embedded. It is known that C(X) is a Bézout ring if and
only if X is an F -space, see [16] and [3] for more details. It is known that every
F -space is an SV -space but not conversely.

In the next result for p ∈ βX, Op is the set {f ∈ C(X) : p ∈ intβXclβXZ(f)},
where βX is the Stone-Čech compactification of X and Z(f) = {x ∈ X : f(x) =
0}, which is called the zero-set of f . In fact, Op is a z-ideal (an ideal I in C(X)
is called a z-ideal if f ∈ C(X) and Z(f) = Z(g) for some g ∈ I, then f ∈ I) in
C(X), see [16, 2.9 and 7.12].

Corollary 3.8. Let X be a topological space. The following statements are
equivalent:

(1) X is an F -space.
(2) Every ideal in C(X) is an intersection of semi-strongly irreducible

ideals.
(3) Every irreducible ideal in C(X) is a semi-strongly irreducible ideal.
(4) Op is semi-strongly irreducible for each p ∈ βX.

Proof. (1) ⇒ (2) Assume (1). By [17, Theorem 6.2], every ideal in C(X) is
an intersection of pseudoprime ideals. Since every F -space is a semi-SV -space,
by Theorem 3.6, we infer that, every ideal in C(X) is an intersection of semi-
strongly irreducible ideals.
(2)⇒ (1) Assume (2). Lemma 3.1 yields every ideal in C(X) is an intersection
of pseudoprime ideals. Theorem 6.2 in [17] completes the proof.
(2)⇒ (3) It follows from the fact that an irreducible ideal is not the intersection
of two ideals that properly contain it.
(3) ⇒ (1) Assume (3). By Lemma 3.1, we deduce that every irreducible ideal
of C(X) is pseudoprime. Using [15, Proposition 4.8], we infer that X is an
F -space.
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(1)⇒ (4) If X is an F -space, then each Op is prime by Theorem 14.25 in [16],
and hence Op is semi-strongly irreducible.
(4)⇒ (1) By [16, 14.25], X is an F -space if and only if Op is a prime ideal for
each p ∈ βX. If each Op, where p ∈ βX is semi-strongly irreducible, then Op

is pseudoprime by Lemma 3.1, and hence each Op is prime by Theorem 2.9 in
[16], and hence X is an F -space. �

Recall that a space X is said to be a P -space, if every zero-set of X is open.
It is known that C(X) is a von Neumann regular ring if and only if X is a
P -space, see [16, 4J and 14.29] for more details.

Corollary 3.9. Let X be a topological space. The following statements are
equivalent:

(1) X is a P -space.
(2) X is an F -space and every semi-strongly irreducible ideal of C(X) is

semiprime.
(3) X is an SV -space and every semi-strongly irreducible ideal of C(X) is

semiprime.
(4) X is a semi-SV -space and every semi-strongly irreducible ideal of C(X)

is semiprime.

Proof. (1) ⇒ (2) First, we note that every P -space is an F -space. The result
follows from the fact that a commutative ring R is von Neumann regular if and
only if every ideal of R is semiprime, see [21, Ex. 10.19].
The implications (2)⇒ (3)⇒ (4) are clear.
(4) ⇒ (1) From Theorem 3.6, we have every pseudoprime ideal of C(X) is
semi-strongly irreducible. From (4), we also deduce that every pseudoprime
ideal of C(X) is semiprime. We note that an ideal I of C(X) is pseudoprime

if and only if
√
I is prime, see [17, Theorem 4.1]. From this, we conclude that

every pseudoprime ideal of C(X) is prime. By [15, Lemma 3.29], we deduce
that X is a P -space. �
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