

A generalization of strongly irreducible ideals with a view towards rings of continuous functions

Jamal Hashemi D and Hossein Yari

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran (jhashemi@scu.ac.ir,h-yari@stu.scu.ac.ir)

Communicated by Ó. Valero

Abstract

In this article, we introduce and study the concept of a semi-strongly irreducible ideal, a natural generalization of a strongly irreducible ideal. We say an ideal I of a commutative ring R is semi-strongly irreducible if for ideals J and K of R, the inclusion $J \cap K \subseteq I$ implies that either $J^2 \subseteq I$ or $K^2 \subseteq I$. After some general results, the article focuses on semi-strongly irreducible ideals in rings of continuous functions.

2020 MSC: 13A15; 13C05; 54C40.

Keywords: pseudoprime ideal; strongly irreducible ideal; semi-strongly irreducible ideal; rings of continuous functions.

1. Introduction

An ideal I of a commutative ring R is called *strongly irreducible* if for ideals J and K of R, the inclusion $J \cap K \subseteq I$ implies that either $J \subseteq I$ or $K \subseteq I$. Obviously, an ideal I is strongly irreducible if and only if for all $x, y \in R$, $Rx \cap Ry \subseteq I$ implies that $x \in I$ or $y \in I$. Prime ideals are strongly irreducible. Every ideal in a valuation domain is strongly irreducible. Strongly irreducible ideals were first studied by Fuchs, [13], under the name *primitive ideals*. Apparently, the name "strongly irreducible" was first used by Blair in [7]. In [8, p. 177, Exercise 34], the strongly irreducible ideals are called *quasi prime*. We refer

the reader to [4], [18], and [23] for more information about strongly irreducible ideals. Throughout this paper, all rings are commutative with $1 \neq 0$. A ring R is called reduced if it has no non-zero nilpotent elements. Everything needed about rings can be found in [21].

In the following, we introduce the concept of a semi-strongly irreducible ideal, as a generalization of the notion of a strongly irreducible ideal.

Definition 1.1. We say an ideal I of a ring R is semi-strongly irreducible if for ideals J and K of R, the inclusion $J \cap K \subset I$ implies that either $J^2 \subset I$ or $K^2 \subseteq I$.

Obviously, every strongly irreducible ideal is semi-strongly irreducible. However, the converse is not true (even in a Noetherian domain). Take I = (x^2, xy, y^2) in K[x, y] where K is a field. From $I = (x, y^2) \cap (x^2, y)$, we deduce that I is not strongly irreducible. It is not hard to see that I is a semi-strongly irreducible ideal.

An ideal I of a ring R is said to be *irreducible* if I is not the intersection of two ideals of R that properly contain it. It is known that every strongly irreducible ideal is irreducible, see [18, Lemma 2.2(1)] for example. The example in the above paragraph shows that a semi-strongly irreducible ideal need not be irreducible.

This note aims to investigate semi-strongly irreducible ideals with a view towards rings of continuous functions.

2. Semi-strongly irreducible ideals

We begin with a few results about semi-strongly irreducible ideals.

Lemma 2.1. Let I be an ideal in a ring R. The following statements hold.

- (1) If I is a strongly irreducible ideal, then I^2 is semi-strongly irreducible.
- (2) If I is a semi-strongly irreducible ideal of R, then I is a prime ideal if and only if I is semiprime.
- (3) For each proper ideal I of R, there is a minimal semi-strongly irre $ducible\ ideal\ over\ I$.
- (4) If I is a semi-strongly irreducible ideal in R containing an ideal H, then I/H is a semi-strongly irreducible ideal of R/H. Moreover, if R is an arithmetical ring (that is, a ring in which for every three ideals I, J and K, we have $I + (J \cap K) = (I + J) \cap (I + K)$, then the converse also holds.
- (5) Every semi-strongly irreducible ideal of a von Neumann regular ring is strongly irreducible.
- *Proof.* (1) Assume J and K are two ideals of R such that $J \cap K \subseteq I^2$ (and so $J \cap K \subseteq I$). Since I is a strongly irreducible ideal, we infer that either $J \subseteq I$ or $K \subseteq I$. From this, we deduce that $J^2 \subseteq I^2$ or $K^2 \subseteq I^2$, as desired.
- (2) If I is a prime ideal, then there is nothing to prove. Assume that I is a semiprime ideal and $JK \subseteq I$. A result due to Fuchs [11] states that an ideal I of a commutative ring R is semiprime if and only if it contains the intersection

of two ideals whenever it contains their product. From this, $J \cap K \subseteq I$. Since I is a semi-strongly irreducible ideal, we deduce that either $J^2 \subseteq I$ or $K^2 \subseteq I$. Since I is semiprime ideal, we conclude that either $J \subseteq I$ or $K \subseteq I$, as desired.

- (3) Let $\Lambda = \{J : J \text{ is a semi-strongly irreducible ideal of } R \text{ containing } I\}$. Since every maximal ideal is semi-strongly irreducible, $\Lambda \neq \emptyset$. By Zorn's lemma Λ has a minimal element with respect to \supseteq .
- (4) For the first assertion, let J and K be ideals of R such that $J/H \cap K/H \subseteq$ I/H. Then $J \cap K \subseteq I$, and since I is semi-strongly irreducible it follows that either $J^2 \subseteq I$ or $K^2 \subseteq I$. Therefore, either $(J/H)^2 \subseteq I/H$ or $(K/H)^2 \subseteq I/H$ I/H, i.e., I/H is semi-strongly irreducible. For the last assertion in (4), let $J \cap K \subseteq I$. Then $H + (J \cap K) = (H + J) \cap (H + K) \subseteq I$ and consequently $(H+J)/H\cap (H+K)/H\subseteq I/H$. Since I/H is semi-strongly irreducible, we infer that either $(H+J)^2 \subseteq I$ or $(H+K)^2 \subseteq I$, and so either $J^2 \subseteq I$ or $K^2 \subseteq I$. Thus I is semi-strongly irreducible.
- (5) Let us first recall that a ring R is said to be von Neumann regular if for every $a \in R$ there is an $x \in R$ for which $a = a^2x$. It is known that a ring R is von Neumann regular if and only if every ideal of R is an idempotent, see [21, Ex. 10.19]. By this fact, we infer that every semi-strongly irreducible ideal of a von Neumann regular ring is strongly irreducible.

We mention here that if J and K are semi-strongly irreducible ideals of a ring R, then $J \cap K$ and JK need not be semi-strongly irreducible of R. For example, in the ring of integers \mathbb{Z} , $2\mathbb{Z}$ and $3\mathbb{Z}$ are prime (so are semi-strongly irreducible) but $2\mathbb{Z} \times 3\mathbb{Z} = 2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$ is not semi-strongly irreducible.

Theorem 2.2. Let $R = R_1 \times R_2$, where R_1 and R_2 are two rings. Let J be a proper ideal of R. The following statement are equivalent:

- (1) J is a semi-strongly irreducible ideal.
- (2) Either $J = I_1 \times R_2$ for some semi-strongly irreducible ideal I_1 of R_1 or $J = R_1 \times I_2$ for some semi-strongly irreducible ideal I_2 of R_2 .

Proof. (1) \Rightarrow (2) Assume (1). Let $J = I_1 \times I_2$ be an ideal of $R_1 \times R_2$. First, we show that either $I_1 = R_1$ or $I_2 = R_2$. Assume, for a contradiction, $I_1 \neq R_1$ and $I_2 \neq R_2$. Take the ideal $(R_1 \times 0) \cap (0 \times R_2) \subseteq J$. This implies that either $(R_1 \times 0) \subseteq J$ or $(0 \times R_2) \subseteq J$, a contradiction. Now suppose that $J = I_1 \times R_2$ where I_1 is an ideal of R_1 . We show that I_1 is semi-strongly irreducible. Assume that $K \cap H \subseteq I$ where K and H are two ideals of R_1 . From this, we deduce that $(K \times R_2) \cap (H \times R_2) \subseteq I_1 \times R_2 = J$. Since J is semi-strongly irreducible, either $K^2 \times R_2 \subseteq J$ or $H^2 \times R_2 \subseteq J$. Thus, either $K^2 \subseteq I$ or $H^2 \subseteq I$, as desired. A similar proof works for when $J = R_1 \times I_2$ where I_2 is an ideal of R_2 .

$$(2) \Rightarrow (1)$$
 Straightforward.

Let R be a ring and let S be a multiplicatively closed subset of R. For each ideal I of the ring $S^{-1}R$, we consider

$$I^c = \left\{ x \in R : \, \frac{x}{1} \in I \right\} = I \cap R \quad \text{and} \quad C = \left\{ I^c : \, I \text{ is an ideal of } S^{-1}R \right\}.$$

Theorem 2.3. Let R be a ring and S be a multiplicatively closed subset of R. Then there is a one-to-one correspondence between the semi-strongly irreducible ideals of $S^{-1}R$ and the semi-strongly irreducible ideals of R contained in C which do not meet S.

Proof. The proof is an analogue of [4, Theorem 3.1]. We write out all the detail for the convenience of the reader. Let I be a semi-strongly irreducible ideal of $S^{-1}R$. Obviously, $I^c \neq R$, $I^c \in C$, and $I^c \cap S = \emptyset$. Let $A \cap B \subseteq I^c$, where A and B are ideals of R. Then we have $(S^{-1}A) \cap (S^{-1}B) = S^{-1}(A \cap B) \subseteq$ $S^{-1}(I^c)=I$. Hence, $S^{-1}A^2\subseteq I$ or $S^{-1}B^2\subseteq I$, and so $A^2\subseteq (S^{-1}A^2)^c\subseteq I^c$ or $B^2 \subset (S^{-1}B^2)^c \subset I^c$. Thus, I^c is a semi-strongly irreducible ideal of R. Conversely, let I be a semi-strongly irreducible ideal of R, $I \cap S = \emptyset$, and $I \in C$. Since $I \cap S = \emptyset$, $S^{-1}I \neq S^{-1}R$. Let $A \cap B \subseteq S^{-1}I$, where A and B are ideals of $S^{-1}R$. Then $A^c \cap B^c = (A \cap B)^c \subseteq (S^{-1}I)^c$. Now since $I \in C$, $(S^{-1}I)^c = I$. So $A^c \cap B^c \subseteq I$. Consequently, $(A^c)^2 \subseteq I$ or $(B^c)^2 \subseteq I$. Thus, $A^2 = S^{-1}((A^c)^2) \subseteq S^{-1}I$ or $B^2 = S^{-1}((B^c)^2) \subseteq S^{-1}I$. Therefore, $S^{-1}I$ is a semi-strongly irreducible ideal of $S^{-1}R$.

Let R and T be two rings, let J be an ideal of T and let $f: R \to T$ be a ring homomorphism. According to [10], the following ring construction called the amalgamation of R with T along J with respect to f is a subring of $R \times T$ defined by

$$R \bowtie^f J := \{(r, f(r) + j) | r \in R, j \in J\}.$$

This construction generalizes amalgamated duplication of a ring along an ideal that introduced and studied by D'Anna and Fontana in [9], which is the subring of $R \times R$ given by

$$R \bowtie I := \{(r, r+i) | r \in R, i \in I\}.$$

Our next results establish the transfer of semi-strongly irreducible ideals in amalgamation of rings.

Theorem 2.4. Let R and T be two rings and $f: R \to T$ be a ring homomorphism. For an ideal I of R and an ideal J of T, the ideal $I \bowtie^f J$ is a semi-strongly irreducible ideal of $R \bowtie^f J$ if and only if I is a semi-strongly irreducible ideal of R.

Proof. Assume that $I \bowtie^f J$ is a semi-strongly irreducible ideal of $R \bowtie^f J$. Let K and L be two ideals of R satisfy $K \cap L \subseteq I$. Thus, $(K \bowtie^f J) \cap (L \bowtie^f J)$ $J) \subseteq I \bowtie^f J$. By our assumption, we deduce that either $(K \bowtie^f J)^2 \subseteq I \bowtie^f J$ or $(L \bowtie^f J)^2 \subseteq I \bowtie^f J$ and so either $K^2 \subseteq I$ or $L^2 \subseteq I$. This means that I is a semi-strongly irreducible ideal of R. Conversely, assume that Iis a semi-strongly irreducible ideal of R. Let H be an ideal of $R \bowtie^f J$ and set $I_H = \{a \in R | (a, f(a) + j) \in H \text{ for some } j \in J\}$. Let $H_1 \cap H_2 \subseteq I \bowtie^f J$. Obviously, $I_{H_1} \cap I_{H_2} \subseteq I$. By our assumption, we infer that either $I_{H_1}^2 \subseteq I$ or $I_{H_2}^2 \subseteq I$. and hence we conclude that either $H_1^2 \subseteq I \bowtie^f J$ or $H_2^2 \subseteq I \bowtie^f J$, as desired.

Theorem 2.5. Let R be a ring in which 2 is invertible. The following statements are equivalent for an ideal I:

- (1) I is a semi-strongly irreducible ideal.
- (2) For all $x, y \in R$, $Rx \cap Ry \subseteq I$ implies that either $x^2 \in I$ or $y^2 \in I$.

Proof. $(1) \Rightarrow (2)$ It is clear.

 $(2) \Rightarrow (1)$ Assume $J \cap K \subseteq I$ for some ideals J, K of R and $J^2 \not\subseteq I$. Thus, there exists $z = \sum_{i=1}^{n} x_i y_i \in J^2 \setminus I$ where $x_i, y_i \in J$ for $1 \le i \le n$. From this, there exist $x, y \in J$ such that $xy \notin I$. Since $4xy = (x+y)^2 - (x-y)^2$, we infer that either $(x+y)^2 \notin I$ or $(x-y)^2 \notin I$. Without loss of generality, we may assume that $(x+y)^2 \notin I$. From $J \cap K \subseteq I$, we have $R(x+y) \cap Rk \subseteq I$ and so $k^2 \in I$ for each $k \in K$. This implies that $k_1 k_2 = 2^{-1}((k_1 + k_2)^2 - k_1^2 - k_2^2) \in I$ for $k_1, k_2 \in K$. This means that $K^2 \subseteq I$, as desired.

Remark 2.6. Following [6], an ideal I of a ring R is called 2-prime if whenever $a,b \in R$ and $ab \in I$, then either $a^2 \in I$ or $b^2 \in I$. Let S be a ring in which 2 is invertible. Theorem 2.5 shows that every 2-prime ideal of S is semi-strongly irreducible.

Lemma 2.7. Let R be a ring. The following statement are equivalent:

- (1) Every ideal of R is a semi-strongly irreducible ideal.
- (2) For every pair of ideals I and J of R, we have either $J^2 \subseteq I$ or $I^2 \subseteq J$.

Proof. (1) \Rightarrow (2) Let I and J be two ideals of R. Assume (1). The ideal $I \cap J$ is a 2-strongly irreducible ideal. From $I \cap J \subseteq I \cap J$, we deduce that either $I^2 \subseteq I \cap J$ or $J^2 \subseteq I \cap J$. Hence, we infer that either $I^2 \subseteq J$ or $J^2 \subseteq I$, as

 $(2) \Rightarrow (1)$ Let I be an ideal of R. Assume that $J \cap K \subseteq I$ where J and K are two ideals of R. Assume (2). We have either $J^2 \subseteq K$ or $K^2 \subseteq J$. Hence, we have $J^2 \subseteq I$ or $K^2 \subseteq I$, as desired.

To state the next corollary, we will need the following lemma.

Lemma 2.8. Let R be a ring where 2 is invertible. The following statement are equivalent:

- (1) Every ideal of R is a semi-strongly irreducible ideal.
- (2) For every pair of elements x and y of R, we have either $x|y^2$ or $y|x^2$.

Proof. (1) \Rightarrow (2) Let $x, y \in R$. Assume (1). The ideal $Rx \cap Ry$ is a semistrongly irreducible ideal. From $Rx \cap Ry \subseteq Rx \cap Ry$, we deduce that either $x^2 \subseteq Rx \cap Ry$ or $y^2 \subseteq Rx \cap Ry$. Hence, we infer that either $x^2 \in Ry$ or $y^2 \in Rx$. Thus, we have either $y|x^2$ or $x|y^2$, as desired.

 $(2) \Rightarrow (1)$ Let I be an ideal of R. Assume that $Rx \cap Ry \subseteq I$ for $x, y \in R$. Assume (2). We have either $Ry^2 \subseteq Rx$ or $Rx^2 \subseteq Ry$. Hence, we have $Ry^2 \subseteq I$ or $Rx^2 \subseteq I$. Theorem 2.5, completes the proof.

Badawi [5, Theorem 1] proved that the prime ideals of a ring R are linearly ordered if and only if for every pair of elements x and y of R, there is an

 $n \ge 1$ such that $x|y^n$ or $y|x^n$. In view of Lemma 2.8, we make the following observation.

Corollary 2.9. If every ideal of a ring R is semi-strongly irreducible, then the prime ideals of R are linearly ordered.

The concept of weakly irreducible ideal, which is a generalization of strongly irreducible ideal, was introduced and investigated by Samiei and Fazaeli Moghimi [22]. They defined a nonzero proper ideal I of R to be a weakly irreducible ideal of R, if for each pair of ideals A and B of R, $A \cap B \subseteq I$ implies that either $A \subseteq \sqrt{I}$ or $B \subseteq \sqrt{I}$. It is easy to check that every semi-strongly irreducible ideal is weakly irreducible.

In view of [5, Theorem 1] and [22, Theorem 3.5], we have the following.

Corollary 2.10. The following statement are equivalent:

- (1) Every ideal of R is weakly irreducible.
- (2) For $x, y \in R$, there is an $n \ge 1$ such that either $x|y^n$ or $y|x^n$.

We close this section with a result about pm-rings. Let us recall that a ring R is called a pm-ring (also known as $Gelfand\ ring$) if every prime ideal is contained in a unique maximal ideal. Examples of pm-rings include von Neumann regular rings and rings of continuous functions.

Corollary 2.11. The following statements are equivalent for a reduced ring R:

- (1) R is a pm-ring.
- (2) Every weakly irreducible ideal is contained in a unique maximal ideal.
- (3) Every semi-strongly irreducible ideal is contained in a unique maximal ideal.
- (4) Every strongly irreducible ideal is contained in a unique maximal ideal.

Proof. (1) \Rightarrow (2) First, let us recall a fact. A ring R is a pm-ring if and only if for each pair of distinct maximal ideals M_1 and M_2 there exist $a \notin M_1$, $b \notin M_2$ such that ab = 0. Let I be a weakly irreducible ideal. Assume that $I \subseteq M_1$ and $I \subseteq M_2$ where M_1, M_2 are two maximal ideals of R. From this, there exist $x \notin M_1, y \notin M_2$ such that xy = 0. Since R is reduced, we have $Rx \cap Ry = 0$. Hence, we conclude that either $Rx \subseteq \sqrt{I} \subseteq M_1$ or $Ry \subseteq \sqrt{I} \subseteq M_2$. That is a contradiction.

- $(2) \Rightarrow (3) \Rightarrow (4)$ Clear.
- $(4) \Rightarrow (1)$ It follows from the fact that every prime ideal is strongly irreducible.

3. Applications to C(X)

In this section, we concern ourselves with rings of real-valued continuous functions on a topological space. Throughout, topological spaces are assumed to be Tychonoff, that is, completely regular Hausdorff, while C(X) will denote the ring of real-valued continuous functions on a space X. The notation,

П

terminology and results of the Gillman-Jerison text [16] will be used always. The reader is referred to [20] and [14] for more details regarding C(X) and its subrings.

Following [17], an ideal I of a ring R is called pseudoprime if for $a, b \in R$, ab = 0 implies, $a \in I$ or $b \in I$. Trivially, all prime ideals are pseudoprime. Any ideal containing a pseudoprime ideal is pseudoprime. In particular, any ideal containing a prime ideal is pseudoprime. The converse of this fact is also true for C(X), see [17, Theorem 4.1]. Note that the ideal $6\mathbb{Z}$ of the ring of integers \mathbb{Z} is a pseudoprime but not prime.

Lemma 3.1. Every semi-strongly irreducible ideal of C(X) is pseudoprime.

Proof. Let I be a semi-strongly irreducible ideal of C(X). Suppose that fg = 0for $f, g \in C(X)$. Hence, $f^{\frac{1}{3}}g^{\frac{1}{3}} = 0$. It is easy to see $(f^{\frac{1}{3}}) \cap (g^{\frac{1}{3}}) = 0$. Thus, we infer that $0 = (f^{\frac{1}{3}}) \cap (g^{\frac{1}{3}}) \subseteq I$. Since I is semi-strongly irreducible, we conclude that either $f^{\frac{2}{3}} \in I$ or $g^{\frac{2}{3}} \in I$. Thus, either $f \in I$ or $g \in I$, as desired.

Remark 3.2. Lemma 2.8 implies that C(X) always contains an ideal which is not a semi-strongly irreducible ideal, unless $C(X) = \mathbb{R}$. For this, let |X| > 1and take $x, y \in X$. Define $f \in C(X)$ such that f(x) = 1 and f(y) = -1. Now consider two elements f + |f| and f - |f|. Clearly, neither $(f - |f|)|(f + |f|)^2$ nor $(f+|f|)|(f-|f|)^2$. In fact, if $(f-|f|)^2=(f+|f|)h$ for some $h \in C(X)$, then $(f-|f|)^3=0$ implies f=|f|, a contradiction. Now Lemma 2.8 states that C(X) has an ideal which is not semi-strongly irreducible. In particular the zero ideal of C(X), where |X| > 1, is not semi-strongly irreducible, since (f - |f|)(f + |f|) = 0.

Proposition 3.3. The following statements are equivalent:

- (1) Every ideal of C(X) is semi-strongly irreducible.
- (2) Every ideal of C(X) is weakly irreducible.
- (3) |X| = 1.
- (4) $C(X) = \mathbb{R}$.

Proof. Clearly (3) and (4) are equivalent and (4) implies (1) and (2), because $C(X) = \mathbb{R}$ is a field. It is enough to show that (1) implies (3) and also (2) implies (3). Suppose on the countrary, that |X| > 1. Then using the Remark 3.2, the zero ideal is not semi-strongly irreducible, a contradiction. This shows (1) implies (3). Again if assume that |X| > 1, then applying the function f as in the Remark 3.2, we have $(f-|f|)\cap (f+|f|)\subseteq (0)$, but neither $(f-|f|)^n=0$ nor $(f+|f|)^n = 0$ for all $n \ge 1$, since f(x) + |f(x)| = 2 and f(y) - |f(y)| = -2. Thus (2) implies (3) and we are done.

Remark 3.4. Following [12], a proper ideal I of R is called quasi-primary if \sqrt{I} is prime. As it mentioned in [22], every quasi-primary ideal is weakly irreducible. By [17, Theorem 4.1], an ideal I of C(X) is pseudoprime if and only if it is quasi-primary. From this, every pseudoprime ideal of C(X) is weakly irreducible.

Our next goal is to characterize spaces X for which every pseudoprime ideal of C(X) is semi-strongly irreducible. To begin our investigations in this direction, we recall a definition from [19] and make a definition. A space X is an SV-space if for every prime ideal P of the ring C(X), the ordered integral domain C(X)/P is a valuation ring (i.e., of any two nonzero elements of C(X)/P, one divides the other).

Definition 3.5. We say an integral domain R is *semi-valuation* if every pair of ideals I and J of R, we have either $J^2 \subseteq I$ or $I^2 \subseteq J$. A space X is a semi-SVspace if for every prime ideal P of the ring C(X), C(X)/P is a semi-valuation ring.

Hereafter we assume that C(X) satisfies the property: $(J \cap K) + P = (J + I)$ $P \cap (K+P)$ for two ideals J, K and a prime ideal P. The next theorem is the counterpart of [15, Proposition 4.6] and [2, Proposition 4.14].

Theorem 3.6. Let X be a topological space. The following statements are equivalent:

- (1) X is a semi-SV-space.
- (2) Every pseudoprime ideal of C(X) is semi-strongly irreducible.

Proof. (1) \Rightarrow (2) Let X be a semi-SV-space and let I be a pseudoprime ideal of C(X). Assume that $J \cap K \subseteq I$ for ideals J and K of C(X). By [17, Theorem 4.1, there is a prime ideal P where $P \subseteq I$. Clearly, $(J+P)/P \cap$ $(K+P)/P \subseteq I/P$. By hypothesis, C(X)/P is a semi-valuation ring and so either $(K+P)^2/P \subseteq (J+P)/P$ or $(J+P)^2/P \subseteq (K+P)/P$. Without loss of generality, we may assume that $(K+P)^2/P \subseteq (J+P)/P$. This yields $(K+P)^2/P \subseteq I/P$ and so $(K+P)^2 \subseteq I$. Since $P^2 = P \subseteq I$, we infer that $K^2 \subseteq I$, as desired.

 $(2) \Rightarrow (1)$ Let P be a prime ideal of C(X). Suppose that $P \subseteq I$ and $P \subseteq J$ are two ideals of C(X). By [17, Theorem 4.1], we infer that $I \cap J$ is a pseudoprime ideal. By hypothesis, $I \cap J$ is semi-strongly irreducible. This yields either $I^2 \subseteq I \cap J$ or $J^2 \subseteq I \cap J$. Hence, we have $P = P^2 \subseteq I^2 \subseteq J$ or $P = P^2 \subseteq J^2 \subseteq I$. This means that C(X)/P is a semi-valuation ring.

Obviously, every SV-space is a semi-SV-space. We do not know whether there is a semi-SV-space that is not an SV-space. In this direction, we make the following.

Corollary 3.7. Let X be a topological space. The following statements are equivalent:

- (1) X is an SV-space.
- (2) X is a semi-SV-space such that every semi-strongly irreducible ideal of C(X) is strongly irreducible.
- (3) X is a semi-SV-space such that every semi-strongly irreducible ideal of C(X) is 2-prime.

Proof. (1) \Rightarrow (2) Assume (1). It is clear that X is a semi-SV-space. In view of [15, Proposition 4.6], we deduce that every pseudoprime ideal of C(X) is strongly irreducible. By Lemma 3.1, we infer that every semi-strongly irreducible of C(X) is strongly irreducible, as desired.

- $(2) \Rightarrow (1)$ Assume (2). Theorem 3.6 yields every pseudoprime ideal of C(X) is semi-strongly irreducible. Thus, every pseudoprime ideal of C(X) is strongly irreducible. Using [15, Proposition 4.6], we conclude that X is an SV-space.
- $(1) \Rightarrow (3)$ It suffices to show that every semi-strongly irreducible ideal of C(X) is 2-prime. In [1, Theorem 5.7(2)], it is shown that a space X is an SV-space if and only if every pseudoprime ideal of C(X) is 2-prime. Assume (1). With the help of Lemma 3.1 and [1, Theorem 5.7(2)], we deduce that every semi-strongly irreducible ideal of C(X) is 2-prime, as desired.
- $(3) \Rightarrow (1)$ Assume X is a semi-SV-space. By Theorem 3.6, we conclude that every pseudoprime ideal is 2-prime. Using [1, Theorem 5.7(2)], we deduce that X is an SV-space.

A ring R is a $B\'{e}zout$ ring if every finitely generated ideal is principal. A subspace S of X is called C^* -embedded in X if every function in $C^*(S)$ can be extended to a function in $C^*(X)$, where $C^*(X)$ is the subring of C(X) consisting of all members of C(X). A space X is called an F-space if every cozero-set in X is C^* -embedded. It is known that C(X) is a Bézout ring if and only if X is an F-space, see [16] and [3] for more details. It is known that every F-space is an SV-space but not conversely.

In the next result for $p \in \beta X$, O^p is the set $\{f \in C(X) : p \in \inf_{\beta X} \operatorname{cl}_{\beta X} Z(f)\}$, where βX is the Stone-Čech compactification of X and $Z(f) = \{x \in X : f(x) = 0\}$, which is called the *zero-set* of f. In fact, O^p is a z-ideal (an ideal I in C(X) is called a z-ideal if $f \in C(X)$ and Z(f) = Z(g) for some $g \in I$, then $f \in I$) in C(X), see [16, 2.9 and 7.12].

Corollary 3.8. Let X be a topological space. The following statements are equivalent:

- (1) X is an F-space.
- (2) Every ideal in C(X) is an intersection of semi-strongly irreducible ideals.
- (3) Every irreducible ideal in C(X) is a semi-strongly irreducible ideal.
- (4) O^p is semi-strongly irreducible for each $p \in \beta X$.
- *Proof.* (1) \Rightarrow (2) Assume (1). By [17, Theorem 6.2], every ideal in C(X) is an intersection of pseudoprime ideals. Since every F-space is a semi-SV-space, by Theorem 3.6, we infer that, every ideal in C(X) is an intersection of semi-strongly irreducible ideals.
- $(2) \Rightarrow (1)$ Assume (2). Lemma 3.1 yields every ideal in C(X) is an intersection of pseudoprime ideals. Theorem 6.2 in [17] completes the proof.
- $(2) \Rightarrow (3)$ It follows from the fact that an irreducible ideal is not the intersection of two ideals that properly contain it.
- $(3) \Rightarrow (1)$ Assume (3). By Lemma 3.1, we deduce that every irreducible ideal of C(X) is pseudoprime. Using [15, Proposition 4.8], we infer that X is an F-space.

- (1) \Rightarrow (4) If X is an F-space, then each O^p is prime by Theorem 14.25 in [16], and hence O^p is semi-strongly irreducible.
- $(4) \Rightarrow (1)$ By [16, 14.25], X is an F-space if and only if O^p is a prime ideal for each $p \in \beta X$. If each O^p , where $p \in \beta X$ is semi-strongly irreducible, then O^p is pseudoprime by Lemma 3.1, and hence each O^p is prime by Theorem 2.9 in [16], and hence X is an F-space.

Recall that a space X is said to be a P-space, if every zero-set of X is open. It is known that C(X) is a von Neumann regular ring if and only if X is a P-space, see [16, 4J and 14.29] for more details.

Corollary 3.9. Let X be a topological space. The following statements are equivalent:

- (1) X is a P-space.
- (2) X is an F-space and every semi-strongly irreducible ideal of C(X) is semiprime.
- (3) X is an SV-space and every semi-strongly irreducible ideal of C(X) is semiprime.
- (4) X is a semi-SV-space and every semi-strongly irreducible ideal of C(X) is semiprime.
- *Proof.* (1) \Rightarrow (2) First, we note that every *P*-space is an *F*-space. The result follows from the fact that a commutative ring *R* is von Neumann regular if and only if every ideal of *R* is semiprime, see [21, Ex. 10.19]. The implications (2) \Rightarrow (3) \Rightarrow (4) are clear.
- $(4) \Rightarrow (1)$ From Theorem 3.6, we have every pseudoprime ideal of C(X) is semi-strongly irreducible. From (4), we also deduce that every pseudoprime ideal of C(X) is semiprime. We note that an ideal I of C(X) is pseudoprime if and only if \sqrt{I} is prime, see [17, Theorem 4.1]. From this, we conclude that every pseudoprime ideal of C(X) is prime. By [15, Lemma 3.29], we deduce that X is a P-space.

ACKNOWLEDGEMENTS. We are grateful to the referees for their insightful comments and suggestions on the paper.

References

- [1] A. R. Aliabad, M. Ghoulipour, and M. Paimann, Variations of primeness of ideals in rings of continuous functions, Journal of Algebra and Its Applications, to appear.
- [2] F. Azarpanah, E. Ghashghaei, and Z. Keshtkar, A closer look at primal and pseudoirreducible ideals with applications to rings of functions, Communications in Algebra 51, no. 5 (2023), 1907–1931.
- [3] F. Azarpanah, E. Ghashghaei, and M. Ghoulipour, C(X): Something old and something new, Communications in Algebra 49, no. 1 (2021), 185–206.

- [4] A. Azizi, Strongly irreducible ideals, Journal of the Australian Mathematical Society 84, no. 2 (2008), 145–154.
- [5] A. Badawi, On domains which have prime ideals that are linearly ordered, Communications in Algebra 23, no. 12, (1995), 4365–4373.
- [6] C. Beddani, and W. Messirdi, 2-Prime ideals and their applications, Journal of Algebra and its Applications 15, no. 03 (2016), 1650051.
- [7] R. L. Blair, Ideal lattices and the structure of rings, Transactions of the American Mathematical Society 75, no. 1 (1953), 136–153.
- [8] N. Bourbaki, Algébre commutative. Chapitres 3 et 4. Paris: Hermann, 1966.
- [9] M. D'Anna, and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, Journal of Algebra and its Applications 6, no. 3 (2007), 443–459.
- [10] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, Journal of Pure and Applied Algebra 214, no. 9 (2010), 1633–1641.
- [11] L. Fuchs, A note on half-prime ideals, Norske Vid. Selsk. Forh. Trondhjem 20, no. 28 (1948), 112–114.
- [12] L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged) 11, no. 3 (1947), 174–183.
- [13] L. Fuchs, Über die Ideale arithmetischer ringe, Commentarii Mathematici Helvetici 23, no. 1 (1949), 334–341.
- [14] S. Ghasemzadeh and M. Namdari, When is the super socle of C(X) prime?, Applied General Topology 20, no. 1 (2019), 231–236.
- [15] E. Ghashghaei, Variations of essentiality of ideals in commutative rings, Journal of Algebra and its Applications 21, no. 3 (2022), 2250056.
- [16] L. Gillman, and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
- [17] L. Gillman, and C. W. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Mathematische Zeitschrift 72, no. 1 (1959), 399–409.
- [18] W. J. Heinzer, L. J. Ratliff Jr., and D. E. Rush, Strongly irreducible ideals of a commutative ring, Journal of Pure and Applied Algebra 166, no. 3 (2002), 267–275.
- [19] M. Henriksen, and R. Wilson, When is C(X)/P a valuation ring for every prime ideal P?, Topology and its Applications 44, no. 1-3 (1992), 175–180.
- [20] O. A. S. Karamzadeh, M. Namdari, and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Applied general topology 16, no. 2 (2015), 183–207.
- [21] T. Y. Lam, Exercises in Classical Ring Theory, Second Edition, Problem Books in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2003.
- [22] M. Samiei, and H. Fazaeli Moghimi, Weakly irreducible ideals, Journal of Algebra and Related Topics 4, no. 2 (2016), 9–17.
- [23] N. Schwartz, Strongly irreducible ideals and truncated valuations, Communications in Algebra 44, no. 3 (2016), 1055–1087.