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Abstract

The paper deals with some further results concerning the class of two-
Lipschitz operators. We prove first an isometric isomorphism identifica-
tion of two-Lipschitz operators and Lipschitz operators. After defining
and characterizing the adjoint of a two-Lipschitz operator, we prove a
Schauder type theorem on the compactness of the adjoint. We study
the extension of two-Lipschitz operators from the cartesian product of
two complemented subspaces of a Banach space to the cartesian prod-
uct of whole spaces. Also, we show that every two-Lipschitz functional
defined on the cartesian product of two pointed metric spaces admits an
extension with the same two-Lipschitz norm under some requirements
on domaine spaces.
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1. Introduction

Inspired by Farmer and Johnson’s research [17], which generalizes the notion
of p-summing linear operators within the Lipschitz context, numerous scholars
have introduced diverse formulations of Lipschitz operators between pointed
metric spaces and Banach spaces. In a certain context, these notions extend
various types of ideals of linear operators between Banach spaces (see [2], [3],
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[4], [8], [11], [15], and the references therein). On the other hand in 2009,
Dubei et al., as cited in reference [16], presented the concept of two-Lipschitz
mappings. These mappings are defined on the Cartesian product of two met-
ric spaces, with the range being a Banach space that is Lipschitz separately
in each variable. In specific challenging conditions, they demonstrate the bi-
linearization theorem. Following that, in [25] Sánchez Pérez introduced a defi-
nition of real-valued two-Lipschitz mappings (referred to as Lipschitz bi-forms)
that functioned effectively without constraints, which admits a good continu-
ous bi-linearization between Banach spaces. It should be mentioned that the
previous references did not explore the concept of ideals within this framework.
From this point of view, the first author et al. in [18] introduced and studied
in depth the ideals of two-Lipschitz operators between pointed metric spaces
and Banach spaces. Further findings related to this subject are available in the
recent publications [1] and [14].

The aim of this paper is to study the two-Lipschitz version of the classes
of strongly p-summing and strongly (p, σ)-continuous linear operators, which
were studied in detail in papers [6], [8], [12], [19] and [20]. After adding and
demonstrating new findings concerning the concept of strongly two-Lipschitz
p-summing operators, as introduced in reference [18], we proceed to construct
the new ideal of two-Lipschitz operators derived from the class of strongly
(p, σ)-continuous linear operators, using the composition method detailed in
reference [18].

The paper is divided in four sections. After the introductory one, in Section
2 we establish terminologies and reviews the key results concerning linear, bilin-
ear, Lipschitz, and two-Lipschitz operators. In Section 3 we present a character-
ization of strongly two-Lipschitz p-summing operators by integral domination
and we provide a characterization using transpose operators. Finally, Section
4 is devoted to the study of the ideal of strongly (p, σ)-two-Lipschitz operators,
constructed via the composition method from strongly (p, σ)-continuous linear
operators. We offer an equivalent version of the Pietsch domination theorem
for these mappings. In the ends of this section, following the idea of [6, The-
orem 6.2] we prove the factorization theorem for these mappings. It is worth
mentioning that typically, the domination and factorization theorem is proven
by using full general theorems, such as those found in [22] or in [5], here, in the
present paper, we have preferred to use direct proofs or employ the linearization
or bi-linearization theorem.

2. Preliminary and terminologies

Throughout this paper, X,Y denoted pointed metric spaces with a dis-
tinguished point denoted by 0 and a metric that will be denoted by d. Also,
E,E1, E2, G and F will be Banach spaces over the same field K (K = R or C). A
Banach space E will be considered as a pointed metric space with distinguished
point 0 and distance d(x, y) = ‖x− y‖. The closed unit ball of E is denoted
by BE and the topological dual of E by E∗. The sets L(E,F ), L2(E1, E2;F )
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and Lip0(X,E) denoted the Banach spaces of all bounded linear operators, bi-
linear operators and Lipschitz operators respectively, endowed with the usual
operator norm and the Lipschitz norm. We write Lip0(X,K) = X# and we
say X# is the Lipschitz dual of X. It is evident that L(E,F ) is a subspace of
Lip0(E,F ), and specifically, E∗ is a subspace of E#.

We reserve the symbol E1 ⊗E2 for the 2-fold tensor product of E1, E2, and
E1⊗̂πE2 for their completed projective tensor product of E1 and E2 (see [24]).
If T ∈ L2(E1, E2;F ), then its linearization TL : E1⊗̂πE2 −→ F is the unique
operator defined by TL(x⊗ y) = T (x, y) for all x ∈ E1 and y ∈ E2.

A molecule on X is a real-valued function m with a finite support that
satisfies ∑

x∈X
m (x) = 0.

We denote by M(X) the linear space of all molecules on X. For each m =∑n
i=1 αimxix′i

, we define the norm

‖m‖M(X) = inf

n∑
i=1

|αi| d (xi, x
′
i) ,

where αi are scalars and the infimum is taken over all representations of the

molecule m. The completion of the normed space
(
M(X), ‖·‖M(X)

)
is denoted

by Æ (X). It is well known that the space Æ (X) is the predual of X#, i.e.,
Æ(X)∗ and X# are isometrically isomorphic (see [9]).

The maps δX : X −→ Æ (X) is the isometric embedding from X into Æ (X)
defined by δX (x) = mx0. Therefor, for every T ∈ Lip0(X,E), there exists a
unique continuous linear map TL : Æ (X) −→ E such that T = TL ◦ δX and
‖TL‖ = Lip (T ), (see [26, Theorem 3.6]).

We will denote by BLip0(X,Y ;E) the space of all two-Lipschitz operators
T : X × Y −→ E in a manner that ensures the presence of a constant C > 0
such that

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖ ≤ Cd(x, x′)d(y, y′),

and T (x, 0) = T (0, y) = 0 for all x, x′ ∈ X and y, y′ ∈ Y.
Note that BLip0(X,Y ;E) is a Banach space under the norm BLip(·) estab-

lished by the infimum of all constants C > 0 that fulfills the above inequality.
This norm is also equal to

BLip (T ) = sup
x 6=x′,y 6=y′

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖
d(x, x′)d(y, y′)

,

(see [18, Theorem 2.5]). For more details we refer to [1], [14], [16], [18] and
[25].

Recall that with each T ∈ BLip0(X,Y ;E), there exists a unique bilinear
map TB : Æ(X)×Æ(Y ) −→ E such that T = TB ◦ (δX , δY ), (see [18, Theorem
2.6]).
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Since, TB has a unique linearization referred TL we have T = TB ◦(δX , δY ) =
TL ◦σ2 ◦(δX , δY ), and BLip (T ) = ‖TB‖ = ‖TL‖ , where σ2 : Æ(X)×Æ(Y ) −→
Æ(X)⊗̂πÆ(Y ) is the canonical bilinear operator defined by σ2(mx0,my0) =
mx0 ⊗my0, (see [18, Remark 2.7]).

An ideal of two-Lipschitz mappings, denoted by IBLip, is a subclass of the
class BLip0 such that for every pointed metric spaces X,Y, and every Banach
space E, the components

IBLip(X,Y ;E) := BLip0(X,Y ;E) ∩ IBLip,

form a vector subspace of BLip0(X,Y ;E) that is invariant under the compo-
sition of a linear operator on the right and two-Lipschitz operator on the left,
and it contains the two-Lipschitz operator of finite type.

Let n ∈ N∗ and 1 ≤ p < ∞, we write p∗ for the extended real number that
satisfies 1

p + 1
p∗ = 1. We denote by `np (E) the Banach space of all sequences

(ei)
n

i=1
in E with the norm

∥∥(ei)
n

i=1

∥∥
p

=

(
n∑
i=1

‖ei‖p
) 1
p

,

and by `np,ω (E) the Banach space of all sequences (ei)
n

i=1
in E with the norm

∥∥(ei)
n

i=1

∥∥
p,ω

= sup
ϕ∈BE∗

(
n∑
i=1

|〈ei, ϕ〉|p
) 1
p

.

Now, we recall some definitions for many concepts used in this paper.
The notion of strongly (p, σ)-continuous linear and multi-linear operators was
introduced by Achour et al. in [6]. Given 1 < p, q < ∞ and 0 ≤ σ < 1 such
that 1

q + 1−σ
p∗ = 1.

Definition 2.1 ([6, Definition 3.1]). A mapping R ∈ L(E,F ) is strongly (p, σ)-
continuous if there is a Banach space G, a p∗-summing operator u ∈ Πp∗(F

∗, G)
and a constant C > 0 such that for all x ∈ E and e∗ ∈ F ∗ we have

|〈R (x) , e∗〉| ≤ C ‖x‖ ‖e∗‖σ ‖u (e∗)‖1−σ . (2.1)

We denote by Dσp (E,F ) the class of all strongly (p, σ)-continuous operators
endowed with the norm defined by

dσp (R) = inf
{
Cπp∗ (u)

1−σ
}
,

where the infimum is taken over all C > 0 and u ∈ Πp∗(F
∗, G) such that (2.1)

is investigated. This class is a Banach operator ideal (see [23, Section 4.4]) .
Note that if σ = 0, we obtain the ideal Dp of strongly p-summing operators
was introduced by Cohen in [12].

The notion of strongly (p, σ)-Lipschitz operators for 1 < p < ∞ and 0 ≤
σ < 1 between pointed metric space X and Banach space E was introduced by
Bougoutaia et al. in [10].
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Definition 2.2. Let 1 < p, q < ∞ and 0 6 σ < 1 such that 1
q + 1−σ

p∗ = 1. A

Lipschitz mapping T : X −→ E is strongly (p, σ)-Lipschitz if there is a Banach
space G, a p∗-summing operator u ∈ Πp∗(E

∗, G) and a constant C > 0 such
that for all x, y ∈ X and e∗ ∈ E∗ we have

|〈T (x)− T (y) , e∗〉| ≤ Cd(x, y) ‖e∗‖σ ‖u (e∗)‖1−σ . (2.2)

We denote by DLp,σ (X,E) the class of all strongly (p, σ)-Lipschitz operators and

by dLp,σ(T ) the strongly (p, σ)-Lipschitz norm which is defined by dLp,σ(T ) =

inf Cπp∗ (u)
1−σ

, where the infimum is taken over all constants C and u ∈
Πp∗(E

∗, G) such that (2.2) is holds.

Following the concept introduced by Achour et al. in [6] for multilinear
operators, if 1 < p, q < ∞ and 0 6 σ < 1 such that 1

q + 1−σ
p∗ = 1. A bilinear

mapping T : E1 × E2 −→ F is strongly (p, σ)-continuous if there is a constant
C > 0 such that for all (xi)

n
i=1 ⊂ E1, (yi)

n
i=1 ⊂ E2 and (e∗i )

n
i=1 ⊂ F ∗,

n∑
i=1

|〈T (xi, yi) , e
∗
i 〉|

≤ C
(

n∑
i=1

‖xi‖q ‖yi‖q
) 1
q

sup
ϕ∈BE∗∗

(
n∑
i=1

(
|〈e∗i , ϕ〉|

1−σ ‖e∗i ‖
σ
) p∗

1−σ

) 1−σ
p∗

.

In this case, we define the bilinear strongly (p, σ)-continuous norm of T by
d2p,σ(T ) = inf C. The class D2

p,σ of strongly (p, σ)-continuous bilinear operators

is a Banach bilinear ideal with its norm d2p,σ(·). For σ = 0, we have D2
p,0 = D2

p

the class of Cohen strongly p-summing bilinear operators (see [7]).
We point out that there is a Pietsch’s Domination Theorem which states

that T is strongly (p, σ)-continuous bilinear operator.

Theorem 2.3 ([6, Theorem 4.3]). A bilinear operator T : E1 × E2 −→ F is
strongly (p, σ)-continuous if and only if there is a constant C > 0 and a regular
Borel probability measure ν on BF∗∗ (with the weak star topology) such that for
every x ∈ E1, y ∈ E2 and e∗ ∈ F ∗, the inequality

|〈T (x, y) , e∗〉| ≤ C‖x‖‖y‖

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ

dν(ϕ)

) 1−σ
p∗

,

holds.

3. Further results on strongly two-Lipschitz p-summing
operators

The first author et al. in [18] characterized the class of strongly two-Lipschitz
p-summing operators which is constructed by the composition method starting
from (Dp, ‖ · ‖).

In this section we give father characterizations and results for strongly two-
Lipschitz p-summing operators.
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Definition 3.1. For 1 < p ≤ ∞. A two-Lipschitz operator T : X × Y −→ E
is strongly two-Lipschitz p-summing if there exist a Banach space G and a p∗-
summing linear operator S : E∗ −→ G such that for all x, x′ ∈ X, y, y′ ∈ Y
and e∗ ∈ E∗ we have

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′), e∗〉| ≤ d(x, x′)d(y, y′) ‖S(e∗)‖ .
(3.1)

The set of all strongly two-Lipschitz p-summing operators from X × Y to E is
denoted by DBLp (X,Y ;E). If T ∈ DBLp (X,Y ;E), we set dBLp (T ) = inf {πp∗(S)}
where the infimum is taken over all Banach spaces G and operators S such that
the inequality (3.1) holds.

The following inclusion result is a direct consequence of Definition 3.1. Note
that for 1 < p 6 q 6∞, every q∗-summing operator is p∗-summing operator.

Corollary 3.2. Let 1 < p 6 q 6 ∞ we have DBLq (X,Y ;E) ⊆ DBLp (X,Y ;E)

and dBLq (T ) 6 dBLp (T ) for all T ∈ DBLq (X,Y ;E).

Using the bi-linearization theorem, we can prove the Pietsch domination
theorem for the class DBLp .

Theorem 3.3. Let T ∈ BLip0(X,Y ;E). Then the following statements are
equivalent.

(1) T ∈ DBLp (X,Y ;E).
(2) There exist a constant C > 0 and a regular Borel probability measure ν

on BE∗∗ such that for every x, x′ ∈ X, y, y′ ∈ Y and e∗ ∈ E∗ we have

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉| (3.2)

≤ Cd (x, x′) d (y, y′)

(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

Furthermore, dBLp (T ) = inf C, where the infimum is taken over all constants
C either in (3.2).

Proof. Let we assume that T ∈ DBLp (X,Y ;E). Proposition 4.11 in [18] im-

plies that TB ∈ D2
p(Æ(X),Æ(Y );E). By Theorem 3.1 in [21] we have (TB)

∗ ∈
Πp∗

(
E∗,L2 (Æ(X),Æ(Y ))

)
with πp∗

(
(TB)

∗)
= d2p (TB) , then there exists a

probability measure ν on BE∗∗ such that for all x, x′ ∈ X y, y′ ∈ Y and
e∗ ∈ E∗, we have

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉|
= |〈TB (mx,x′ ,my,y′) , e

∗〉|

≤ πp∗
(
(TB)

∗) ‖mx,x′‖ ‖my,y′‖
(∫

BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

= πp∗
(
(TB)

∗)
d (x, x′) d (y, y′)

(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

Hence, we deduce that (3.2) holds and

inf C ≤ πp∗
(
(TB)

∗)
= d2p (TB) = dBLp (T ) .
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Conversely, by referring to [18, Corrolary 4.12], it is sufficient to show that
TL ∈ Dp

(
Æ(X)⊗̂πÆ(Y ), E

)
. For ε > 0, m1 ∈ M (X) and m2 ∈ M (Y ) ,

we can choose a representation of m1 and m2 as m1 =
∑n
i=1 αimxi,x′i

and

m2 =
∑r
j=1 βjmyj ,y′j

such that

n∑
i=1

|αi| d (xi, x
′
i) ≤

∥∥m1
∥∥
M(X)

+ ε and
r∑
j=1

|βj | d (yi, y
′
i) ≤

∥∥m2
∥∥
M(Y )

+ ε.

Using the fact that (3.2) holds, we infer that∣∣〈TL (m1 ⊗m2
)
, e∗
〉∣∣

≤
n∑
i=1

|αi|
r∑
j=1

|βj |
∣∣〈T (xi, yj)− T

(
xi, y

′
j

)
− T (x′i, yj) + T

(
x′i, y

′
j

)
, e∗
〉∣∣

≤ C
n∑
i=1

|αi| d (xi, x
′
i)

r∑
j=1

|βj | d
(
yj , y

′
j

)(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

≤ C
( ∥∥m1

∥∥
M(X)

+ ε
)( ∥∥m2

∥∥
M(Y )

+ ε
)(∫

BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

Since ε > 0 is arbitrary, we get

∣∣〈TL (m1 ⊗m2
)
, e∗
〉∣∣ ≤ C ∥∥m1 ⊗m2

∥∥(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

Hence, we deduce from [12, Theorem 2.3.1] that TL ∈ Dp
(
Æ(X)⊗̂πÆ(Y ), E

)
and dBLp,σ (T ) ≤ inf C. �

Recently in [14], Dahia defined and characterized the transpose of a two-
Lipschitz operator. Let X,Y be pointed metric spaces, E be Banach space
and a two-Lipschitz map T : X × Y −→ E. The transpose of T is the linear
operator

T t : E∗ −→ BLip0(X,Y ), e∗ 7−→ T t (e∗) : X × Y −→ K,

with T t (e∗) (x, y) = e∗
(
T (x, y)

)
. In addition ‖T t‖ = BLip (T ).

The following theorem relates strongly two-Lipschitz p-summing operator
with its transpose.

Theorem 3.4. Let 1 < p ≤ ∞ and let T ∈ BLip0 (X,Y ;E). Then T is
strongly two-Lipschitz p-summing if and only if T t is p∗-summing. In this
case, dBLp (T ) = πp∗ (T t) .

Proof. Suppose that T is strongly two-Lipschitz p-summing. Then by Corollary
4.13 in [18], for all ε > 0 there is a Banach space G, an operator u ∈ Dp(G,E)
and R ∈ BLip(X,Y ;G) such that T = u◦R and ‖u‖DpBLip(R) ≤ ε+dBLp (T ).
According to [12, Therem 2.2.2] we have u∗ ∈ Πp∗(E

∗, G∗). Then, by the ideal
property T t = Rt ◦ u∗ ∈ Πp∗

(
E∗, BLip0(X,Y )

)
. Moreover,

πp∗
(
T t
)
≤ πp∗ (u∗) ‖Rt‖ = ‖u‖DpBLip(R) ≤ ε+ dBLp (T ).

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 481



K. Hamidi and A. Tallab

Conversely, Suppose that T t is p∗-summing, then, there exists a regular Borel
probability measure ν on BE∗∗ such that

BLip
(
T t (e∗)

)
≤ πp∗

(
T t
)(∫

BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

,

for each e∗ ∈ E∗. Therefore, for all x, x′ ∈ X and y, y′ ∈ Y we get

|〈T t (e∗) (x, y)− T t (e∗) (x, y′)− T t (e∗) (x′, y) + T t (e∗) (x′, y′) , e∗〉|

≤ πp∗ (T t) d (x, x′) d (y, y′)

(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

Thus,

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉|

≤ πp∗ (T t) d (x, x′) d (y, y′)

(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1
p∗

.

By Theorem 3.3, we deduce that T ∈ DBLp (X,Y ;E) and dBLp (T ) ≤ πp∗ (T t) .
�

It is well known that every strongly p-summing operator is weakly compact
[12, Corollary 2.2.5 ]. Therefore, by [18, Corollary 4.4, Remark 4.5], we can
provide the following result.

Corollary 3.5. Let 1 < p ≤ ∞ and T ∈ BLip0(X,Y ;E). Then, every strongly
two-Lipschitz p-summing is two-Lipschitz weakly compact.

4. Strongly (p, σ)-two-Lipschitz operators

We are about to build a new two-Lipschitz operator ideal using the compo-
sition technique, originating from the exiting operator ideal.

Definition 4.1. Let X,Y be pointed metric spaces and E be a Banach space,
and let 1 < p, q < ∞ and 0 6 σ < 1 such that 1

q + 1−σ
p∗ = 1. A two-

Lipschitz mapping T : X × Y −→ E is called strongly (p, σ)-two-Lipschitz if
there is a constant C > 0, a Banach space G and a p∗-summing linear operator
S : E∗ −→ G such that

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉| (4.1)

≤ Cd (x, x′) d (y, y′) ‖e∗‖σ ‖S (e∗)‖1−σ ,

for all x, x′ ∈ X, y, y′ ∈ Y and e∗ ∈ E∗. We denote by DBLp,σ (X,Y ;E) the linear

space of all strongly (p, σ)-two-Lipschitz mappings from X×Y to E and dBLp,σ (·)
represents the norm defined as the infimum of all Cπp∗ (S)

1−σ
, where C and

S ∈ Πp∗(E
∗, G) satisfied the inequality (4.1).

Remark 4.2.

(1) For σ = 0 we have DBLp,0 (X,Y ;E) = DBLp (X,Y ;E) , the class of
strongly two-Lipschitz p-summing operators.
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(2) It is obvious that in the case T ∈ Lip0(X,E) we get the well-known
concept of strongly (p, σ)-Lipschitz operators.

The subsequent proposition provide validation that the class being study
genuinely upon the concept of bilinearity.

Proposition 4.3. Let X,Y and E be Banach spaces, and let 1 < p, q <∞ and
0 ≤ σ < 1 such that 1

q + 1−σ
p∗ = 1. If T ∈ L2 (X,Y ;E), then T ∈ DBLp,σ (X,Y ;E)

if and only if T ∈ D2
p,σ (X,Y ;E) . Furthermore, dBLp,σ (T ) = d2p,σ (T ) .

Proof. Suppose that T ∈ DBLp,σ (X,Y ;E) , for ε > 0 choose a constant C > 0,
a Banach space G and a p∗-summing operator S : E∗ −→ G such that (4.1)

holds and Cπp∗ (S)
1−σ ≤ ε + dBLp,σ (T ) . According to [6, Proposition 4.5] it is

enough to show that TL : X⊗̂πY −→ E is strongly (p, σ)-continuous. Indeed
for all u ∈ X⊗̂πY, with representation, u =

∑n
i=1 xi ⊗ yi and e∗ ∈ E∗ we have

|〈TL (u) , e∗〉| =
n∑
i=1

|〈T (xi, yi) , e
∗〉|

≤ C ‖e∗‖σ ‖S (e∗)‖1−σ
n∑
i=1

‖xi‖ ‖yi‖ .

Taking the infimum over all representation of u, we find that TL ∈ Dσp
(
X⊗̂πY,E

)
and

d2p,σ (T ) = dσp (TL) ≤ Cπp∗ (S)
1−σ ≤ ε+ dBLp,σ (T ) .

In order to establish the reverse, take T ∈ D2
p,σ (X,Y ;E). By Theorem 2.3

there is a constant C > 0 and a regular Borel probability measure ν on BE∗∗

such that

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉|
= |〈T (x− x′, y − y′) , e∗〉|

≤ C ‖x− x′‖ ‖y − y′‖

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ

dν(ϕ)

) 1−σ
p∗

.

We follow the steps of the second implication of [18, Theorem 4.10] to achieve
what is required. �

Example 4.4. Let 1 < p < ∞, 0 ≤ σ < 1, f ∈ X# and R : Y −→ E be a
strongly (p, σ)-Lipschitz operator. The mapping

T : X × Y −→ E, T (x, y) = f(x)R(y),

is a strongly (p, σ)-two-Lipschitz operator with dBLp,σ (T ) ≤ Lip(f)dLp,σ (R). In-
deed, since R is strongly (p, σ)-Lipschitz, there is a Banach space G, an operator
u ∈ Πp∗(E

∗, G) and C > 0 such that (2.1) holds, and for all ε > 0

Cπp∗ (u)
1−σ ≤ ε+ dLp,σ (R) .
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For all x, x′ ∈ X, y, y′ ∈ Y, e∗ ∈ E∗ we have

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′), e∗〉|
= |f(x)− f(x′)| |〈R(y)−R(y′), e∗〉|

≤ Lip(f)
(
ε+ dLp,σ (R)

)
d(x, x′)d(y, y′) ‖e∗‖σ ‖u(e∗)‖1−σ .

This implies, T ∈ DBLp,σ (X,Y ;E) and

dBLp,σ (T ) ≤ Lip(f)dLp,σ (R) .

We show in what follows that the two-Lipschitz ideal generated by the com-
position method from the operator ideal Dσp coincide with the space of strongly
(p, σ)-two-Lipschitz operators.

Proposition 4.5. Let 1 < p, q <∞ and 0 ≤ σ < 1 such that 1
q + 1−σ

p∗ = 1 and

let T ∈ BLip0 (X,Y ;E) . Then T is strongly (p, σ)-two-Lipschitz if and only if
its bi-linearization TB is strongly (p, σ)-continuous.
Moreover, dBLp,σ (T ) = d2p,σ (TB) .

Proof. Assume that T ∈ DBLp,σ (X,Y ;E) . Then for all ε > 0, the two-Lipschitz

operator T satisfying (4.1) such that Cπp∗ (S)
1−σ ≤ ε + dBLp,σ (T ). Therefore,

for each m1 ∈M (X) , m2 ∈M (Y ) and ε > 0, we can choose a representation
of m1 and m2 as m1 =

∑n
i=1 αimxi,x′i

and m2 =
∑r
j=1 βjmyj ,y′j

such that

n∑
i=1

|αi| d (xi, x
′
i) ≤

∥∥m1
∥∥
M(X)

+ ε and

r∑
j=1

|βj | d (yi, y
′
i) ≤

∥∥m2
∥∥
M(Y )

+ ε,

we have∣∣〈TB (m1,m2
)
, e∗
〉∣∣

=
n∑
i=1

|αi|
r∑
j=1

|βj |
∣∣〈T (xi, yj)− T

(
xi, y

′
j

)
− T (x′i, yj) + T

(
x′i, y

′
j

)
, e∗
〉∣∣

≤ C
n∑
i=1

|αi| d (xi, x
′
i)

r∑
j=1

|βj | d
(
yj , y

′
j

)
‖e∗‖σ ‖S (e∗)‖1−σ

≤ C
( ∥∥m1

∥∥
M(X)

+ ε
)( ∥∥m2

∥∥
M(Y )

+ ε
)
‖e∗‖σ ‖S (e∗)‖1−σ .

Letting ε −→ 0 we have∣∣〈TB (m1,m2
)
, e∗
〉∣∣ ≤ C ∥∥m1

∥∥
M(X)

∥∥m2
∥∥
M(Y )

‖e∗‖σ ‖S (e∗)‖1−σ .

The domination theorem for the p∗-summing operator S, provides a regular
Borel probability measure ν on BE∗∗ such that

‖S (e∗)‖1−σ ≤ πp∗ (S)
1−σ

(∫
BE∗∗

|〈e∗, ϕ〉|p
∗
dν (ϕ)

) 1−σ
p∗

. (4.2)

Therefore, from Theorem 2.3, TB being strongly (p, σ)-continuous and

d2p,σ (TB) ≤ Cπp∗ (S)
1−σ ≤ ε+ dBLp,σ (T ) .
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Conversely, let TB ∈ D2
p,σ (Æ (X) ,Æ (Y ) ;E) and let x, x′ ∈ X, y, y′ ∈ Y and

e∗ ∈ E∗. By Theorem 2.3, there is a regular Borel probability measure ν on
BE∗∗ such that

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉|
= |〈TB (mx,x′ ,my,y′) , e

∗〉|

≤ d2p,σ (TB) ‖mx,x′‖M(X) ‖my,y′‖M(Y )

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ

dν(ϕ)

) 1−σ
p∗

= d2p,σ (TB) d (x, x′) d (y, y′)

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ

dν(ϕ)

) 1−σ
p∗

.

A similar argument, analogous to the one conducted in the proof of the sec-
ond implication of Theorem 4.10 in [18], reveals that T ∈ DBLp,σ (X,Y ;E) and

dBLp,σ (T ) ≤ d2p,σ (TB) . �

Now, we establish the Pietsch’s domination theorem for this class.

Theorem 4.6. Let 1 < p, q < ∞ and 0 6 σ < 1 such that 1
q + 1−σ

p∗ = 1 and

let T ∈ BLip0(X,Y ;E). Then the following statements are equivalent.

(1) T ∈ DBLp,σ (X,Y ;E).
(2) There exist a constant C > 0 and a regular Borel probability measure

ν on BE∗∗ such that for all x, x′ ∈ X, y, y′ ∈ Y and e∗ ∈ E∗ we have

|〈T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) , e∗〉| (4.3)

≤ Cd (x, x′) d (y, y′)

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ

dν (ϕ)

) 1−σ
p∗

.

Furthermore, dBLp,σ (T ) = inf C, where the infimum is taken over all constants
C either in (4.3).

Proof. (1) =⇒ (2) Suppose that T ∈ DBLp,σ (X,Y ;E). Combining (4.1) and (4.2)
we conclude that (4.3) is holds.
(2) =⇒ (1) Starting from (4.3), we prove that TB belongs toD2

p,σ

(
Æ (X) ,Æ (Y ) ;E

)
.

Let m1 =
∑n
i=1 αimxi,x′i

∈M (X) and m2 =
∑r
j=1 βjmyj ,y′j

∈M (Y ) , then∣∣〈TB (m1,m2
)
, e∗
〉∣∣

≤
n∑
i=1

|αi|
r∑
j=1

|βj |
∣∣∣〈TB (mxi,x′i

,myj ,y′j

)
, e∗
〉∣∣∣

=
n∑
i=1

|αi|
r∑
j=1

|βj |
∣∣〈T (xi, yj)− T

(
xi, y

′
j

)
− T (x′i, yj) + T

(
x′i, y

′
j

)
, e∗
〉∣∣

≤ C
n∑
i=1

|αi| d (xi, x
′
i)

r∑
j=1

|βj | d
(
yj , y

′
j

)
(∫

BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ dν(ϕ)

) 1−σ
p∗

.
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Taking the infimum over all representation of m1 and m2 we get∣∣〈TB (m1,m2
)
, e∗
〉∣∣

≤ C
∥∥m1

∥∥
M(X)

∥∥m2
∥∥
M(Y )

(∫
BE∗∗

(
|〈e∗, ϕ〉|1−σ ‖e∗‖σ

) p∗
1−σ dν(ϕ)

) 1−σ
p∗

,

and the result following from Theorem 2.3. �

Let 1 < p < r < ∞, since every absolutely r∗-summing operator is p∗-
summing, we have the following corollary.

Corollary 4.7. Let 1 < p < r <∞, and 0 6 σ < 1. Then

DBLr,σ (X,Y ;E) ⊂ DBLp,σ (X,Y ;E) .

Moreover, dBLp,σ (T ) ≤ dBLr,σ (T ) for all T ∈ DBLr,σ (X,Y ;E) .

The proof of the following result is derived from Proposition 4.5 and [6,
Proposition 4.5].

Corollary 4.8. Let 1 < p, q <∞ and 0 ≤ σ < 1 such that 1
q + 1−σ

p∗ = 1. Then

T is strongly (p, σ)-two-Lipschitz if and only its linearization TL is strongly
(p, σ)-continuous linear operator. In this case dBLp,σ (T ) = dσp (TL) .

We obtain the following corollary as a straightforward consequence of the
preceding corollary and [18, Proposition 3.6].

Corollary 4.9.
(
DBLp,σ , dBLp,σ (·)

)
is a two-Lipschitz operator ideal generated by

the composition method from the Banach operator ideal Dσp , i.e.,

DBLp,σ (X,Y ;E) = Dσp ◦BLip0 (X,Y ;E) ,

for all pointed metric spaces X,Y and Banach space E.

From [6, Remark 3.3] it follows that if u is strongly (p, σ)-continuous linear
operator then u∗ is (p∗, σ)-absolutely continuous. The following result is proved
in a similar way Theorem 3.4.

Theorem 4.10. Let 1 < p, q < ∞ and 0 ≤ σ < 1 such that 1
q + 1−σ

p∗ = 1.

Then T is strongly (p, σ)-two-Lipschitz if and only if its transpose T t is (p∗, σ)-
absolutely continuous. In this case, dBLp,σ (T ) = πp∗,σ (T t) .

Remark 4.11. If E is a reflexive Banach space, then every strongly (p, σ)-
two-Lipschitz operator is two-Lipschitz compact. Indeed, since T t : E∗ −→
BLip0 (X,Y ) is (p∗, σ)-absolutely continuous, we can conclude from [13, Cor-
rollary 2.1.22] that T t is compact and the result follows from [14, Theorem
2.10].

The following results gives the relationship between the classes of strongly
two-Lipschitz p-summing and strongly (p, σ)-two-Lipschitz operators.
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Proposition 4.12. Let 1 < p, q < ∞ and 0 ≤ σ < 1 such that 1
q + 1−σ

p∗ = 1.

Then

DBLp (X,Y ;E) ⊂ DBLp,σ (X,Y ;E) .

Moreover, for all T ∈ DBLp (X,Y ;E) we obtain

dBLp,σ (T ) ≤ dBLp (T ) .

Proof. Let T ∈ DBLp (X,Y ;E). Then from Theorem 3.4 it follows that its trans-

pose T t is p∗-summing, and by [20, Proposition 4.2], T t is (p∗, σ)-absolutely
continuous and πp∗,σ (T t) ≤ dBLp (T ) . Therefore, by using Theorem 4.10, we
can obtain the result. �

This paragraph aims to characterize strongly (p, σ)-two-Lipschitz operators
by a factorization theorem. In fact, this theorem is an exact match to its coun-
terpart with regard to strongly (p, σ)-continuous multilinear operators given in
[6]. Let X,Y be two pointed metric spaces, E be a Banach space and 1 < p, q <
∞ and 0 ≤ σ < 1 such that 1

q + 1−σ
p∗ = 1 and let ν be a regular Borel probability

measure on BE∗∗ . Let ιE∗ : E∗ −→ C(BE∗∗) be the isometric embedding de-
fined by ιE∗(e

∗) =< e∗, · > . Let Jp,σ : ιE∗(E
∗) −→ Lp,σ(ν) be the projection

onto the quotient. Note that this last space is studied and detailed in [6]. Let
K : X × Y −→ BLip0 (X,Y )

∗
the mapping given by K (x, y) (f) = f (x, y). In

fact, K is a two-Lipschitz operator with BLip(K) = 1. (see [14, Example 2.2
(b)]). It is clear that if we consider the natural embedding kE : E ↪→ E∗∗, then
kE ◦ T = (T t)

∗ ◦K for all T ∈ BLip0 (X,Y ;E).
Now, we present the factorization theorem for the class of strongly (p, σ)-

two-Lipschitz operators.

Theorem 4.13. Let 1 < p, q < ∞ and 0 ≤ σ < 1 such that 1
q + 1−σ

p∗ = 1 and

let T ∈ BLip0 (X,Y ;E) . The following statements are equivalent:

(1) T ∈ DBLp,σ (X,Y ;E) .
(2) There exist a regular Borel probability measure ν on BE∗∗ and a two-

Lipschitz mapping R : X × Y −→
(
Lp∗,σ(ν)

)∗
such that the following

diagram commutes,

X × Y T //

R
��

E
kE // E∗∗

(
Lp∗,σ(ν)

)∗ J∗p∗,σ //
(
ιE∗(E

∗)
)∗
.

ι∗E∗

OO

i.e., kE ◦ T = ι∗E∗ ◦ J∗p∗,σ ◦R.

Proof. As mentioned previously, the proof is inspired by the proof of [6, The-
orem 6.2]. However, taking into a count that the space Lp∗,σ(ν) is the closure
of (Jp∗,σ ◦ ιE∗) (E∗) , it is worth mentioning that R is defined by

R(x, y)
(
Jp∗,σ ◦ ιE∗(e∗)

)
:= u

(
Jp∗,σ ◦ ιE∗(e∗)

)
(x, y),
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where u : Lp∗,σ(ν) −→ BLip0 (X,Y ) is the bounded linear operator provided
by the factorization theorem concerning the (p∗, σ)-absolutely continuous linear
operator T t with T ∈ DBLp,σ (X,Y ;E) . A direct computation shows that R is
two-Lipschitz with BLip (R) ≤ ‖u‖ . �

In particular, if σ = 0, then we present the factorization theorem for strongly
two-Lipschitz p-summing operators.

Theorem 4.14. Let 1 < p ≤ ∞ and let T ∈ BLip0 (X,Y ;E). The following
statements are equivalent:

(1) T ∈ DBLp (X,Y ;E) ,
(2) There exist a regular Borel probability measure ν on BE∗∗ and a two-

Lipschitz mapping R : X × Y −→ (Lp∗(ν))∗ such that

kE ◦ T = ι∗E∗ ◦ J∗p∗ ◦R.
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