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Abstract

Fixed point theorems are very important tools in different branches of
mathematics. In this paper, we introduce partial uniform spaces as a
generalization of metric spaces; and study some basic properties. Var-
ious examples support the theory. We prove fixed point theorems for
H-partial uniform spaces by using a map called an E-distance func-
tion. Finally, we give the applications of these fixed point theorems to
compress digital images.
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1. Introduction

There are lots of applications of fixed point theorems in image analysis
[9, 10, 11, 18]. In this regard, many researchers have characterized the prop-
erties of digital images with tools from topology to study the properties of
digital images. One such effort was done by Peters et al. in [15, 16, 17], where
they introduced the concept of probe functions to characterize different feature
values of a digital image. A digital image consists of a large number of small
spots of colors, called pixels. When displayed on a monitor or printed on paper,
pixels are so small and so closely packed together that the collective effect on

Received 7 January 2024 – Accepted 24 March 2024

http://dx.doi.org/10.4995/agt.2024.20973
https://orcid.org/0009-0009-3982-4414
https://orcid.org/0000-0001-8269-0807


S. N. Shukla and S. Tiwari

the human eye is a continuous pattern of colors. The most common problem in
digital images is decreasing their resolution (number of pixels), which we call
compression of digital images. In this paper, we employ a probe function and
fixed point theorems on partial uniform spaces in the compression of digital
images (see also [18])

Before André Weil gave the first explicit definition of a uniform space in
1937, uniform concepts, like completeness were discussed using metric spaces.
Nicolas Bourbaki provided the definition of uniform structures in terms of en-
tourages [6]. Uniform spaces generalize metric spaces, pseudo metric spaces and
topological spaces. The topology defined by the uniform structure is said to be
induced by the uniformity. A topological space is said to be uniformizable, if
there is a uniform structure compatible with the topology. Similar to continu-
ous functions between topological spaces, which preserve the topological prop-
erties are the uniformly continuous functions between uniform spaces, which
preserve uniform properties. The completeness property of uniform spaces
opens the door to find fixed points in uniform spaces which has applications in
various fields (see [18, 19]). In [1, 2, 3], Aamri et al. introduced the concept
of an E-distance function on uniform spaces and utilized it to improve some
well-known results of the existing literature involving both E-constructive and
E-expansive maps. In [21, 22], Türkoǧlu et al. proved fixed point theorems for
multi-valued maps in uniform spaces (see also [4, 12]). In this paper, we study
the category of partial uniform spaces as a super category of metric spaces,
pseudo metric spaces and ultra metric spaces. Further, we prove fixed point
theorems for a single-valued function and a multi-valued function defined for
H-partial uniform spaces for the purpose of compressing digital images.

The paper is organized in the following manner: Section 2 collects some
basic results and preliminaries on uniform spaces which are necessary for the
development of further sections. In Section 3, we axiomatize the concept of
partial uniform spaces as a generalization of various topological structures.
The theory in this section builds up to prove some fundamental results required
for the fixed point theorems proved in Section 4. A number of examples are
given to support the new concept introduced. In Section 4, we prove two fixed
point theorems: one for single-valued functions and the other for a multi-valued
function in the framework of H-partial uniform spaces. In Section 5, we utilize
the fixed point theorems proved in Section 4, to compress digital images using
a probe function. Finally, in Section 6, we conclude the paper.

2. Preliminaries and Basic Results

In this section, we collect some useful definitions and results which are neces-
sary to develop the theory in the subsequent sections. Throughout this paper,
X is a non-empty set, P(X) denotes the power set of X, Γ denotes an arbi-
trary index set, R denotes the set of all real numbers, R+ denotes the set of all
positive real numbers, and N denotes the set of all natural numbers. For any
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A ⊆ X, the complement of A is denoted by Ac. Moreover, A ⊂ B means that
the set A is a proper subset of the set B.

Definition 2.1 ([6, 13]). A diagonal uniformity on the set X is a collection v
of subsets of X ×X, which satisfies the following axioms:

(1) If D ∈ v, then ∆ ⊆ D, where ∆ = {(x, x) : x ∈ X}.
(2) If D1, D2 ∈ v, then D1 ∩D2 ∈ v.
(3) If D ∈ v, then E ◦ E ⊆ D, for some E ∈ v.
(4) If D ∈ v, then D−1 ∈ v.
(5) If D ∈ v and D ⊆ E, then E ∈ v.

Example 2.2. For each α ∈ R+, let Dα be the subset of R+ × R+ defined as
Dα = ∆ ∪ {(x, y) ∈ R+ × R+ : x > α, y > α}. Then the set {Dα : α ∈ R+}
forms a base for a uniformity on R+.

Definition 2.3 ([7]). A map cl : P(X) → P(X) is called a Čech closure
operator on X, if it satisfies the following axioms for A,B ⊆ X,
K1. cl(∅) = ∅.
K2. A ⊆ cl(A).
K3. cl(A) ∪ cl(B) = cl(A ∪B).

Further, if cl also satisfies the following axiom,

K4. cl(cl((A)) = cl(A).

Then it is a Kuratowski (topological) closure operator on X.

It is well-known that a Kuratowski closure operator induces a topology on
X. In this paper, we will denote a topological space by (X, cl), where cl is the
Kuratowski closure operator on X.

Definition 2.4 ([8, 14]). A topological space (X, cl) is said to be an R0-space
if, x ∈ cl{y} implies y ∈ cl{x}.

Definition 2.5 ([1]). Let (X, v) be a uniform space. Then a function ρ :
X ×X → R+ is said to be an E-distance on X if:

(1) For any V ∈ v, if there exists δ > 0 such that ρ(z, x) ≤ δ and ρ(z, y) ≤ δ,
for some z ∈ X, then (x, y) ∈ V.

(2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X.

Definition 2.6 ([13]). A non-empty collection F ⊆ P(X) is said to be a filter
on X if :

(1) ∅ /∈ F .
(2) If F ∈ F and F ⊆ E, then E ∈ F .
(3) If F,E ∈ F , then F ∩ E ∈ F .

A maximum filter on X is called an ultra-filter on X.

Definition 2.7. A metric on the set X is a map d : X ×X → R+ ∪{0} which
satisfies the following axioms:

M1. d(x, y) > 0, for all x, y ∈ X.
M2. d(x, y) = 0, if and only if x = y.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 2 443



S. N. Shukla and S. Tiwari

M3. d(x, y) = d(y, x), for all x, y ∈ X.
M4. d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

The pair (X, d) is called a metric space.
The map d : X × X → R+ ∪ {0} is said to be a pseudo-metric on X, if it
satisfies M1, M3, M4, and
M5. d(x, y) = 0, if x = y.
Moreover, d is said to be an ultra-metric on X, if it satisfies M1, M2, M3, and
M7. d(x, y) ≤ max(d(x, z), d(z, y)), for all x, y, z ∈ X.

3. Partial Uniform Spaces

In this section, we axiomatize Čech partial uniform spaces as a generalization
of uniform spaces and various topological structures. Some basic topological
results are proved in this section. Several examples are given to support the
theory.

Definition 3.1. A collection D of subsets of X × X is called a Čech partial
uniformity on X if, the following conditions are satisfied:

P1. ∆ ⊆ D, D ∈ D.
P2. If D1, D2 ∈ D, then D1 ◦D2 ∈ D, where D1 ◦D2 = {(x, y) : there exists

z ∈ X, such that (x, z) ∈ D1 and (z, y) ∈ D2}.
P3. If D1, D2 ∈ D, then D1 ∩D2 ∈ D.

The pair (X,D) is called a Čech partial uniform space.

Proposition 3.2. Let (X,D) be a Čech partial uniform space and let A be
a subset of X. Then clD(A) = {x ∈ X : for every D ∈ D, there exists y ∈
A, such that (x, y) ∈ D}, is a Čech closure operator on X. Further, if (X,D)
satisfies the following condition:

P4. Let x ∈ X, A ⊆ X and D ∈ D. Then for any y ∈ clD(A), (x, y) ∈ D,
implies that there exists z ∈ A, such that (x, z) ∈ D.

Then clD is a Kuratowski closure operator on X.

Proof. Let (X,D) be a Čech partial uniform space. Then Axioms K1, K2 are
obvious. Let x ∈ clD(A) ∪ clD(B), where A,B are any two subsets of X. This
implies that, x ∈ clD(A) or x ∈ clD(B). So, for all D ∈ D, there exists y ∈ A ⊆
A∪B or y ∈ B ⊆ A∪B, such that (x, y) ∈ D. Consequently, for all D ∈ D, there
exists y ∈ A ∪B, such that (x, y) ∈ D. Hence, x ∈ clD(A ∪B). Conversely, let
x ∈ clD(A∪B). Then for all D ∈ D there exists y ∈ A∪B such that (x, y) ∈ D.
Let if possible, x /∈ clD(A) and x /∈ clD(B). Then there exist, D1, D2 ∈ D, such
that (x, y1) /∈ D1 for all y1 ∈ A, (x, y2) /∈ D2 for all y2 ∈ B. So, (x, y) /∈ D1∩D2

for all y ∈ A ∪ B, which is a contradiction. Hence, x ∈ clD(A) ∪ clD(B).
Moreover, let (X,D) satisfy P4 and s ∈ clD(clD(A)). Then s ∈ {x ∈ X :
for every D ∈ D, there exists y ∈ clD(A) such that (x, y) ∈ D}. Therefore by
P4, s ∈ {x ∈ X : for every D ∈ D, there exists z ∈ A such that (x, z) ∈ D}.
Hence, s ∈ clD(A). Converse is obvious. �
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Definition 3.3. A collectionD of subsets ofX×X is called a partial uniformity
on X, if it satisfies P1, P2, P3, and P4. The pair (X,D) is called a partial
uniform space.

Definition 3.4. Let (X,DX) and (Y,DY ) be partial uniform spaces. Then a
map f : X → Y is said to be a uniformly continuous if, for every D′ ∈ DY ,
there exists D ∈ DX such that, (f(x), f(y)) ∈ D′ whenever, (x, y) ∈ D.

Definition 3.5. A partial uniformity D on X is called an R0-partial uniformity
on X if, it satisfies the following axiom:
P5. If D ∈ D, then D−1 ∈ D.

Clearly, every uniform space is a Čech partial uniform space. It may be
checked that the topology generated by an R0-partial uniform space is R0 but
not T0, in general, as illustrated by the following example.

Example 3.6. Let X = {a, b, c} and D1 = ∆ ∪ {(a, b), (b, a)}, D2 = ∆ ∪
{(a, c), (c, a), (b, c), (c, b)(a, b), (b, a)}. Then the collection D = {D1, D2} is an
R0-partial uniformity on X. The topology generated by D is {∅, X, {c}, {a, b}},
which is an R0-space but not a T0-space.

Example 3.7. Let α ∈ R+ and X be the set of all square matrices of order n
such that their traces are α. Then the collection D = {D ⊆ X ×X : ∆ ⊆ D}
forms a Čech partial uniformity on X, which is not a partial uniformity on X,
in general.

Example 3.8. Let X = {a, b} and D1 = ∆∪{(a, b)}, D2 = ∆∪{(a, b), (b, a)}.
Then the collection D = {D1, D2} is a partial uniformity on X, which is not a
uniformity on X, in general, and the topology generated by D is {∅, X, {b}}.

Example 3.9. Let X = {a, b} and D1 = ∆∪{(b, a)}, D2 = ∆∪{(a, b), (b, a)}.
Then the collection D = {D1, D2} is a partial uniformity on X, which is not an
R0-partial uniformity and hence not a uniformity on X. The topology generated
by D is {∅, X, {a}}.

Example 3.10. Let D = {(a, b) ∈ R × R : a ≥ b}. Then the collection
D = {∆, D} is a partial uniformity on R.

Example 3.11. Let r ∈ R+. Define Dr = {(x, y) ∈ R × R : |x − y| < r}. Let
U = {E ⊆ Dr : E ◦ E−1 = E and ∆ ⊂ E, r ∈ R+}; and if E1, E2 ∈ U , then
E1 ◦ E2 = E2 ◦ E1. Then U is an R0-partial uniformity on R.

Remark 3.12. (1) The intersection of two partial uniformities (R0-partial uni-
formities) on a set X is a partial uniformity (R0-partial uniformity) on X.
(2) The union of two partial uniformities on X need not be a partial uniformity
on X.

We now develop some basic theory of partial uniform spaces which is re-
quired to prove our results.
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Proposition 3.13. Let (X,DX), (Y,DY ) and (Z,DZ) be partial uniform spaces,
and f : (X,DX) → (Y,DY ), and g : (Y,DY ) → (Z,DZ) be uniformly continu-
ous maps. Then g ◦ f : (X,DX)→ (Z,DZ) is a uniformly continuous map.

Proof. Let D′′ ∈ DZ . Then ((g◦f)(x), (g◦f)(y))∈ D′′, whenever (f(x), f(y)) ∈
D′, for some D′ ∈ DY . Consequently ((g ◦ f)x, (g ◦ f)y) ∈ D′′, whenever
(x, y) ∈ D, for some D ∈ DX . Thus, g ◦ f is a uniformly continuous map. �

Proposition 3.14. If (X,D) and (Y,D′) be two partial uniform spaces, and
f : X → Y be a uniformly continuous map. Then f is continuous on X.

Proof. Let (X,D) and (Y,D′) be two partial uniform spaces, and let f : X → Y
be a uniformly continuous map. Then for each D′ ∈ D′, there exists D ∈ D
such that (f(x), f(y)) ∈ D′, whenever (x, y) ∈ D. Suppose that clD and clD′

be the closures generated by the partial uniformities D and D′, respectively,
and A ⊆ X. Then we need to show that f(clD(A)) ⊆ clD′(f(A)). For this,
let y ∈ f(clD(A)). Then there exists z ∈ clD(A) such that f(z) = y. Thus
for all D ∈ D, there exists x ∈ A such that (z, x) ∈ D. Since f is uniformly
continuous, for any D′ ∈ D′, there exists f(x) ∈ f(A) such that (f(z), f(x)) ∈
D′. Consequently, f(z) = y ∈ clD′(f(A)). Hence, f(clD(A)) ⊆ clD′(f(A)). �

Definition 3.15. The category PUS consists of objects as partial uniform
spaces and morphisms as uniformly continuous maps. Similarly, the category
R0PUS consists of objects as R0-partial uniform spaces and morphisms as
uniformly continuous maps.

Clearly, R0PUS is a full subcategory of PUS.

Proposition 3.16. The category UMET of ultra-metric spaces and continu-
ous maps is a full subcategory of the category R0PUS.

Proof. Let (X, d) be an ultra-metric space, and let D be the collection of all
subsets of X ×X, defined as D = {Dε : ε > 0}, where Dε = {(x, y) ∈ X ×X :
d(x, y) < ε}, for every ε > 0. Then D satisfies P1, P3 and P5 clearly. For
P2, let Dε1 ∈ D and Dε2 ∈ D. Then Dε1 ◦ Dε2 = Dε1 , if ε1 > ε2, and
Dε1 ◦Dε2 = Dε2 , if ε2 > ε1. Finally let (x, y) ∈ Dε, y ∈ clD(A), A ⊆ X. Then
(x, y) ∈ Dε, (y, z) ∈ Dε, for some z ∈ A. This implies that d(x, z) < ε, for some
z ∈ A. That is (x, z),∈ Dε, for some z ∈ A. �

Definition 3.17. Let (X,D) be a partial uniform space. Then a function
f : X × X → R+ is said to be an E-distance function on X if, the following
conditions are satisfied:

(1) For any D ∈ D, if there exists δ > 0, such that ρ(x, z) ≤ δ and
ρ(z, y) ≤ δ, for some z ∈ X, then (x, y) ∈ D.

(2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y), for all x, y, z ∈ X.
(3) ρ(x, y) = ρ(y, x), for all x, y ∈ X.

Definition 3.18. A partial uniformity D on X is called an H-partial unifor-
mity on X if, it satisfies the following axiom:
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P6.
⋂
{D : D ∈ D} = ∆.

Definition 3.19. A Čech partial uniformity D on X is called a completely
regular partial uniformity on X if, the following condition is satisfied:

P7. D ◦D−1 ⊆ D, D ∈ D.
The pair (X,D) is called a completely regular partial uniform space.

It may be observed that a completely regular partial uniformity consists of
symmetric entourages. In [20], we have shown that the topology generated by
a completely regular partial uniform space is completely regular.

Remark 3.20. A completely regular partial uniform space (X,D) is a partial
uniform space because the axiom P4 follows from the axiom P7 : Let (x, y) ∈
D, y ∈ clD(A), A ⊆ X. Then (x, y) ∈ D and (y, z) ∈ D, for some z ∈ A.
Consequently, (x, z) ∈ D ◦D ⊆ D, z ∈ A.

Proposition 3.21. The category MET of metric spaces and continuous maps
is a full subcategory of the category R0CPUS consisting of R0-completely reg-
ular partial uniform spaces and uniformly continuous maps.

Proof. Let (X, d) be a metric space and r ∈ R+. Define Dr = {(x, y) ∈ R×R :
d(x, y) < r}. Let U = {E ⊆ Dr : E ◦ E−1 = E and ∆ ⊂ E, r ∈ R+}; and
E1, E2 ∈ U implies E1 ◦ E2 = E2 ◦ E1. Then we can easily show that U is an
R0-completely regular partial uniformity on X. �

Corollary 3.22. The category PMET of pseudo-metric spaces and continuous
maps is a full subcategory of the category R0PUS.

Corollary 3.23. The category MET is a full subcategory of the category
R0PUS.

Example 3.24. Let X = {a, b, c} and D1 = ∆ ∪ {(a, b), (b, a)}, D2 = ∆ ∪
{(a, c), (c, a), (b, c), (c, b)(a, b), (b, a)}. Then the collection D = {D1, D2} is a
completely regular partial uniformity on X which is not a uniformity on X.

Completely regular partial uniform spaces are different from uniform spaces:
In Example 3.24, (X,D) is a completely regular partial uniform space which is
not a uniform space. Moreover, a uniform space need not be completely regular
partial uniform space as shown in the following example.

Example 3.25. For each α ∈ R+, let Dα be the subset of R+ × R+ defined
as Dα = {(x, y) ∈ R+ × R+ : |x− y| < α}. Then the set {Dα : α ∈ R+} forms
a uniformity on R+ which is not a completely regular partial uniformity on
R+ : (1, 2) ∈ D1 ◦D−11 but (1, 2) /∈ D1.

In the next example, we construct a completely regular H-partial uniform
space.

Example 3.26. Let A be a non-empty finite subset of R, andDA = (R−{A})×
(R − {A}) ∪ {(x, x) : x ∈ A}. Then the collection D = {R × R} ∪ {DA : A is
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a non-empty finite subset of R} is a completely regular H-partial uniformity
on R : Clearly ∆ ⊆ DA for all non-empty finite subset A of R. For P2, let
(x, y) ∈ DA ◦ DB , x 6= y, where A and B are two non-empty finite subsets of
R, such that A ∩ B 6= ∅. Then (x, z) ∈ DA and (z, y) ∈ DB , for some z ∈ R.
This implies that x, z /∈ A and z, y /∈ B. Consequently, x, y, z /∈ A ∩B. Hence,
(x, y) ∈ DA∩B . Hence, DA ◦DB ⊆ DA∩B . Conversely, let (x, y) ∈ DA∩B . Then
x, y /∈ A ∩ B. That is, we have the following cases: If x /∈ A, y /∈ A, then
(x, y) ∈ DA ⊆ DA ◦ DB . If x /∈ B, y /∈ B, then (x, y) ∈ DB ⊆ DA ◦ DB . If
x /∈ A, y /∈ B. Then we can find some z /∈ A ∪ B such that (x, z) ∈ DA and
(z, y) ∈ DB . Consequently, (x, y) ∈ DA ◦DB . Similarly, if x /∈ B, y /∈ A, then
also DA∩B ⊆ DA ◦DB . Hence, DA ◦DB = DA∩B . Thus, if A ∩ B 6= ∅, then
DA ◦DB = DA∩B ∈ D. Further, if A ∩ B = ∅, then DA ◦DB = R × R ∈ D.
For P3, let (x, y) ∈ DA ∩ DB , where A and B are two finite subsets of R.
Then for x 6= y, x, y /∈ A and x, y /∈ B. Consequently, x, y /∈ A ∪ B. Hence,
(x, y) ∈ DA∪B . Conversely, let (x, y) ∈ DA∪B . Then x, y /∈ A∪B. This implies
that, x, y /∈ A and x, y /∈ B. Consequently, (x, y) ∈ DA and (x, y) ∈ DB . Hence,
(x, y) ∈ DA∩DB . Thus, DA∩DB = DA∪B ∈ D. Axiom P6 is obvious. Finally,
for P7, we have DA ◦D−1A = DA ◦DA = DA.

Obviously, in Example 3.26, D is not a uniformity on R. Let us study the
effect of the axiom P6 on the topology generated by a completely regular H-
partial uniform space. Infact, the topology comes out to be Hausdorff. To
prove this, we need the following definition.

Definition 3.27. Let {(Xi,Di) : i = 1, 2, 3, . . . , n} be a family of n partial
uniform spaces and X = ΠXi. Then the family D of subsets D of X × X,
corresponding to a unique pair of n entourages Dj ∈ Di, i, j = 1, 2, · · · , n (i.e.,
choosing one Dj from each Di), where

D = {((x11, x12, . . . , x1n), (x21, x
2
2, . . . , x

2
n)) : (x1i , x

2
i ) ∈ Dj , Dj ∈ Di, i = 1, 2, 3, . . . , n}

is a partial uniformity on X, which is called the product partial uniformity on
X. The pair (X,D) is called the product partial uniform space.

Theorem 3.28. The topology generated by a completely regular H-partial uni-
formity is Hausdorff.

Proof. Let (X,D) be a completely regular H- partial uniform space. Then Di×
Dj = {((a, b), (c, d)) : (a, c) ∈ Di, (b, d) ∈ Dj}. Define D∗ = {Di×Dj : Di, Dj ∈
D}. Then D∗ is the product partial uniformity on X×X. Let (x, y) ∈ clD∗(∆).
Then for allDi×Dj ∈ D∗, there exists z ∈ X such that ((x, y), (z, z)) ∈ Di×Dj .
So for Di × Di, there exists z ∈ X such that ((x, y), (z, z)) ∈ Di × Di. This
implies that, (x, z) ∈ Di, (y, z) ∈ Di. Consequently, (x, y) ∈ Di ◦ D−1i = Di.
This is true for all Di ∈ D. As a result, (x, y) ∈

⋂
{Di : Di ∈ D} = ∆. So,

x = y, therefore (x, y) ∈ ∆. Hence clD(∆) = ∆. �

Definition 3.29 (cf. [1, 5]). Let (X,D) be a partial uniform space and ρ be
an E-distance function on X. Then
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(1) A sequence < xn > in the partial uniform space (X,D) is said to be
a ρ-Cauchy sequence if, for each positive real number ε, there exists a
positive integer, m, such that ρ(xn, xm) < ε, n ≥ m.

(2) X is said to be S-complete if, for each ρ-Cauchy sequence < xn >,
there exists x ∈ X, satisfying limn→∞ ρ(xn, x) = 0.

(3) X is said to be ρ-Cauchy complete if, for each ρ-Cauchy sequence <
xn >, there exists x ∈ X satisfying limn→∞ xn = x.

(4) A map f : X → X is said to be ρ-continuous if, limn→∞ ρ(xn, x) = 0,
implies limn→∞ ρ(f(xn), f(x)) = 0.

(5) A map f : X → X is said to be continuous if, limn→∞ xn = x, implies
limn→∞ f(xn) = f(x).

Definition 3.30 (cf. [5]). A partial uniform space (X,D) is said to be pre-
compact or totally bounded if, there exists a finite set S = {x1, x2, · · · , xn}
such that X = ∪x∈SclD{x}.

Definition 3.31 (cf. [13]). Let (X,D) be a partial uniform space. Then

(1) a net {xa : a ∈ Γ} is said to be a Cauchy net if, for each D ∈ D, there
exists a0 ∈ Γ such that (xa, xb) ∈ D for a, b > a0.

(2) A filter F = {Va : a ∈ Γ} is said to be a Cauchy filter if, for each
D ∈ D, there exists Va ∈ F such that (xa, ya) ∈ D, xa, ya ∈ Va.

(3) A net {xa : a ∈ Γ} is said to be convergent to a point x0 ∈ X if, for
each D ∈ D, there exists a0 ∈ Γ such that (xa, x0) ∈ D, for all a > a0.

(4) A filter F = {Va : a ∈ Γ} is said to be convergent to a point x0 ∈ X
if, for each D ∈ D, there exists Va ∈ F such that (xa, x0) ∈ D, for all
xa ∈ Va.

(5) (X,D) is said to be complete if, each Cauchy net (Cauchy filter) in X
converges to a point in X.

(6) A point x0 is said to be a cluster point of the net {xa : a ∈ Γ} in X if,
for all D ∈ D, (xa, x0) ∈ D for infinitely many values of a.

(7) A point x ∈ X is said to be a limit point of A ⊆ X, if for all D ∈ D
there exists y ∈ A−{x} such that (x, y) ∈ D. The set of all limit points
of A is called the derived set of A and is denoted by Der(A).

Proposition 3.32. If (X,D) is a partial uniform space which is totally bounded,
then it is separable.

Proof. Let (X,D) be a partial uniform space which is totally bounded. Then
there exists a finite set S = {x1, x2, · · · , xn} such that X =

⋃
xi∈S clD{xi}. Let

a ∈ X. Then a ∈ clD{xi} for some xi ∈ S. So, (a, xi) ∈ D, for all D ∈ D. It is
obvious that a ∈ clD{S}. Therefore X = clD{S}. Thus, S is a countable dense
subset of X. �

Proposition 3.33. Every convergent net (filter) in a completely regular partial
uniform space (X,D) is a Cauchy net (Cauchy filter).
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Proof. Let (X,D) be a completely regular partial uniform space and let n =
{xa : a ∈ Γ} be a convergent net which converges to x0 ∈ X. Then for each
D ∈ D, there exists a0 ∈ Γ such that (xa, x0) ∈ D, for all a > a0. Further,
if b > a0, then (xb, x0) ∈ D. Consequently, (xa, xb) ∈ D ◦ D−1, a, b > a0.
Since D ◦ D−1 ⊆ D, therefore (xa, xb) ∈ D, a, b > a0. Thus n is a Cauchy
net. Similarly, let F = {Va : a ∈ Γ} be a filter which is convergent to a point
x0 ∈ X. So, for each D ∈ D, there exists Va ∈ F such that (xa, x0) ∈ D, for
all xa ∈ Va. It is obvious that, for xb ∈ Va, (xb, x0) ∈ D. Thus (x0, xb) ∈ D−1,
xb ∈ Va. Consequently, (xa, xb) ∈ D ◦D−1, for xb, xa ∈ Va. Thus (xa, xb) ∈ D,
xb, xa ∈ Va. Hence, F is a Cauchy filter in X. �

Proposition 3.34. A Cauchy net (Cauchy filter) in a completely regular partial
uniform space (X,D) converges to its cluster point.

Proof. Let (X,D) be a completely regular partial uniform space and let n =
{xa : a ∈ Γ} be a Cauchy net in X. Let x0 be a cluster point of n. So, for
any D ∈ D, (xa, x0) ∈ D for infinitely many a ∈ Γ. Since n is a Cauchy
net, therefore for each D ∈ D, there exists a0 ∈ Γ such that (xa, xb) ∈ D,
for a, b > a0. Thus (xb, xa) ∈ D−1, for a, b > a0. Consequently, (xb, x0) ∈
D−1 ◦D = D◦D−1 ⊆ D, for b > a0, D ∈ D. Therefore (xb, x0) ∈ D, for b > a0,
D ∈ D. Thus n converges to its cluster point. The proof for the Cauchy filter
follows similarly. �

Corollary 3.35. In a completely regular H-partial uniform space, every Cauchy
net (Cauchy filter) converges to its unique cluster point.

Proposition 3.36. Every closed subset of a complete partial uniform space is
complete.

Proof. Let (X,D) be a complete partial uniform space and F be a closed subset
of X. Now let n = {xa : a ∈ Γ} be a Cauchy net in F. Then n converges to a
point x0 ∈ X. So it must be a cluster point of F. Since F be a closed subset of
X, therefore x0 ∈ F. Thus, the net n converges to a point x0 ∈ F. Hence, F is
complete. �

4. Fixed Point Theorems on H-Partial Uniform Spaces

In this section, we prove two fixed point theorems: one for a single-valued
function and the other for a multi-valued function, defined onH-partial uniform
spaces.

Definition 4.1 ([5]). A multi-valued operator T : X → P(X) is said to be
order closed if, for monotonic sequences < µn > and < νn > of X, µn → µ0,
νn → ν0 and νn ∈ T (µn), implies v0 ∈ T (u0).

Definition 4.2 ([5]). Let (X,D) be an H-partial uniform space and ρ be
the E-distance function on X. A multi-valued operator T : X → P(X) is
called ρ-order closed if, for monotonic sequences < µn > and < νn > in X,
limn→∞ ρ(µn, µ0) = limn→∞ ρ(νn, ν0) = 0 and νn ∈ T (µn), implies ν0 ∈ T (µ0).
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Lemma 4.3 (cf. [1, 5]). Let (X,D) be an H-partial uniform space and ρ be an
E-distance function on X, let < xn > and < yn > be two arbitrary sequences
in X, and < an >, < bn > be two sequences in R+ converging to zero. Then
for x, y, z ∈ X, the following axioms hold:

(1) If ρ(xn, y) ≤ an and ρ(xn, z) ≤ bn, n ∈ N, then y = z in other words,
if ρ(x, y) = 0 = ρ(x, z), then y = z.

(2) If ρ(xn, yn) ≤ an, n ≥ m, then < xn > is a ρ-Cauchy sequence in X.

Proof. (1) Let < an >, < bn > be two sequences in R+ converging to zero.
Then for any positive real number, say δ, there exists a positive integer,
say m, such that |an| < δ, n > m. By using the condition (1) we have,
ρ(xn, y) < δ and ρ(xn, z) < δ. So for any D ∈ D, there exists δ such
that ρ(xn, y) < δ and ρ(xn, z) < δ. Consequently, (y, z) ∈ D, for all
D ∈ D. By P6, y = z.

(2) Obvious.
�

Lemma 4.4. Let (X,D) be an H-partial uniform space, ρ be an E-distance
function on X and Φ : X → Rn be a vector-valued function such that Φ(x) =
(φ1(x), φ2(x), φ3(x), · · · , φn(x)) ∈ Rn, where φi : X → R is a real-valued func-
tion for each i = 1, 2, . . . , n. Define a relation � on X as given below:

x � y if and only if x = y or ρ(x, y) ≤ φi(x)− φi(y), for all i = 1, 2, . . . , n.

Then � is a partial order relation on X induced by Φ.

Proof. Clearly, the relation � is reflexive and transitive. To prove that � is
antisymmetric, let x � y and y � x. Then either x = y or ρ(x, y) ≤ φi(x)−φi(y)
and ρ(y, x) ≤ φi(y) − φi(x). If x = y, then the proof follows. If x 6= y, then
ρ(y, x) + ρ(x, y) = 0 because ρ(y, x) = ρ(x, y). Consequently, ρ(x, y) = 0. Since
ρ(y, y) ≤ ρ(y, x) + ρ(x, y) = 0, by Lemma 4.3, x = y. �

Below is the fixed point theorem proved for single-valued functions in the
framework of H-partial uniform spaces. Let x = (x1, x2, . . . , xn), y = (y1, y2,

. . . , yn) ∈ Rn. Recall that ‖x‖ =
√
x21 + x22 + · · ·+ x2n, is the usual norm de-

fined on Rn. Also, x ≤ y if and only if xi ≤ yi, for all i = 1, 2, . . . , n.

Theorem 4.5. Let (X,D) be an H-partial uniform space and ρ be the E-
distance function on X such that X is S-complete. Let Φ : X → Rn be a
function which is bounded below. If � is a partial order relation induced by
Φ (defined in Lemma 4.4) and f : X → X is a ρ-continuous non-decreasing
function with x0 � f(x0), for some x0 ∈ X. Then f has a fixed point in X.

Proof. Consider a point x0 ∈ X satisfying x0 � f(x0). Define a sequence
< xn > in X, such that xn = f(xn−1), for n = 1, 2, · · · . Since f is non-
decreasing, therefore f(x0) � f(x1) � f(x2) � · · · , which implies x0 � x1 �
x2 � · · · . Thus, the sequence < xn > is non-decreasing. Since � is a partial
order relation, so · · · 6 Φ(x2) 6 Φ(x1) 6 Φ(x0). It implies that the sequence
< Φ(xn) > is non-increasing in Rn. Since Φ is bounded below in Rn, therefore
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< Φ(xn) > is a convergent sequence and hence a Cauchy sequence in Rn. Then
for each ε > 0, there exists n0 ∈ N such that ‖Φ(xn)−Φ(xm)‖ < ε, n,m ≥ n0,
where ‖.‖ is the usual norm on Rn. Since ρ(xn, xm) 6 ‖Φ(xn) − Φ(ym)‖, we
have ρ(xn, xm) < ε for, m,n > n0. As a result, < xn > is a ρ-Cauchy sequence.
So by S-completeness of X and ρ-continuity of f, there exists z ∈ X such that
limn→∞ ρ(xn, z) = limn→∞ ρ(f(xn), f(z)) = 0. Hence, f(z) = z, by Lemma
4.3. �

Now, we prove a fixed point theorem for a multi-valued function in the
skeleton of H-partial uniform spaces.

Theorem 4.6. Let (X,D) be an H-partial uniform space and ρ be the E-
distance function on X such that X is S-complete. Let Φ : X → Rn be a
function which is bounded below. Suppose that � is a partial order induced
by Φ (defined in Lemma 4.4) and f : X → P(X) − {∅} is a ρ-order closed
multi-valued operator with x0 � f(x0), for some x0 ∈ X. Further, let x, y ∈ X
with x � y implies for every a ∈ f(x), there exists b ∈ f(y) such that a � b.
Then f has a fixed point in X.

Proof. Since f(x) is non-empty for each x ∈ X, therefore there exists x1 ∈
f(x0) such that x0 � x1. Similarly there exists x2 ∈ f(x1) such that x1 � x2.
By continuing this process, we get a non-decreasing sequence < xn > which
satisfies xn+1 ∈ f(xn). Since � as a partial order relation, therefore · · · 6
Φ(xn) 6 · · · 6 Φ(x2) 6 Φ(x1) 6 Φ(x0), i.e., < Φ(xn) > is a non-increasing
sequence in Rn. Since Φ is bounded below, therefore the sequence < Φ(xn) >
is a Cauchy sequence in Rn. Then for each ε > 0, there exists a positive integer
m such that ‖Φ(xn) − Φ(xm)‖ < ε, n ≥ m. Since xm � xn, therefore either
xn = xm or consequently, ρ(xn, xm) < ε. Therefore < xn > is a ρ-Cauchy
sequence. Thus, by the S-completeness of X, there exists z ∈ X such that
limn→∞ ρ(xn, z) = 0 = limn→∞ ρ(xn+1, z). As a result, z ∈ f(z) because f is
ρ-ordered closed. �

5. Application: Digital Image Compression

A good digital image requires large number of bytes to represent itself. So, a
popular problem in the field of image analysis is digital image compression. Im-
age compression is a process that makes image files smaller. Image compression
most often works by removing bytes of information from the image, in a way
that takes up less storage space and without degrading image quality below an
acceptable threshold. This process is often done by fixed point theorems in the
framework of digital images. In this section, we will apply separately Theorem
4.5 and Theorem 4.6 to compress a digital image X, shown in Figure 2(A).
In [15, 16, 17], Peters et al. introduced probe functions to represent various
feature values, viz., color, edge, etc., of a digital image. Probe function further
describes the perceptual neighbourhood of a pixel in a digital image which in
turn solve several problems in digital image analysis. Let us define a probe
function first. In this section, we assume X is a set of all pixels of a digital
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image.
A function Φ : X → Rn is called a probe function (object description), defined
as

Φ(x) = (φ1(x), φ2(x), φ3(x), · · · , φn(x)), x ∈ X.
This description function gives the different n features φ1(x), φ2(x), φ3(x), · · · ,
φn(x) of an object (pixel) x ∈ X, say colour, edge, etc.
Next, we define the 8-neighbourhood of a pixel x ∈ X.

Definition 5.1. Let X be a digital image. Then a pixel q is in 8-neighbours
of a given pixel p if p and q either share an edge or a vertex. The set of all
pixels in the 8-neighbourhood of p is denoted by N8(p).

Figure 1 represents 8-neighbourhood of pixel p. Now we consider the digital
image X in Figure 2(A). In Example 5.1, we employ Theorem 4.6 to compress
the digital image X which can be taken as the set of all pixels representing X.

Example 5.2. Consider the digital image in X in Figure 2(A). Take a small
portion ‘A’ in X. Define a descriptive distance d : A×A→ R+ by,

d(x, y) =
√

(φ1(x)− φ1(y))2 + (φ2(x)− φ2(y))2 + · · ·+ (φn(x)− φn(y))2

= ‖Φ(x)− Φ(y)‖.
Here Φ(x) = (φ1(x), φ2(x), φ3(x), · · · , φn(x)) is the probe function, where x ∈
A.
Let Uε = {(x, y) ∈ A×A : d(x, y) < ε, ε > 0}. Then U = {E ⊆ Uε : E ◦E−1 =
E, r ∈ R+}; and E1, E2 ∈ U implies E1 ◦ E2 = E2 ◦ E1, is an H-partial
uniformity on A.
Define an E-distance function ρ : A×A→ R+ by,
ρ(x, y) = min{|φ1(x) − φ1(y))|, |φ2(x) − φ2(y)|, |φ3(x) − φ3(y)|, · · · , |φn(x) −
φn(y)|}.

Figure 1. 8-neighbourhood of p.

Further, define a relation � on A as,
x � y if and only if x = y or ρ(x, y) 6 φi(x) − φi(y), x, y ∈ A, and for all
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(a) Original image X (b) Compressed image

Figure 2. Original image X (set of pixels) and its compressed
version.

i = 1, 2, . . . , n.
Then � is a partial order on A. Let f : A→ P(A)− {∅} be defined as,
f(x) = y, such that ‖Φ(x) − Φ(y)‖ 6 2, x ∈ A. By Theorem 4.6, the function
f has a fixed point. The compressed part of the portion A of X is the set of
all fixed points of A. Consequently, the compressed image of X is the set of all
fixed points of various portions of the image obtained via this method, which
is represented in Figure 2(B).

In the next example, we give the application of the Theorem 4.5 in the
compression of the image X.

Example 5.3. Again, consider the portion A of the digital image X, shown in
Figure 2(A). Define the H-partial uniformity U , the E-distance function ρ and
partial ordering � similarly as in Example 5.1. Let f : A→ A be defined by,

f(x) = y, such that, y ∈ N8(x), x ∈ A, and ‖Φ(x)−Φ(y)‖ = min
z∈N8(x)

‖Φ(x)−Φ(z)‖.

Note that if, for z1, z2 ∈ N8(x), ‖Φ(x)−Φ(z1)‖ = ‖Φ(x)−Φ(z2)‖, then we take
either f(x) = z1 or f(x) = z2, i.e., we choose only one value from z1 and z2, so
on.

Thus, by Theorem 4.5, the function f has a fixed point. The compressed
part of the portion A of X is the set of all fixed points of A. Finally, collecting
all the fixed points of various portions of the image, in this way, gives the
compressed image Figure 2(B) of X.
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6. Conclusion

In this paper, we study partial uniform spaces as topological structures differ-
ent from uniform spaces. Further the category R0PUS of R0-partial uniform
spaces and uniformly continuous maps is a super category of the categories
MET, UMET and PMET. Finally, two fixed point theorems are proved in
the framework of the new structure introduced for the purpose of compressing
digital images.

Acknowledgements. We would like to express our sincere thanks to the
editors and the reviewers for their valuable suggestions to revise this paper.

References

[1] M. Aamri, S. Bennani and D. El Moutawakil, Fixed point and variational principle in

uniform spaces, Sibirskie Elect. Math. 3 (2006), 137–142.
[2] M. Aamri and D. El Moutawakil, Common fixed point theorem for E-contractive or

E-expansive maps in uniform spaces, Acta Math. Acad. Paedagog. Nyi reg. (N.S.) 20

(2004), 83–91.
[3] M. Aamri and D. El Moutawakil, Weak compatibility and common fixed point theorem

for A-contractive or E-expansive maps in uniform spaces, Serdica Math. J. 31 (2005),

75–86.
[4] R. P. Agarwal, D. O’Regan and N. S. Papageorgiou, Common fixed point theory for

multi-valued contrative maps of Reich type in uniform space, Appl. Anal. 83, no. 1

(2004), 37–47.
[5] I. Altun and M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat

23, no. 3 (2009), 15–22.

[6] N. Bourbaki, General Topology, Springer 1989.
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