
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Clairvoyant: Customizable Artificial Intelligence Algorithm
Visualization Tool

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Fabado Gómez Lobo, Mario

Tutor: Onaindia de la Rivaherrera, Eva

Experimental director: Venkatesaramani, Rajagopal

ACADEMIC YEAR: 2023/2024

Abstract
Clairvoyant is a web application built to facilitate education on topics related to Artifi-

cial Intelligence and Algorithms in Computer Science. The main problem it aims to solve
is that of providing an intuitive, open, and highly customizable learning environment
for these topics. Currently, Clairvoyant supports two problem types: Graph Search and
Adversarial Search, both foundational topics in Artificial Intelligence. The Graph Search
visualizer provides tools to explore, at large (with built-in sample algorithms and cases)
or specifically down to the code, how these types of algorithms work. It not only covers
search methods like DFS, BFS, A*, etc; but also includes tools to learn about heuristic ad-
missibility and consistency. Adversarial Search, on the other hand, provides a more direct
use of Artificial Intelligence algorithms; playing zero-sum, perfect information games.
One great strength of Clairvoyant is that the game and the algorithm are separate, and
one can program a completely custom game very easily. The visualizer allows one to
create a custom render function for any given game state to explore the game tree more
effectively. Algorithms such as Minimax, Alpha-beta pruning, and Expectiminimax (for
non-deterministic games) are prime examples of adversarial search algorithms.

In conclusion, Clairvoyant is both a learning and teaching tool that educators can
tailor to provide an intuitive understanding of the foundational aspects of Artificial In-
telligence Algorithms.

Key words: artificial intelligence, education, algorithms, visualization, intuition, web
applications, React

i

Contents

Contents iii
List of Figures v
List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Expected Impact . 2
1.4 Memory Structure . 3

2 State of the Art 5
2.1 Pathfinding Visualization Tools . 5
2.2 CS Education . 5

2.2.1 Brilliant . 5
2.2.2 Datacamp . 6
2.2.3 Other Course Platforms . 7

3 Methods 9
3.1 Project Management Tools . 10
3.2 Version Control . 11

4 Analysis 13
4.1 Software Requirements Specifications . 13

4.1.1 Introduction to the SRS . 13
4.1.2 General Description . 14
4.1.3 Specific Requirements . 16

4.2 Requirement Analysis by Categories . 23
4.2.1 Security Concerns . 24
4.2.2 Legal Analysis . 24
4.2.3 Risk Analysis . 24

4.3 Use Cases . 25
4.4 Budget . 26

4.4.1 Monetary Costs . 26
4.4.2 Human Costs . 26

4.5 Open Source . 29
4.5.1 Licensing . 29

5 Design 31
5.1 System Architecture . 31

5.1.1 Product Layers . 31
5.2 Detailed Design . 32

5.2.1 Graphs . 32
5.2.2 Graph Search . 34
5.2.3 Adversarial Search . 35

5.3 Technologies . 40
5.3.1 Back End Framework . 40

iii

iv CONTENTS

5.3.2 Front End Framework . 41
6 Development and Deployment 43

6.1 Development Tools . 43
6.1.1 Visual Studio Code . 43
6.1.2 React . 43
6.1.3 Flask . 44
6.1.4 Git and GitHub . 44

6.2 Deployment . 44
6.2.1 Flask Setup . 45
6.2.2 React Server Setup . 45
6.2.3 Nginx . 45
6.2.4 Updating . 46

6.3 Services Used . 46
7 Testing 47

7.1 Unit Testing . 47
7.2 Integration Testing . 48
7.3 Example Scenarios . 48

7.3.1 Graph Search Scenario . 49
7.3.2 Adversarial Search Scenario . 52

8 Conclusions and Potential Improvements 55
8.1 Aspects Related to Taken Coursework . 56

8.1.1 Computer Science . 56
8.1.2 Software Engineering . 56

8.2 Requirement Fulfillment Analysis . 57
8.2.1 Functional Requirements . 57
8.2.2 Non-functional requirements . 58

8.3 Improvements and Future Work . 60
8.3.1 Accounts and Authentication . 60
8.3.2 Localization . 60
8.3.3 Responsive Design . 60
8.3.4 Automated Testing with GitHub Actions 60

Bibliography 61

Appendices
A Sustainable Development Goals 63

A.1 Degree of relationship of this project with Sustainable Development Goals
(SDGs) . 63

A.2 Reflection on the relationship of the Capstone Project with Sustainable De-
velopment Goals . 64

B System Configuration 65
B.1 NGINX . 65
B.2 Service Configuration . 66
B.3 Auto-updating . 67
B.4 React Configuration . 67

C Code 69
C.1 Back End . 69
C.2 Front End . 71

C.2.1 Front End Tests . 71

List of Figures

2.1 Brilliant’s Course Selection, with a depiction of its Neural Network mod-
ule on the side. 6

2.3 Datacamp exercise sample shown in Datacamp’s home page 7

3.1 Feature Driven Development Methodology Chart 9
3.2 Scrum Methodology Chart . 10
3.3 Trello Board used for this project . 10

4.1 UML Use Case Diagram . 25

5.1 Clairvoyant Tech Stack by System . 32
5.2 UML Class Diagram for Graphs . 33
5.3 Graph Search UML Class Diagram . 36
5.4 Back End Technology Options . 40
5.5 Front End Technology Options . 41
5.6 Usage Rates of Various Front End Frameworks [23] 42

6.1 Deployment Services Used . 46

7.1 Jest Testing Framework . 48
7.2 Graph Search Scenario: Step 1 . 49
7.3 Graph Search Scenario: Step 2 . 49
7.4 Graph Search Scenario: Step 3 . 50
7.5 Graph Search Scenario: Step 4 . 50
7.6 Graph Search Scenario: Step 5 . 51
7.7 Graph Search Scenario: Step 6 . 51
7.8 Adversarial Search Scenario: Step 1 . 52
7.9 Adversarial Search Scenario: Step 2 . 53
7.10 Adversarial Search Scenario: Step 3 . 53
7.11 Adversarial Search Scenario: Step 4 . 54

List of Tables

4.1 SRS Definitions and Abbreviations . 14
4.2 FR1. Relay Default Algorithms and Cases . 16
4.3 FR2. Minimum Default Inputs . 16
4.4 FR3. Alter Default Algorithms and Cases . 17
4.5 FR4. Code Editing . 17
4.6 FR5. Error Feedback . 17

v

vi LIST OF TABLES

4.7 FR6. Documentation . 17
4.8 FR7. Usage Tutorial . 18
4.9 FR8. Property Inspection . 18
4.10 FR9. Serialize or Deserialize Arbitrary Graph 18
4.11 FR10. Visualize Arbitrary Graph . 18
4.12 FR11. Visually Edit Graph . 19
4.13 FR12. Run Graph Search Algorithm . 19
4.14 FR13. Step Through Graph Search Solution 19
4.15 FR14. Initialize Adversarial Case . 19
4.16 FR15. Visualize Game Tree . 20
4.17 FR16. Visualize Position . 20
4.18 FR17. Run Adversarial Step . 20
4.19 NFR1. Bounded Time Request Responses 21
4.20 NFR2. Efficient Algorithms and Control Yielding 21
4.21 NFR3. Restricted Access . 21
4.22 NFR4. Server Reliability . 22
4.23 NFR5. Server Reliability . 22
4.24 NFR6. Resizable Text . 22
4.25 NFR7. Resizable Components . 22
4.26 NFR8. Ergonomic Code Editing . 23
4.27 NFR9. Themes . 23
4.28 NFR10. Usability and Learning Curve . 23
4.29 NFR11. Platform Target . 23
4.30 Budget: Monetary Costs . 26
4.31 Effort Estimation by Stories . 27
4.32 Sample Stories for Time Estimation . 28
4.33 Values of Estimated Velocity and Time Cost 28

8.1 Related Coursework Subject Breakdown − Computer Science 56
8.2 Related Coursework Subject Breakdown − Software Engineering 57

Resum
Clairvoyant és una aplicació web dissenyada per facilitar l’educació en temes relaci-

onats amb la intel·ligència artificial i els algoritmes dins del camp de la informàtica. El
problema principal que busca solucionar és el de la creació d’un entorn d’aprenentatge
altament intuïtiu, obert i personalitzable per a aquests temes. Actualment, Clairvoyant
suporta dos tipus de problemes: Cerca en Grafs i Cerca amb Adversari, ambdós temes
fonamentals al camp de la Intel·ligència Artificial. El visualitzador de Cerca a Grafs pro-
porciona eines per explorar, tant de forma general (utilitzant els algorismes i casos per
defecte) com específicament fixant-se en el codi, com funcionen aquests algorismes. No
només cobreix algorismes de cerca, sinó que també inclou eines per fer anàlisis sobre
l’admissibilitat i consistència de funcions heurístiques. El mòdul de cerca amb adversari
proporciona un ús més directe dels algorismes d’intel·ligència artificial; l’anàlisi de jocs
suma zero amb informació perfecta. Una qualitat important de Clairvoyant en aquest
aspecte és que el joc i l’algorisme estan separats. I és senzill programar un joc comple-
tament nou des de l’aplicació. El visualitzador permet dissenyar una funció de renderit-
zació personalitzada per a qualsevol estat de joc per poder explorar l’arbre de posicions
més efectivament. Algorismes com minimax, poda alfa-beta, o expectiminimax (per a
jocs no deterministes), són grans exemples d’algorismes de cerca amb adversari.

LIST OF TABLES vii

En conclusió, Clairvoyant és una eina tant d’aprenentatge com d’ensenyament que
els educadors poden adaptar per proporcionar una entesa fonamental molt útil sobre
aspectes relacionats amb algoritmes d’intel·ligència artificial.

Paraules clau: intel·ligència artificial, educació, algoritmes, visualització, intuïció, aplica-
cions web, React

Resumen
Clairvoyant es una aplicación web diseñada para facilitar la educación en temas rela-

cionados con la Inteligencia Artificial y los algoritmos dentro del campo de la informática.
El problema principal que busca solventar es el de la creación de un entorno de aprendi-
zaje altamente intuitivo, abierto, y personalizable para estos temas. Actualmente, Clair-
voyant soporta dos tipos de problemas: Búsqueda en Grafos y Búsqueda con Adversario,
ambos temas fundamentales en el campo de la Inteligencia Artificial. El visualizador de
Búsqueda en Grafos proporciona herramientas para explorar, tanto de forma general (uti-
lizando los algoritmos y casos por defecto) como específicamente fijándose en el código,
como funcionan estos algoritmos. No solo cubre algoritmos de búsqueda, sino que tam-
bién incluye herramientas para hacer análisis sobre la admisibilidad y consistencia de
funciones heurísticas. El módulo de búsqueda con adversario proporciona un uso más
directo de los algoritmos de Inteligencia Artificial; el análisis de juegos suma cero con
información perfecta. Una cualidad importante de Clairvoyant en este aspecto es que el
juego y el algoritmo están separados. Y es sencillo programar un juego completamente
nuevo desde la aplicación. El visualizador permite diseñar una función de renderizado
personalizada para cualquier estado de juego para poder explorar el árbol de posiciones
más efectivamente. Algoritmos como minimax, poda alfa-beta, o expectiminimax (para
juegos no deterministas), son grandes ejemplos de algoritmos de búsqueda con adversa-
rio.

En conclusión, Clairvoyant es una herramienta tanto de aprendizaje como de ense-
ñanza que los educadores pueden adaptar para proporcionar un entendimiento funda-
mental muy útil sobre aspectos relacionados con algoritmos de Inteligencia Artificial.

Palabras clave: inteligencia artificial, educación, algoritmos, visualización, intuición, apli-
caciones web, React

CHAPTER 1

Introduction

The field of Artificial Intelligence is ever-evolving. It has recently been brought to the
forefront of modern life, and as such, advancements and research efforts have multiplied
relentlessly.

With such a critically important field, it is paramount that education tools can keep
up. This Capstone Project aims to provide such a tool, starting with the very foundations
of Artificial Intelligence. While comparatively simple, fundamental AI algorithms like
graph search or adversarial search are ubiquitous in everyday computer applications.
However, educating students who may not have much experience with abstraction can
complicate this fundamental task. Allowing educators to provide clear, flexible visual-
izations to facilitate intuition and allowing students to easily play around with different
cases and algorithm variants is an effective way to make understanding the foundations
of AI more accessible.

1.1 Motivation

Teaching the basics of Artificial Intelligence (not exclusively, as this is true for a lot of ed-
ucation on algorithms, such as sorting algorithms) usually involves a lot of work creating
slides of different steps of an algorithm in a concrete, illustrative case. This is slow, busy
work which could be better spent by educators. Moreover, this technique lacks flexibility;
curious, proactive students who do not understand certain specifics may ask for different
cases, or ask about edge cases or the functionality of the algorithm in practice. These are
problems that prepared slides simply cannot solve.

With this being the case, we must find an effective alternative. Some already exist,
but I believe they have some significant shortcomings. For example, in the case of graph
search, most tools [5] only allow you to visualize the classic algorithms; and editing,
importing, or exporting cases can be time-consuming. Some others [7] restrict you to
classic algorithms on grids only. Those that allow you to dive into the code [6] have very
lackluster user interaction.

With the intent of tackling this issue, I decided to develop Clairvoyant, an easily acces-
sible web application where instructors can prepare their own cases to display. Moreover,
I think it’s critical that students can also choose to explore these cases on their own time.
As such, this application is also aimed at students.

1

2 Introduction

1.2 Objectives

The main goal of this project is to provide a platform where teachers and students can
visually explore algorithms in the field of artificial intelligence.

As such, the itemized objectives for this project could be expressed as follows:

• For each problem type, an effective visualizer must be designed and developed.

• An efficient, safe way to evaluate user-sourced code must be developed. Further-
more, whenever there are errors in the source code, an informative and illustrative
error should be displayed.

• For each problem type, default algorithms and cases must be provided for ease of
use for students and to provide an illustrative example of how to develop these for
users.

• The offered API, as well as the use of the app itself, must be properly documented
in an accessible page within the application.

• The application must remain open source and properly documented in case any-
one wishes to copy and extend the application for some specialized use, or to add
wholly new problem types.

• The application must be deployed to be accessible via the internet without having
to run the server locally.

1.3 Expected Impact

This project was created with the goal of it being used in classrooms for educational pur-
poses. If instructors and educators are willing to make use of it; our expectation is that,
when it comes to topics covered by the application, their teaching will be much more in-
depth and clear. Playing on this very concept, the name of the application, "Clairvoyant",
suggests a clear vision and understanding of AI topics.

Our hope is that with the aid of this application, students can explore the complex but
fascinating field of Artificial Intelligence algorithms and get an intuitive understanding
of them, allowing them to further dive into the implementation details if they so wish.

The expected impact does not end with students. We expect educators to be able to
use this tool to significantly reduce the time it takes to prepare lessons on these topics,
thus allowing them to focus on more important parts of their lessons.

Lastly, if the application gets sufficiently popular; hopefully, educators would be able
to leverage its open-source nature to create wholly new cases, algorithms, and even entire
modules.

1.4 Memory Structure 3

1.4 Memory Structure

What follows is a short description of the remaining major blocks this memory will con-
tain;

• Chapter 2. State of the Art. This chapter describes the current state of the art on this
specific problem and related topics such as Computer Science education in general.

• Chapter 3. Methods. This chapter describes the tools and general methodology
used to organize and develop this project.

• Chapter 4. Analysis and Requirements. This chapter describes the initial analysis
stage and outlines, in detail, the requirements to be fulfilled by the application. It
also describes other concerns with the product and general project planning.

• Chapter 5. Design and Data Architecture. This chapter describes the broad design
principles of the application, as well as the specific design of certain pages and
components, and the internal data architecture of the application.

• Chapter 6. Development and Deployment. This chapter describes the details of
the development process of the application, as well as how the locally developed
program was deployed into a live server, so as to make it externally accessible.

• Chapter 7. Testing. This chapter describes the testing and debugging methodology
used for the application, as well as some use case scenarios that describe, step-by-
step, how the application works in practice.

• Chapter 8. Conclusions and Potential Improvements. This chapter provides a
summary of the conclusions of this project with relation to the field of Computer
Science. It also briefly goes over the potential ways to improve this app into a more
fleshed out product in the long term.

CHAPTER 2

State of the Art

When developing software projects of this nature, it is important to understand the cur-
rently available alternatives to what we are creating. In the previous section, some graph
visualization web applications were already mentioned [5] [6] [7]. We will go into some
detail on what those offer, as well as exploring the state of the art on the broader field of
Computer Science education.

2.1 Pathfinding Visualization Tools

Pathfinding visualization is intrinsically connected to Graph Search. After all, every
pathfinding algorithm is, at its core, a graph search algorithm over some graph repre-
senting traversable terrain. This makes tools that allow one to visualize these kinds of
algorithms a really close example of what the state of the art looks like in education when
it comes to Graph Search algorithms.

One such relevant tool worth highlighting is pathfindout [4]. This tool allows the
user to modify a square grid by adding walls or terrain of varying weights, along with
the ability to run one of four popular Graph Search algorithms (DFS, BFS, UCS, A*) on
that grid. It excels in terms of performance and visually it is quite clean. It also has a
fair amount of options which suffice for the vast majority of cases. Clairvoyant aims to
provide a very similar product, with the added benefit of being able to program any kind
of algorithm and also work with generic graphs.

2.2 CS Education

The purpose of Clairvoyant is to be a tool that both students and instructors can use to
help elucidate certain processes and algorithms, it is not meant to be something a student
can use to teach themselves a topic. However, that latter kind of application fits within
the same niche of CS education, with a significantly different paradigm. Many alterna-
tives exist for teaching oneself AI algorithms or CS topics in general. Furthermore, many
of them use really interesting visualization methods that can be applied to Clairvoyant’s
development.

2.2.1. Brilliant

Brilliant, also known as brilliant.org [8], is a platform that makes heavy use of gamifi-
cation elements and encourages a very hands-on approach to learning. Its courses are

5

6 State of the Art

based on user interaction and incremental learning. This is one of the main inspirations
of Clairvoyant as a product.

The differences, however, are also very significant. Brilliant is a paid service, and it
covers a lot of topics, not just algorithms (Figure 2.1).

Figure 2.1: Brilliant’s Course Selection, with a depiction of its Neural Network module on the
side.

Brilliant does a really good job at teaching the fundamentals of Computer Science, but
more specific topics can only be found in wiki articles, such as A* search [9]. It succeeds
particularly well at teaching and visualizing the function of Neural Networks (Figure
2.2a) and sorting algorithms (Figure 2.2b).

Note the step-by-step visualization provided by the sorting algorithm visualizer, this
is also the approach Clairvoyant uses for its Graph Search module.

(a) Brilliant’s Visualization of a Neural Network
with hidden layers

(b) Brilliant’s Visualization of the Insertion Sort
algorithm

2.2.2. Datacamp

Datacamp [10] uses gamification elements much like Brilliant does. However, it’s more
focused on teaching Data Science with Python and R rather than pure Computer Science.
In some ways, it is more hands-on and practical than Brilliant, with hands-on coding
(Figure 2.3) and more complex scenarios. In a way, this kind of hands-on coding approach

2.2 CS Education 7

is what we went with when designing Clairvoyant. Allowing the user to see the code that
creates what they are visualizing is an invaluable way to build practical experience and
allow the user to experiment and see what works and what doesn’t.

Figure 2.3: Datacamp exercise sample shown in Datacamp’s home page

2.2.3. Other Course Platforms

Many other course platforms, such as Khan academy [11] or codecademy [12] present
courses with combinations of video-based learning and articles, and in some cases for
simpler topics, also have a set of exercises. While these are accessible platforms for learn-
ing computer science, they don’t really go in-depth and have a hard time explaining
complex topics. Khan academy, for example, only has an article on Breadth-First Search,
and nothing else on Graph or Adversarial Search.

CHAPTER 3

Methods

The methodology used for the completion of this project has been a relatively loose Agile
methodology. Many specific agile methodologies [1] focus on how to handle teams and
users of a live version of the app, as well as stakeholders and the like. In the case of this
project, I am the sole developer and must handle all tasks, so team cohesion policies are
irrelevant. Regardless, the project is loosely based on Scrum (Figure 3.2) and Feature-
Driven Development (Figure 3.1). In both methodologies, the design and development
processes are divided into small chunks (Called Sprints in Scrum, and Iterations in FDD).
We will use the FDD terminology from now on.

In practice, here’s how the methodology goes.

1. An initial product model is created

2. The product model is used to create a list of new features

3. For each feature, a design plan, full design, and development build is created

4. Once all features of the model are complete, the model is refined with additional
content. Then the flow of development returns to step 2.

Figure 3.1: Feature Driven Development Methodology Chart

9

10 Methods

The elements taken from Scrum are the backlogs. Oftentimes, when developing fea-
tures, certain design decisions can impact changes on other parts of the model. In this
case, a backlog task is created, which is logged in the Kanban Board (Figure 3.3). Backlog
items are then prioritized as either essential or refinement. Essential fixes are covered
immediately, while refinement items (those that aren’t part of the formal requirements of
the project but can improve user experience, see section 4.1.3) are taken care of after all
formal requirements are finished or whenever the development of a feature would easily
encompass the implementation of such item.

Figure 3.2: Scrum Methodology Chart

3.1 Project Management Tools

The main tool used to keep track of project items is a kanban board. This board’s utility is
twofold. Firstly, it allows us to keep track of items that need designing, building, testing,
fixing, or discussing. Secondly, it allows tutors and stakeholders to keep track of what is
being done. At this stage, the experimental director is the sole stakeholder.

Figure 3.3: Trello Board used for this project

The kanban items are divided into six different categories:

• To Discuss. Items that are to be discussed with project tutors or researched or that
do not constitute part of a feature.

3.2 Version Control 11

• To Design. Items that need to be designed for some feature or refinement.

• To Do. Items that have not yet been started but are part of active development and
have been designed.

• Doing. Items that are being actively worked on or are partially completed.

• Testing. Items that have been completed and are being tested or are pending testing
once related features are completed.

• Done. Items that have been completed and tested.

Furthermore, each category has a divider which splits general items or items dedi-
cated to a specific part of the model. In this case, the project model parts are modules
(Graph Search and Adversarial Search).

3.2 Version Control

For version control, Git was used. During this stage of the project, and as agreed upon
with the experimental director, the project is private. Approved collaborators and tutors
who have obtained access to the repository are able to see the entire commit history. If
other members were to join the project, each commit would also easily indicate who is
responsible for its changes.

Version control is an extremely useful feature, as it can help roll-back changes that
are fatal to the application. It will also make deployment simpler. Once the project is
released, it will be properly open source, which also depends on this technology. This,
along licensing details, is further detailed in chapter 4.5.

CHAPTER 4

Analysis

Before starting the design process of the app, we need to come up with some conceptual
basis that will help us guide the design of the product. The following sections will outline
and explain what these bases are.

4.1 Software Requirements Specifications

The following is a list of formal requirements that the application must meet. It will
follow the structure laid out in IEEE’s Guide for Software Requirement Specifications [2].

4.1.1. Introduction to the SRS

Purpose

The purpose of this Software Requirements Specification is to describe precisely, both to
developers, stakeholders, and users, what functions the product is meant to have in an
unambiguous, specific, and formal way.

Intended Audience

The intended audience of this SRS is mostly the development team, as a way to provide
guidance on how to design the application. Beyond that, it is useful for project overseers
(such as the tutor and experimental director), as it helps ground some of the decisions
taken in the project design stages.

Intended Use

During the development process, this document is meant to be used effectively as a guide
for what to add to the product model and what constraints any of the developed features
must abide by.

Scope

Clairvoyant is a solution for AI algorithm visualization. It allows instructors to showcase
step-by-step algorithms in a quick and customizable way to students, thereby signifi-
cantly cutting down on the preparation time for lessons and allowing student users to
experiment with the covered material in a fun and intuitive way.

13

14 Analysis

Definitions, Acronyms, and Abbreviations

This specification will use the following terms with the associated definitions:

Term Definition
Algorithm Always italicized when used with this meaning. In the context of this

application, refers to a specific program that converts a case input
of a given problem type into a solution for that case.

Case Always italicized when used with this meaning. In the context of this
application, refers to a specific input for a given problem type.

Instructor User An expert user making use of the app with the purpose of educat-
ing others, who may or may not be users of the app.

Problem Type Refers to a broad class of problems in the realm of artificial intelli-
gence. Currently, problem types include Graph Search and Adver-
sarial Search.

Student User Any user of the app who is not using it with the capacity of instruc-
tor.

User Someone who interacts with the application. The user may be a
student or an instructor.

API Application Programming Interface; in this case, referring to the
functions exposed to the user-provided source code.

DoN Degree of Necessity; the degree to which a specific requirement is
necessary, it can be either mandatory, desirable, or optional.

CORS Cross-Origin Resource Sharing
VPS Virtual Private Server

Table 4.1: SRS Definitions and Abbreviations

4.1.2. General Description

Product Perspective

This is a standalone product and isn’t part of a larger product.

Product Functions

In general, the users of this product will have the following needs for this product:

• Obtain information on how the product works. For the user to be able to use the
product, it is critical to provide a general guide on how it is meant to be used, both
in terms of the application as a whole and in terms of the exposed API.

• Visualize graphs in a generic way. Graphs are a core part of visualizing search
algorithms. For this purpose, it must also be possible to alter the style of individual
graph nodes and edges.

• Read and edit code in an ergonomic way. Algorithms will always be expressed in
the form of code. So the app must provide a usable, comfortable, source code editor.
Furthermore, it should be possible to safely evaluate the code the user provides.

4.1 Software Requirements Specifications 15

User Characteristics

There are two major user archetypes for this product, let’s call them the Student Profile
and the Instructor Profile.

A user matching the student profile will usually have some basic understanding of
algorithms, and should understand the structure of a graph. Furthermore, they’ll have a
varying understanding of the JavaScript programming language. They should also have
access to a computer with the capacity to run a browser application.

A user matching the instructor profile will usually have an advanced understanding
of specific AI algorithms and graphs, and should be able to understand the JavaScript
code and API without much difficulty. For the sake of instruction, they should have
access to a desktop or laptop computer with access to a larger display for students to see,
which may often be a projector.

Furthermore, and with regards to accessibility, since this is a visualizer, both user
profiles have a functional amount of vision.

General Constraints

There are largely four groups of constraints that will affect the development and function
of the application.

• Hardware Limitations and Performance (Front End). The application is most likely
going to be handling small cases most of the time. However, the size of cases that
the application will have to handle is unconstrained, as the user will have direct
control over it. Given this, the standard cases and algorithms should model a rea-
sonable amount of complexity for most systems. Algorithms should be as efficient
as possible given their actual use in the visualization, even if this makes them less
accurate with respect to their implementation in industry.

• Hardware Limitations and Performance (Back End). The server should be able
to run as a VPS, so, if possible, functions that require interaction with the back
end server should be limited. The user-provided code should never be run on the
server, which affects both the performance and safety aspects.

• Safety. The application should be safe with respect to the back end server. Since
arbitrary code can be run, the application must make sure that the user cannot make
use of HTTP requests or similar modules that could bypass CORS policy restrictions
on the back end. The proposed solution for this is making user-run code have no
access to imports or context variables. Additionally, all user-provided code must
be run in the user’s computer as opposed to the back end server.

• Accessibility. The application should be usable in a wide variety of screen sizes.
For example, it should be possible to make code visible on a projector screen from
the back of a classroom, but it should also be comfortably usable on a tablet device
or smaller laptop. The product is not designed for use in smartphones, though it
should be possible to use the visualization elements in landscape mode, the pro-
gramming elements are not a priority for mobile devices. As such, text should be
resizable, and it should be possible to resize the sections that various elements take
up to make it easier to focus on one part or another of the application.

16 Analysis

Assumptions and Dependencies

The following assumptions condition the requirements outlined in this specification. Mean-
ing that the requirements, and overall the design aspects of the application, are written
with these assumptions in mind.

• The back end server will be open to requests at all times.

• The user will be utilizing a modern browser with modern functionalities, as op-
posed to legacy browsers.

• Furthermore, a relatively fast internet speed and an amount of memory concordant
with the use expectations of the user is assumed.

4.1.3. Specific Requirements

This section describes, in a formal way, each of the specific requirements that must be
fulfilled by the application.

For ease of understanding and for the sake of readability, each type of requirement
(functional, non-functional), will be divided into certain subcategories.

Prerequisites for each requirement only represent direct requirements. Note that this
means that prerequisites are more expressive, since they represent what a function di-
rectly relies on; but not exhaustive. Prerequisites are inherently transitive, so exhaustive
prerequisite lists can be obtained, if required, by following the chain of prerequisites.

Functional Requirements

Functional requirements are those that indicate an input-output constraint. Meaning,
anything that indicates what the product should do given a specific input.

Back End Functional Requirements

ID FR1
Title Relay Default Algorithms and Cases

Description Default algorithms and cases must be fetchable from the back
end server by problem type. The server must be able to pro-
vide (1) all available cases and algorithms for a given problem
type and (2) the plain-text data necessary to present, load, and
execute a given case or algorithm on the front end.

Prerequisites −
DoN Mandatory

Table 4.2: FR1. Relay Default Algorithms and Cases

ID FR2
Title Minimum Default Inputs

Description For every problem type, the server must provide at least 1 de-
fault algorithm and at least 3 default cases which are compatible
with the algorithm.

Prerequisites FR1
DoN Mandatory

Table 4.3: FR2. Minimum Default Inputs

4.1 Software Requirements Specifications 17

ID FR3
Title Alter Default Algorithms and Cases

Description A designer with access to the back end server should be able
to create, edit, or remove default algorithms and cases.

Prerequisites −
DoN Mandatory

Table 4.4: FR3. Alter Default Algorithms and Cases

General Functional Requirements

ID FR4
Title Code Editing

Description Regardless of the problem type, the user must be able to view
and edit the code that composes its active algorithm and (if ap-
plicable), its active case. This editor should be ergonomic and
provide at least Syntax Highlighting.

Prerequisites −
DoN Mandatory

Table 4.5: FR4. Code Editing

ID FR5
Title Error Feedback

Description Whenever an exception stemming from user code takes place,
the server should employ a best-effort approach to point to
the user the exact source of the error through means of a stack
trace of the error. The error should also be displayed in an
area relevant to the error, ideally with the code editor where
the erroring code is contained.

Prerequisites FR4
DoN Desirable

Table 4.6: FR5. Error Feedback

ID FR6
Title Documentation

Description The application must provide suitable, in-depth documenta-
tion on the exposed API so that a user can properly make use
of visualizer methods and write their own algorithms and cases.

Prerequisites −
DoN Desirable

Table 4.7: FR6. Documentation

18 Analysis

ID FR7
Title Usage Tutorial

Description The product must provide a way for new users to understand
how it functions in general. This includes selecting default
cases or algorithms, running the selected algorithm, and interact
with the visualizer.

Prerequisites −
DoN Desirable

Table 4.8: FR7. Usage Tutorial

ID FR8
Title Property Inspection

Description Many of the elements used within the product will use proper-
ties as a way to expose internal values to the user. The appli-
cation must allow the user to view and edit the values of these
properties, concordant with property-specific constraints.

Prerequisites −
DoN Desirable

Table 4.9: FR8. Property Inspection

Graph Search Functional Requirements

ID FR9
Title Serialize or Deserialize Arbitrary Graph

Description Graphs, or the specific cases for the Graph Search module,
must be convertible back and forth from a human-readable
plain text form and an internal data representation form. The
plain text representation will be named graph notation.

Prerequisites −
DoN Mandatory

Table 4.10: FR9. Serialize or Deserialize Arbitrary Graph

ID FR10
Title Visualize Arbitrary Graph

Description Given the data for an arbitrary graph, the application must be
able to graphically represent it in a way that is intuitive to the
user.

Prerequisites FR9
DoN Mandatory

Table 4.11: FR10. Visualize Arbitrary Graph

4.1 Software Requirements Specifications 19

ID FR11
Title Visually Edit Graph

Description Given a graphically represented graph, the user should be able
to make small, cumulative alterations without directly modi-
fying the graph notation of the case. They should be able to
add or remove edges, alter properties like heuristics for nodes
or weights for edges, and − in the case of generic graphs −
add or remove nodes. Furthermore, this should update the
loaded case graph notation accordingly to represent the new
structure.

Prerequisites FR8, FR9, FR10
DoN Desirable

Table 4.12: FR11. Visually Edit Graph

ID FR12
Title Run Graph Search Algorithm

Description Given valid code for a graph search algorithm, the application
must be able to run this code to obtain a series of solution steps,
which must persist locally for further exploration.

Prerequisites FR1 or FR4, FR9
DoN Mandatory

Table 4.13: FR12. Run Graph Search Algorithm

ID FR13
Title Step Through Graph Search Solution

Description Given valid solution steps and a valid graph concordant with
those solution steps, the application must be able to let the
user visualize every step in that solution. To do so, it should
alter the look of affected nodes or edges, and relay debug or
log information from the algorithm.

Prerequisites FR9, FR10, FR12
DoN Mandatory

Table 4.14: FR13. Step Through Graph Search Solution

Adversarial Search Functional Requirements

ID FR14
Title Initialize Adversarial Case

Description Given a valid case and algorithm for adversarial search, the user
must be able to initialize the case, creating a tree with the ini-
tial position and setting up the algorithm for a step-by-step so-
lution.

Prerequisites FR4 or FR1
DoN Mandatory

Table 4.15: FR14. Initialize Adversarial Case

20 Analysis

ID FR15
Title Visualize Game Tree

Description Given a valid game tree, the application must be able to create
a graphical representation of a sub-tree. The sub-tree must be
determined by which nodes the user wishes to collapse or ex-
pand.

Prerequisites FR14
DoN Mandatory

Table 4.16: FR15. Visualize Game Tree

ID FR16
Title Visualize Position

Description Given a selected position in the game tree and a valid render
function in the active case, the visualizer must render the given
position along with the game tree.

Prerequisites FR14, FR15
DoN Mandatory

Table 4.17: FR16. Visualize Position

ID FR17
Title Run Adversarial Step

Description Given a valid game and algorithm, the application must be able
to run the algorithm step by step until it reaches an exhaustive
solution or until some constraint (such as memory) prevents it
from continuing.

Prerequisites FR14
DoN Mandatory

Table 4.18: FR17. Run Adversarial Step

4.1 Software Requirements Specifications 21

Non-Functional Requirements

Non-functional requirements are those that indicate a constraint on the performance of
the product. In other words, they indicate how the product should handle certain specific
inputs.

Back End Non-Functional Requirements

ID NFR1
Title Bounded Time Request Responses

Description Requests made to the server must always be answered either
in constant time (where the amount of work the code does
doesn’t depend on the size of the request), or in bounded time
(where the amount of time the server dedicates to the request
has some upper bound, at which point the server drops or de-
nies the request). A request should take no longer than 100ms
of active processing time from the server.
This is critical because problem sizes in our application are
unbounded, which means that any request made to the back
end where the problem is an input may lead to arbitrarily large
workloads. This ensures that this does not lead to the server
hanging or dropping requests from other users.

Prerequisites −
DoN Mandatory

Table 4.19: NFR1. Bounded Time Request Responses

ID NFR2
Title Efficient Algorithms and Control Yielding

Description The default cases and algorithms stored in the back-end server
must be designed to (1) avoid infinite loops without control
flow yielding and (2) yield control to the application after sig-
nificantly costly steps.
This ensures that the application will not freeze while trying to
run default code, and provides programmers with an example
of good practices for our application.

Prerequisites −
DoN Desirable

Table 4.20: NFR2. Efficient Algorithms and Control Yielding

ID NFR3
Title Restricted Access

Description Our application will be deployed on some server. For security
reasons, we must ensure that the server (physical or virtual)
running our application’s back end is only accessible by au-
thorized users.

Prerequisites −
DoN Mandatory

Table 4.21: NFR3. Restricted Access

22 Analysis

ID NFR4
Title Server Reliability

Description The back end system should have an uptime of at least 99.9%,
excluding maintenance periods.

Prerequisites −
DoN Mandatory

Table 4.22: NFR4. Server Reliability

ID NFR5
Title Service Scalability

Description The back end system should be able to handle requests from
1000 users using the application normally without impacting
performance.

Prerequisites NFR1
DoN Mandatory

Table 4.23: NFR5. Server Reliability

User Experience and Accessibility Non-Functional Requirements

ID NFR6
Title Resizable Text

Description All components of the application must have text that can be
resized either as part of the whole page being resized or as part
of an individual component with a zoom or font size feature.

Prerequisites −
DoN Desirable

Table 4.24: NFR6. Resizable Text

ID NFR7
Title Resizable Components

Description Wherever one page contains various elements which are not
meant to be in focus simultaneously, at least one of the con-
flicting elements shall be made resizable or collapsable as to
allow the user to shift focus in the application physically.

Prerequisites −
DoN Desirable

Table 4.25: NFR7. Resizable Components

4.2 Requirement Analysis by Categories 23

ID NFR8
Title Ergonomic Code Editing

Description The code editor must provide at least syntax highlighting and
line numbers, and ideally other common code editor features
such as keyboard-based selection, search and replace by literal
or regex, block collapse/expand, and error underlining.

Prerequisites FR4
DoN Mandatory

Table 4.26: NFR8. Ergonomic Code Editing

ID NFR9
Title Themes

Description Users should be able to switch between dark and light themes
in both the code editor and the application as a whole.

Prerequisites FR4
DoN Optional

Table 4.27: NFR9. Themes

ID NFR10
Title Usability and Learning Curve

Description The application should be designed so that the average target
user can learn the basic usage of the application within 5 min-
utes of starting to use it. A programmer trying to learn how
to use the API for a specific problem type should be able to
achieve it in under 1 hour.

Prerequisites FR6, FR7
DoN Desirable

Table 4.28: NFR10. Usability and Learning Curve

ID NFR11
Title Platform Target

Description The application should be designed for desktop computer use,
which will be the most common platform during instruction.
However, it should still be usable in landscape mode on mo-
bile devices such as tablets or cellphones, excepting program-
ming functionality.

Prerequisites −
DoN Desirable

Table 4.29: NFR11. Platform Target

4.2 Requirement Analysis by Categories

While the document above is very exhaustive, it is worth considering and expanding
upon many of the specific concerns that our analysis ought focus on. This will make
heavy use of references to the SRS in the previous section.

24 Analysis

4.2.1. Security Concerns

As for any application that allows the user to run any arbitrary code, it is critical that we
take an in-depth look at security and how to mitigate any potential risks. This is reflected
by the Bounded Time Request Responses analysis (Table 4.19, NFR1) as well as the very
light responsibilities of the back-end server (Table 4.2, FR1).

Additionally, note that we won’t allow any of the user-provided code to run on the
server (since that is happening on the client side) or to make requests to the server (since
we won’t allow arbitrary package imports).

From the perspective of the safety of the user, we could interpret that our default
cases and algorithms are arbitrary code being run on their machine. So, while the code
that can be run from these algorithms is safe with respect to gathering and spreading
information (since it does not have access to JS libraries allowing it to request certain
browser interaction permissions), we should still make sure that these default inputs are
alterable only by trusted personnel on the back end server (NFR3, Table 4.21). In all
likelihood, the worst thing a poorly designed case or algorithm could do is freeze the
user’s tab or crash the application. This is reflected in NFR2 (Table 4.20).

4.2.2. Legal Analysis

This product does not store any personal data, so the legal concerns are rather minor on
that front. However, given that this is an open source program, it is worth analyzing the
kind of licensing that will be made available.

Most of this analysis is carried out in section 4.5.1, but from a legal perspective, we
can discuss broadly the Intellectual Property repercussions and what we want of them.
This analysis has two prongs, constraining allowable freedom from two directions: firstly,
the continued deployment of this application on stable servers, which will incur a cost
(further detailed in section 4.4); and secondly, the continued improvement of the appli-
cation via open source contributions. The first will likely require some kind of long-term
donation-based approach for the upkeep of servers and domains, which means our li-
cense must be chosen in such a way as to prevent others from claiming the work invested
in developing this product. The latter will require a license lax enough that contributors
can work freely and without fear of copyright infringement or legal retribution.

This means that we want to maintain some type of copyright, and not give this away
to the public domain. But we don’t want to forbid things like alteration. Overall, a license
with attribution and restrictions on direct monetization seems ideal.

4.2.3. Risk Analysis

The use of this application is meant to be largely initiated by proactive, interested edu-
cators. For the success of this product, it is critical that a reasonable amount of attention
is received. As further outlined in section 4.5, maintaining an open source application
requires constant enrichment, proper support channels, an accessible code base, and a lot
of care.

With that in mind, we aim to create a product that is truly useful, appealing, and
easy to use (NFR10, Table 4.28). It must create a user base where there exist users who
are dedicated and invested enough to take a look at vast amounts of code and take the
time to properly understand how it works and how to improve it, to set up the initial
environment, to develop, test, and debug changes, and to create a good pull request.

4.3 Use Cases 25

This is no small amount of completely voluntary, uncompensated investment. And
it is a big risk that none of the users will take the time to make such contributions. An-
other risk is that outlined briefly in the previous point about budget to support back end
servers and domains. While the initial setup cost is not particularly high, it incurs a con-
stant cost that builds up slowly but surely over time. Donations or some other kind of
monetization may be required at some point. Not being able to secure the funds required
for upkeep are also a very real risk the product could face.

Given this, it would be good to set up some metrics of how well the application is
dealing with these risks after it is deployed. The following is a list of metrics of success
that we could use to gauge how well the application is doing and whether outreach or
updates are critically necessary:

• The number of pull requests and issues created on the Open Source repository.

• The amount of funds received through direct donations or otherwise generated by
the product.

• The amount of traffic generated by the application, correlating with active users.

4.3 Use Cases

With the intent to further clarify and express, in more practical terms, what the product
is supposed to allow users to do; a set of use cases which depict what is most commonly
done within the context of the application have been drawn up. Figure 4.1 showcases a
UML Use Case Diagram with three roles. The roles here do not determine permission
levels, but rather what the user is doing. Aside from the generic user, the "Programmer"
role defines a user whose intent is to define their own case or algorithm for any purpose.
The "Designer" role defines a user with access to the back end server who wishes to alter
the design of the default algorithms.

Figure 4.1: UML Use Case Diagram

26 Analysis

4.4 Budget

The budget for this project is largely divided in two parts, the monetary costs of devel-
oping this project and the human costs to be incurred.

4.4.1. Monetary Costs

Monetary costs of this server involve largely server and domain upkeep. All of these
have no initial cost, but a compounding cost over time.

Service Estimated Yearly Cost (EUR)
Domain (clairvoyantapp.com) 8.94

Back End Server 119.84
Total 128.78

Table 4.30: Budget: Monetary Costs

Note: The hosting plan we are using offers a USD 6.99/mo cost for the first two years.
However, given the long-term nature of this budget, the USD 10.99/mo cost was used as
reference.

The conversion rate from USD to EUR as of August 16, 2024 was used. The conversion
rate was of 0.9088 EUR/USD.

4.4.2. Human Costs

Human costs refer to the time cost of development of the application. This is a very large
project, and to estimate time costs, we will need to make a few decisions about the model
to use.

We will use a method of estimation based around story points [3], which is suitable
for agile development. Each story will receive a story size (S) and a complexity value (C)
from 1 to 5. The story points that story will incur equals the product of the two values,
this is a measure of Effort (Table 4.31). Given empirical data on some of these, a velocity
value (in story points per human hour) will be calculated. Finally, an estimate for time
cost in human hours will be produced.

Mathematically, one can express this estimation as follows:

T ≈ E
v
=

∑N
i=1 Si · Ci

v

4.4 Budget 27

Story S C E = SC
Creation of the back-end Flask application 1 3 3
Design and Development of the application framework 3 3 9
Design of the Graph Search visualizer 1 2 2
Development of the Code Editor 2 3 6
Design of the Graph Search API 1 4 4
Development of the Graph Search Solution class 4 3 12
Design of Graph Search cases 2 2 4
Development of the Graph Search case language and system 3 2 6
Integration of Graph Search cases, solver, and visualizer 3 4 12
Implementation of default Graph Search algorithms BFS and DFS 2 1 2
Design of default Graph Search cases 2 2 4
Implementation of more complex default Graph Search algorithms
like A* and UCS

2 3 6

Creation of the Documentation for the Graph Search API 2 2 4
Establishment of a standard visualizer layout and home tutorial
page

3 2 6

Creation of the Adversarial Search problem page 2 2 4
Design of the Adversarial Search API 3 3 9
Design and development of the Adversarial Search Visualizer 3 2 6
Development of the Adversarial Search Game class 4 2 8
Development of the Adversarial Search Position class 2 2 4
Development of the Adversarial Search Solver class 4 3 12
Design and implementation of the default Adversarial Search case
Tic-Tac-Toe

2 2 4

Development of the default Adversarial Search algorithm Mini-
max

3 3 9

Design and implementation of the default Adversarial Search case
Custom

1 2 2

Design and implementation of various default Adversarial Search
cases

3 2 6

Development of the default Adversarial Search algorithm Alpha-
Beta pruning

3 4 12

(Optional) Development of the default Adversarial Search algo-
rithm Monte Carlo Tree Search

4 4 16

Creation of the Documentation for the Adversarial Search API 2 3 6
Creation of the Documentation for the Properties API 1 1 1
Acquisition and setup of the domain 2 1 2
Deployment of the application 2 4 8
Total − − 189

Table 4.31: Effort Estimation by Stories

28 Analysis

The velocity will be estimated as follows: given a set of sample stories S with an em-
pirical time cost Ti and a number of story points (effort) Ei, we will calculate the average
velocity in their development and the variance to get a sense of the error.

v̂ =
∑∥S∥

i=1 Ei

∑∥S∥
i=1 Ti

± σ2
v (4.1)

σ2
v =

∑∥s∥
i=1

(
Ei
Ti
− v̂

)2

∥S∥ − 1
(4.2)

Using (4.1) we can readjust our time approximation to calculate T̂. We will take into
account the variance from (4.2). Let N be the number of actual stories. And Ei be their
effort value (in story points).

T̂ =
∑N

i=1 Ei

v̂ ± σ2
v

(4.3)

For convenience. We can express this with the error in the numerator leveraging the
following approximation, assuming ε ≪ x.

1
x ± ε

≈ 1
x

(
1 ∓ ε

x

)
(4.4)

Combining (4.3) and (4.4), we get:

T̂ =
∑N

i=1 Ei

v̂ ± σ2
v

≈ ∑N
i=1 Ei

v̂

(
1 ∓ σ2

v
v̂

)
=

∑N
i=1 Ei

v̂
∓ ∑N

i=1 Ei

v̂2 σ2
v (4.5)

We have the following sample data:

Story E T (h)
Creation of the back-end Flask application 3 5.5
Development of the Code Editor 6 11
Development of the Graph Search case language and system 6 9
Design of Graph Search cases 4 6.5
Deployment of the application 8 9.5
Total 27 41.5

Table 4.32: Sample Stories for Time Estimation

Using the aforementioned formulae (4.1) and (4.2) for v̂ and (4.5) for T̂, we get the
values:

v̂ 0.6506 ± 0.01507
T̂ 290.5 ± 6.729

Table 4.33: Values of Estimated Velocity and Time Cost

4.5 Open Source 29

Given that value, we can estimate that it will take almost 300 hours to complete the
project. This gives us a suitable margin to handle inaccuracies in our predictions or prob-
lems during development as well as dealing with tasks largely unaccounted for (such as
collecting feedback, minor tweaks in the application, and writing this report). In total,
this whole project (including writing the report) should easily take up to 360 hours.

4.5 Open Source

The decision to make this product open source was core to the entire endeavor. This
was always planned to be an easily accessible tool which can be customized by a freely
invested community.

The main goal of this project is not for personal enrichment or as a long-term mon-
etary investment, but rather to create something that serves the community. For this
purpose, a paid model makes no sense.

We must, however, not disregard the issues that stem from having a free-to-use model.
After all, this product will have non-negligible maintenance costs (See section 4.4 for de-
tails).

The goal is to keep maintenance costs low and pay them through personal funding or
donations.

4.5.1. Licensing

The license we choose for our product will have many ramifications, and it should not
be underestimated. The purpose of a license is to clarify the rights that users are given to
use our code.

It is critical that this decision be made early on in the project and before release, as
changing it later can be quite problematic [14] and confusing to users.

There are, largely, four licenses commonly used at present for open source software
projects [15]. Though we can also consider licenses used for all public works such as
Creative Commons (CC) licenses.

One of the most restrictive, well-known open source licenses is GPL (GNU Public Li-
cense). This is a copyleft license, meaning that any derivative works must also be licensed
under the same license to be distributed. This is the licensed used by large non-profit
open source projects such as the Linux kernel.

The MIT License, by contrast, is very permissive. It allows anyone to use, redistribute,
or sell the work or derivatives thereof. It competes with the Apache 2.0 license for most
used in open source in new, modern projects. The MIT license is used, for example, in
the React project, which we are using (though not redistributing) for this project.

The Apache 2.0 license is another permissive license with a lot of similarities to MIT,
though going into more detail on certain legal aspects like patent interactions. It also
gives clearer instructions on what to do with derivative works making use of the license,
wherein the specific licensed content must keep the Apache license and properly docu-
ment any changes made to the original. An example user of the Apache license is the
Android project.

The BSD license is very straightforward and very permissive, it simply requires that
derivative work keeps the license contents and disclaimers (not necessarily the license
itself) and forbids certain actions like claiming endorsements from the copyright holder
for derivative works without written permission.

30 Analysis

Lastly, Creative Commons is very often used for non-software projects. It is generally
not recommended for software projects, but works well for things like multimedia con-
tent. While this is a viable option, it is not specialized for Software and better options are
available.

At a first glance, the GPL license may seem like the best option. After all, we want
users to share what they make using our work. However, GPL can oftentimes be very
restrictive. For example, if someone wanted to use our graph implementation as a li-
brary, their whole project would also have to be licensed under the GPL. Using the lesser
(LGPL) license could be a patch; however, this also introduces slight complications with
monetization of our application. The initial idea is that the application stays free to use
for everyone, but using GPL enforces us to never change the level of access of the product
or any derivative works, so making a paid version would be impossible.

Thinking long-term, something like the MIT or Apache licenses seem like a better
option, as we will be able to respond to changes more freely. It also grants users the
ability to experiment with our software in their own projects without sacrificing their
own choice in licensing.

The choice between Apache and MIT is complicated, but for the sake of contributors,
it is probably best to pick the simplest one to use in practice. Apache goes to great lengths
about patent rights, which are not necessary for the scope of this project; it also has very
specific requirements. The MIT license, by contrast, is shorter and simpler. Thus, the
project will go forward under the MIT license; though given its permissiveness, we could
change it on later versions if we so decided, while keeping the original work licensed
under MIT.

As an addendum, during the development process, a dependency to the BSD-licensed
ACE Editor [24] was added. Since this is a permissive license, it does not restrict what
licensing we can use, so long as the license itself is included in the documentation and
source.

CHAPTER 5

Design

This chapter describes the decisions taken when going from the initial idea and require-
ments to a solid, fully fleshed out product design. The first thing to discuss is the overall
architecture, what large-scale components our product will make use of and how they in-
teract. The second section goes over the specific development-oriented design of certain
responsibility-bearing components. Lastly, the third section documents the used frame-
works and provides the reasoning for the decision to use these.

5.1 System Architecture

The full architecture for this application is relatively simple. We are using a traditional
layered architecture with components on the front end. Since the product doesn’t require,
at least with current requirements, a dynamic database, no such layer is being used.

However, it would be possible, and quite simple, to connect a database to the appli-
cation by using Python’s sqlite3 package[13]. Note that this would be a local, file-based
database. The reason we are using python is outlined in Section 5.3.1.

Before we get into how all components fit together, let’s discuss each of the layers and
what their functions are.

5.1.1. Product Layers

The product can largely be divided into two large, interacting processes. One of those is
the front end and the other is the back end.

The front end is written with React (See section 5.3.2 for details) with Next.js. Next.js
provides its own simple back-end for things like serving images. It will capture requests
that are not directed at the API. The React front end will be working in port 3000.

The back end is written in Flask, using the Python programming language (See sec-
tion 5.3.1 for details). Flask provides a development server, but this is not ideal for pro-
duction for a number of reasons [26]. So instead, we’ll use GUnicorn [25] [28] to create a
proper, secure, WSGI (Web Server Gateway Interface) application. This application will
be working in port 5000.

Beyond the front end and the back end, we have a number of services we are using
to be visible on the web. Our domain was acquired through CloudFlare, which gives us
access to DNS services and proxying, and our server will be hosted by Hostinger.

Requests to the server will go through a reverse proxy managed by nginx [29], any
requests going to the /api region will be forwarded to port 5000, and the rest will go

31

32 Design

through React’s server on port 3000. Note that nginx is, in fact, not serving any files
directly, it is simply forwarding requests. The configuration file for nginx can be found
in Appendix B.1.

Finally, we should also consider the user’s browser, which is responsible for rendering
the front end and executing the JavaScript.

Figure 5.1: Clairvoyant Tech Stack by System

5.2 Detailed Design

The following is a deep dive into the data and class design of the application. While it
is meant to be in-depth, it will go into detail into the intended functionality and design
ideas rather than the strict implementation details. One notable exception is the Virtual-
GraphEdge class, which poses an interesting approach to graph data design.

5.2.1. Graphs

Graphs are a fundamental part of both Graph Search and Adversarial Search. Graph
Search deals with them more directly, as the cases are literal graphs and algorithms are
meant to traverse them. However, Adversarial Search deals with Position trees. Where

5.2 Detailed Design 33

nodes are Positions and edges are actions. They are designed to work with the same
broad implementation of graphs, using their data fields.

Figure 5.2 depicts the designed class diagram for Graphs and their related compo-
nents, note that it omits certain internal management functions and mostly exposes func-
tionality and relationships without going into implementation-level details. Also note
that this is not static data representation meant to be used for database design, but rather
the classes that are dynamically in use in the application itself, in memory. This is ce-
mented by the use of certain JS types like Records or the dynamic "any" type.

Figure 5.2: UML Class Diagram for Graphs

Note the presence of the VirtualGraphEdge class, whose only purpose is referencing
a concrete GraphEdge. The isRef() method of GraphEdges returns true for Virtual-
GraphEdges and false for concrete ones. The following is an explanation on how the
Graph class keeps its edges easily accessible and tractable, even for large graphs.

Graphs contain a map linking nodes to all edges whose source is that node. This is
very useful in practice as getting all the neighbors of a node is a common operation, and
this allows it to be executed in O(1) time. However, it complicates getting the in-degree
or the incoming edges of a node, which can be very useful when traversing a graph
backward. Additionally, it complicates bidirectional edges. A bidirectional edge would
have to become two separate edges, which could also make rendering more complicated.

The solution for this is the Virtual Edge. Virtual edges are not rendered and are al-
ways paired up with a concrete edge. They point in the opposite direction, so their source
is their reference’s target and vice versa. They can be traversable, but only if their refer-
enced edge is flipped or bidirectional, and it is not forbidden. This logic allows us to grant the
user easy modification of the graph without constantly creating and destroying objects
and updating references. In fact, flipping edges, making them bidirectional, or prevent-
ing them from being traversed requires no such updates using this model. This creates a
very stable environment where references to edges can be considered safe and the adja-
cency map doesn’t need to be recalculated constantly. Instead, when adjacent nodes are
requested, each of the candidate edges (some of which may be virtual), are checked for
traversability and skipped if they are untraversable, this is an O(1) operation for each
edge.

34 Design

In conclusion, the Virtual Edge makes it so edge operations are O(1), as they only
change local data to the concrete edge, and adjacency calculation operations are only
O(in-degree + out-degree), which in general is very fast.

5.2.2. Graph Search

Graph search works based on an input graph, taking the role of the case, and an input
solver, taking the role of the algorithm. When run, the solver is given the graph as an
input to its solve() method, which is meant to generate a series of solution steps. Those
solution steps are then internally converted to commands and stored in a command han-
dler.

The command pattern has an undo and redo function, which allows us to execute small
steps like marking a node as visited or unvisited without having to store the entire graph
state for each step. When navigating to a step j from step i, steps are executed from i + 1
to j if j > i, or reverted from j to i + 1 if j < i. The execution of those commands make
changes to the graph which are reflected in the GraphView component.

The Graph Notation Language

The notation for cases for the Graph Search problem type is what we’ll call Graph Notation.
Graph Notation is a command-based language with a relatively simple parser. It is meant
to be familiar to instructors and flexible. As such, it uses syntax reminiscent of command-
line interfaces.

With the exception of grid graph traversability setups, every command takes up one
line. A command consists of a verb, a set of options or flags, some arguments, and a data
field. The grammar for these commands is as follows:

⟨command⟩ := ⟨verb⟩ ⟨arguments⟩ ⟨options⟩ ⟨data⟩
⟨arguments⟩ := ⟨argument⟩ ⟨arguments⟩ | ϵ

⟨argument⟩ := ⟨word⟩ | "⟨string⟩"
⟨options⟩ := ⟨option⟩ ⟨options⟩ | ϵ

⟨option⟩ := -⟨char⟩ | –⟨word⟩
⟨data⟩ := ⟨JSON Object⟩ | ϵ

Where ⟨char⟩ refers to a single character, ⟨word⟩ refers to a sequence of characters without
whitespace ⟨string⟩ refers to any string, and ⟨JSON Object⟩ refers to a valid string in
JavaScript Object Notation. The ⟨verb⟩ symbol is one of a specific subset of strings, which
depends on the specific language design needs. Some possible examples of verbs are
NODE, EDGE, START, or GOAL.

Every Graph Notation starts with the graph type, which currently can either be GRID
or GENERIC.

In the case of "GRID" it is followed by the dimensions separated by an "x", for ex-
ample, GRID 4x10 indicates a 4 by 10 grid. Let the dimensions be w × h. The follow-
ing h lines are each w numbers which indicate whether the grid node at that position is
traversable. 0 indicates untraversability, 1 indicates traversability. Grid graphs also sup-
port the DIAGONAL command, which takes one argument. If the argument is a number,
the diagonalWeights property of the graph is set to that value, the constants Manhattan,
Euclidean, and Chevyshev are also allowed as an argument.

The rest of the parsing is very similar for both graphs, the only difference is that Grid
graphs disallow the creation of new nodes and node targeting is done by coordinates in-

5.2 Detailed Design 35

stead of IDs, for example, instead of targeting node 2_4 (on the 3rd row and 5th column),
one would use 2 4.

The NODE command creates or alters a node, it takes 1 node identifier as arguments. It
merges the command’s data field with the node’s data.

The EDGE command creates or alters an edge, it takes 2 node identifiers as arguments.
It merges the command’s data field with the edge’s data and sets the edge’s bidirectional
field to true if the -b flag is set.

The START command sets the graph’s start node to the one in the argument field.

The END command sets the graph’s goal node to the one in the argument field.

The Solver Class

The Solver class works as the base for the algorithm provided by the user. It provides use-
ful methods like visit(), expand(), log(), or alter() (which works with the property
subsystem).

The user is meant to implement a constructor (for any setup tasks, this constructor
takes a reference to the Graph) and a solve() implementation, which is meant to execute
the intended algorithm. The aforementioned methods modify an internal Command-
Handler by appending commands that modify the look of the graph. For example, the
visit() method adds a GraphCommand to the end of the Handler’s queue which, on
execution, colors a node yellow, and on revert, it sets its color to whatever the property
held beforehand. This makes use of an internal property map which the solver provides
transparently and is updated as commands are added to the queue. The UML Class
diagram for the Solver is provided in Figure 5.3.

The GraphView Component

The GraphView component works as an interface between our local representation of
Graphs (Figure 5.2) and the visualization system based on Vis.js’s Network module[16].

We will be using a wrapper[17] of Vis.js for React. This is critical because we don’t
want to constantly rerender the graph, we only want to do this when React’s component
framework detects effectual changes that require a rerender.

The GraphView component has a number of tasks it needs to fulfill. First, and most
importantly, it must provide an interactive view of the graph. To do this, it will convert
the local graph into a vis.js graph, applying the necessary styles in the process.

Secondly, it must feed information back to the system about selected nodes or edges
(for the sake of displaying property inspectors), or any interaction that may require effects
such as creating new nodes or edges. The GraphView component is, in turn, the core of
the user’s ability to visually edit the graph.

5.2.3. Adversarial Search

Adversarial Search is more complicated to design than Graph Search for a few reasons.
Firstly, the problem size is massive, and often infinite. The total number of possible play
sequences for a given game is often astronomical, even Tic-Tac-Toe gets too large to prop-
erly fully visualize. Secondly, the search process generates a lot of metadata, such as
utility values, alpha, beta, total matches, etc; depending on the algorithm being run.

36 Design

Figure 5.3: Graph Search UML Class Diagram

5.2 Detailed Design 37

Another challenge we will need to tackle is that visualization makes the usual ap-
proach for Adversarial Search (Iterative Deepening), not as effective, as we need to keep
all positions in memory to represent them in a tree. This makes the problem size an even
larger issue.

The approach we will use to keep algorithms from running forever is limiting the
amount of positions to be explored. To do this, we will allow the implementation of
two functions, one which can expand nodes, and one which can’t and simply runs the
algorithm on the existing nodes.

Both of those functions can be very long-running, so we will need to use a system
that allows us to surrender control back to the application to process events and prevent
the tab from crashing. We can use JavaScript Generators for this purpose. Each of these
functions will be intended to run as a generator which regularly yields back to the Ad-
versarial Search page. We will use this mechanism to limit the amount of time spent on
processing.

The user will have to provide code for a case (derived from GameBase) and an algo-
rithm class, derived from AdversarialSearchSolution. The game will, in turn, generate an
initial position, which will be derived from the BasePosition class. This initial position
will be the root of the game tree.

With those details out of the way, the intended design for this problem type is to have
an expansion generator and an algorithm step generator, the user can run either either
step-by-step or automatically as fast as possible. The expansion generator will cause the
tree to have new positions, where the algorithm step generator will cause the algorithm to
make progress by calculating node utilities.

The Game Class

Let’s consider the Game Class to be the class of the object resulting from the execution
of the case for Adversarial Search. The Game class requires the following methods to be
implemented by the user, these methods are abstract in the base class.

• getInitialPosition(): AdversarialSearchPosition: This function should re-
turn a reference to the initial position of the game, this will function as the root of
the game tree and also allow the preliminal tests to check that the derived position
class implements the required methods.

• getActions(pos: AdversarialSearchPosition): Action[]: This function re-
turns all possible actions resulting from a given position. It is up to the programmer
to decide how to represent actions for a given game, but at least a name field is re-
quired to differentiate the actions in the game tree.

• getResult(pos: AdversarialSearchPosition, action: Action: AdversarialSearch-
Position: This function returns the resulting position from taking a given action
from a source position.

The Action interface is a class with a string field "name", an optional string field
"display", and a free [key=string]: any field that allows it to have any other at-
tributes at the programmer’s whim.

The game class must be derived from the base class AdversarialSearchCase, the base
class provides no helper methods but it implements the EditableComponent interface to
utilize the property system. A user can optionally override the get properties() getter,

38 Design

along with setProp, to allow the user to change game properties like player piece colors
using a convenient inspector.

The Position Class

The position class must be derived from AdversarialSearchPosition; it is the class that
holds information about each individual position, and one that will likely have hundreds
of instances as expansions are run. The position class is responsible for providing not
only a way to be rendered, but also must inform a lot of the logic on how to handle the
position. It must provide whether it is terminal, what its score is if so, whose player’s
turn it is (if any, as there is a chance positions exist with random outcomes), and must
hold all data required for the Game class to get any possible subsequent positions.

The position class must implement the following abstract methods:

• isTerminal(): boolean; returns true if the node is terminal, i.e. no moves can be
played and the result of the game is determined.

• getScore(): number; returns a value from -1 to 1 if the node is terminal; the higher
it is, the better the result is for the first player.

• render(ctx: CanvasRenderingContext2D): void; given the canvas context, draws
the position graphically.

• getId(): string; returns a unique ID for the given position. Equivalent positions
should return the same ID, this allows the tree to detect convergent play sequences
and avoids unnecessary recalculations and re-expansions.

• getPlayer(): number; returns -1 if it’s the minimizing player’s turn, 0 if it’s a
random step turn, and 1 if it is the maximizing player’s turn.

It can also optionally provide a getHeuristic(): number method, which can be
used by algorithms to calculate a heuristic utility for non-terminal nodes.

To aid the user in rendering, the position class provides a reference to the game class,
in case any properties need to be accessed, and the following method:

• drawHelper(ctx: CanvasRenderingContext2D): provides a helper which can per-
form some common rendering operations like drawing grids, lines, circumferences,
or text without having to use the minimal rendering context methods.

The AdversarialSearchPosition class also implements the EditableComponent inter-
face, so, much like with the game class, a user can define their own properties, which will
be inspectable from an inspector window in the TreeView when a node is selected.

The Solver Class

The solver class must be derived from AdversarialSearchSolution; it is the class that holds
information about how to run the algorithm and keeps a lot of the internal data needed
for visualization. A core example is the game tree, which is a Graph where all nodes have
a position field in their data pointing to a position, and all edges have an action field in
theirs.

The solver class must implement the following abstract methods:

5.2 Detailed Design 39

• runExpansion(), which must return a Generator of Expansions, in turn, Expansions
can and should be obtained from the expand method in the base class.

• runAlgorithm(), which must return a Generator of AlgoSteps, in turn, AlgoSteps
can and should be obtained from the algoStep method in the base class.

The AdversarialSearchSolution base class provides the following helper methods:

• expand(position: AdversarialSearchPosition): Expansion, tries to expand
position and populates its internal moves array. It uses the internal game tree as a
cache and generates any yet-ungenerated actions and resulting positions as edges
and nodes respectively. Decreases the expansion budget.

• algoStep(debugValue: any = undefined): AlgoStep, decreases the algorithm
step budget.

The return value of these methods is used by the graph search visualizer to interpret
what has happened and what it must render.

The TreeView Component

The TreeView component works in a very similar way to the GraphView component. The
main difference (along with some minor differences with how inspectors are managed,
since these are now targeting the "position" field in data rather than the node themselves),
is that it has a "collapsed" ID Set<string>. Whenever this set is altered, the TreeView
starts at the root of the tree and starts a depth-first search with a visitation list. On each
iteration, it adds the node it is traversing to the vis.js graph object for rendering. When-
ever it finds a node whose ID is in the collapsed set, it backtracks instead of expanding
further.

In terms of styling, it also changes quite significantly. Score is used as a color, negative
values are rendered as red, and positive as green, linearly interpolated. This becomes the
fill of terminal nodes. After the algorithm is run, all nodes with a "utility" value use that
utility color as a thick border.

Terminal nodes are rendered as circles. Non-terminal nodes are rendered with differ-
ent shapes based on the active player (up arrows for the maximizer, down arrows for the
minimizer), chance nodes are drawn as circles as well.

Lastly, actions are drawn in green for actions taken by the maximizer and red for
the minimizer, with a pastel color for suboptimal moves and a saturated color for those
considered "best moves" by the algorithm. This is taken from the bestMoves: Action[]
field in the position, where the action name is used for comparison.

40 Design

(a) C# with ASP.NET (b) Python with Flask

(c) JavaScript with Node.js (d) PHP

Figure 5.4: Back End Technology Options

5.3 Technologies

This section will not go in-depth into how the technologies were used, but how and why
they were chosen. Their specific usage in practice will be discussed in Chapter 6.

There are three main goals we are trying to pursue when making these decisions.
Firstly, we want to use technology that the team is familiar with, so as to reduce the
necessity to learn new technologies or languages. Secondly, we want to ensure that po-
tential future collaborators are also comfortable with this technology; to achieve this, our
choices should be among well-known and supported technologies. Lastly, we want to
use technology that is easy to use, fast to develop with, and provides a good level of
maintainability and support; both external (in the form of third-party packages or plug-
ins) and internal (in the form of built-in functionalities or official packages).

5.3.1. Back End Framework

There are many options out there for back end frameworks. The options to be considered
are laid out in Figure 5.4.

Each of them have their pros and cons. Here’s a brief description of those for each
technology:

ASP.NET has a wealth of support in the form of C# nuget packages and benefit from
.NET’s expansive ecosystem. Furthermore, its project architecture works well with very
large and expandable projects. However, it requires a lot of setup and involves some
significant level of boilerplate just to get it running. It is safe to say that, given the re-
quirements of the application. Using ASP.NET would be an instance of over-engineering
the back end.

Flask uses Python, which is one of the most used programming languages, especially
in the realm of Artificial Intelligence. The setup for Flask is simple and straightforward

5.3 Technologies 41

[18]. However, none of the members of the team have used it before, so it would require
learning the technology first.

Node.js uses JavaScript, which is the same language used for the cases and algorithms
for the application, and TypeScript is used in the front end. This makes it easier to connect
the two sides into one. However, setting up a server, while still less complex than with
ASP.NET, still requires more work than with Flask.

PHP is the quintessential back end scripting language. It works out-of-the-bag with a
lot of webserver providers and it has a lot of functionality. However, none of the members
of the team have used PHP before with this capacity and it requires extra work to connect
it in the usual way to front-end web frameworks.

Overall, given the extensive knowledge of Python in the community, and the ease of
development with it, the final decision on how to develop the front end was to use Flask.
However, note that the back end is very minimal as far as the specifications outline, so it
would be possible to change this later in the project life cycle if something requires it to
change. Most of the responsibilities of the back end are serving files, and those files are
really where the design complexity lies. The entire code for the back end in Python is in
Appendix C.1.

(a) Angular

(b) React (c) Vue

Figure 5.5: Front End Technology Options

5.3.2. Front End Framework

Front-end frameworks are much more important in this instance. This application is
going to be large in terms of front end and it will require complex functionalities that
would be extremely time-consuming to refactor into a different framework.

With that in mind, this decision is critical for the development of the application, the
options to be considered are depicted in Figure 5.5.

Much like with back-end options. These front-end frameworks have their own pros
and cons.

42 Design

Angular is a mature technology that offers much of the expected functionality of a
modern front-end framework. It is also one that the team has worked with extensively
before. It has a fair amount of 3rd party support such as Angular Material [19]. However,
it requires a lot of files for each component and in doing so bogs down development and
makes it harder to gauge interactions.

React is a powerful tool that manages to condense components into simple TypeScript
(or JavaScript) functions. Over time, React has been reducing the amount of boilerplate
required to develop with it. It has rich support from third party libraries such as Material
UI [20] and specific ports of JavaScript graph visualization libraries like vis.js with react-
vis [21], used by Uber. However, none of the team is familiar with react, so it will impose
a learning curve on the project.

Vue is about as new as React and has had a lot of praise for its simplicity and per-
formance [22]. It is better than react in a lot of aspects. However, its community is sig-
nificantly smaller (Figure 5.6). This will have two downsides. The availability of 3rd
party support will be more lacking, and more potential contributors would have to use a
technology that they’re statistically less likely to know.

Figure 5.6: Usage Rates of Various Front End Frameworks [23]

Overall, while popularity by no means equals quality, in this case, with us having a
project where people getting involved is critical, React seems to be the better choice. The
added 3rd-party module and library support will also be critical in this endeavor.

CHAPTER 6

Development and Deployment

This chapter talks about the tools used for development and, in the extent that it wasn’t
discussed in the previous chapters, the reason for their use in development. It goes more
in-depth into the practical aspect of using these tools.

Section 6.2 within this chapter explains the deployment process in detail, along with
the services used to achieve a successful solution.

6.1 Development Tools

6.1.1. Visual Studio Code

Visual Studio Code (VS Code) was the IDE of choice for this project. Visual Studio Code
is free and has a number of features that made development much easier. Namely; git
integration, accessible project folder views, and critically, extensions.

VS Code Extensions

Extensions in VS Code are extremely powerful tools. They allow you to add functionality
to an otherwise simple and lightweight tool without many built-in features. This allows
one to decide what features they need and they don’t.

The number of extensions used for this project is actually very high, but here are some
highlights:

• Python extension package: Adds Intellisense and syntax highlighting options for
python.

• HTML extension package: Adds features for creating HTML code fast, like auto-
closing tags and DOM Component attribute Intellisense.

• Tailwind Intellisense: reduces the need to search the documentation and automat-
ically detects both default and custom class names in react className property
fields.

6.1.2. React

The decision on using React is explained in Section 5.3.2. In development, React is used
for fast iteration on the front end. With near-instantaneous and automatic hot reloading,
changes made in the project files are immediately reflected on the testing application

43

44 Development and Deployment

hosted on localhost. Using React’s development server made development much more
dynamic and fast, without having to wait for builds after every change.

Tailwind CSS

Tailwind is an alternative to CSS styles. Note that CSS styles still work as normal. Tail-
wind, however, provides a vast library of default classes which are automatically cre-
ated on project compilation and skips the need to create specialized CSS classes or inline
styles, which can often be long or clash with the HTML syntax and general shape of the
code. It even provides access to pseudoclasses like hover or media-queries like the user’s
preferred theme or window size with just classes.

Most importantly, Tailwind, especially with its VS Code extension, makes theming
and creating the wanted visual structure much faster overall.

Alternatives to Tailwind exist; bootstrap is a relatively popular, but not nearly as flex-
ible alternative.

6.1.3. Flask

The decision on using Flask is explained in Section 5.3.1. In development, Flask was used
as a development back-end server, used without any WSGI application such as gunicorn.
It works with React’s front end to provide a suitable API that can be hosted right from
the development computer.

6.1.4. Git and GitHub

The project management aspects of Git and GitHub are mentioned in Section 3.2. Git is
also used as a development tool. With GitHub as the storage system, we can use Git to
work from various computers or collaboratively. Branches can also be useful when var-
ious collaborators are working on separate features or, after deployment is complete, to
have a live version in the main branch and in-development features in their own branches
or in an unstable testing branch before being pushed to production.

This is also very useful for collaborators post-release; as Git is what will allow us to
collaborate with open source contributors (Section 4.5).

6.2 Deployment

The deployment process started with the acquisition of a Virtual Private Server (VPS)
that could be used to externally keep the necessary services running at all times. Section
6.3 goes over those.

Once a VPS was acquired, SSH was used to connect to it, using PuTTY to connect to
an ssh service from a Windows device. The following is a series of tasks that needed to
be completed to set up the server.

• Set up SFTP: sudo apt-get install openssh-server. Since we want to log into
SFTP with root, we needn’t set up a new user and set overrides. But this would be
posssible in the /etc/ssh/sshd_config configuration file.

• Install Git with sudo apt-get install git, then configure the appropriate user-
name and email with git config –global user.name NAME and git config –global

6.2 Deployment 45

user.email EMAIL. Lastly, navigate to the user folder and clone the project reposi-
tory. Note that this requires a GitHub access token since password authentication
is no longer supported for security reasons.

• Install Python, pip, and Node.js, and nginx. All of these can be done quite easily
with a sudo apt-get install command.

With that, we have the initial setup and everything we need to have installed, success-
fully installed. All that is left is to get the necessary services up and running to actually
host the website.

As a general guide, a tutorial [25] outlining the steps of deploying a flask back-end
with react was followed. Note, however, that it assumes a static deployment of the react
back end, which is not the case for us, so some adjustments needed to be made, notably
with the clairvoyant_server service outlined later.

6.2.1. Flask Setup

The setup for the Flask back end is rather simple, all we have to do is install the necessary
pip modules (one of which is gunicorn) and then run the gunicorn module on our main
flask script.

To do this, and to avoid bloating the global python instance with modules, a virtual
environment was created using the venv package, so, after installing with pip install
venv, creating a new environment in the same directory with python -n venv venv, and
activating it with ./venv/scripts/activate, we can use the requirements.txt file to in-
stall all necessary modules in this new virtual environment.

Running pip install -r requirements.txt will install all necessary modules and
also create a gunicorn executable in the venv/scripts directory. We will use this exe-
cutable to define the service.

All that is left is setting up and configuring the service. The specific configuration is
available in appendix B.2. It sets the service to run the gunicorn executable targeting our
main.py script and listening on port 5000.

The resulting service will be named clairvoyant_api.

6.2.2. React Server Setup

By contrast, the react server setup is much simpler. All we really have to do is install all
necessary node modules using our package.lock file with the npm i command, then run
the production build process with npm run build. It is critical that before this step is run,
the build directory is set properly in the react configuration (See appendix B.4).

Much like with the back end, we will use a service for the front end, as we are not
creating a static webpage. The process for this is very similar to Flask’s, except the com-
mand we run is npm run start from the front end directory. By default, this leads to the
front end server running on port 3000.

The resulting service will be named clairvoyant_server.

6.2.3. Nginx

The last step is to set up a reverse proxy so that we don’t need to specify a port every
time we make a request. We want to use the HTTP protocol on port 80 to make all our

46 Development and Deployment

requests. We want anything going to the /api region to be forwarded to Flask on port
5000, and everything else to go to port 3000 with React’s front end server.

The solution for this is nginx, a reverse proxy which is standard across the industry
and has recently won out over Apache in terms of usage [27]. Nginx allows us to very
easily set up a reverse proxy with a very versatile configuration.

All we have to do is create a new clairvoyant.nginx configuration file in nginx’s
sites-available directory (See appendix B.1 for the file contents), and symlink that into
the sites-enabled directory.

After restarting nginx with systemd restart nginx, the reverse proxy is up and run-
ning.

6.2.4. Updating

Pushing updates to the front end can be quite a process. To mitigate this, an auto-update
script was created. This allows us to update the website and back end to the latest commit
on GitHub with a single command.

The update process goes as follows:

• Pull all changes from the GitHub repository.

• Update all node packages to the required version.

• Rebuild the react front end.

• Restart clairvoyant services.

The resulting bash script file is available in appendix B.3.

6.3 Services Used

The service option used for domain acquisition and DNS management was CloudFlare,
and in terms of a VPS hosting solution, Hostinger was used.

(a) Hostinger (b) CloudFlare

Figure 6.1: Deployment Services Used

CloudFlare offers competitive prices with many built-in features such as automatic
proxying and DDoS protection.

Hostinger offers very low prices for long-term plans and grants complete control over
a VPS with decent specs. Given that we are not running a traditional LAMP setup, we
cannot rely on webserver solutions like cPanel. Instead, we need to connect via ssh and
create our own services.

The cost of these services is specified in section 4.4.

CHAPTER 7

Testing

Testing is an essential step in the process of creating a product. Before any feature can be
considered as complete, it must be thoroughly tested and checked for expected function-
ality.

For this project, most features were tested by hand immediately after implementation.
The reason for this is twofold; since this is a visualizer, most of the features that were
implemented create some kind of visual effect, which automated tests have a hard time
catching the nuance of. Secondly, the back end is rather simple (in terms of functionality
only, the files it serves are rather complicated), so it didn’t require any specialized testing.

There are, however, notable exceptions. The graph API needs to be tested, as it is
a core part of the project developed for the purpose of supporting all graphs in the ap-
plication, and it contains a lot of functions that interact with one another in potentially
unexpected ways. Those will be explained in Section 7.1.

7.1 Unit Testing

While we are not using a methodology that hinges around testing (unlike approaches
like extreme programming do [30]), it is still important that those features that are prone
to error or can easily break on modification are thoroughly tested.

Unit testing allows errors that would otherwise be hard to catch to be caught automat-
ically. Throughout the design process of certain features, we can write tests that describe
specifically the expected behaviour of what we are planning to develop.

In our case, the graph API was one of the most critical parts of the application to keep
testing, as the methods kept changing and getting more complicated to accommodate
the increasing complexity and requirements of the application’s visualization needs and
specific features for more complex algorithms to utilize.

To get unit tests working, we used the Jest testing framework [31]; or, more specif-
ically, ts-jest (its TypeScript counterpart). Jest allows us to create test files anywhere in
our project (either by putting them inside a __tests__ folder or by using the .test.ts
extension. A few illustrative examples of such tests are available in appendix C.2.1.

With a bit of configuration, we can then run the tests with a simple npm command:
npm run test. The tests we write use jest-specific methods such as expect, which allows
us to use matches which are much more informative when a test fails.

47

48 Testing

Figure 7.1: Jest Testing Framework

While the use of unit tests wasn’t extreme, it is possible that as the application grows
larger and more complicated, more and more tests are required.

Automated testing is also an extremely helpful tool when it comes to open source
contributions. GitHub allows automated tests to run on a proposed pull request and will
automatically tell us whether a given request satisfies all tests. Adding such automated
testing is mentioned under further improvements in section 8.3.

7.2 Integration Testing

Integration testing is the process of testing how certain components of a large project
work with other components at large. The main difference between integration testing
and unit testing is that unit testing focuses on very small steps, whereas integration test-
ing takes the application as a whole as a basis.

Integration testing has some significant limitations. Firstly, it is very complicated to
design good integration tests, as there are often many moving parts, and designing a test
that can properly locate the specific piece of code that is failing can often be very difficult.

Indeed, figuring out why new features were not working and debugging them was
one of the most complicated parts of the project, though using an agile methodology
where features were designed, implemented, and tested one at a time made it much
easier to pinpoint errors rather than the alternative of testing the whole thing all at once
after everything is implemented.

It is hard to specify a methodology for integration testing, as different parts of the
system work in very different ways. Most of the testing was done on inbuilt algorithms
(for graph search and adversarial search) and cases (specifically for adversarial search).
The process was effectively running through the standard use case of the application
using those cases and algorithms. One such step-by-step example for each problem type is
given in section 7.3.

7.3 Example Scenarios

As part of integration testing, a full use of the application is ideal. The following is not
only a test case, but also a showcase of the way the application is meant to work in a more
direct and practical sense.

7.3 Example Scenarios 49

Since each problem type works in vastly different ways, we will showcase one use
case for each of the problem types.

7.3.1. Graph Search Scenario

Our Graph Search scenario is rather simple. Our goal is to load up one of the default
generic graph cases, and run a simple DFS algorithm. We will step through the solution
steps and check which nodes are expanded and in what order before the goal is reached.
Lastly, we will add some nodes and edges to the graph using the visual editor, and run
DFS again.

Figure 7.2: Graph Search Scenario: Step 1

Figure 7.2 shows the case editor with the dropdown menu open. The options here are
populated from a request to the back-end server made once when the page first loads.
Clicking on the highlighted "Generic Graph" option loads the default case and displays it
on the text and visual editors.

Figure 7.3: Graph Search Scenario: Step 2

50 Testing

Figure 7.3 shows the result of loading the first case and similarly selecting "Depth First
Search" as the algorithm to run. It also shows the graphical representation of the selected
default case.

Figure 7.4: Graph Search Scenario: Step 3

After pressing "Run", and moving the solution step slider to step 3, we see the result
depicted in figure 7.4. The top right of the screen displays the graph inspector with
general information about the given generic graph. The node labeled "first" is highlighted
in green, indicating that it has been expanded. The node labeled "second" is highlighted
in yellow, indicating that it has been visited.

Figure 7.5: Graph Search Scenario: Step 4

After sliding the solution slider to the second to last step (the last is simply the success
state, which highlights the whole tree in blue), we can see figure 7.5. The arrows indicate
the order in which each node was visited and subsequently expanded. Note that this is
deterministic. The order in which the edges are declared (visible in the graph notation on
the bottom left) is always the order in which they are returned from the various inbuilt
graph functions.

7.3 Example Scenarios 51

Editing the graph is a very simple process. Let’s go over the changes necessary in
order to get the result visible in figure 7.6. First, the edge connecting "third" and "goal"
has been severed by pressing the "Delete" button in the edge inspector.

Next, "newNode1" and "newNode2" were created. Node creation can be achieved by
double-clicking on an empty space in the graph or by clicking the "Create Node" button
on the graph inspector. The id is entered into a modal field.

Lastly, 3 new edges were created. First, one connecting third and newNode1, then one
connecting newNode1 and "dead end", then one connecting newNode1 and newNode2,
and lastly one connecting newNode2 and goal. The order in which this happened is
also important; since this determines the order in which they are declared. To create an
edge, one can hold click on an existing node and then drag the mouse to another existing
node, then release. This, by default, creates a directed edge, though this behaviour can
be changed by toggling the "default bidirectional" property on the graph inspector.

For good measure, the edge connecting newNode1 and newNode2 was altered through
the edge inspector. It was made bidirectional and its weight was set to 10.

Figure 7.6: Graph Search Scenario: Step 5

Figure 7.7: Graph Search Scenario: Step 6

52 Testing

Much like with the default case, this modified case was run through a DFS algorithm.
Figure 7.7 shows the resulting visualization on the second to last step. As expected given
the order in which we created the edges, "dead end" was visited before newNode2 from
newNode1. The result is the least efficient possible path, reached after expanding every
single node in the graph, a distinct possibility with the DFS algorithm.

7.3.2. Adversarial Search Scenario

Our Adversarial Search scenario will showcase case editing via the code editor. The first
step will be loading up the Connect 4 default case. We will change the initial position to be
one of a puzzle a few moves away from resolution. We will run the expansion algorithm
and show all nodes to see the possible games that stem from the initial position. Finally,
we will run the minimax algorithm to see if this position is a win, draw, or loss for player
1, and quickly step through an optimal move sequence.

Figure 7.8: Adversarial Search Scenario: Step 1

Choosing from the default cases and algorithms is identical to Graph Search for Adver-
sarial Search. Figure 7.8 shows the case editor after loading the Connect 4 default case and
being expanded to take up a large amount of the screen using the frame resizing limiters
on top and on its right side. Additionally, its font size was significantly increased using
the mouse wheel while holding down the control key. This way, it is made readable. A
similar technique could be used when editing live code in a classroom environment.

Before pressing "Run", a quick edit is made to change the initialPosition from the
default empty position to one labeled "late-game draw" in a comment.

Upon pressing the "Run" button, we can see (Figure 7.9) the editor with a tree contain-
ing one single node (the starting position). Its upright triangle shape indicate that this is
the maximizer’s turn. A black outline indicates an unknown utility (which is concordant
with the fact that the algorithm hasn’t yet been run).

On the right side, we can see a visual representation of the initial position, which
is selected by default. The inspector also shows some general information about the
position, including its ID and an "Expand" button that can be used to manually expand
the position. The rendering of the position is given by the render function in the case’s
Position class.

7.3 Example Scenarios 53

Figure 7.9: Adversarial Search Scenario: Step 2

Figure 7.10 showcases the result of running the expansion algorithm to completion
by pressing the play button on the top left control labeled "Expansion"; then pressing the
"Expand All" button on the top right to show the whole tree.

The tree shows some upright triangles, some upside down triangles (minimizer), and
terminal states depicted as colored circles. The greener the color, the higher the resulting
score is, red indicates the opposite, and a yellow (in the middle between the two) indi-
cates a score closer to a draw. The outer color of each node indicates the utility, which is
black because it is yet to be calculated.

Figure 7.10: Adversarial Search Scenario: Step 3

To calculate it, we can run the selected Algorithm by pressing the play button on the
Algorithm control on the top left. This results in Figure 7.11.

As we can see, the node matching the initial position has a yellow outline, indicating
that, with optimal play, the result is a draw. One such sequence of moves fitting optimal
play is highlighted in light blue over the tree. Note that the edges denoting these optimal
moves are a darker color than suboptimal moves.

54 Testing

Clicking on any of the nodes in the tree renders the resulting position and shows the
properties of that position in the position inspector on the bottom left. Here, the value "0"
for utility on the final position indicates that this is a draw. Additionally, the checkmark
on the "Terminal" property indicates that this is a terminal node.

Figure 7.11: Adversarial Search Scenario: Step 4

CHAPTER 8

Conclusions and Potential
Improvements

Overall, the development of this application was a great success. The learned technolo-
gies and techniques will be discussed along with the related coursework in section 8.1.

Given the general feedback from the tutors overseeing this project, it seems it has
potential to meet its goal and become a very useful tool in AI education.

It is important to note that this project was more than just a proof of concept. A
significant investment was made in UX-oriented design, and the application was fully
deployed live.

The development process was full of challenges. I had to learn React from scratch
(which I had never used before), I had experience with Angular, which is similar in some
ways but very different in others. I had already learned TypeScript from working in
Angular before outside of University courses. React also has its own way of updating and
rerendering components; which came up a lot in the form of components not refreshing
when internal data changed. This was one of the most frequent problems I had to deal
with.

Debugging was very challenging. Courses taken university had gone over Unit Test-
ing and how to set those up, but converting those ideas into a mostly front-end environ-
ment was complicated. Indeed, testing was one of the parts of the project I would have
liked to flesh out further.

I expected the use of and integration of external APIs such as visgraph would be more
complicated, but it turned out not to be too complicated. It took a bit of trial and error to
find the right library to use for a React project.

Another part I had never done before was fully deploying an application. I have dealt
with managing already-deployed applications using ssh, but I had never deployed one
myself. While Network courses were somewhat useful, I had to basically learn every-
thing from scratch.

Debugging took a fair amount of time, finding the right techniques to do debugging
over a front-end application was complicated; and also something that didn’t really fit
with the IDE-based debugging I had experienced in courses like Software Engineering.

Overall, I believe I not only learned a lot from developing this project; but I also
managed to create something useful to help others learn some of the very techniques
that allowed me to create this in the first place.

55

56 Conclusions and Potential Improvements

8.1 Aspects Related to Taken Coursework

This project has two main avenues through which it capitalized on my specific educa-
tion throughout my university studies. They will be broken down into two subsections;
computer science and software engineering.

Each one has a table with a breakdown on subjects and their contributions. The "Loca-
tion" column in that table may reference universities. For that purpose; UPV refers to the
"Polytechnic University of Valencia", also known as "Universitat Politècnica de València",
specifically the Vera Campus; and NU refers to "Northeastern University", specifically
the Boston Campus.

8.1.1. Computer Science

This subsection explains the way the project relates to computer science topics is in terms
of what it is meant to teach. After all, the product developed here is meant to be used
exactly in those kinds of classes. Table 8.1 has a breakdown by subjects on their specific
contributions.

In general, the general way in which AI works, both from the more algorithm-oriented
version such as that taken in Game AI, Advanced Algorithms or Data Structures and Al-
gorithms, or in terms of how machine learning works from courses like AI or Intelligent
Systems.

Code Subject Name Location Contribution

11551
Data Structures
and Algorithms

UPV

First introduction to mainline computer sci-
ence algorithms like graph search or array
sorting. Time and space complexity analy-
sis.

11560
Intelligent Sys-
tems

UPV
AI Algorithms and the main framework for
the kind of class that the product is sup-
posed to support.

CS4100
Artificial Intelli-
gence

NU
Similar to Intelligent Systems, but touching
more on Machine Learning from a practical
and technical perspective.

CS4150
Game Artificial
Intelligence

NU

A look into algorithms for AI in games,
crucially including pathfinding and the
more practical applications of efficient graph
search.

CS4800
Advanced Algo-
rithms

NU

A highly technical look at advanced algo-
rithms. Helpful for understanding how to
break down and teach otherwise complex al-
gorithms.

Table 8.1: Related Coursework Subject Breakdown − Computer Science

8.1.2. Software Engineering

This subsection is all about the practical aspects of designing, developing, and deploying
a full application. The various subjects mentioned here are not about the elements that the
application is meant to teach, but rather the aspects related to completing the project itself
from the ground up. Table 8.2 has a breakdown by subjects on their specific contributions.

8.2 Requirement Fulfillment Analysis 57

Code Subject Name Location Contribution

11553
Computer Archi-
tecture and Engi-
neering

UPV
Methods for managing and organizing agile
software projects. Common design patterns
for software applications. UML diagrams.

11554
Project Manage-
ment

UPV

Methods for managing both the analysis and
documentation required for large projects.
Technical details such as formal requirement
specifications.

11556
Human-
Computer In-
terfaces

UPV
Theory around UX and user-oriented inter-
face design.

12990
Computer Net-
works

UPV
Mechanisms of Web APIs and HTTP re-
quests.

Table 8.2: Related Coursework Subject Breakdown − Software Engineering

8.2 Requirement Fulfillment Analysis

This section will go over all requirements, starting with mandatory functional require-
ments, then moving down the degree of necessity (DoN) level.

8.2.1. Functional Requirements

• FR1 is met, the code that achieves this in the back end is available in appendix C.1.
This allows clients using the front end to retrieve a list of all available algorithms
and cases, as well as their specific contents.

• FR2 is met, though at the moment, only one algorithm is completed for Adversarial
Search. I would like to get Alpha-Beta Pruning, and ideally Expectiminimax and
Monte Carlo Tree Search. However, those are not mandatory for the product to
work, and any user could, theoretically, program those algorithms themselves.

• FR3 is met, all one needs to do is alter the files available in the /api/problems/
subfolders. This is also automatically pulled from the GitHub repository’s main
branch through the auto-update handler (See Appendix B.3).

• FR4 is met, with the help of the ACE editor [24], which automatically implements
all the required functionality. It would have been interesting to develop something
like this by ourselves, but it would have resulted in both a less usable product
and a dramatic bloat of the scope of the project. We tried our best not to reinvent
the wheel on this project and instead focus on innovating and creating otherwise
unavailable functionality.

• FR9 is met, some restrictive decisions needed to be made to ensure that grid graphs
were intuitive to edit and still kept a simple command-based structure. Notably,
the ability to remove or create new nodes or edges in grid graphs was removed.
The EDGE and NODE commands therefore edit components instead of creating new
ones.

• FR10 is met, using visgraph [16] [17], and converting our local graph representation
(See figure 5.2) into visgraph’s network object representation, we can let vis handle
the rendering and user interactions.

58 Conclusions and Potential Improvements

• FR12 and FR13 are met, this functionality can be seen in action in section 7.3.1. The
code is evaluated from raw JavaScript, some checks are executed to ensure that the
implementation is compatible with requirements, and then the resulting class is
constructed and the algorithm is run. All steps are then stored in a list which can
be stepped through using something similar to the command design pattern.

• FR14 is met, in a very similar way to FR12. The only difference is the requirements
for the code, the fact that both the algorithm and the case are code (which are checked
sequentially), and the fact that the result is a set of class instances rather than a list
of steps to move through.

• FR15 is met, in an almost identical way to graph visualization for FR10. The way
position data is converted into graph node and edge styles differs significantly, and
the graph is represented using visgraph’s hierarchal layout, which models trees.

• FR16 is met, by passing the case’s Position’s render() function to a react canvas,
which is rendered next to the tree visualizer.

• FR17 is met, by simply running the generator functions provided by the algorithm
once it is run. This is also visible in action in section 7.3.2.

Those are all the mandatory requirements. The following are desirable functional
requirements which are not essential to the general functionality of the application, but
are good to have.

• FR5 is met, with stack trace display <div>s which render below the affected com-
ponents. A potential improvement on this is to truncate stack traces to user code,
avoiding stepping through the entire react framework function calls and provid-
ing more succinct information to the user. However, Providing a full stack trace is
relatively standard, and hiding information from experienced users might also be
problematic.

• FR6 is met, documentation exists under the /docs section. A general documen-
tation for cross-problem APIs is available directly under that URI, and problem-
specific documentation is available under /docs/problem-type.

• FR7 is met, the home page provides a general overview of all components and
the general way to use them. However, it would be nice to have problem-specific
tutorials. This could be another potential improvement for the future to improve
usability.

• FR8 is met, property inspectors ended up being way more powerful and useful than
I initially considered. I believe this to be a particularly strong success in this project
and a feature I can see myself implementing in other projects.

This project has no requirements with a Degree of Necessity of optional.

8.2.2. Non-functional requirements

• NFR1 is met, as can be seen in Appendix C.1, the code for the backend is incred-
ibly simple. Later features may require adjustments to this requirement (for ex-
ample, certain requests related to accounts may require a lot of processing time in
extraordinary circumstances). All current backend code runs in O(n) processing
time (where n is the number of cases, algorithms, or the size of a specific case or
algorithm file, depending on the request).

8.2 Requirement Fulfillment Analysis 59

• NFR3 is met, the back end server is protected with a strong password and is only
accessible via SSH and SFTP using secrets which are not accessible anywhere in the
project.

• NFR4 is met, our host is Hostinger, a professional hosting service. They guarantee
99.9% uptime, agreeing even to refund 5% of the monthly hosting fee in case of the
uptime falling below this already very high threshold.

• NFR5 has not been tested, the testing in general is something that unfortunately
could not have a lot of time invested in. However, given the fast response time
from NFR1, the excellent performance of the server, and how infrequent requests
are under normal use, it should not be an issue to handle 1000 simultaneous users.
Regardless, in practice, during the beginning stages of this project, a scalability to
this level is unnecessary. It might become necessary later on in the life cycle. This
requirement is inherently reactive, as it depends on the actual use of the application.

• NFR8 is met in the same way as 4 is met thanks to the use of the ACE code editor
[24].

The following requirements are desirable instead of mandatory.

• NFR2 is met, this is most obvious when running long adversarial search cases. The
application still responds without issue, allowing users to see different positions
while the algorithm is still running. However, the issue of infinite loops in user
code is unavoidable, even if none of the default algorithms have this issue. It is also
possible for the browser to run out of memory from running very large cases for an
extended period of time.

• NFR6 and NFR7 are met, the general behaviour of page scaling handles most com-
ponents. The only exception is the ACE editor, which keeps its font size. To solve
this, ACE editors listen to scroll events, and if the control key is pressed, they adjust
their font size in the theme.

• NFR10 is met. When the application was provided to some prospective users, along
with a series of tasks to complete, they were able to easily follow the instructions
without issue. Further testing is required for the learning curve in programming.

• NFR11 is met. The application is fully functional in desktop computers. It also
works well on laptops with modern resolutions and specifications. The application
loads in mobile devices, though some issues have been detected with tap-based
inputs which may need to be refined. This is currently on the development backlog
on low priority.

The only optional requirement is NFR9 on themes, this is met. Though the only way
to currently switch between application-wide themes is to do so through the browser
preferences, as the general theme responds to the user’s prefers-theme media query.
The theme for a given editor can be easily switched with the press of a button on the top
right of the editor.

60 Conclusions and Potential Improvements

8.3 Improvements and Future Work

The following subsections outline a couple of improvements that could be achieved later
on in the life cycle of the application, but which were excessive for the scope of the project.

8.3.1. Accounts and Authentication

As mentioned in section 5.3.1, the back end doesn’t have a lot to do. The lack of personal
accounts has a lot to do with this. Personal accounts would allow for a wide range of
quality of life and user experience improvements.

Some potential ideas that could be unlocked with such a feature would be: saved
cases and algorithms; community boards, forums, or help pages; and certain limited-access
features such as donator-exclusive features.

The list goes on, but those are some illustrative examples of what could be achieved
with this. Ideally, the account management side would be left to a third party, allowing
authentication with accounts like Google or GitHub. This is both good for user experi-
ence and for security. Of course, it complicates implementation as we have to connect to
third-party APIs.

8.3.2. Localization

Our analysis of the target audience (See the User Characteristics section in the SRS, Sec-
tion 4.1) left out language; however, typically in the field of Computer Science, English is
the driving language. While that is the case and Computer Science students and profes-
sors are largely expected to be able to use the language, localization could add a layer of
personal comfort and ease of use that would otherwise be missing.

8.3.3. Responsive Design

The application was developed with computers and classroom projectors in mind. How-
ever, with significant tweaks, developing a version of the application that can run on
mobile devices is an achievable goal. The complexity of the application doesn’t easily
lend itself to small-screen, portable devices. But with certain compromises, a decent user
experience is definitely possible.

8.3.4. Automated Testing with GitHub Actions

As with any open source application (See section 4.5), dealing with pull requests can
take up a significant amount of time. Bugs can easily be introduced from an open source
pipeline, and they can be hard to track and fix. GitHub provides a framework for au-
tomated testing, which could be used to mitigate this problem and provide contributors
immediate feedback on what is wrong. It would also allow us as maintainers to immedi-
ately weed out dangerous pull requests.

This would not only require the set up of GitHub actions for testing, but would also
require the introduction of a large test suite into the project. Our testing is currently not
on that scale, as is mentioned in chapter 7.

Bibliography

[1] Tore Dybå and Torgeir Dingsøyr. Information and Software Technology, 50:9:833-859,
2008.

[2] IEEE Guide for Software Requirements Specifications. IEEE Std 830-1984, 1-26, 1984.

[3] Ziauddin, Shahid Kamal Tipu, Shahrukh Zia. Advances in Computer Science and its
Applications, 2:1:314-324, 2012

[4] Pathfindout 2D Grid Pathfinding Algorithm Visualizer. Accessible at https://
pathfindout.com/

[5] Visualgo DFS and BFS Algorithm Visualizer. Accessible at https://visualgo.net/
en/dfsbfs.

[6] Graph Search Visualizer on Codepen. Accessible at https://codepen.io/
geekytime/pen/DENvYr

[7] Netlify Grid Graph Search Visualizer. Accessible at https://graphalgorithms.
netlify.app/

[8] Brilliant.org Learning Platform. Accessible at https://brilliant.org

[9] Brilliant’org’s article on the A* algorithm. Accessible at https://brilliant.org/
wiki/a-star-search/

[10] Datacamp Learning Platform. Accessible at https://www.datacamp.com/

[11] Khan Academy’s Computing Section. Accessible at https://www.khanacademy.
org/computing

[12] Codecademy. Accessible at https://www.codecademy.com/

[13] Python’s sqlite3 package. Accessible at https://docs.python.org/3/library/
sqlite3.html

[14] Di Penta, Massimiliano and German, Daniel M. and Guéhéneuc, Yann-Gaël and An-
toniol, Giuliano. Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, 1:145-154, 2010.

[15] Statista, Worldwide Leading Open Source Licenses.
Accessible at https://www.statista.com/statistics/1245643/
worldwide-leading-open-source-licenses/

[16] Documentation for Vis.js’s Network Module. Accessible at https://visjs.github.
io/vis-network/docs/network/

61

https://pathfindout.com/
https://pathfindout.com/
https://visualgo.net/en/dfsbfs
https://visualgo.net/en/dfsbfs
https://codepen.io/geekytime/pen/DENvYr
https://codepen.io/geekytime/pen/DENvYr
https://graphalgorithms.netlify.app/
https://graphalgorithms.netlify.app/
https://brilliant.org
https://brilliant.org/wiki/a-star-search/
https://brilliant.org/wiki/a-star-search/
https://www.datacamp.com/
https://www.khanacademy.org/computing
https://www.khanacademy.org/computing
https://www.codecademy.com/
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html
https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/
https://www.statista.com/statistics/1245643/worldwide-leading-open-source-licenses/
https://visjs.github.io/vis-network/docs/network/
https://visjs.github.io/vis-network/docs/network/

62 BIBLIOGRAPHY

[17] Wokstym, React-vis-graph-wrapper on GitHub. Accessible at https://github.com/
Wokstym/react-vis-graph-wrapper

[18] Flask 3.0 Documentation. Accessible at https://flask.palletsprojects.com/en/
3.0.x/

[19] Angular Material. Accessible at https://material.angular.io/

[20] Material UI, Material for React. Accessible at https://mui.com/material-ui/

[21] React-vis on GitHub. Accessible at https://uber.github.io/react-vis/

[22] React vs Vue Comparison at Sitepoint. Accessible at https://www.sitepoint.com/
vue-vs-react/

[23] Angular vs React vs Vue usage analysis on Reddit from 2020, by SimilarTech. Acces-
sible at https://www.reddit.com/r/vuejs/comments/ik04dv/angular_vs_react_
vs_vue_a_complete_comparison/

[24] ACE Code editor home page. Accessible at https://ace.c9.io/

[25] Miguel Grinberg, How to deploy a React Flask project. Accessible at https://blog.
miguelgrinberg.com/post/how-to-deploy-a-react--flask-project

[26] Vladislav Supalov, Flask is not your production server. Accessible at https://
vsupalov.com/flask-web-server-in-production/

[27] W3Tech statistics on Nginx usage. Accessible at https://w3techs.com/
technologies/details/ws-nginx

[28] Green Unicorn (gunicorn) home page. Accessible at https://gunicorn.org/

[29] Nginx home page. Accessible at https://nginx.org/en/

[30] Crispin, Lisa and House, Tip. Testing Extreme Programming. Chapter 13. 2003

[31] Jest Testing Framework Documentation. Accessible at https://jestjs.io/docs/
getting-started

https://github.com/Wokstym/react-vis-graph-wrapper
https://github.com/Wokstym/react-vis-graph-wrapper
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/
https://material.angular.io/
https://mui.com/material-ui/
https://uber.github.io/react-vis/
https://www.sitepoint.com/vue-vs-react/
https://www.sitepoint.com/vue-vs-react/
https://www.reddit.com/r/vuejs/comments/ik04dv/angular_vs_react_vs_vue_a_complete_comparison/
https://www.reddit.com/r/vuejs/comments/ik04dv/angular_vs_react_vs_vue_a_complete_comparison/
https://ace.c9.io/
https://blog.miguelgrinberg.com/post/how-to-deploy-a-react--flask-project
https://blog.miguelgrinberg.com/post/how-to-deploy-a-react--flask-project
https://vsupalov.com/flask-web-server-in-production/
https://vsupalov.com/flask-web-server-in-production/
https://w3techs.com/technologies/details/ws-nginx
https://w3techs.com/technologies/details/ws-nginx
https://gunicorn.org/
https://nginx.org/en/
https://jestjs.io/docs/getting-started
https://jestjs.io/docs/getting-started

APPENDIX A

Sustainable Development Goals

A.1 Degree of relationship of this project with Sustainable De-
velopment Goals (SDGs)

Sustainable Development Goals High Medium Low None
SDG 1. End of poverty.
SDG 2. Zero hunger.
SDG 3. Health and well-being.
SDG 4. Quality Education.
SDG 5. Gender Equality.
SDG 6. Clean water and sanitation.
SDG 7. Affordable and non-polluting energy.
SDG 8. Decent work and economic growth.
SDG 9. Industry, innovation, and infrastructure.
SDG 10. Reduction of inequality.
SDG 11. Cities and sustainable communities.
SDG 12. Responsible production and consumption.
SDG 13. Climate action.
SDG 14. Marine life.
SDG 15. Life in terrestrial ecosystems.
SDG 16. Peace, justice, and solid institutions.
SDG 17. Alliances to achieve goals.

63

64 Sustainable Development Goals

A.2 Reflection on the relationship of the Capstone Project with
Sustainable Development Goals

Of the sustainable development goals outlined above, quality education is the most closely
related goal. This product is meant to be used primarily as an instruction and learning
aide. Clairvoyant can effectively help professors prepare for classes on the topics it covers
by serving as a fast and versatile framework to work off of. Similarly, it grants students
a way to interact with otherwise fiddly and complex examples intuitively and interac-
tively; with or without a professor or tutor being present.

The second most closely related is innovation; given that this is a product meant to
help students better learn the fundamentals of a modern technology, we would hope that
down the line, those very students can more effectively come up with innovative ideas
in industry.

The rest of the relationships are arguably tenuous and stem from the core concept of
accessible education. Regardless of whether one is in a university course, studying by
themselves, or anywhere in between; Clairvoyant is a platform they have full access to,
one they can experiment with at their leisure and with no cost or initial commitment.

Going item by item, gender equality is marked with a low degree of relationship with
this project because it provides an introduction to what is a traditionally male-dominated
field to anyone, regardless of gender. The general reduction of inequality point plays out
with very similar logic, though focusing on the acquisitive and economic power and
stressing that the product is completely free to use.

Lastly, on the topic of economic growth, it follows from all previous points that allow-
ing anyone to access this framework would have a positive effect on their skillset and,
thus, on their power to both bargain for better job accommodations or higher salaries.

APPENDIX B

System Configuration

This appendix will briefly describe various configuration options that were required to
get the system running properly and efficiently.

B.1 NGINX

The NGINX reverse proxy configuration has a very simple task, it has to forward /api
requests to port 5000 and any other requests to port 3000. Note that this configuration
would slightly change when moving to HTTPS with encryption. Port 443 would also be
in use.

1 # /etc/nginx/sites -available/clairvoyant.nginx
2
3 server {
4 listen 80;
5 root /home/ender/clairvoyant/ai-visualization/build;
6 index index.html;
7
8 location / {
9 include proxy_params;

10 proxy_pass http :// localhost :3000;
11 }
12
13 location /api {
14 include proxy_params;
15 proxy_pass http :// localhost :5000;
16 }
17 }

65

66 System Configuration

B.2 Service Configuration

The processes hosting the front end and back end in the server are not started directly
from an ssh instance, as that would be quite a fragile deployment. Instead, they must be
able to restart automatically either when they crash for any reason, or when the server
itself restarts.

Conveniently, Linux provides services for exactly such a purpose, through the systemctl
command. These commands set the state of services configured in /etc/systemd/system,
they run as background processes that start with a given command.

1 # /etc/systemd/system/clairvoyant_api.service
2 [Unit]
3 Description=A service that provides a back -end API for the

Clairvoyant Web Application. Backed by Flask and
GreenUnicorn.

4 After=network.target
5
6 [Service]
7 User=ender
8 WorkingDirectory =/home/ender/clairvoyant/api
9 ExecStart =/home/ender/clairvoyant/api/venv/bin/gunicorn -b

127.0.0.1:5000 main:app
10 Restart=always
11
12 [Install]
13 WantedBy=multi -user.agent

1 # /etc/systemd/system/clairvoyant_server.service
2 [Unit]
3 Description=A service that runs the React Next server required

to provide the front end elements of the Clairvoyant App
4 After=network.target
5
6 [Service]
7 User=ender
8 WorkingDirectory =/home/ender/clairvoyant/ai -visualization
9 ExecStart=npm run start

10 Restart=always
11
12 [Install]
13 WantedBy=multi -user.agent

B.3 Auto-updating 67

B.3 Auto-updating

For convenience, and to ease the process of updating from the back-end, an auto-updating
script was created and placed by the local application directory. This script automatically
pulls the latest changes from github, rebuilds the application, and restarts the relevant
services. All one must do to run it is run ~/clairvoyant_update.sh.

1 # /home/ender/clairvoyant_update.sh
2
3 # Pull all relevant changes
4 cd /home/ender/clairvoyant
5 git pull
6
7 # Ensure node modules are up to date
8 cd ./ai-visualization
9 npm i

10
11 # Rebuild front end application
12 npm run build
13
14 # Restart services with new files
15 systemctl restart clairvoyant_server
16 systemctl restart clairvoyant_api

B.4 React Configuration

To properly get the previous services to work, it was important to set some minimal
but critical configuration in the react project. The distDir option sets the build directory,
which is critical for our services to work, as they need to know where the build is located,
and this can’t change between builds.

The images options is simply there to ensure that we can load external resources prop-
erly from the React server and that webp is accepted as an image format and properly
recognized as an internal resource.

Lastly, an option that isn’t present, is the output option, which allows the export
value. This, instead of creating the output of a react server started with npm run start,
it configured react in such a way that building produces a completely static site. This
imposes some limitations on the react side, as it forbids use of react-server-specific tools
like getServerSideProps, for example. While we briefly experimented with this option,
the default server-form export was chosen.

1 /** @type {import(’next ’).NextConfig} */
2 const nextConfig = {
3 distDir: ’build’,
4 images: {
5 domains: [],
6 formats: [’image/webp’],
7 }
8 }
9

10 module.exports = nextConfig

APPENDIX C

Code

This appendix contains extensive chunks of code that are considered relevant for under-
standing certain aspects of the scope and design of the application.

C.1 Back End

The entire back end code is rather brief; as was mentioned in previous sections. The flask
application is meant to be expandable (See section 8.3), but it doesn’t have many respon-
sibilities at the moment. All it needs to do is serve files and provide a list of available files.
The files themselves are technically part of the back end and show a more significant level
of complexity.

1 # api/main.py
2 from flask import Flask , json , jsonify
3
4 from os import listdir , path
5
6 app = Flask(__name__)
7
8 def OK(data):
9 response = jsonify(data)

10 response.status_code = 200
11 response.headers.add(’Access -Control -Allow -Origin ’, ’*’)
12 return response
13
14 def NotFound(data):
15 response = jsonify(data)
16 response.status_code = 404
17 response.headers.add(’Access -Control -Allow -Origin ’, ’*’)
18 return response
19
20 @app.route("/api/v1/<problem >/ algorithms", methods =["GET"])
21 def get_algorithms(problem: str):
22 directory = path.join("./ problems", problem , "algorithms")
23 if not path.exists(directory): return NotFound("Problem

name not found.")
24 result = []
25 for file in listdir(directory):

69

70 Code

26 if file.endswith(".js"): result.append(file[:-len(".js
")])

27 return OK(result)
28
29 @app.route("/api/v1/<problem >/cases", methods =["GET"])
30 def get_cases(problem: str):
31 directory = path.join("./ problems", problem , "cases")
32 if not path.exists(directory): return NotFound("Problem

name not found.")
33 result = []
34 for file in listdir(directory):
35 if file.endswith(".txt"): result.append(file[:-len(".

txt")])
36 elif file.endswith(".js"): result.append(file[:-len(".

js")])
37 print(f"returning {json.dumps(result)}")
38 return OK(result)
39
40 @app.route("/api/v1/<problem >/ algorithms/<algorithm >", methods

=["GET"])
41 def get_algorithm(problem: str , algorithm: str):
42 file = path.join("./ problems", problem , "algorithms", f"{

algorithm }.js")
43 if not path.exists(file): return NotFound("Problem or

algorithm name not found.")
44 with open(file , "r") as f:
45 content = f.readlines ()
46 return OK("".join(content))
47
48 @app.route("/api/v1/<problem >/cases/<case >", methods =["GET"])
49 def get_case(problem: str , case: str):
50 for ext in [".txt", ".js"]:
51 file = path.join("./ problems", problem , "cases", f"{

case}{ext}")
52 if path.exists(file): break
53 else:
54 return NotFound("Problem or algorithm name not found."

)
55 with open(file , "r") as f:
56 content = f.readlines ()
57 return OK("".join(content))
58
59 if __name__ == ’__main__ ’:
60 app.run("localhost", 5000)

C.2 Front End 71

C.2 Front End

The code base for the front end is massive and it would be unreasonable to include the
entire base here, however, a few highlights have been made to showcase some of the
more interesting programming interactions in the application.

C.2.1. Front End Tests

1 import {expect , jest , test} from ’@jest/globals ’;
2 import { GenericGraph , Graph , GraphEdgeSimple , GraphNode ,

GridGraph } from ’../ graph’;
3
4 // test parsing
5 test("Generic Parsing", () => {
6 const graph = GenericGraph.fromNotation(‘GENERIC
7 NODE A {"a": "hello world"}
8 NODE B
9 NODE C

10 NODE D
11
12 EDGE A B {"w": 2, "edgeTest": true}
13 EDGE B C -b
14 EDGE B D
15
16 START A
17 GOAL C
18
19 # Extra edges
20 EDGE B D -b {"w": 3, "secondary": true}
21
22 # Data!
23 NODE A {"x": 1}
24 ‘);
25 // basic contents
26 expect(graph.getAllNodes ()).toHaveLength (4);
27 expect(graph.getAllEdges ()).toHaveLength (4);
28 // node fetching
29 let nodeA = graph.getNodeById("A");
30 let nodeB = graph.getNodeById("B");
31 let nodeC = graph.getNodeById("C");
32 let nodeD = graph.getNodeById("D");
33 expect(nodeA).toBeDefined ();
34 expect(nodeB).toBeDefined ();
35 expect(nodeC).toBeDefined ();
36 expect(nodeD).toBeDefined ();
37 // edges
38 let edgeBC = graph.getEdge(nodeB!, nodeC!);
39 expect(edgeBC).toBeDefined ();
40 expect(edgeBC !. isBidirectional).toBeTruthy ();
41 let edgeBA = graph.getEdge(nodeB!, nodeA!, true);
42 expect(edgeBA).toBeDefined ();

72 Code

43 expect(edgeBA !. traversable ()).toBeFalsy ();
44 expect ([... graph.getEdges(nodeB!, nodeD!)]).toHaveLength

(2);
45 // start , end , and referential equality
46 expect(Object.is(graph.startNode , nodeA)).toBe(true);
47 expect(Object.is(graph.endNode , nodeC)).toBe(true);
48 // data
49 expect(nodeA?.data["a"]).toEqual("hello world");
50 expect(nodeA?.data["x"]).toEqual (1);
51 expect(edgeBA !.data["edgeTest"]).toEqual(true); // note

that it is the opposite orientation as that given in
the parse!

52 expect(edgeBA !. weight).toEqual (2);
53 })
54
55 test("Grid Parsing", () => {
56 const graph = GridGraph.fromNotation(‘GRID 3x2
57 1 0 1
58 1 1 1
59 DIAGONAL MANHATTAN
60 START 0 0
61 GOAL 2 0
62
63 # Merges data to existing components
64 NODE 0 0 {"test": "isStart"}
65 EDGE 2 1 2 0 {"w": 3.5}
66 ‘);
67
68 expect(graph.getAllNodes ()).toHaveLength (6);
69 expect(graph.getAllEdges ()).toHaveLength (11); // 7

orthogonal + 4 diagonal
70
71 let nodeTL = graph.getNodeByCoords (0, 0);
72 let nodeTC = graph.getNodeByCoords (1, 0);
73 let nodeTR = graph.getNodeByCoords (2, 0);
74 let nodeBL = graph.getNodeByCoords (0, 1);
75 let nodeBC = graph.getNodeByCoords (1, 1);
76 let nodeBR = graph.getNodeByCoords (2, 1);
77 [nodeTL , nodeTC , nodeTR , nodeBL , nodeBC , nodeBR]. forEach(n

=> {
78 expect(n).toBeDefined ();
79 })
80
81 // traversability
82 expect(nodeTL !. traversable).toBeTruthy ();
83 expect(nodeTC !. traversable).toBeFalsy ();
84
85 // edges and diagonal weights
86 let edgeTLTC = graph.getEdge(nodeTL!, nodeTC!, true);
87 expect(edgeTLTC).toBeDefined ();
88 expect(edgeTLTC !. traversable ()).toBeFalsy ();
89 expect(edgeTLTC !. weight).toEqual (1);

C.2 Front End 73

90 let edgeTLBC = graph.getEdge(nodeTL!, nodeBC !);
91 expect(edgeTLBC).toBeDefined ();
92 expect(edgeTLBC !. traversable ()).toBeTruthy ();
93 expect(edgeTLBC !. weight).toEqual (2);
94
95 // start , end , and referential equality
96 expect(Object.is(graph.startNode , nodeTL)).toBe(true);
97 expect(Object.is(graph.endNode , nodeTR)).toBe(true);
98
99 // custom data

100 expect(nodeTL !.data["test"]).toEqual("isStart");
101 let edgeBRTR = graph.getEdge(nodeBR!, nodeTR!, true);
102 expect(edgeBRTR).toBeDefined ();
103 expect(edgeBRTR !. weight).toEqual (3.5);
104 })
105
106 function expectGraphAdjacencies(graph: Graph , node: GraphNode ,

adjacent: number , incoming: number) {
107 expect ([... graph.getAdjacentNodes(node)]).toHaveLength(

adjacent);
108 expect ([... graph.getAdjacentEdges(node)]).toHaveLength(

adjacent);
109 expect ([... graph.getIncomingEdges(node)]).toHaveLength(

incoming);
110 expect ([... graph.getIncomingNodes(node)]).toHaveLength(

incoming);
111 }
112
113 test("Graph Adjacencies", () => {
114 const graph = new GenericGraph ();
115 const nodeA = new GraphNode(graph , "A");
116 const nodeB = new GraphNode(graph , "B");
117 const nodeC = new GraphNode(graph , "C");
118 graph.addNode(nodeA);
119 graph.addNode(nodeB);
120 graph.addNode(nodeC);
121 const edgeAB = new GraphEdgeSimple (1, nodeA , nodeB , true);
122 const edgeBC = new GraphEdgeSimple (2, nodeB , nodeC , false)

;
123 graph.addEdge(edgeAB);
124 graph.addEdge(edgeBC);
125 // adjacencies
126
127 expectGraphAdjacencies(graph , nodeA , 1, 1); // adj to B,

accessible from B
128 expectGraphAdjacencies(graph , nodeB , 2, 1); // adj to A

and C, accessible from A
129 expectGraphAdjacencies(graph , nodeC , 0, 1); // adj to none

, accessible from B
130 })

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Expected Impact
	Memory Structure

	State of the Art
	Pathfinding Visualization Tools
	CS Education
	Brilliant
	Datacamp
	Other Course Platforms

	Methods
	Project Management Tools
	Version Control

	Analysis
	Software Requirements Specifications
	Introduction to the SRS
	General Description
	Specific Requirements

	Requirement Analysis by Categories
	Security Concerns
	Legal Analysis
	Risk Analysis

	Use Cases
	Budget
	Monetary Costs
	Human Costs

	Open Source
	Licensing

	Design
	System Architecture
	Product Layers

	Detailed Design
	Graphs
	Graph Search
	Adversarial Search

	Technologies
	Back End Framework
	Front End Framework

	Development and Deployment
	Development Tools
	Visual Studio Code
	React
	Flask
	Git and GitHub

	Deployment
	Flask Setup
	React Server Setup
	Nginx
	Updating

	Services Used

	Testing
	Unit Testing
	Integration Testing
	Example Scenarios
	Graph Search Scenario
	Adversarial Search Scenario

	Conclusions and Potential Improvements
	Aspects Related to Taken Coursework
	Computer Science
	Software Engineering

	Requirement Fulfillment Analysis
	Functional Requirements
	Non-functional requirements

	Improvements and Future Work
	Accounts and Authentication
	Localization
	Responsive Design
	Automated Testing with GitHub Actions

	Bibliography
	Sustainable Development Goals
	Degree of relationship of this project with Sustainable Development Goals (SDGs)
	Reflection on the relationship of the Capstone Project with Sustainable Development Goals

	System Configuration
	NGINX
	Service Configuration
	Auto-updating
	React Configuration

	Code
	Back End
	Front End
	Front End Tests

