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Abstract
The exponential growth of hardware resources in recent decades has led to substantial

software bloat, fostering the development of high-level programming languages that pri-
oritize development efficiency over execution time and resource optimization. However,
as the physical limits of transistor miniaturization are reached, this growth is slowing.

This presents a challenge for the software industry. As writing efficient, resource-
conscious code is complex and time-consuming, while modern development paradigms
focus on speeding up the process.

This thesis explores the use of reprogrammable hardware to bridge the gap between
high-level abstractions and hardware. To this end, we developed LWVCG (Light-Weight
Verilog Compiler Generator), a Python framework for specifying and generating hard-
ware interpreters in Verilog. Using this framework, we implemented a hardware-based
Just-In-Time (JIT) compiler for the SIMPLER language, a modification of SIMPL. Tested
on two low-cost FPGAs (2x Lattice ICE40UP5K), this solution achieved 2x compilation
speedup compared to the JavaScript V8 JIT compiler while operating at 1/250th of the
clock frequency and consuming 1/16th of the power of an Intel i5-13400 CPU core.

Key words: Compilation, FPGA, Computing, CPU, Interpreted Programming Languages,
Computational Efficiency, Energy Efficiency, Performance, Rust, Go, Javascript, Zig, Python,
Verilog, Custom Hardware, Distributed Software Systems

ii



iii

Resumen
El crecimiento exponencial de los recursos de hardware en las últimas décadas ha

provocado un considerable hinchamiento del software, lo que ha fomentado el desarrollo
de lenguajes de programación de alto nivel que priorizan la eficiencia del desarrollo sobre
el tiempo de ejecución y la optimización de recursos. Sin embargo, a medida que se
alcanzan los límites físicos de la miniaturización de los transistores, este crecimiento se
ralentiza.

Esto supone un reto para la industria del software: escribir código eficiente y con-
sciente de los recursos es complejo y requiere mucho tiempo, mientras que los paradig-
mas de desarrollo modernos se centran en acelerar el proceso.

Esta tesis explora el uso de hardware reprogramable para salvar la distancia entre
las abstracciones de alto nivel y el hardware. Para ello, desarrollamos LWVCG (Light-
Weight Verilog Compiler Generator), un marco de trabajo en Python para especificar y
generar intérpretes de hardware en Verilog. Utilizando este marco, implementamos un
compilador Just-In-Time (JIT) basado en hardware para el lenguaje SIMPLER, una mod-
ificación de SIMPL. Probada en dos FPGAs de bajo coste (2x Lattice ICE40UP5K), esta
solución consiguió una velocidad de compilación 2 veces superior a la del compilador
JIT JavaScript V8, a la vez que funcionaba a 1/250 de la frecuencia de reloj y consumía
1/16 de la potencia de un núcleo de CPU Intel i5-13400.

Palabras clave: Compilación, FPGA, Computación, CPU, Lenguajes de Programación
Interpretados, Eficiencia computacional, Eficiencia Energética, Rendimiento, Rust, Go,
Javascript, Zig, Python, Verilog, Custom Hardware, Sistemas



iv

Resum
El creixement exponencial dels recursos de maquinari en les darreres dècades ha

provocat un inflament considerable del programari, cosa que ha fomentat el desenvolu-
pament de llenguatges de programació d’alt nivell que prioritzen l’eficiència del desen-
volupament sobre el temps d’execució i l’optimització de recursos. No obstant això,
a mesura que s’assoleixen els límits físics de la miniaturització dels transistors, aquest
creixement s’alenteix.

Això suposa un repte per a la indústria del programari: escriure codi eficient i con-
scient dels recursos és complex i requereix molt de temps, mentre que els paradigmes de
desenvolupament moderns se centren a accelerar el procés.

Aquesta tesi explora lús de maquinari reprogramable per salvar la distància entre les
abstraccions dalt nivell i el maquinari. Per això, desenvolupem LWVCG (Light-Weight
Verilog Compiler Generator), un marc de treball a Python per especificar i generar intèr-
prets de maquinari a Verilog. Utilitzant aquest marc, implementem un compilador Just-
In-Time (JIT) basat en maquinari per al llenguatge SIMPLER, una modificació de SIMPL.
Provada en dues FPGAs de baix cost (2x Lattice ICE40UP5K), aquesta solució va acon-
seguir una velocitat de compilació 2 vegades superior a la del compilador JIT JavaScript
V8, alhora que funcionava a 1/250 de la freqüència de rellotge i consumia 1/16 de la
potència dun nucli de CPU Intel i5-13400.

Paraules clau: Compilació, FPGA, Informàtica, CPU, Llenguatges de programació inter-
pretats, Eficiència computacional, Eficiència energètica, Rendiment, Rust, Go, Javascript,
Zig, Python, Verilog, Personalitzat Desenvolupament de maquinari, programari distribuït
Sistemes



v

Dedication
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be.”
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1

Introduction

In his landmark 1936 paper [15], Alan M. Turing introduced what is now known as the
Turing Machine (TM). A Turing Machine is a computing device with an infinite tape,
where a reading/writing head can read and write symbols from a finite alphabet. The ma-
chine operates in one of the finitely many states, changing according to a finite set of
transition rules. Based on the current state and the symbol being read, a transition rule
determines the machine’s next state, whether the head moves left or right or if a sym-
bol is written on the tape. Turing Machines can be efficiently implemented directly in
hardware using logic gates.

Turing demonstrated how his machines could solve various problems. For example,
he showed how to generate an infinite list of natural numbers by defining one of his
machines. He further proposed that any problem that can be solved by some form of
effective calculation could be solved by a Turing Machine provided the problem is encoded
as a set of transition rules. This idea is commonly called the Turing Thesis.

Years later, Turing referred to a specific set of transition rules (i.e., a particular TM)
that solves a given problem as a program [14]. In [15], Turing also introduced the concept
of a Universal Turing Machine (UTM), capable of simulating the computation of any other
TM by encoding the description of the simulated machine and its input data onto the
UTM’s tape.

In the 1940s, these ideas laid the foundation for the first prototypes of general-purpose
computers, which can be viewed as UTMs that simulate any TM (i.e., execute any pro-
gram). John von Neumann’s work led to what is now known as von Neumann’s archi-
tecture [17], which has been implemented in all computers since. Therefore, computer
science has historically used inefficient but faster-to-program abstraction layers since the
beginning of the computation, resulting in 74 years of accumulated layers of hardware
and software on top of each other to execute even a simple statement. Each layer ab-
stracts the previous one but introduces inefficiencies, which are then carried on by all the
layers above.

Therefore, von Neumann’s architecture (like any other existing abstraction) has lim-
itations, most notably the von Neumann bottleneck, caused by the need to use the bus
connecting memory and the Central Processing Unit (CPU) to transfer each instruction
and piece of data, as well as any data updates.

Turing’s original idea of treating a program as a Turing Machine suggests a potential
solution to overcome inefficiencies: by running each program on a specialized or ad-
hoc hardware Turing Machine. This involves implementing complex algorithms, which
programming languages are based on, directly through state machines rather than on a
general-purpose von Neumann computer. This thesis delves into exploring this possibil-
ity.

1



2 Introduction

1.1 Motivation

The high-level programming languages currently used in the software industry have be-
come easy to use but bloated and slow with compilers and interpreters that host complex
logic. This trend has been driven by dramatic improvements in hardware components
predicted by the so-called Moore’s law, formulated in the sixties of the last century and
claiming that every two years, the number of transistors allocated in integrated circuits
would be duplicated [9]. In turn, modern professional software developers have built
practices over decades that postpone execution efficiency to promote development time
efficiency (i.e., the faster creation of perhaps slower, less efficient code).

Nowadays, physical limits have slowed down these improvements while (in contrast)
the technological industry keeps growing faster than ever. Indeed, we are increasingly
approaching a Post-Moore era in classical computing, where improvements to computing
performance will come mainly from CPU architecture, algorithms, and software instead
of from transistor and integrated circuit technologies [8]. Therefore, the miniaturization
of hardware components is starting to be exchanged for optimization engineering and
specialization of hardware components (GPUs are an example of specialization and op-
timization).

This situation collides with the programming paradigms and practices that have been
driving developers over the past decade. In the case of the software industry, this change
of priorities has been increasingly shown over the years through the creation of high-
level but high-performance programming languages that abstract away parallelization,
concurrency, and efficient memory management. Carbon, Rust, Go, or Zig are some ex-
amples of this. However, the adoption of these languages is still very limited, as they
offer abstractions just to model common and safer practices without making them invis-
ible to the programmer.

This thesis aims to contribute to the solution of this problem (difficulty of efficiently
abstracting high performance, efficient code) by exploring the feasibility of using the abil-
ity of Field-Programmable Gate Arrays (FPGAs) [51] to create custom CPUs to migrate from
software to hardware the abstractions provided by high-level programming languages.
In this way, the possibility of creating hardware that adapts to the running programming
language appears as an alternative to creating bloated and complex software compilers
and interpreters. Sections 2.1 and 2.4 will dive deeper into the source of these problems
and previous attempts to solve them.

1.2 Proposal and goals

This thesis proposes creating a custom processor capable of running high-level inter-
preted languages through a Just-In-Time compiler. In particular, as a proof of concept, an
interpreter for a variant of the academic Simple IMPerative Language (SIMPL [18]) will be
made. Therefore, the goals of this thesis are:

• Build an end-to-end prototype capable of receiving from a serial port the ASCII
characters of a SIMPLER (modification of SIMPL programming language) program
and printing to a different serial port the results of the computation.

• Build a framework in a high-level language to generate compilers made in a Hard-
ware Description Language (HDL). Giving a general solution that would allow ex-
tending this thesis to other programming languages.
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• Optimize the analysis phase of SIMPLER, showing an increase in tokens/sec and
reductions/sec compared to a state-of-the-art interpreter running in a classical ma-
chine (Javascript V8 engine).

• Optimize energy efficiency of the analysis phase of SIMPL, showing a decrease
in watts compared to a state-of-the-art interpreter running in a classical machine
(Javascript V8 engine).

• Analyze space (hardware consumption) and time efficiency of the proposed solu-
tion and implemented algorithms.

• Analyze the price feasibility of replacing classical computing resources in server-
s/data centers for heterogeneous computing for a state-of-the-art (Javascript V8
engine).

It is important to note that the primary focus of optimization in this thesis will be
on the JIT compiler rather than the execution of the compiled instructions. This decision
was made to narrow the scope of the thesis to a proof of concept, with the execution
of instructions being handled by a conventional but soft-core microprocessor [52]. To
further optimize the execution phase, a custom processor and instruction set tailored to
the specific language would need to be developed. Additionally, all comparisons in this
thesis will be made against the JavaScript V8 engine, as 2.4 indicates that JavaScript is the
most widely used language among software professionals. This serves to demonstrate
the potential extensibility of the proposed solution to JavaScript.

1.3 Structure of this document

The rest of the document will apply the following structure:

• Fundamentals: This section will review all the basic knowledge needed to fully
understand this thesis, including FPGAs, Compilers, interpreters, and tools used.

• Design: This section will explain in a high-level manner the design of the proposed
system without falling into implementation details.

• Implementation: This section will go over the details of the implementation of each
one of the parts of the system.

• Validation: This section will include functional testing results and proofs of each
part working and performance tests and analysis of the presented results.

• Conclusions: This section will contrast the results obtained with state-of-the-art
solutions to draw conclusions.

• Relation with completed studies: This section will go over the subjects of the
cursed Bachelor’s degree related to the topics treated.

• Bibliography: This section will host all the references mentioned in this document.
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Fundamentals

In this section, introductory explanations cover both the historical context and the tech-
nical topics necessary to understand this thesis.

2.1 Historical context of the problem

The main focus of this thesis is to explore possible hardware optimizations to improve
the time, space, and energy efficiency of high-level interpreted programming languages
without harming software development time. This is a common trade-off that is usually
assumed to be inevitable.

In order to motivate our argument, we first briefly explore the history of this trade-off
and the reasons behind a current shift from prioritizing software development time to
prioritizing efficiency.

2.1.1. The Moore era: Bottom optimizations

"There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics"
[3] was a lecture given by the Nobel Prize-winning physicist Richard Feynman at the an-
nual American Physical Society meeting at Caltech on December 29, 1959. In this lecture,
Feynman foresaw a trend where computer performance would benefit from the minia-
turization of computer components.

Later on, in 1965, Intel’s founder Gordon Moore predicted the regularity of this minia-
turization trend, now called Moore’s law [9], which, until recently, doubled the number
of transistors on computer chips every 2 years. Figure 2.1 shows the predictions made by
Moore in his original paper [9] in a log-2 scale.

In this paper, Moore predicted the yearly double of the minimum number of com-
ponents that could be placed in an integrated circuit and its impact on electronics and
devices. Thus, in a single paper, he predicted the creation of home computers, smart
watches, autonomous vehicles, and the general use of integrated circuits in consumer
electronics.

In 1971 Intel created the first commercially available microprocessor, the Intel 404
[19], witnessing the accomplishment of the advances predicted by Moore. The abun-
dance of hardware resources led to the creation of General programming languages filled
with "wasteful" abstractions. Accordingly, these languages promote the optimization of
software development time rather than the optimization of execution time or the use of
hardware resources. Figure 2.2 shows the number of programming languages created

4
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Figure 2.1: Moore prediction number of Components per Integrated circuit

between 1950 and 2000. The graph shows an increasing trend just after the commercial-
ization of microprocessors in the 70s.

In sharp contrast, the number of languages created decreased after the year 2000 due
to Standardization and Industry Adoption.

Figure 2.2: Nº of created PLs by year (from Wikipedia scrapped data)

Pioneering this revolution (and based on previous languages like Fortran or Cobol
[20]), languages like Smalltalk, C, and SQL were born during the 70s.

These languages inspired a new spike during the 90s when more languages solely
focused on improving the programmer’s productivity were born. Some examples of
such languages include Visual Basic, Ruby (1993), Java (1995), Javascript (1995), and PHP
(1995). These are examples of attempts to hide some of the complexity behind lower-
level languages such as C in exchange for performance, from abstracting the machine
where the code is running through the use of interpreters to improving and adding more
features to the already existing Object-Oriented paradigm.

These languages were created with the purpose of rapidly improving business adop-
tion of the newly created technological advances and hardware resources, thus effectively
pushing the “dot com” revolution by allowing products to be created easily. Figure 2.3
displays a correlation between the Nasdaq composite index peak in the 2000s and the
number of created languages of figure 2.2.
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Figure 2.3: Nasdaq Composite index

The idea that "There’s plenty of room at the Bottom" [3] has led to the creation of
generations of software developers used to trade-off execution efficiency for develop-
ment time. Indirectly impulsed by Moore’s law and the fast development of hardware
resources the industry has been relying on "Bottom optimizations" (improvements on the
transistor technology and count) to sustain the fast growth of technological companies in
the last years.

Figure 2.4: StackOverflow language popularity survey 2024

Figure 2.4 shows the 2024 StackOverflow (one of the most popular programming fo-
rums among professional software developers) language popularity survey [21]. The
question asked for this survey was, "Which programming, scripting, and markup lan-
guages have you done extensive development work in over the past year, and which
do you want to work in over the next year?". As it can be seen, even though traffic
and throughput requirements of applications are at their highest in history, high-level
non-compiled languages such as Javascript, Python, Java, and C# are the most used lan-
guages, with more than 60% of developers reporting to have extensively used Javascript
in the last year.

Other lower-level old and new languages, such as C or Rust, have only been used
by 25% or 11% of developers, respectively. As already demonstrated in [8], coding in
these languages without any optimization leads to up to x47 performance losses. This, of
course, depends on the particular application. Figure 2.5 shows the relative speedup of
commonly used languages using a matrix-multiplication algorithm as an example.



2.1 Historical context of the problem 7

Figure 2.5: Programming language performance comparison (matrix-multiplication)

Figure 2.5 shows how the software development industry is currently sacrificing per-
formance over development time.

2.1.2. The post-Moore era: Top optimizations

Is this miniaturization of semiconductors that power our reliance on abundant hard-
ware resources sustainable? As stated in 2020s paper [8] the International Technology
Roadmap for Semiconductors unfortunately foresees an end to miniaturization, and Intel
(a leader in microprocessor technology) has acknowledged an end to the Moore cadence.

Figure 2.6 shows the evolution of transistor size in the CPUS of the main processor
manufacturers on a logarithmic scale.

Note that Intel transistor sizes stayed unchanged for 5 years before changing to 7nm;
AMD spent 4 years on 7nm before changing to 5nm in 2024; and Qualcomm spent 3 years
to get from 4nm to 3nm.

Figure 2.6: Transistor size of main CPU manufacturers

Taking a look at this graph, it is obvious that Moore’s law has been slowing since 2016
and that in past years (since 2019/2020) CPU manufacturers have made little progress
on transistor technologies (even though there are rumors that different possibilities will
revive Moore’s law with technological leaps such as 3D placement of transistors in CPUs).

Figure 2.7 shows transistor count on CPUs. As already stated in [8], we can see how,
indeed, CPU transistor count has been increasing slower but still in exponential growth
due to improvements in CPU architecture.

Therefore, we can conclude that in the incoming post-Moore era, the industry will
have to face optimizations in the "Top" (CPU architecture, software, and algorithms) to
sustain the still-growing technological sector. As CPU architecture is currently power-
ing the exponential growth of computer performance, software, and algorithm improve-
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Figure 2.7: Transistor count of main CPU manufacturers

ments will have to power in the next decades, when CPU architecture improvements will
not be worth it anymore due to the law of diminishing returns.

This will be especially tough in a context where most software developers and compa-
nies have well-established practices and strategies centered around highly abstracted and
fast-to-develop systems. This trend of attempting to combine performance with rapid
development is already showing up in the industry with the last developed languages,
such as Go, Zig, and Rust, which attempt to bring performance to the table (especially
for parallel and concurrent systems) without impacting too much development time.

2.2 Programming languages and compilers

Programming languages act as a bridge between the problem humans want to solve and
the computer that executes the solution. Compilers play a crucial role in this process by
translating programs of high-level programming languages, which are closer to human
language, into machine code that computers can understand and execute. This section
introduces compilers, interpreters, and the various phases that comprise their operation.

2.2.1. Structure of a compiler

Figure 2.8 shows the basic function of a compiler and its two main phases [2].

Figure 2.8: Basic compiler diagram

Thus, a programming language is defined by a specification that outlines how the lan-
guage’s structures are analyzed and translated into executable code. These specifications
can be divided into the following categories:

• Lexical specification: It defines the valid symbols of the language that can appear
in valid programs.
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• Syntactic specification: defines the rules and structure of valid programs, focusing
on how symbols and tokens are combined to form valid statements and expressions

• Semantic specification: defines both the semantic constraints of the language and
the meaning of valid programs. In compilation, the meaning of a source program
is considered to be its equivalent object program.

There is a general consensus on using Formal Language Theory to define the lexical
and syntactic specifications of programming languages. However, semantic specifica-
tions lack such agreement due to the inherent complexity of defining meaning. Various
semantic models have been proposed, with attributed semantics frequently employed for
static specifications.

2.2.2. Approaches to translate programs into machine code

Programming language translators can be classified based on the type of translation used
to convert them into machine code. Following this approach, translators can be catego-
rized as follows: [2]:

• Compilers: a high-level source program is directly converter into machine lan-
guage.

• Interpreters: instructions are translated and executed step by step as the source
program runs.

• Assemblers: source code close to machine language is translated without provid-
ing any further abstractions.

Figure 2.9 displays the difference between the process that interpreters and compilers
follow [2].

Figure 2.9: Difference between compilers and interpreters

In addition to these variations, there are other types of translators, such as Just-In-
Time (JIT) compilers and bytecode interpreters. These translators combine aspects of
both interpreters and compilers.
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Figure 2.10: Detailed view of the classical compilation process

Figure 2.10 shows a more detailed view of the steps and processes inside a compiler
[2]. The table of symbols is an abstraction present in the compiler to store information
about the symbols of the programming language during compilation (created variables,
functions, stack position...). While the error handler of a compiler is a component respon-
sible for detecting, reporting, and managing errors that occur during the compilation
process.

2.2.3. Lexical analysis

The objective of this phase is to read the source program and generate the lexical units
("tokens"). Key tasks include detecting language symbols, performing associated seman-
tic actions, generating tokens, and discarding unnecessary strings. Regular expressions
are used as the mathematical model to specify and efficiently perform the parsing in this
phase. Figure 2.11 shows the lexical analysis of the string "x = y + z * 4" as an example.

Figure 2.11: Example of lexical analysis for "x = y + z * 4"

As observed, the outcome of the lexical analysis is a series of tokens.

2.2.4. Syntactic analysis

The syntax analyzer takes the sequence of tokens generated by the lexical analyzer and
checks whether it complies with the syntactic rules defined by the language’s grammar.
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If the sequence is valid, the analyzer produces a hierarchical representation called an
abstract syntax tree (AST). This phase ensures that the code structure conforms to the
language’s syntax, resulting in a structured output as an AST, which can be further pro-
cessed. Context-free grammars are used as the formalism for the syntactic specification.

Figure 2.12 illustrates the abstract syntax tree resulting from the syntactic analysis of
the expression "x = y + z * 4," based on the grammar rules provided.

Figure 2.12: Example of syntactical analysis for 2.11.

2.2.5. Semantic analysis

This module’s objective is to verify the language’s semantic constraints. One of the pri-
mary components of semantic analysis is type checking, which ensures that each opera-
tion has operands permissible under the language’s semantics.

Figure 2.13 illustrates a potential outcome of semantic checking for the expression "x =
y + z * 4,". The annotated tree’s nodes represent operations, while their children represent
the respective operands. The "integer-to-real" node denotes the semantic action of type
conversion, considering that the variables are of type real and the constant is of type
integer.

Figure 2.13: Example of semantic analysis for 2.12.

2.2.6. Intermediate code generation

Intermediate code is an abstract representation that is independent of the target machine
for which the object code will be generated. This code must fulfill two key requirements:
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it should be easy to generate from the syntactic analysis and simple to translate into the
target machine language. A basic example is shown in Figure2.14. While this phase is
not strictly necessary, it is highly recommended for portability reasons.

Figure 2.14: Example of intermediate code generation for 2.13.

2.2.7. Code optimization

In this module, all available tools for optimizing intermediate machine-independent code
are incorporated. Improvements are made to the produced code, similar to those shown
in the example in Figure 2.15.

Figure 2.15: Example of intermediate code optimization for 2.14.

2.2.8. Code generation

In this final stage, machine code is generated while attempting to maximize the perfor-
mance of the machine’s architecture to produce the most optimized code possible. A
simple example for a hypothetical machine language is illustrated in 2.16.

Figure 2.16: Example of code generation for 2.15.

2.3 Introduction to FPGAs and HDL

This section discusses the technology underlying FPGAs (Field-Programmable Gate Ar-
rays), their applications, and the differences between FPGAs, ASICs (Application-Specific
Integrated Circuits), and general-purpose microprocessors.

As noted in [23], an FPGA is a reconfigurable integrated circuit (IC) that allows the
implementation of a wide range of custom digital circuits by configuring and manipu-
lating logic gates. These custom circuits can be optimized for applications such as dig-
ital signal processing (DSP), machine learning, and cryptocurrency mining. FPGAs are
found in many consumer electronics, as well as specialized equipment like satellites and
communication systems.
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Thus, an FPGA provides a means to implement custom digital logic circuits in a rel-
atively short time using a Hardware Description Language (HDL). Before the advent of
reconfigurable logic ICs, engineers had to wire prototype boards to test their designs
manually. Complex digital designs often led to significant wiring challenges, making
bug detection and resolution nearly impossible. Reconfigurable logic ICs, such as CPLDs
and FPGAs, help reduce space, wiring complexity, and debugging efforts.

An FPGA consists of numerous Programmable Logic Blocks (PLBs), each containing
several Logic Cells. Figure 2.17 shows the block diagram for the iCE40HX1K FPGA.

Figure 2.17: ICE40LP/HX diagram

Each cell contains a D flip-flop and a Lookup Table (LUT). Most FPGAs also include
RAM for data storage, a phase-locked loop (PLL) for clock multiplication, and I/O banks
for digital input/output. Some FPGAs feature additional peripherals, such as communi-
cation blocks (e.g., SPI), ADCs, or even embedded CPUs for sequential code execution.
Programming an FPGA involves configuring the connections between these blocks and
peripherals to implement a custom digital circuit.

The LUTs and D flip-flops in an FPGA are connected via the switch matrix [25], a
network of switches interconnecting PLBs and other resources. While the specific con-
struction of the switch matrix is proprietary, it is typically envisioned as a 2D grid of
wires and multiplexers that control interconnections.

Some examples of usual applications for FPGAs are:

• Parallel I/O operations: For instance, displays made up of thousands or millions of
LEDs require a very fast and independent control of many hardware components.
Existing LED cubes offer smooth frame rates because they are controlled by FPGAs.
A CPU would struggle to feed the required data to all of the LEDs (or driver chips)
that fast.
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• Data acquisition (DAQ): You can create custom digital logic that samples and
buffers sensor data very quickly, which can then be read by a CPU later for analysis.

• Specialized computations: Depending on the application, digital circuits can often
be configured to perform specific math operations much faster than a CPU, which
is configured to execute generic operations (e.g. math, load, store).

• Custom processor: Because an FPGA allows you to build an almost limitless num-
ber of digital circuits, you can actually implement one or more CPUs in an FPGA.
This offers the ability to create customized CPUs.

HDLs (Hardware Description Languages) are used to specify FPGA designs. These
languages are not procedural; the code is not executed sequentially in a processor. In-
stead, HDLs are synthesized, a process that converts the design into gate-level represen-
tations that can be implemented by the FPGA, effectively transforming code into a digital
circuit. Common HDLs include VHDL and Verilog. Figure 2.18 shows the diagram and
Verilog implementation of a half-adder [7].

Figure 2.18: Example of half adder implementation in Verilog

2.4 State of the art and current solutions

As mentioned in the introduction and Section 2.1, current efforts to address the challenge
of efficiently abstracting high-performance code typically focus on two approaches: de-
veloping new programming languages with specialized abstractions to enhance the pro-
grammer’s experience or utilizing specialized hardware (e.g., GPUs) for specific applica-
tions, which is abstracted from the programmer through multiple layers of abstraction.

These solutions face notable adoption barriers. Languages like Carbon, Rust, and
Zig, though powerful, have a steeper learning curve compared to high-level languages
like Python or JavaScript. This is reflected by their lower adoption rates (see Section 2.1).
Furthermore, the high cost of custom hardware fabrication limits scalability, making it
viable only for widely used applications such as video rendering, machine learning, and
cryptocurrency mining.

This section reviews prior efforts to implement high-level abstractions in hardware to
optimize general-purpose high-level languages, with a focus on Python due to its popu-
larity among researchers.
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2.4.1. High-level based abstractions

Several tools enable software engineers to use high-level languages, such as Python, to
program FPGAs by abstracting HDL languages. An example of such a framework is
PYNQ [33], released by Xilinx in 2017. Figure 2.19 shows an example of PYNQ code.

Figure 2.19: PYNQ Example

Research has also explored the feasibility of leveraging these frameworks to accelerate
Python code execution without negatively impacting development time.

The authors of [10] argue that as FPGAs evolve to incorporate more heterogeneous
processing elements, such as ARM cores, a shift toward software-oriented development
environments is necessary. This paper uses PYNQ to compare development time and
performance speedups when using FPGAs with Python versus C and OpenCV. Figure
2.20 presents the results.

Figure 2.20: PYQN, C and OpenCV comparison

In contrast, [12] introduces an open-source infrastructure and tool suite designed
to integrate FPGA accelerators into Python applications, with the goal of streamlining
the process and enhancing productivity for both novice and expert users. Figure 2.21
presents the results.

Figure 2.21: Hot&Spicy results

2.4.2. Synthesizing high-level languages into HDL

Another approach is to translate high-level programming languages directly to HDL.
Some research has already been done on this aspect (mostly around Python).
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[5] Proposes a Python-based high-level programming framework to simplify the pro-
gramming and optimization of CPU-FPGA heterogeneous systems. The framework com-
piles Python into HDL, effectively abstracting the hardware details from programmers.
Figure 2.22 illustrates the proposed FPGA design flow.

Figure 2.22: FPGA Design Flow with PyLog

[16] Also serves as a proof of concept for a Python-to-FPGA compiler, built on the
Numba Just-In-Time (JIT) compiler for Python and the Intel FPGA SDK for OpenCL. This
enables Python users to leverage FPGA cards as accelerators for Python code. Figure 2.23
illustrates the proposed FPGA design flow.

Figure 2.23: FPGA Design Flow with PyGa

2.4.3. Design custom processors and interpreters

Another approach is to design custom processors that natively execute programming
languages typically interpreted or compiled for a classical CPU. This requires developing
a new instruction set and CPU architecture for each language.
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[11] Proposes a hardware implementation of the Java Virtual Machine (JVM), with a
focus on real-time applications. Figure 2.24 shows speedups of up to 11x, running at 24
MHz, compared to a standard JVM running on an Intel processor.

Figure 2.24: JOP and 486SX15 performance comparison

In [6], the implementation of a Java microprocessor core in silicon to accelerate Java
execution is described. The design achieves a running frequency of up to 21 MHz, with
approximately 50% utilization of the FPGA’s area.

In summary, FPGAs have been explored in various approaches to accelerate the exe-
cution of high-level languages while maintaining abstraction. All the cited works demon-
strate significant speedups compared to traditional machines or even optimized hard-
ware running C/C++ code.

However, most of these approaches are either heavily focused on embedded systems
or specific scientific computing tasks (optimizing only certain computations) or are out-
dated in terms of comparison with current language performance. For example, the last
two cited papers are the only examples of interpreters implemented on reconfigurable
hardware, yet their comparisons are against 25 MHz Intel CPUs from the early 2000s.

2.5 Tools and programming languages used

This section provides an overview of the design, programming, simulation, synthesis,
and testing tools used in the development of this thesis:

• VSCode: code editor [26].

• Apio: FPGA development ecosystem [28].

• Yosis: framework for RTL synthesis tools [29].

• Python: scripting programming language [31].

• KiCad: open source tool for PCB design [27].

• GTKWave: fully featured GTK+ wave viewer [30].

• Saleae logic Anayzer: logic analyser for debugging physical digital signals [32].

All software tools and resources used to develop this thesis are open-source and free
to use.
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Design

The following section covers the requirements and high-level design of the entire system,
along with its individual components.

3.1 System requirements

From the goals specified in Section 1.2 and as a proof of concept, we can derive the fol-
lowing requirements for the system:

• The system must be implementable on affordable FPGAs with clock frequencies
between 24 MHz and 100 MHz, logic cell counts between 10,000 and 100,000, and
priced between below and 50€.

• The system must implement a JIT (just in time) compiler that translates and exe-
cutes the SIMPLER language (modification of the SIMPL language).

• The system must accept input programs in ASCII format via a serial communication
protocol compatible with USB and accessible through the Python Serial library.

• The system must output the computation results by a Serial communication proto-
col that can be made compatible with USB and available through the Python Serial
Library.

• The system must be specified through the use of high-level abstractions in a custom
Python framework. Allowing for the extensibility of this thesis to other languages.

• The JIT compiler scanner running in computing resources as the ones specified in
3.1 must have a throughput greater than 10,000,000 tokens per second (Javascript
V8 JIT performance) running in an Intel Core I5 at 3 GHz.

• The JIT compiler parser running in computing resources as the ones specified in 3.1
must have a throughput greater than 10,000,000 tokens per second (Javascript V8
JIT performance) running in an Intel Core I5 at 3 Ghz.

• The JIT compiler running in computing resources as the ones specified in 3.1 must
consume less than 20 Watts (Javascript V8 JIT performance) running in a single Intel
I5 core at 3 GHz.

Verilog has been selected as the HDL for implementing the interpreter, and Python
has been chosen for developing the compiler generator framework. Figure 3.1 illustrates
the system during the code execution process.

18
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Figure 3.1: System diagram during code execution

As shown, one of the modifications to the SIMPL language is the addition of a Print
instruction. The system’s expected output is to return the results of any Print statements
in the source code via the output serial port.

On the other hand, Figure 3.2 displays a system diagram during the interpreter syn-
thesis process.

Figure 3.2: Interpreter synthesis process

These requirements have been simplified due to budget constraints. In an industry
setting, a heterogeneous computing system would typically be used, with a lightweight
server and a hard CPU providing programming access to the FPGA. The FPGA inter-
preter accelerator could be connected to the main system bus via PCI Express (a high-
speed serial expansion bus standard with speeds up to 242 GB/s), allowing direct ac-
cess to the network card through DMA for network applications. In this configuration,
the FPGA interpreter would act as a PCI Express hardware accelerator, similar to GPUs.
However, the cost of PCI Express-compatible FPGAs and large-scale dedicated RAM ex-
ceeds the budget for this project.
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3.2 System design

Based on the requirements specified in Section 3.1, the FPGA selected for this project is
the ICE40-UP5K [34], a low-power, low-cost FPGA designed for general-purpose edge
and mobile applications. Figure 3.3 shows its characteristics. Its integrated I2C core, 1
Mb of SPRAM, and 120 Kb of EBR RAM meet our application needs while keeping the
cost of a single FPGA under 10€.

Figure 3.3: ICE40-UP5K Specifications

However, the limited number of logic cells (only 5,000) on a single device necessitates
dividing the system into two parts and using two FPGAs. The first FPGA will host the
SIMPL JIT interpreter, while the second will execute the result of the JIT compilation,
simulating a microprocessor. For this, two ICE40-UP5K Breakout Boards [35] will be
used. Figure 3.4 shows an image of one of these boards.

The number and layout of General I/O connectors on this board limit the bus con-
necting the two boards to 9 bits. Due to the testing setup, high-frequency signals cannot
be transmitted through this bus, so communication between the two FPGAs will operate

Figure 3.4: ICE40-UP5K Breakout Boards
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at 10 kHz. The 9-bit bus will be divided as follows: 8 bits for transmitting machine code
instructions from the interpreter to the microprocessor’s instruction memory and 1 bit
for the bus clock signal.

I2C [53] will be used to transmit both SIMPL source code and computation results.
I2C is a synchronous, multi-controller/multi-target, single-ended serial communication
bus developed by Philips Semiconductors in 1982, with a bitrate of up to 5 Mbit/s. It
meets the requirements in Section 3.1, is accessible via the Python Serial library using
I2C-to-USB devices, and offers high error resistance. Given the transmission distance of
less than 50 cm (I2C supports 1 MHz over this range), it is ideal for this setup. Figure 3.5
shows the I2C-to-USB device used.

Figure 3.5: I2C to USB device used

Figure 3.6 presents the final hardware diagram of the system, detailing all communi-
cation lines and their operating frequencies.

Figure 3.6: System hardware diagram

As shown, the speed of both the I2C bus and the instruction bus will be the system’s
bottleneck. However, these limitations can be easily mitigated with a higher budget.
More expensive FPGAs can offer up to 1 million logic cells, allowing for significantly
larger systems and integrated PCIe support. For example, Figure 3.7 shows the specifica-
tions of the Lattice Certus-NX family, including the LFD2NX-40 model with 39,000 logic
cells and PCIe 2 compatibility, priced at 60€.

3.3 Language specification (SIMPLER)

To meet the system requirements, we will modify the original SIMPL specification to
create a new language, referred to as SIMPLER. This version includes additional gram-
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Figure 3.7: Specifications of the Lattice Certus-NX family

matical rules to simplify code generation, a Print instruction, and boolean variables. The
SIMPLER language has the following features:

• Variables: all variables are 32 bit integers, in case of boolean variables they are
stored as a 0 or 1 integers respectively.

• Constants: To avoid using internal 32-bit registers for storing token attributes (where
constants are stored during compilation), constants are limited to 8-bit unsigned
numbers.

• Conditional and loop structures: same as in the SIMPL language: if .. then .. else ..
and while .. do .. loops.

• I/O output: SIMPLER includes a Print instruction that outputs the contents of the
specified variable via the I2C bus.

3.3.1. Lexical specification of SIMPLER

Listing 3.1 presents the lexical specification of SIMPLER, using regular expressions [36]
as the formalism. Note that "\" is used as an escape character to distinguish the ASCII
"+" from the regular expression quantifier.

3.3.2. Syntax specification of SIMPLER

Listing 3.2 includes the Syntactic specification of SIMPLER. The formalism used is context-
free grammars; for more information on non-contextual grammars, check [37].

The main difference from the original SIMPL specification is the introduction of new
intermediate expressions, which aim to simplify the interpreter’s hardware implementa-
tion.

For example, replacing "ID" with "Var → ID" simplifies the semantic and code gen-
eration process, allowing us to specify both at the end of the reduction. Additionally,
complex expressions like "If Boolean then APAR Instruction CPAR else APAR Instruction
CPAR" have been shortened using intermediate expressions. This reduces the number of
symbols on the right-hand side of expressions to a maximum of 3, enabling the use of a
32-bit register to store operands and results for semantic operations.
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1 ID → [ a−z ] [A−Za−z0 −9]*
2 CONST → [0 −9]*
3 BLANK → [\n \ t \r ]+
4 NOT → !
5 LESSEQ → <=
6 EQUALS → =
7 MULT → \*
8 PLUS → \+
9 MINUS → −

10 PRINT → P r i n t
11 SKIP → SKIP
12 ASSIGN → :=
13 SEMICOLON → ;
14 IF → i f
15 THEN → then
16 ELSE → e l s e
17 APAR → \(
18 CPAR → \)
19 WHILE → while
20 DO → do
21 TRUE → True
22 FALSE → Fa lse
23 OR → ||

Listing 3.1: Lexical specification of SIMPLER

1 Program → I n s t r u c t i o n
2 I n s t r u c t i o n → SKIP
3 I n s t r u c t i o n → ID ASSIGN Arithmetic
4 I n s t r u c t i o n → ID ASSIGN Boolean
5 I n s t r u c t i o n → I n s t r u c t i o n SEMICOLON I n s t r u c t i o n
6 I n s t r u c t i o n → IfThen IfBody Else
7 I n s t r u c t i o n → WhileDo WhileBody
8 I n s t r u c t i o n → P r i n t Var
9 WhileDo → While Boolean DO

10 WhileBody → APAR I n s t r u c t i o n CPAR
11 While → WHILE
12 IfThen → IF Boolean THEN
13 Else → ELSE APAR I n s t r u c t i o n CPAR
14 IfBody → APAR I n s t r u c t i o n CPAR
15 Arithmetic → CONST
16 Arithmetic → Var
17 Arithmetic → Arithmetic PLUS Arithmetic
18 Arithmetic → Arithmetic MINUS Arithmetic
19 Arithmetic → Arithmetic MULT Arithmetic
20 Boolean → Arithmetic EQUALS Arithmetic
21 Boolean → Arithmetic LESSEQ Arithmetic
22 Boolean → Boolean OR Boolean
23 Boolean → NOT Boolean
24 Var → ID

Listing 3.2: Syntax specification of SIMPLER
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1 Program → I n s t r u c t i o n
2 I n s t r u c t i o n → SKIP
3 I n s t r u c t i o n → ID ASSIGN Arithmetic [ creaVar ( ID ) ]
4 I n s t r u c t i o n → ID ASSIGN Boolean [ creaVar ( ID ) ]
5 I n s t r u c t i o n → I n s t r u c t i o n SEMICOLON I n s t r u c t i o n
6 I n s t r u c t i o n → IfThen IfBody Else
7 I n s t r u c t i o n → WhileDo WhileBody
8 I n s t r u c t i o n → P r i n t Var
9 WhileDo → While Boolean DO

10 WhileBody → APAR I n s t r u c t i o n CPAR
11 While → WHILE
12 IfThen → IF Boolean THEN
13 Else → ELSE APAR I n s t r u c t i o n CPAR
14 IfBody → APAR I n s t r u c t i o n CPAR
15 Arithmetic → CONST
16 Arithmetic → Var
17 Arithmetic → Arithmetic PLUS Arithmetic [ Ari thmetic = creaVarTemp ( ) ]
18 Arithmetic → Arithmetic MINUS Arithmetic [ Ari thmetic = creaVarTemp ( ) ]
19 Arithmetic → Arithmetic MULT Arithmetic [ Ari thmetic = creaVarTemp ( ) ]
20 Boolean → Arithmetic EQUALS Arithmetic [ Boolean = creaVarTemp ( ) ]
21 Boolean → Arithmetic LESSEQ Arithmetic [ Boolean = creaVarTemp ( ) ]
22 Boolean → Boolean || Boolean [ Boolean = creaVarTemp ( ) ]
23 Boolean → NOT Boolean [ Boolean = creaVarTemp ( ) ]
24 Var → ID [ Var = creaVar ( ID ) ]

Listing 3.3: Semantic specification of SIMPLER

3.3.3. Semantic specification of SIMPLER

Listing 3.3 presents the semantic specification of SIMPLER, using attribute grammars as
the formalism. For more information on attribute grammars, refer to [38]. Specifically,
we have used an attribute grammar where each symbol has a single 8-bit attribute.

Note the use of the functions "creaVarTemp()" and "creaVar()," which are part of the
symbol table. These will be explained in detail later. Additionally, the "Arithmetic,"
"Boolean," and "Var" attributes store the memory address where the result of the expres-
sion will be stored.

3.3.4. Examples

Some examples of short SIMPLER programs are listed in this section.

Program in Listing 3.4 prints the numbers from 1 to 10.

1 index := 0 ;
2 while index <= 10 do (
3 index := index + 1 ;
4 P r i n t index
5 )

Listing 3.4: SIMPLER For loop

Program in Listing 3.5 calculates and prints the first 13 numbers of the Fibonacci se-
ries.
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1 index := 0 ;
2 f i b o n a c c i _ t 0 := 1 ;
3 f i b o n a c c i _ t 1 := 1 ;
4 temp := 0 ;
5 P r i n t f i b o n a c c i _ t 0 ;
6 P r i n t f i b o n a c c i _ t 1 ;
7

8 while index <= 10 do (
9 index := index + 1 ;

10 temp := f i b o n a c c i _ t 0 + f i b o n a c c i _ t 1 ;
11 f i b o n a c c i _ t 0 := f i b o n a c c i _ t 1 ;
12 f i b o n a c c i _ t 1 := temp ;
13 P r i n t f i b o n a c c i _ t 1
14 )

Listing 3.5: SIMPLER Fibonacci calculator loop

Program in Listing 3.6 calculates and prints the first 12 powers of 2.

1 index := 0 ;
2 power := 1 ;
3 P r i n t index ;
4

5 while index <= 10 do (
6 index := index + 1 ;
7 power := power * 2 ;
8 P r i n t power
9 )

Listing 3.6: SIMPLER Power of 2 calculator

Program in Listing 3.7 prints the even numbers for 0 to 10.

1 index := 0 ;
2 power := 1 ;
3 P r i n t index ;
4

5 while index <= 10 do (
6 r e s t := index ;
7 while 0 <= index do (
8 r e s t := r e s t − 2
9 ) ;

10

11 i f r e s t = 0 then (
12 P r i n t index
13 ) e l s e (
14 skip
15 )
16 )

Listing 3.7: SIMPLER even numbers calculator

3.4 Light-Weight Verilog Compiler Generator (LWVCG)

This section describes the high-level design of the custom Python framework developed
to generate Verilog compilers, referred to as LWVCG (Light Weight Verilog Compiler
Generator). Based on the simplifications in Section 3.3, the generator is divided into two
distinct parts:
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• Scanner generator: This module will take the lexical specification of the language
and generate a Verilog module that raises a flag when a token is detected and indi-
cates the detected token as an integer. Additionally, it will generate a Verilog test
bench to verify the correct behavior of the generated module.

• Parser generator: This module will take the syntactic, semantic, and code gener-
ation specifications of the language and generate a Verilog file to handle parsing.
The generated Verilog module will receive detected tokens as input and output the
8-bit bus carrying the generated machine code instructions, along with flags such
as "parsing done" and "begin code execution" to ensure proper integration with the
microcontroller.

Figure 3.8 displays these blocks, along with their inputs, outputs, and interconnec-
tions.

Figure 3.8: LWVCG Module diagram

Lastly, these two generated files will be used by a third top module, which will be
coded by hand to map the input signals to the scanner, integrate the scanner and parser,
and map the parser signals to the output.

For the syntactic and lexical language specifications, we will use plain Python dictio-
naries to map tokens to lists: lists of tokens for syntactic specifications and lists of strings
for lexical specifications. For semantic and code generation specifications, dictionaries
will map a list of tokens (representing a reduction) to a list of either AttributeOperations
or machine code instructions. Tokens will be represented by numerical values using an
Enum, and AttributeOperations will be defined using a plain Python data class. Listings
3.8, 3.9 3.10, and 3.11 provide examples of these Python specification dictionaries for the
SIMPLER language.
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1 SIMPLER_LEXIC_SPECIFICATION = {
2 Symbol . PLUS : [ "+" ] , Symbol .MINUS : [ "−" ] , Symbol .

PRINT : [ " P r i n t " ] ,
3 Symbol .EQUALS : [ "=" ] , Symbol . LESSEQ : [ "<=" ] , Symbol .

NOT : [ " ! " ] ,
4 Symbol .OR : [ "||" ] , Symbol .TRUE : [ " t rue " ] , Symbol .

FALSE : [ " f a l s e " ] ,
5 Symbol . SKIP : [ " skip " ] , Symbol . ASSIGN : [ " := " ] , Symbol .

SEMICOLON : [ " ; " ] ,

Listing 3.8: Example of LWVCG SIMPLER Lexic specification

1 SIMPL_SINTAX_SPECIFICATION = {
2 Symbol . Program : [
3 [ Symbol . I n s t r u c t i o n , Symbol .END ]
4 ] ,
5 Symbol . I n s t r u c t i o n : [
6 [ Symbol . SKIP ] ,
7 [ Symbol . ID , Symbol . ASSIGN , Symbol . Ari thmetic ] ,
8 [ Symbol . ID , Symbol . ASSIGN , Symbol . Boolean ] ,
9 [ Symbol . I n s t r u c t i o n , Symbol .SEMICOLON, Symbol . I n s t r u c t i o n ] ,

10 [ Symbol . IfThen , Symbol . IfBody , Symbol . E lse ] ,
11 [ Symbol . WhileDo , Symbol . Body ] ,
12 [ Symbol . PRINT , Symbol . Var ]
13 ] ,

Listing 3.9: Example of LWVCG SIMPLER Syntax specification

1 SIMPLER_SEMANTIC_SPECIFICATION = {
2 ( Symbol . I n s t r u c t i o n , Symbol . SKIP ) :
3 Attr ibuteOperat ion ( None , Operation .NOP, None ) ,
4 ( Symbol . I n s t r u c t i o n , Symbol . ID , Symbol . ASSIGN , Symbol . Ari thmetic ) :
5 Attr ibuteOperat ion ( A t t r i b u t e .RIGHT_HAND_1,
6 Operation . ASSIGN_CREATE_VAR_FROM_ID,
7 A t t r i b u t e .RIGHT_HAND_1) ,
8 ( Symbol . I n s t r u c t i o n , Symbol . ID , Symbol . ASSIGN , Symbol . Boolean ) :
9 Attr ibuteOperat ion ( A t t r i b u t e .RIGHT_HAND_1,

10 Operation . ASSIGN_CREATE_VAR_FROM_ID,
11 A t t r i b u t e .RIGHT_HAND_1) ,

Listing 3.10: Example of LWVCG SIMPLER Syntax specification
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1 SIMPLER_CODE_GENERATION_SPECIFICATION = {
2

3 ( Symbol . I n s t r u c t i o n , Symbol . ID , Symbol . ASSIGN , Symbol . Ari thmetic )
: [

4 " 8d6d0000 " , # lw $t5 , 0 ( $ t3 )
5 " ad2d0000 " # sw $t5 , 0 ( $ t1 )
6 ] ,
7

8 ( Symbol . Arithmetic , Symbol .CONST)
: [

9 " ad090000 " # sw $t1 , 0 ( $ t0 )
10 ] ,
11 ( Symbol . Arithmetic , Symbol . Var )

: [
12 " 8d2d0000 " , # lw $t5 , 0 ( $ t1 )
13 " ad0d0000 " # sw $t5 , 0 ( $ t0 )
14 ] ,
15 }

Listing 3.11: Example of LWVCG SIMPLER Code generation specification

For code generation, we will use Python string interpolation combined with a func-
tional approach to map the initial specifications to a single string representing the Ver-
ilog code for the final "scanner", "scanner_tb", "parser", and "parser_tb" files. Listing 3.12
shows an example of a Python code generation function that interpolates Verilog code
with Python variables.

3.5 Interpreter design

As stated in Section 3.4, the interpreter will be divided into two modules. Both of them
will be running at the default FPGA clock frequency (24 Mhz) One for the scanner and
one for the parsing and code generation. However, the frequency of the interpreter’s
input and output buses will be a bottleneck and cause these modules to operate in a
blocking behavior instead of in a pipelined way. That is to say, the parsing module will
not start parsing the input until the lexical analyzer is done analyzing all the input tokens,
and the parser cannot parse the following token until the instruction output bus is done
transmitting all the instructions for the past reduction. Figure 3.9 shows a diagram of this
process.

Figure 3.9: Interpreter process
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1 def get_token_encoder ( s e l f ) :
2 tokens = [ "CONST" , " ID " , "COMMENT" ] + l i s t ( s e l f . t o k e n s _ d i c t . keys ( )

)
3 ass ings = " " . j o i n ( [ f " ass ign s i g n a l s [ { s t r ( i ) } ] = { token } ; \ n\ t " f o r i

, token in enumerate ( tokens ) ] )
4

5 f o r i , t in enumerate ( tokens ) :
6 p r i n t ( i + 1 , t )
7

8 re turn f " " "
9 wire [ { len ( tokens ) } : 0 ] s i g n a l s ;

10 { ass ings }
11

12 token_encoder
13 #(
14 .SIGNAL_COUNT( { len ( tokens ) } ) ,
15 .ENCODER_OUT_COUNT( { c e i l ( log2 ( len ( tokens ) +1) ) } )
16 )
17 encoder
18 (
19 . c l k ( c l k ) ,
20 . en ( en ) ,
21 . r s t ( r s t ) ,
22 . s i g n a l s ( s i g n a l s ) ,
23 . encoded ( token )
24 ) ; " " "

Listing 3.12: Code generation example

The algorithms used to implement both modules, along with their hardware details,
will be explained later.

3.6 Processor design

For the processor, we will use an open-source 32-bit MIPS softcore Verilog implementa-
tion from [39], running at 6 MHz (due to limitations in the design). Initially, this proces-
sor occupied 300% of the ICE40UP5K FPGA, so several optimizations and changes were
required:

• Address space optimizations: The address space was initially implemented as dis-
tributed memory on the FPGA, causing significant overhead in LCU utilization.
This was optimized by migrating to the RAM blocks available in the ICE40UP5K
FPGA, reducing LCU utilization to 150%.

• Registers optimizations: The register space was implemented as distributed mem-
ory on the FPGA, which is challenging to optimize since registers typically cannot
be migrated to RAM due to delays. To address this, a secondary high-speed clock
(4x the system clock) was introduced to drive the register RAM memory. This al-
lowed the registers to be migrated to RAM while maintaining the ability to perform
updates within one clock cycle. This optimization reduced LCU utilization to 80%.

• ROM Memory changes: The instruction ROM was modified to allow write opera-
tions from the instruction bus.
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Figure 3.10 shows the subset of instructions from the original MIPS architecture that
are supported in this current implementation.

Figure 3.10: @vsilchuk MIPS implementation supported instructions



4

Implementation

This section will review the implementation details in algorithms, software, and hard-
ware of each of the components mentioned in Section 3.

This section covers the implementation details of the algorithms, software, and hard-
ware for each component mentioned in during the design.

We will use Big-O notation to describe the worst-case spatial and time complexities
of the algorithms. Since these algorithms are implemented in hardware, time complexity
often translates directly to clock cycles and space complexity to LUT usage. For example,
a time complexity of O(N) implies the algorithm will take N clock cycles, and a space
complexity of O(N) indicates that N LUTs will be required if implemented in distributed
memory.

4.1 Lexical analysis

4.1.1. Algorithms and data structures used

Regular expressions are the formalism used for lexical specification. Regular expressions
can be translated into Non-Deterministic Finite Automata (NFA) and later into Determin-
istic Finite Automata (DFA). This can be efficiently implemented in software using state
machines and graph representations.

The most commonly used algorithm for converting a regular expression into an NFA
is "Thompson’s Construction Algorithm" [40]. This algorithm recursively creates small
NFAs for each part of the regular expression, combining them using epsilon () transitions.
These transitions can be later simplified to optimize the automaton size.

NFAs allow multiple transitions for a single state-symbol pair, including -transitions.
Simulating an NFA has a time complexity of O(2m · n) and a space complexity of O(m),
where n is the number of input symbols and m is the number of states.

The following rules are depicted according to Aho et al. (2007) [1]. The empty expres-
sion is converted to the DFA of Figure 4.1.

Figure 4.1: Rule applied for emtpy expression

A symbol "a" of the input alphabet is converted to the DFA of Figure 4.2.

31
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Figure 4.2: Rule applied for a symbol a

In what follows, N(s) and N(t) are the NFAs of the subexpressions s and t, respectively.
The union expression "s|t" is converted to the NFA of Figure 4.3.

Figure 4.3: Rule applied for s | t

The concatenation expression "st" is converted to the DFA of Figure 4.4.

Figure 4.4: Rule applied to concatenation expression

The Kleene star expression "s*" is converted to the NFA of Figure 4.5.

Figure 4.5: Rule applied to "s*" expression

As an example, the regular expression "(ϵ|a*b)" would be converted to the NFA
shown in Figure 4.6.

We use the union operator to create a single expression that recognizes all tokens
in the language, such as "(if|else|then|[0-9]+...|do|while)", then use Thompson’s algo-
rithm to convert this expression into an NFA and finally convert the resulting NFA to a
DFA using the Powerset construction algorithm [41].

However, this approach increases the number of possible states to 2m in the worst
case (where m is the number of NFA states). Given the FPGA’s 5000 LUT limit, we could
only accommodate up to approximately 13 states in the original NFA.
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Figure 4.6: NFA resulting of converting the expression "(ϵ|a*b)"

To maintain a time and space complexity of O(n), a different approach has been fol-
lowed by dividing expressions into plain keywords (simple concatenation) and more
complex expressions (involving Kleene star, quantifiers, or unions).

We can handle complex expressions using four separate expressions: one for IDs "[a-
z][A-Z0-9]*", one for constants "[0-9]+", one for blanks "[\n\t]", and then using just one
expression for keywords "(if|else|then|while...)". These 4 expressions can be evaluated
in parallel.

Figure 4.7 shows the resulting DFAs after applying Thompson’s construction algo-
rithm and simplifying epsilon transitions to the ID, CONST and BLACK expressions.

Figure 4.7: DFNs resulting to apply Thomoson’s algorithm to IDs, CONSTs and BLANK expres-
sions

For keywords, since they consist of simple symbol sequences, we can use a Trie (Prefix
Tree) [42] to identify them. A Trie is a k-ary search tree used to locate specific keys, often
strings, by linking nodes based on individual characters rather than the entire key. To
access a key (e.g., for retrieval, modification, or removal), the Trie is traversed depth-first,
following the links representing each character.

Building a Trie is straightforward: we iterate through all keywords while traversing
the tree. If we find a missing transition new node with the corresponding symbol is
added. Figure 4.8 shows an example of a Trie for the keywords "if", "else", ";", and "skip".
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Figure 4.8: Example of Trie for the keyworkds "if", "else", ";" and "skip"

In this way, through the use of a Trie and 3 DFAs (assuming parallel execution of all of
them), we can perform the lexical analysis for the language with time complexity of O(n)
and space complexity of O(m1 + m2 + m3 + m4) with n being the number of characters
in the source code and m1, m2, m3 and m4 being the number of states of the DFAs and
nodes in the Trie.

Note that all the algorithms mentioned in this section to build the Trie and DFAs will
not run on the FPGA; they will run on the LWVCG Python framework built by us. After
this, each node will be implemented as a Verilog class. Therefore, only the Trie search
and DFA simulation Algorithms will run on the FPGAs.

4.1.2. Hardware implementation

As stated in Section 3, the 100 kHz I2C bus for the source code requires polling the com-
munication channel until a new character is received. Consequently, the workflows for
source code upload and lexical analysis are depicted in Figure 4.9.
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Figure 4.9: Communication workflow with the lexical analyzer

If the received character is the end character "\x00", the finished flag will be raised.
Otherwise, an ACK message will be sent to the code upload script, indicating that the
FPGA is ready for the next character. During lexical analysis, all detected tokens will be
passed to the syntactic analyzer. Note that some steps in this workflow will be executed
in parallel on the FPGA.

Figure 4.10 shows the hardware block diagram of the lexical analyzer.

Figure 4.10: Lexical analyzer’s hardware block diagram

The I2C driver will implement the state machine shown in Figure 4.9 to manage the
reception and transmission of messages to the code upload script. Due to reported issues
with the ICE40UP5K’s built-in I2C module, a custom soft-core I2C master module was
built in Verilog following the NXP specification [43].

To enhance time efficiency and optimize hardware usage, the scanner module has
been divided into four separate modules: the IDs DFA, CONSTs DFA, BLANKs DFA,
and the keywords Trie. Figure 4.11 shows the hardware block diagram of the scanner
module.
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Figure 4.11: Scanner module’s hardware block diagram

As can be seen, these four modules execute in parallel, and the correct output is cho-
sen using a priority demultiplexer. This demultiplexer allows us to, from a set of x24
1-bit flags, get which of the tokens is active in the form of an 8-bit unsigned identifier,
whenever two of the flags are on (in the case of for example the analysis of the string
"if" which will turn on the IF token and the ID DFA) the order in which the inputs are
specified allows us to choose priority between them.

The multiplexer uses this identifier to choose which attribute will be passed to the
syntactic analyzer as the current token attribute.

Note that the I2C message received flag is used as the clock signal for the lexical
analyzer, preventing a single input from being analyzed twice.

The Verilog code for these 4 modules will be automatically generated using the LWVCG
Python framework, which is based on the specification of the SIMPLER language.

4.1.3. LWCVG Verilog code generation

Figure 4.12 shows the workflow followed by LWVCG for the generation of the "ID_DFA.v",
"CONST_DFA.v", "BLANK_DFA.v" and "keywords.v" files stated previously.

Figure 4.12: LWVCG workflow for generating the scanner

As shown, a classifier function separates regular expressions containing Kleene stars,
one-or-more, and union operators from simpler expressions (keywords). Builder func-
tions then construct the respective data structures for each module, and a Verilog code
generation module creates the final files based on the specified templates.

Figure 4.13 presents the hardware block diagram for the implementation of a Trie.
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Figure 4.13: Trie’s implementation hardware block diagram

Each node in the Trie is represented by a Node module. These modules have an 8-bit
parameter for the character that triggers the transition between parent and child and a
1-bit input flag indicating whether the parent is active. Each node uses a 1-bit register to
store its state, and the current character is passed as an 8-bit argument to each node. The
root nodes (depth 0) receive a 1 for the "isParentOn" parameter. Figure 4.14 shows the
hardware block diagram of a Trie’s node.

Figure 4.14: Trie’s node hardware block diagram

As for the "YYY_DAF.v" files, the DAF is implemented using a basic Verilog imple-
mentation of a state machine. With the small manual modification (for the ID and CON-
STS modules) extra logic was added in order to calculate the attribute for both tokens.
The attribute for the IDs consists of a basic hashing function: an 8-bit XOR of all the
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ASCII characters contained in the string. In this way, we limit the size of the attributes
passed to the syntactic analyzer and avoid big strings being passed along to the inter-
preter. For the CONSTS, the value consists of the unsigned 8-bit value of the constant
specified in the program.

Listing 4.1 shows the Verilog template used to implement the mentioned state ma-
chines.

1 module {NAME} (
2 input clk ,
3 input r s t ,
4 input [ 7 : 0 ] current_token ,
5 output is_on ,
6 output a t t r i b u t e _ v a l u e
7 ) ;
8

9 localparam FINAL_STATE = 0 ;
10 reg [ 7 : 0 ] c u r r e n t _ s t a t e = 0 ;
11 always @( posedge c l k or posedge r s t ) begin
12 i f ( r s t == 1) begin
13 c u r r e n t _ s t a t e = 0 ;
14 end e l s e begin
15 {ALL_STATE_TRANSITIONS}
16 i f ( s t a t e == FINAL_STATE ) begin
17 i s_on = 1 :
18 end
19

20 end
21 end
22

23 end module

Listing 4.1: Verilog basic state machine implementation

4.2 Syntax analysis

4.2.1. Used algorithms and data structures

The output of the syntax analysis is the abstract syntax tree from the given terminals
(leaves) and the start symbol of the grammar. Figure 4.15 shows the syntactic specifica-
tion of a small language and the parse tree for the expression "a * (a+b)".

As it can be seen, given the grammar G = (N,T,P, S) with a set N of non-terminal
symbols, a set T of terminal symbols (with N∩T = ∅), a set P of grammar productions α → β
(with α ∈ N and β ∈ (N ∪ T)∗), and a start symbol S ∈ N, a parse tree, also known as a
derivation tree, is defined as follows:

• The root is labeled with the start symbol S.

• Each leaf is labeled with a symbol from T∪ {ε}.

• Each internal node is labeled with a symbol from N.

• Let A ∈ N be the label of a node, and let x1, ..., xn be the labels of its child nodes
(from left to right). Then: A → x1 · · · xn ∈ P.
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Figure 4.15: Example of language and parse tree for the expression "a * (a + b)"

In the derivation process, if the leftmost non-terminal symbol is always replaced, a
leftmost derivation has occurred. Conversely, replacing the rightmost non-terminal re-
sults in a rightmost derivation. A parse tree has a unique left parse and a unique right
parse.

As outlined in Section 2, the formalism used in syntactic analysis is a pushdown au-
tomaton, which is used to recognize context-free languages. A pushdown automaton dif-
fers from classical automata in that it has a stack where symbols are pushed and popped.
The top symbol on the stack, along with the input, determines the next transition.

A pushdown automaton is defined as A = (Q, Σ, Γ, δ, q0, z0,F ), where:

• Q is a finite set of states.

• Σ is the input alphabet (a finite set of symbols).

• Γ is the stack alphabet (a finite set of stack symbols).

• δ is the transition function:

• q0 is the initial state.

• z0 is the initial stack symbol.

• F is the set of accepting states.

Figure 4.16 shows the structure of a pushdown automaton.
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1 Succesors ( Program ) → { Succesors(Instruction)\rightarrow , ; , ) }
2 Succesors ( WhileDo ) → { ( }
3 Succesors ( WhileBody ) → { , ; , )Succesors(While)\rightarrow

!, ID, CONSTSuccesors(I f Then)\rightarrow(Successors(Else)\rightarrow , ; , ) }
4 Successors ( IfBody ) → { e l s e }
5 Successors ( Ari thmetic ) → { + , − , * , = , <=, , ; , ), do, then, ||Successors(Boolean)\

rightarrow , ; , ) , do , then , || }
6 Successors ( Var ) → { + , − , * , = , <=,

Listing 4.2: Successors function applied to SIMPLER grammar

Figure 4.16: Structure of a Pushdown Automaton

The goal is to find an algorithm to construct a pushdown automaton from our syntax
specification to recognize the language. From this recognition process, we can derive
the list of reductions applied, allowing us to build the corresponding syntax tree. The
recognition process can be either top-down or bottom-up, depending on the reduction
order.

During syntax analysis, non-determinism may arise, such as when multiple rules ex-
ist for the same non-terminal symbol (e.g., A → a1 | a2 | ... | an). This can be addressed
using backtracking, tabular, or deterministic algorithms. Backtracking and tabular meth-
ods have time complexities of O(2n) and O(n2), respectively, and are not considered due
to inefficiency. Deterministic algorithms, which achieve linear time complexity, are more
suitable but apply only to a subset of CFGs.

Although these algorithms are more complex, the fact that they don’t run at runtime
makes this acceptable. Deterministic algorithms rely on two key functions: firsts(x) and
successor(x). Given a non-terminal symbol X, firsts(x) returns the set of terminal symbols
that can appear in any reduction of X, while successor(x) returns the set of non-terminal
symbols that can follow X in any language string.

For brevity, we will not detail the algorithms used to calculate these functions. How-
ever, Listings 4.2 and 4.3 display the results of applying these functions to the non-
terminal symbols of the SIMPLER grammar.

To perform the intended bottom-up analysis, we will use an LR parser. This parser
operates as a pushdown automaton, as illustrated in Figure 4.17.
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1 F i r s t s ( Program ) → { IF , ID , while , Pr int , Skip }
2 F i r s t s ( I n s t r u c t i o n ) → { IF , ID , while , Pr int , Skip }
3 F i r s t s ( WhileDo ) → { While }
4 F i r s t s ( WhileBody ) → { ( }
5 F i r s t s ( While ) → { while }
6 F i r s t s ( IfThen ) → { i f }
7 F i r s t s ( E lse ) → { e l s e }
8 F i r s t s ( IfBody ) → { ( }
9 F i r s t s ( Ari thmetic ) → { COSNT, ID }

10 F i r s t s ( Boolean ) → { ! , CONST, ID }
11 F i r s t s ( Var ) → { ID }

Listing 4.3: Firsts function applied to SIMPLER grammar

Figure 4.17: Enter Caption

The transition function of an LR recognizer is given by a parsing table. This parsing
table is divided into two subtables:

A subtable called "action" determines the action (shift or reduce) that the automaton
should perform. In the case of an LR(1) parser, this subtable is defined as follows:

Qx(∑∪{$}) → {des, redi, err, accept}

where "des" indicates that the action to be performed is a shift of a symbol from the
input string to the stack, redi means that the corresponding reduction for production
number r should be applied, err indicates that an error has occurred (the analyzed string
does not belong to the language recognized by the automaton), and "accept" indicates
that the analysis has concluded successfully, recognizing the string.

Also, a subtable called "goto" indicates the state to which the automaton should tran-
sition after performing each shift or reduction action. This subtable is defined as follows:

Q × (∑∪N) → Q ∪ {err}

The four types of actions in the action subtable applied to an LR(1) recognizer au-
tomaton produce the following movements:

Displacement: This action is executed if acc[Sn, ai] = des and suc[Sn, ai] = Sn+1.
Through this action, the symbol from the input string (ai) is pushed onto the stack, and
following it, the state to which the automaton transitions (sn+1) is also pushed onto the
stack.
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Reduction: This action is executed if acc[Sn, ai] = red − j y suc[Sk, A] = Sn+1 with j
being the production : A → Xk+1Xk+2 + ...+ Xn. Through this action, the right-hand side
of a production and the states following each symbol (Xk+1Xk+2 + ... + Xn) are popped
from the stack, and the non-terminal from the left-hand side of the production (A) is then
pushed onto the stack.

Accept: The final configuration of the automaton will be (S0, Xn, Sn, $, π) if acc[Sn, $] =
accept. Through this action, parsing of the source code of the language will be finished.

Error: The input string does not belong to the language recognized by the automaton.
Through this action, a syntax error will be raised in the interpreter and sent back to the
source code bus.

Figure 4.18 shows an example of a bottom-up SLR(1) (type of LR analysis) analysis
table for the Grammar previously shown in 4.15.

Each of the prefixes of the rightmost sentential forms that can appear on the stack
during shift-reduce parsing is called a viable prefix.

The simplest form of deterministic bottom-up parsing is LR(0) parsing. To obtain the
parsing tables (action and goto) that determine the transition function of the LR(0) parser,
we will construct the recognizer automaton for viable prefixes mentioned previously. To
build this automaton, we will start with the definition of an "LR(0) item." Using two
functions (closure and goto) applied to sets of LR(0) items; we will gradually construct
the recognizer automaton for viable prefixes.

Figure 4.18: Example of SLR(1) analysis table

An LR(0) item is a production of the grammar with a marker (dot) placed between
the symbols on its right-hand side.

The dot in an LR(0) item separates the part already parsed (on the stack) from the part
yet to be parsed (remaining input). For example, the LR(0) item [E → E + . T] from the
grammar in Figure 4.15 indicates that "E +" is on the stack, and the input is expected to
match a sequence of terminals w such that T →∗ w.

The algorithm in Listing 4.4 defines the closure operation for a set I of LR(0) items.
The closure of I includes all items in I, and if any item has a non-terminal (B) immediately
to the right of the dot, new LR(0) items are added. These new items are the productions
of B with the marker at the beginning of their right-hand side. This process repeats until
no new items can be added to the set.
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1 Function Clausure ( I ) // For LR ( 0 ) items
2 Clausure ( I ) := I ;
3 repeat
4 foreach [A → a . B b ] in Clausure ( I ) do
5 foreach ( B → y ) in P : [ B → . y ] in Clausure ( I ) do
6 Clausure ( I ) := Clausure ( I ) U { [ B → . y ] } ;
7 u n t i l no more elements are added to Clausure ( I ) ;

Listing 4.4: Clausure operation algorithm

1 Function Successor ( I , X) // For LR ( 0 ) items
2 J := ∅ ;
3

4 foreach [A → a . xb ] in I do
5 J = J U { [A → ax . b ] } ;
6

7 sucesor ( I , X) := Clausure ( J )

Listing 4.5: Successor operation algorithm

The successor operation for a set I of LR(0) items, for a symbol x ∈ (N ∪Σ), is defined
by the algorithm in Listing 4.5. In this algorithm, it can be seen that the successor of a set
of LR(0) items I for a symbol x is obtained by finding the LR(0) items in I that have the
symbol x immediately to the right of the dot. These items are selected, the dot is moved
to the right of the symbol x, and the closure of these new items is calculated.

Starting from the initial item [S′ → . S] and using the successor operation, we can
compute the canonical collection of LR(0) item sets using Algorithm 4.6. First, the closure
of [S′ → .S] is calculated. New sets of LR(0) items are then obtained by applying the
successor operation to this initial set for all grammar symbols. Successors of these new
sets are computed for all symbols, and the process continues until no sets remain whose
successors have not been calculated. The process eventually terminates because some
successor sets will be empty while others will repeat.

Figure 4.19 shows the canonical collection of LR(0) item sets of the grammar shown
in Figure 4.15.

1 Function Cannonical (N, ∑ , P , S )
2

3 C = { Clausure ( { [ S → . S ] } ) } ;
4

5 repeat
6 foreach I not marked in C do
7 foreach X in (N U S ) do
8 i f Successor ( I , X) ̸= ∅ then
9 C := C U Successor ( I , X) ;

10 mark I
11 u n t i l no s e t in C i s marked ;
12

13 Cannonical (N, ∑ , P , S ) := C;

Listing 4.6: Canonical collection of LR(0) item sets calculation
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Figure 4.19: Canonical collection of LR(0) item sets example

After implementing these algorithms in Python, we can generate the canonical collec-
tion of LR(0) item sets for the SIMPLER grammar. Figure 4.20 displays the results as an
automatically generated directed graph.

By interpreting each LR(0) item as a state, we can use the canonical collection of LR(0)
item sets to build the action and goto tables directly. If an item has a dot at the end ([E →
T .]), this indicates a reduction. A conflict arises if a set indicates both a reduction and a
shift.

There are two approaches to resolving these conflicts: using a more powerful analysis
technique, such as SLR(1), or resolving them manually by specifying which action takes
precedence. In our case, the conflicts stem from the associative properties of Boolean
and Instruction reductions, so we resolve them manually by enforcing left associativity
always.

4.2.2. Hardware implementation

As noticed in the previous section, when the scanner detects a token, it raises a flag to the
parser for one clock cycle. There are also 8-bit lines carrying the detected token ID and
its related attribute. Once scanning is complete, a final flag notifies the parser to start.

Given the low frequency of the source code bus (100 kHz), the simplest approach is to
wait until scanning is finished before starting the parsing process. Although pipelining
could be implemented, the overhead of waiting until scanning is finished is minimal
compared to the bus speed. This approach simplifies debugging while still meeting the
proof-of-concept requirements. The parser will follow the workflow shown in Figure
4.21.



4.2 Syntax analysis 45

Figure 4.20: SIMPLER canonical collection of LR(0) item sets
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Figure 4.21: Parser’s workflow

As shown, once the scanner is finished, the parsing workflow will begin following
the steps outlined in Section 4.2.

During lexical analysis, the parser will need to store tokens from the scanner in mem-
ory, using a FIFO structure to use them once the scanner is finished. Also, since the
pushdown automaton relies on a stack, a custom Verilog double-ended queue (dqueue)
has been implemented to function as both a stack and a queue for both of these purposes.

A dqueue [44] is a data structure where elements can be added or removed from both
the front (head) and back (tail). For this, the ICE40UP5K’s 4 kb embedded RAM blocks
have been utilized, allowing for up to 30 dqueues, each with a maximum size of 8 bits x
512 depth.

The dqueue is implemented as a circular buffer, which uses a fixed memory space
and two pointers: one for the head and one for the tail. Adding values to the head incre-
ments the pointer while removing them decrements it. The tail behaves oppositely, with
additions decrementing the pointer and removals incrementing it. Figure 4.22 visualizes
this.
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Figure 4.22: Circular buffer visualization

Dqueues support both stack and queue operations, making them versatile for this im-
plementation. Therefore, the Verilog EBR-based dqueue will be crucial moving forward.

To maintain an optimal size for the EBR blocks (512), two 8-bit queues will be used:
one for tokens and one for token attributes, rather than a single 16-bit queue. Figure 4.23
shows the hardware block diagram of the parser.

Figure 4.23: Parser hardware block diagram

As shown, four dqueues are used to store the automaton stack and token inputs,
limiting the program size to 512 tokens (which can be expanded by allocating more RAM
blocks). These RAM blocks are connected to the parser’s main state machine, which
implements the workflow shown in Figure 4.21. A separate module holds the successor
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and goto tables as a lookup table, used by the main state machine to determine and apply
the next action. A comparator drives the reduction detection signal. The parser’s output
is a 9-bit bus, with 8 bits representing the detected reduction ID and a flag raised upon
reduction detection.

LWVCG will need to automatically generate only the successor/goto table based on
the language’s syntax specification.

4.2.3. LWVCG Verilog code generation

Figure 4.24 displays the workflow to generate the successor and goto table run by LWVCG.

Figure 4.24: LWVCG workflow to generate parser

As shown, a single file is generated containing a module that takes the top of the
stack and input queue and returns the corresponding action, reduction ID (if applicable),
precedent, and antecedent. Although this lookup table could be implemented using an
EBR block, the canonical collection of LR(0) sets for SIMPLER contains 50 elements. To
implement this table in memory, we would need approximately 14 kb (50 x 35 tokens x
8 bits). Since most cells in the table will be empty, we use the approach shown in Figure
4.25.
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Figure 4.25: Implementation of successor and goto table in Verilog

With this approach, we use if-else statements in Verilog to implement the lookup
table. Instead of consuming RAM, we use distributed memory, reducing the table size
from 14 kb to 2 kb (a 700% reduction), with only 225 if-else statements compared to
the original 50 x 25 entries. This implementation will be synthesized by Verilog into a
multiplexer that selects the table outputs based on the specified logic.

4.3 Semantic analysis

As outlined in the design chapter, attribute grammars are the formalism used for se-
mantic analysis. Semantic analysis and operations are embedded into the parser. Before
applying a reduction, the attributes of both the right- and left-hand sides of the reduction
(stored in the attribute queues) are used to compute new attributes. Once calculated, the
new attribute is pushed into the attribute input queue.
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4.3.1. Hardware implementation

Figure 4.26 shows in green the modifications to the parser workflow needed in order to
implement the semantic analysis and semantic operations.

Figure 4.26: Modifications to the parser workflow

Figure 4.27 shows the modifications needed to the parser hardware block diagram in
order to implement these changes.

A new hardware module has been introduced to handle semantic operations and
analysis. This module takes a 32-bit bus as input, consisting of four 8-bit buses represent-
ing the attributes of the current reduction (as reductions were limited to 3 symbols in the
design section to allow these representations), along with the ID of the current reduction.
The module performs semantic operations on these variables and returns the result via a
32-bit output bus.

The semantic operator module is automatically generated by the custom LWVCG
Python framework based on the specified semantic rules.
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Figure 4.27: Modifications to the parser hardware block diagram

4.3.2. LWVCG Verilog code generation

Figure 4.28 shows the workflow followed by LWVCG to generate the Verilog semantic
operator file.

Figure 4.28: Semantic operator code generation workflow

For the semantic specification, a discrete amount of semantic operations has been
modeled using a Python data class with 3 attributes ( left-hand side of operation, oper-
ation type, and right-hand of operation ). Then, a dictionary is used to translate from
reduction to attribute operation. Note that due to the design of the language (mentioned
in Section 3), there are no extra semantic checks needed. Figure 4.29 shows the semantic
operator file generated.

As can be observed, our approach closely resembles the generation of successor and
goto tables.

Note that most of SIMPLER’s operations are related to the Symbol Table. The next sec-
tion will explain the integration between the semantics operator and TOS and its work-
ings.
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Figure 4.29: LWVCG generated contents of semantic operator module

4.4 Machine code Generation

4.4.1. Algorithms and data structures used

In this phase, we introduce the use of the symbol table, which plays a key role in gen-
erating compiled machine code instructions by organizing memory (variable positions,
types, etc.).
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A symbol table [45] is a data structure used by language translators (e.g., compilers
or interpreters) to associate identifiers, constants, procedures, and functions with infor-
mation about their declaration or usage in the source code.

Common data structures for implementing symbol tables include trees, linear lists,
and hash tables. The symbol table is accessed during various compilation phases, typi-
cally starting with lexical analysis. In our case, it is accessed during the semantic phase,
as earlier access was unnecessary for the SIMPLER language.

A widely used data structure for symbol tables is the hash table, which provides effi-
cient lookup times regardless of the number of elements. A hash table [47] maps keys to
values using a hash function to compute an index (or hash code) into an array of buckets,
where the corresponding value is stored. Figure 4.30 visualizes a hash table.

Figure 4.30: Hash table visualization

Therefore, as it can be easily implemented by using a contiguous chunk of memory
we will implement a custom hash table for use in the Symbol table. However, to simplify
the implementation, the buckets will have a size of 1. That is to say, writing two times an
element with the same key will result in overwriting the value. This limitation is easily
solvable for a system with a larger FGPGA and LC count.

Also, in our case, the data stored inside the symbol table will take the structure de-
tailed in Figure 4.31.

Figure 4.31: Symbol Table structure
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In this structure, 16 bits of memory will be used per symbol to store the address this
Symbol will have in the stack and the level of the block to which it pertains. The latter
will not be used as, in order to simplify Symbol Table operations, the stack pointer is not
reset after a code block.

4.4.2. Hardware implementation

In order to update the contents of the Symbol table during parsing and generate instruc-
tions, two steps are added to the parsing workflow during the application of a Reduction.
One for performing read/write operations in the Symbol Table and another one to gen-
erate all the instructions that will result from the translation of that particular reduction.
Figure 4.32 shows the modified workflow with the changes in color green.

Figure 4.32: Parsing workflow modifications for generating machine code

The algorithm in Listing 4.7 shows a pseudo-code implementation of the update Sym-
bol Table step present in the mentioned workflow.

For SIMPLER, the key in the symbol table is the attribute of IDS, which, as explained
in the design chapter, is an XOR hash of all the characters in the string.

The algorithm in Listing 4.8 provides a pseudo-code implementation of the instruc-
tion generation step in the workflow.

The algorithm starts by generating instructions to load the content of the attributes of
each token in the reduction into registers t0, t1, t2, and t3. After that, it accesses a set of
X consecutive positions in an instruction template memory with a Y offset. Both X and Y
are constants retrieved from an array that contains the offset and size of the translations
of each reduction ordered by their ID.

Note that this strategy to pass arguments and generate the translations is really inef-
ficient in terms of register usage. However, it is enough for this proof of concept. Figure
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1 // Inputs being ( key , operat ion )
2 // Outputs being ( resul tStackAddress , resul tKey )
3

4 i f operat ion i s none then
5 nothing ;
6

7 e l s e i f operat ion i s c r e a t e V a r i a b l e ( ) then
8 hashTable [ key ] := currentStackAddress & ( currentLevel ) << 8 ;
9 resul tS tackAddress := currentStackAddress ;

10 currentStackAddress := currentStackAddress + 4 ;
11 r e s u l t _ l e v e l := currentLevel ;
12

13 e l s e i f operat ion i s createTemporalVariable ( ) then
14 key := temporalVariablesCount ;
15 resul tKey := key ;
16 hashTable [ key ] := currentStackAddress & ( currentLevel ) << 8 ;
17 resul tS tackAddress := currentStackAddress ;
18 currentStackAddress := currentStackAddress + 4 ;
19 temporalVariablesCount := temporalVariablesCount + 1 ;
20 r e s u l t _ l e v e l := currentLevel ;
21

22 e l s e i f operat ion i s g e tV a r i a b l e ( ) then
23 resul tS tackAddress := hashTable [ key ] ;

Listing 4.7: Pseudo-code to update the Symbol table

1 // Inputs being ( reductionId , arg0 , arg1 , arg2 , arg3 )
2

3 t r a n s l a t i o n S i z e := t r a n s l a t i o n S i z e s [ reduct ionId ] ;
4 memoryOffset := t r a n s l a t i o n O f f s e t s [ reduct ionId ] ;
5 index := 0 ;
6

7 s e n d I n s t r u c t i o n ( " 2008 " + hex ( arg0 ) ) ; // Load to r e g i s t e r t0 the l i t e r a l in arg0
8 s e n d I n s t r u c t i o n ( " 2009 " + hex ( arg1 ) ) ; // Load to r e g i s t e r t1 the l i t e r a l in arg1
9 s e n d I n s t r u c t i o n ( " 200a " + hex ( arg2 ) ) ; // Load to r e g i s t e r t2 the l i t e r a l in arg2

10 s e n d I n s t r u c t i o n ( " 200b " + hex ( arg3 ) ) ; // Load to r e g i s t e r t3 the l i t e r a l in arg3
11

12 while index < t r a n s l a t i o n S i z e do
13 s e n d I n s t r u c t i o n ( instructionTemplatesMemory [ memoryOffset + index ] ) ;
14 index : index + 1 ;

Listing 4.8: Pseudo-code to generate instructions
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4.33 shows how the token attributes (args) are packed into a 32-bit value by the semantic
operator.

Figure 4.33: Semantic operator pack of reduction’s token attributes

The symbol table and instruction generation logic are divided into two different mod-
ules. While the symbol table will be only accessed by the semantic operator module, the
instructor generator module will be operating in parallel based on the current reduction
ID, semantic operator attributes, and reduction detected flag. Figure 4.34 shows the mod-
ifications needed in the parsing hardware block diagram to include both modules.

Figure 4.34: Machine code generation modifications in parsing hardware block diagram

Figure 4.35 shows the symbol table hardware block diagram.

Figure 4.35: Symbol table hardware block diagram
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The logic presented in Algorithm 4.7 is implemented as in the Symbol Table main
state machine. As mentioned before, the table of Symbols memory is an implementation
of a hash table that uses a block of embedded RAM of 16bit x 256 (4kit) as storage.

Figure 4.36 shows the instruction generation module hardware block diagram.

Figure 4.36: Instruction generation module hardware block diagram

The logic presented in Algorithm 4.8 is implemented in the instruction translation
main state machine. The size and offset arrays the algorithm uses will be implemented
as distributed memory blocks. The memory for the instruction templates will be imple-
mented as an embedded memory block of 32 bits x 255 (8 kb). This memory contains the
translations of all the reductions into machine code instructions, and both arrays men-
tioned provide the offset (memory position) and size (quantity of instructions) given a
reduction ID.

Only the instruction generation module is automatically generated by the LWVCG
Python framework from the code translation specification file.

4.4.3. LWVCG Verilog code generation

Figure 4.37 shows the LWVCG workflow for generating the instructions translation mod-
ule. In this case, the code generation is only used to statically initiate the synthesis of the
contents of the memories mentioned before.

Figure 4.37: Code generation LWVCG workflow
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4.5 Code execution and Source code uploader

For the code execution, as mentioned in Section 3 an open source implementation of a 32
bit Mips processor is used with the use of some optimizations. The main modification
is changing the instruction ROM memory to an embedded block of RAM that allows
writing.

The source code uploader is a simple Python script that uses the Python Serial library
to upload via the source code I2C bus the SIMPLER code to the parser FPGA. This script
follows the communication protocol described in Section 4.1.
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Testing and Validation

During these tests, the SIMPLER programs in Listings 5.1 and 5.2 will be used as inputs.

1 index := 1 ;
2 f0 := 1 ;
3 f1 := 1 ;
4 temp := 0 ;
5 P r i n t f0 ;
6 P r i n t f1 ;
7

8 while index <= 11 do (
9 index := index + 1 ;

10 temp := f0 + f1 ;
11 f0 := f1 ;
12 f1 := temp ;
13 P r i n t f1
14 )

Listing 5.1: Fibonacci calculator

1 index := 1 ;
2 while index <= 255 do (
3 index := index + 1 ;
4 P r i n t index
5 )

Listing 5.2: For loop

5.1 Simulations in GTKWave

This section reviews the simulations and results for the main test benches developed dur-
ing this thesis: the scanner test bench (lexical analysis), the parser test bench (syntactical
analysis, semantic analysis, code generation), and the code execution of the compiled
code.

All simulation screenshots are from GTKWave [30], a fully-featured wave viewer
for Unix, Win32, and Mac OSX that supports LXT, LXT2, VZT, FST, GHW, and Verilog
VCD/EVCD files. GTKWave is integrated with the Apio toolset [28], an open-source
ecosystem for FPGA boards. The hardware consumption calculations provided are from
Apio’s synthesis tool.

59
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5.1.1. Scanner results

Figure 5.1: Scanner Verilog test bench

The procedure for the test is: Re-execute the LWVCG framework to ensure the lexical
analyzer code is up-to-date, save a screenshot of the IDs assigned to each token by the
LWVCG framework, run the Verilog test bench, and compare the detected tokens and
attributes using the LWVCG screenshot to ensure they match the expected results.

Figure 5.2 shows the results of the test execution for the program in Listing 5.2. As
well as the hardware utilization statistics for the scanner module.

This test bench only tests the scanner module, not the I2C communication. The scan-
ner processes one ASCII character per clock cycle, highlighting the I2C bus limitations.
In this simulation, the scanner runs at a 50 MHz clock frequency (20 ns period).

Green lines represent the inputs to the scanner module (current source code char,
buffered source code char, and system clock). Blue lines represent the DFA and Trie
results, indicating when a final state is high for a given token. Red lines show the scanner
module’s output signals.

Looking at the DFA and Trie outputs, the lexical analysis results are as follows (in
chronological order): ID, ASSIGN, CONST, SEMICOLON, WHILE, ID, LESSEQ, CONST,
APAR, ID, ASSIGN, ID, PLUS, CONST, SEMICOLON, PRINT, ID, CPAR. These results
are correct.

The detected token values (ignoring codes 0 and 23, which represent null and BLANK
tokens) are 2, 14, 1, 15, 19, 2, 8, 1, 20, 21, 2, 14, 2, 4, 1, 15, 6, 2, 22. These results are also
correct using the translation table from the LWVCG framework.

For the token attribute signals, the observed attributes for relevant tokens (IDs and
CONSTs) are 126, 1, and 255 for the "index" (ID), 1 (CONST), and 255 (CONST), respec-
tively. These results are correct, as 126 corresponds to the XOR hash of the String "index."

In the simulation, the entire lexical analysis was completed between timestamps 50
ns and 1790 ns, resulting in an estimated duration of 1740 ns. Given that the source code
contained 87 characters, this corresponds to approximately 20 ns per character (50 MHz).
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Figure 5.2: GTKWave and Apio results for Algorithm 5.2

However, the simulation does not account for the minimum delay required for the
design. According to the timing report, the maximum clock frequency for the design is
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22.45 MHz, which is still well above the 12 MHz at which the scanner will operate on the
ICE40UP5K.

As for hardware consumption, as shown in Figure 5.2 the scanner uses only 13% of
the FPGA resources (712 LUTs) and 0 embedded RAM blocks, as the entire scanner is
implemented in distributed memory.

Thus, these tests confirm that the scanner module operates successfully, with a max-
imum clock frequency of 22.45 MHz, a throughput of one character per clock cycle, and
minimal FPGA resource usage.

5.1.2. Parser results

The parser test bench validates the correct operation of the syntactical analysis, semantic
analysis, and code generation. Therefore, the test bench consists of passing to the parser
the code of the token and attribute signals from the previous test bench into the parser.
Then, the flag for beginning the parsing process is raised, and the machine code instruc-
tions start to be generated. Figure 5.3 shows the Verilog code for the parser test bench.

Figure 5.3: Parser Verilog test bench

The procedure for the test is: Re-execute the LWVCG framework to ensure the syntax
analyzer code is up-to-date, save a screenshot of the IDs assigned to each reduction by
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the LWVCG framework, run the Verilog test bench, and finally, using the LWVCG screen-
shot, compare the detected reductions, semantic operations, and generated instructions
to check for correctness.

Figures 5.4 and 5.5 show the GTKWave results of running the parser test bench.
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Figure 5.4: First half of the parser test bench GTKWave results
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Figure 5.5: Second half of the parser test bench GTKWave results
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Due to their large size, the simulation results have been divided into four screenshots
shown in the mentioned figures. Note that each screenshot has a time axis at the top and
is chronologically ordered from top to bottom.

The green signals represent the input signals of the parser module (input tokens and
token attributes), orange signals show intermediate results (sizes of the automaton and
input queues), red signals represent outputs from the syntax analysis, violet signals show
outputs from the semantic analysis (operations in the Symbol table), and yellow signals
represent the machine code generator module outputs (8-bit instruction bus connecting
the FPGAs and the instruction clock).

It is clear that the output instruction bus speed limits the parser’s execution speed.
Observing the signal for the parser’s main state machine, we can see that it is mostly in
the IDLE state until the instruction bus completes a reduction, at which point the parsing
resumes. This is due to the bus’s low frequency (10 kHz) compared to the parser’s clock
frequency (12 MHz).

Upon checking the correctness of the detected reductions, we observe that the gen-
erated syntax abstract tree (as seen from the "current_reduction" signal) is: 0, 2, 7, 5, 1,
0, 16, 6, 5, 22, 2, 5, 11, 3, 24, 13, and 3. Due to the simulation scale, some values appear
small. Using the LWVCG output shown in Figure 5.6, we can translate this to the applied
reductions, with the result shown in Listing 5.3. This confirms the correct operation of
the syntax analyzer.

Figure 5.6: LWVCG results for generating parser

As for the semantic operator module, observing the signal "i_operation," the follow-
ing operations are applied: 1, 2, 3, 1, 1, 3, 1, 2, 3. Referring to the implementation of the
semantic operator module in Figure 5.7 these operations translate to:
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1 ( 0 ) Ari thmetic → CONST
2 ( 2 ) I n s t r u c t i o n → ID ASSIGN Arithmetic
3 ( 7 ) While → WHILE
4 ( 5 ) Var → ID
5 ( 1 ) Ari thmetic → Var
6 ( 0 ) Ari thmetic → CONST
7 ( 1 6 ) Boolean → Arithmetic LESSEQ Arithmetic
8 ( 6 ) WhileDo → While Boolean DO
9 ( 5 ) Var → ID

10 ( 2 2 ) Ari thmatic → Var PLUS CONST
11 ( 2 ) I n s t r u c t i o n → ID ASSIGN Arithmetic
12 ( 5 ) Var → ID
13 ( 1 1 ) I n s t r u c t i o n → PRINT Var
14 ( 3 ) I n s t r u c t i o n → I n s t r u c t i o n SEMICOLON I n s t r u c t i o n
15 ( 2 4 ) Body → APAR I n s t r u c t i o n CPAR
16 ( 1 3 ) I n s t r u c t i o n → WhileDo Body
17 ( 3 ) I n s t r u c t i o n → I n s t r u c t i o n SEMICOLON I n s t r u c t i o n

Listing 5.3: Syntax analyzer simulation result translated

Figure 5.7: Semantic operator operation codes

CREATE_TEMP_VARIABLE, CREATE_VARIABLE, GET_VARIABLE, CRE-
ATE_TEMP_VARIABLE, CREATE_TEMP_VARIABLE, GET_VARIABLE, CRE-
ATE_TEMP_VARIABLE, CREATE_VARIABLE, and GET_VARIABLE.

When combined with the argument and current reduction signals, the resulting op-
erations are shown. Listing 5.4 presents these translations, used to deduce the semantic
operations being applied.

1 ( 1 ) Ari thmetic = creaTempVariable ( 0 ) // For const 0
2 ( 2 ) ID = c r e a t e V a r i a b l e ( 1 2 6 ) // For ID " index "
3 ( 3 ) Var = g e tV a r i a b l e ( 1 2 6 ) // Get " index "
4 ( 1 ) Ari thmetic = creaTempVariable ( 2 5 5 ) // For const 255
5 ( 1 ) Boolean = creaTempVariable ( 0 ) // For Boolean r e s u l t
6 ( 3 ) Var = g e tV a r i a b l e ( 1 2 6 ) // Get " index "
7 ( 1 ) Ari thmetic = creaTempVariable ( 1 ) // For const 1
8 ( 2 ) ID = c r e a t e V a r i a b l e ( 1 2 6 ) // For ID " index " ( overwrite )
9 ( 3 ) Var = g e tV a r i a b l e ( 1 2 6 ) // Get " index "

Listing 5.4: Syntax analyzer simultaion result translated

Which confirms the correct operation of the semantic analyzer. Regarding the gener-
ated instructions, by checking the contents of the instruction bus, we observe the machine
code shown in Listing 5.5. While there are too many instructions generated for a simple
for loop, it is important to note that, during design, many optimization algorithms were
omitted to simplify the compiler design for fitting into a single FPGA with a limited bud-
get. As a result, an average of 6 machine code instructions (based on empirical testing)
are generated per reduction, leading to bloated machine code.
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1 20080004
2 20090001
3 200 a0000
4 200 b0000
5 200 c0000
6 ad090000
7 20080000
8 20090008
9 200 a0000

10 200 b0004
11 200 c0000
12 8d6d0000
13 ad2d0000
14 20080000
15 20090000
16 200 a0000
17 200 b0000
18 200 c0000
19 20080008
20 20090008
21 200 a0000
22 200 b0000
23 200 c0000
24 8d2d0000
25 ad0d0000
26 2008000 c
27 200900 f f
28 200 a0000
29 200 b0000
30 200 c0000
31 ad090000
32 20080010
33 20090008
34 200 a0000
35 200 b000c
36 200 c0000
37 8d2d0000
38 8 d6e0000
39 01 ae802a
40 01 ae8822
41 16200002
42 20110001
43 10000001
44 20110000
45 02119025
46 ad120000
47 20080000
48 20090000
49 200 a0010
50 200 b0000
51 200 c0000
52 8d4d0000
53 11a0001C
54 20080014
55 20090008
56 200 a0000
57 200 b0001
58 200 c0000
59 8d2d0000
60 01 ab7020
61 ad0e0000
62 20080000
63 20090008
64 200 a0000
65 200 b0014
66 200 c0000
67 8d6d0000
68 ad2d0000
69 20080000
70 20090000
71 200 a0008
72 200 b0000
73 200 c0000
74 8d4d0000
75 f f 0 0 0 0 0 0
76 20080000
77 20090000
78 200 a0000
79 200 b0000
80 200 c0000
81 1000FFBB

Listing 5.5: Machine code generated for for loop
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This limitation can be addressed by implementing well-known register optimization
algorithms, which are beyond the scope of this proof of concept.

To keep this section concise, we will not analyze the generated machine code in detail.
Instead, we ran it in a MIPS 32 emulator, yielding the results shown in Figure 5.8. As
seen, following the memory operations assigned to memory position 8 (which, based on
the semantic operations breakdown, corresponds to the variable "index"), we can clearly
observe the for loop executing, confirming the correct operation of the machine code
generation module.
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Figure 5.8: MIPS emulator interpretation of the generated code up to iteration 4

Figure 5.9 shows the Apio time analysis report of the parser. For the ICE40UP5K, the
maximum design frequency is 17.84 MHz, which is well above the 12 MHz at which it
will be running.

Figure 5.9: Apio synthesis report for timing analysis on parser and scanner module.

As noted earlier, the limitations of the testing setup in this proof of concept restrict the
instruction bus’s speed to 10 kHz. To assess the potential time efficiency of this solution,
we will estimate the parsing time assuming a bus speed of 1 clock cycle per bit (achievable
with larger FPGAs).

In this scenario, the parser state machine transitions through the states shown in Fig-
ure 5.10. States 2, 3, 4, 5, 6, and 7 represent:

PARSE, READ_TRANSITION_TABLE, OBTAIN_REDUCTION_ATTRS, UP-
DATE_TDS, UPDATE_ATTRS, and GENERATE_INSTRUCTIONS

respectively. State 2 starts at 450 ns, and state 7 starts at 730 ns, giving the time taken
for a single parser step as Tparser = 480 + Ttransmission ns. In clock cycles, this is Tparser =
20 + Ttransmission.

Assuming the average case for instruction generation (6 instructions per reduction)
and a bus speed of 1 bit per clock cycle, Ttransmission = 32 ∗ 6 ∗ 1 = 192 ns. Therefore,
Tparser = 192 clock cycles. At 12 MHz, this results in a 62 kHz frequency (62 parser steps
per second), which is significantly slower than the scanner, largely due to the commu-
nication with the microcontroller, which accounts for 90% of the clock cycles spent in
parsing.
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Figure 5.10: Parser main state machine during a single step (worst case scenario)

Figure 5.11 shows the Apio hardware consumption report for synthesizing both the
parser and scanner modules. The added consumption of the parser is 84% of the ICEUP5K’s
logic cells (4435 logic cells) and 8 out of the 30 embedded RAM blocks. This confirms the
need, as stated in Section 3, to use a separate FPGA to host the microcontroller and handle
code execution.
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Figure 5.11: Apio synthesis hardware consumption report for parser and scanner module

5.1.3. Code execution results

The test bench developed for the code execution phase tests the changes introduced to the
open-source implementation of the MIPS 32-bit microcontroller. These changes include
the implementation of a custom print instruction via I2C, modifications to the ROM mem-
ory to enable programming the MIPS 32 microcontroller from the instruction bus, custom
instructions to handle addresses for conditional branches, and optimizations to general
memory, register memory, and ROM memory. Figure 5.12 shows the Verilog code for the
test bench.



5.1 Simulations in GTKWave 73

Figure 5.12: MIPS 32 module test bench

As shown, this code sends machine instructions through the instruction bus to pro-
gram the MIPS 32 microcontroller and then initiates program execution. Note that the
test program (Listing 5.2) has been modified to run only 6 iterations of the loop to reduce
simulation time.

Figure 5.13 displays the simulation results. The top screenshot shows the complete
simulation, while the bottom screenshot zooms in on the code execution phase. Green
signals represent inputs to the modified MIPS 32 (instruction bus), red signals represent
internal signals of the MIPS 32 microcontroller (register and address space accesses), and
violet signals represent outputs of the modified MIPS 32 microcontroller (I2C computa-
tion output bus).



74 Testing and Validation

Figure 5.13: GTKWave MIPS 32 test bench results

The instruction bus speed also appears to be a bottleneck for code execution. The first
section of the simulation, which only shows input changes, corresponds to the phase
where the MIPS32 is being programmed. The section with red signal changes represents
the MIPS32 microcontroller executing the programmed code, and the violet signals indi-
cate the code’s output. Examining the I2C write data signal confirms correct operation,
with the outputs being 1, 2, 3, 4, 5, and 6.
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Note that the output is not sent until the code finishes executing, as the implemented
Print function is asynchronous. The contents are buffered and transmitted only after code
execution is complete.

We will not analyze the machine code’s execution time deeply, as the original MIPS32
design was not modified. However, we observe that code execution takes roughly 60 µs
(10 µs per loop iteration). Keep in mind that this simulation runs at 100 MHz, whereas
the target frequency for the ICE40UP5K is 6 MHz.

Figure 5.14 shows the hardware consumption of the MIPS32 module. The 50% RAM
usage is due to optimizations, while the LC usage is at 99%, again highlighting the ne-
cessity of splitting the project across two ICE40UP5K devices.

Figure 5.14: MIPS32 module Apio hardware consumption report

Figure 5.15 shows the Apio timing analysis report for the MIPS32 module. The fre-
quency is 6.27 MHz, which is just above our 6 MHz target.

Figure 5.15: Apio timing analysis report for the MIPS32 module
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5.2 On-premise tests

All tests in this section will use Algorithm 5.1. Additionally, all images presented in this
section are from the SaleaeLogic software, not to be confused with GTKWave from the
previous section. While GTKWave is used for simulations, SaleaeLogic is used to capture
real-life digital 3.3 V or 5 V signals from the FPGAs.

5.2.1. Testing setup

To ensure clean and durable connections between boards during testing, the PCB shown
in Figure 5.16 was used. This simple 2-layer PCB serves as an adapter from the ICE40UP5K
Breakout board to a breadboard using pin headers. It also helps to keep the instruction
bus connections as short as possible, minimizing unwanted noise. The PCB was fabri-
cated and shipped by Aisler [48], a German PCB manufacturer.

Figure 5.16: Kicad render of ICE40UP5K Breakout board to breadboard adapter and PCB Fabri-
cated.

Figure 5.17 shows the resulting testing setup. All connections are made across four
breadboards. The I2C to USB modules are located at the top right and left, connected to a
laptop. The device at the top center is the SaleaeLogic analyzer, which will be used to de-
bug and display the logic signals in this section. The two black PCBs on top of the adapter
PCBs mentioned earlier are the two ICE40UP5K breakout boards. The breadboard shows
the connections for the 8-bit instruction bus and two I2C buses.
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Figure 5.17: Testing setup of both interpreter and code execution board.

For measuring the power consumed by the devices, the digital USB tester shown in
Figure 5.18 was used. This device enables the measurement and storage of current and
power data for the FPGA boards during testing.

Figure 5.18: Digital USB tester

As for the testing script, Figure 5.19 shows the Python script used to upload the source
code to the interpreter via Python’s Serial module.
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Figure 5.19: Source code updloader script

5.2.2. Results

The following signals have been measured: sda and scl lines of the source code I2C bus,
sda and scl lines of the computing results bus, and lastly, clk and begin execution sig-
nals of the instruction bus. Figure 5.20 shows the results for the tests measured by the
SaleaeLogic software.

Figure 5.20: SaleaeLogic Fibonacci source code test

The top two channels correspond to the source code bus, the next two channels repre-
sent the begin execution flag and instruction bus clock signal, and the final two channels
correspond to the computing results bus. As indicated by the markers in the image, the
results are divided into three sections: code upload and scanning, machine code genera-
tion and parsing, and finally, results being transmitted on the results bus.

Figure 5.21 shows the machine code upload and results. Each positive edge of the
clock signal in this bus corresponds to 1/4 of a machine code instruction being uploaded
to the execution FPGA. The top two channels correspond to the source code bus, the
next two channels represent the begin execution flag and instruction bus clock signal,
and the final two channels correspond to the computing results bus. As indicated by
the markers in the image, the results are divided into three sections: code upload and
scanning, machine code generation and parsing, and finally, results being transmitted on
the results bus.
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Figure 5.21 shows the machine code upload and results. Each positive edge of the
clock signal in this bus corresponds to 1/4 of a machine code instruction being uploaded
to the execution FPGA.

Figure 5.21: SaleaeLogic Machine code generation and scanner

Finally, Figure 5.22 shows a zoomed-in view of the results being returned to the com-
puter. As decoded by the SaleaeLogic software and displayed in the format "w[34] RE-
SULT", the results of the print statements are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 133, and 233.
This is correct and corresponds to the first 13 numbers of the Fibonacci series.

Figure 5.22: SaleaeLogic test results

As shown in the image, uploading the source code takes approximately 3 seconds.
This is expected, as each character is echoed and the system polls until Python responds.
Parsing and machine code generation take 115 ms, code execution takes 200 µs, and send-
ing the results back (once the computation is finished) takes 7.3 ms. These times are sig-
nificantly higher than those from simulations, as the speed of the I2C and instruction
buses limits execution speed. Finally, the USB tester shows a steady 0.12 A at 5.01 volts
being consumed by each board throughout the tests, totaling 0.60 W per board and 1.2 W
overall.
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Conclusions

In recent decades, the software industry has experienced a phenomenon named "code
bloat," where the exponential growth of hardware resources has caused a lack of attention
to code efficiency. However, this exponential increase in hardware growth is slowing, and
optimizations are emerging at higher software levels (hardware architecture, software,
and compilers) instead of lower levels (transistor technology). These optimizations will
be challenging for an industry that has been trained to prioritize development speed over
efficiency.

Recent benchmarks for the JavaScript V8 engine demonstrate that 10% to 40% of the
execution time for the most widely used programming language (according to the Stack-
Overflow survey) is dedicated to runtime compilation [49]. This runtime compilation
allows the use of higher abstractions while hindering performance. Therefore, promot-
ing ease of coding in high-level programming languages often requires implementing
complex compilers and algorithms that run at execution time on top of several software
layers. This thesis shows that even with limited resources, significant speedups, and en-
ergy savings can be achieved by bringing these high-level abstractions and algorithms
closer to the hardware. Effectively shorting the size of the stack on which high-level
abstractions to the minimum necessary, directly on the silicon / FPGA fabric.

6.1 Impact on time/space efficiency

For this proof of concept, the bandwidth of communication buses in low-budget FPGAs
limited the interpretation speed. However, the same interpreter (using only 5k logic cells
and 15 5b RAM blocks) with a faster communication protocol such as PCI Express can
achieve up to 22.45 MB per second scanner throughput and 17 million reductions per
second. This is twice the performance of the JavaScript V8 engine (10 MB per second)
running on an Intel i5 3 GHz system (with a clock frequency three orders of magnitude
higher).

While these speedups apply only to code compilation and not execution, they suggest
that high-level compiler algorithms using dynamic data structures and sequential logic
can be significantly accelerated when implemented in hardware. This is still true even
when implementing these layers in FPGAs, which typically have lower clock frequen-
cies and more limitations than ASICs; this demonstrates the potential for programmable
hardware to enhance not only the performance of high-level algorithms but also to retain
in hardware the reprogramming flexibility usually associated with the software. This
possibility opens the door for consumer electronics and servers with FPGAs that can be
reprogrammed at runtime, optimizing performance for the currently running program-
ming language.

80
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6.2 Impact on energy efficiency

Additionally, the potential energy savings are substantial. This proof of concept ran on
an FPGA board consuming only 0.60 watts, while a modern i5 processor can consume
up to 20 watts (just the processor) during intensive workloads [50]. For example, the
i5-13400 CPU averages 218.9 watts during the Cinebench R23 multithreaded test. Mid-
range desktop PCs typically consume around 350-600 watts under high workloads, with
the i5-13400 CPU accounting for 36% to 62% of total power consumption during high-
load scenarios. Given that many of today’s applications run in interpreted high-level
languages, these potential energy savings are highly significant.

6.3 Future work

More research is needed to translate these energy savings and speedups into a more
realistic environment with a larger and more complete language, such as JavaScript.
These results are especially relevant when applied to code execution optimizations, as
in JavaScript, compilation accounts for only 10% to 40% of total execution time.

This work has demonstrated how reprogrammable hardware can enhance high-level
language abstractions, delivering high speed and energy savings to the software industry
while maintaining development efficiency and ease of programming. In the near future,
we aim to explore further the potential of using reprogrammable hardware to build more
efficient software systems.

Starting by enhancing the speed of the instruction, source code, and computation
buses, this solution would be better suited as a high-level language hardware accelerator.
Following an architecture similar to GPUs, these boards could use PCI Express and large
amounts of RAM to communicate with the system’s main CPU and perform calculations.
For example, in the case of JavaScript, the language could be compiled into bytecode at
runtime, with a bytecode CPU (mapping each bytecode instruction 1:1 to machine code)
implemented on the accelerator. This approach would allow for intermediate code opti-
mizations common in JavaScript while providing a modular, extensible solution. Addi-
tionally, the new CPU could implement custom memory controllers and hardware-level
support for high-level concepts like garbage collection and object creation.
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Relation with completed studies

The following subjects have a close relationship with the knowledge used to implement
this thesis:

• 11542 Computer Fundamentals

• 11540 Computer Science Physics

• 11544 Computing Technologies

• 11552 Computers structures

• 11557 Programming languages, technologies and paradigms

• 11564 Automata theory and formal languages

• 11590 Programming languages and language processors

• 11593 Algorithms
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ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE                       

Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenibles Alto Medio Bajo No
Procede

ODS 1. Fin de la pobreza. x

ODS 2. Hambre cero. x

ODS 3. Salud y bienestar. x

ODS 4. Educación de calidad. x

ODS 5. Igualdad de género. x

ODS 6. Agua limpia y saneamiento. x

ODS 7. Energía asequible y no contaminante. x

ODS 8. Trabajo decente y crecimiento económico. x

ODS 9. Industria, innovación e infraestructuras. x

ODS 10.Reducción de las desigualdades. x

ODS 11. Ciudades y comunidades sostenibles. x

ODS 12. Producción y consumo responsables. x

ODS 13. Acción por el clima. x

ODS 14. Vida submarina. x

ODS 15. Vida de ecosistemas terrestres. x

ODS 16.Paz, justicia e instituciones sólidas. x

ODS 17. Alianzas para lograr objetivos. x
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Reflexión  sobre  la  relación  del  TFG/TFM  con  los  ODS  y  con  el/los  ODS  más
relacionados.

El trabajo presentado propone una solución al hecho de que escribir código eficiente
es tedioso,  difícil  y  requiere una gran cantidad de tiempo.  Esto ha causado en los
últimos años la adoptación de prácticas y metodologías en el campo del desarrollo de
software  en  las  que  se  abusa  de  la  abundancia  de  recursos  de  hardware  para
implementar código ineficiente pero rápido de programar mediante abstracciones y
lenguajes  de alto nivel.  Dado que el  trabajo  propuesto  demuestra la  viabilidad  de
ahorros en tiempo de ejecución y energía considerables, esto tendría un impacto en:

• Energía  asequible:  ya  que  la  reducción  del  consumo  energético  de  la
infraestructura que soporta la industria del software sería es considerable.

• Crecimiento  económico:  ya  que  limitaciones  físicas  nos  impiden  seguir
consiguiendo hardware a la velocidad que lo hemos estado haciendo, mientras
que  las  tecnológicas  y  gigantes  de  software  siguen  creciendo  a  la  misma
velocidad de siempre. Si las tendencias no cambian, llegará un punto donde La
industria del  software necesitara de optimizaciones como la propuesta para
seguir creciendo.

• Industria, innovación e infraestructuras: ya que es una alternativa que no se ha
propuesto  antes  (a  pesar  de  que  ha  habido  intentos  parecidos)  y  afecta
directamente a la industria del software.
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