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ARTICLE INFO ABSTRACT

Keywords: The development of smart sensors, low cost communication, and computation technologies enables continuous
Data driven monitoring and accumulation of tremendous amounts of data for heat pump systems. But the measurements,
Heat pumps especially for domestic heat pump, usually suffer from incompleteness given technical and/or economic
Soft sensors barriers, which prevents database of measurements from being exploited to its full potential. To this end,
:ggl\:ession this work proposes a data-driven soft sensor approach for compensating multiple missing information. The
Database soft sensors are developed based on an ANN model, an integrated multivariate polynomial regression model

and empirical model by considering different constrains like data and information availability during model
establishing process. All the three models have been validated against the data from a field test installation,
and showed good performance for all the compensated variables. Of the three models, the ANN model shows
the best performance for all soft sensors, but it has the highest requirement for additional resources to collect
training data. While the integrated multivariate polynomial regression model demonstrates excellent accuracy
for the majority of soft sensors with manufacturers’ subcomponent data which needs no extra cost. Even
though empirical model is not as accurate as the other two models, it still performs good accuracy with
limited information from performance map. The methods developed in the present study paves the way for
available measured data in thousands of installations to be fully utilized for innovative services including but
not limited to: improved heat pump control strategies, fault detection and diagnosis, and communication with
local energy grids.

1. Introduction

In the recent years, heat pump technology has spread worldwide
as an energy efficient technology for the integration of renewable
energy [1,2]. According to Energy Technology Perspectives 2020 pub-
lished by International Energy Agency (IEA), heat pump utilization
should be extended in both industry and building sectors under the
scenario of sustainable development [3]. Thanks to the development
of smart sensors, low cost communication, and computation technolo-
gies, modern heat pump units are nowadays equipped with numerous
sensors and potentially generate a large amount of data every day that
can be stored in databases for further analysis [4,5].

Currently this highly valuable and abundant data with billions of
entries every month is merely collected by heat pump manufacturers
and is rarely processed or used for any innovative service. Heat pump
monitoring systems, especially for domestic heat pumps, are often not
designed to provide data that can be directly employed for system

analysis. The use of this data is nowadays mostly limited to real-time
visualization or for triggering alarms when there is an error during
operation. Furthermore, a large amount of data does not necessarily
assure that the quality of the data is good enough for system analysis. In
real practice, the monitoring data commonly suffers from incomplete-
ness, inconsistency, inaccuracy due to lack of key sensors or meters. For
example, it is uneconomical to install mass flow meters or sometimes
power meters in domestic heat pumps systems. In addition, most mod-
ern heat pump systems use pressure sensors, but the lack of pressure
sensors remains an unresolved problem for the thousands of existing
systems that started without them. Under this situation, the potential
of highly valuable monitoring systems has not been fully unlocked. The
collected data, if processed and coupled to other sources of information
in an appropriate way, encompasses valuable information about local
outdoor and indoor climate, occupancy and activities in the built-
environment, people behavior, building characteristics, components
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and system efficiencies, and the early symptoms of possible faults or
performance degradation in heat pump systems. Therefore, to make the
collected measurements ready for system analysis, it is quite essential to
conduct a comprehensive database investigation to detect, complement
and correct the incomplete, incorrect, inaccurate parts of the data.

To solve the problems related to deficient measurements, soft sen-
sors, also named as virtual sensors [6], inferential sensors [7] are
developed to predict unmeasurable, difficult-to-measure, or costly mea-
surements through prediction or estimation models using “cheap or
easy to measure” historical data or other resources [8]. During recent
years, soft sensors are gaining focus and proliferation in various areas,
such as energy systems, pharmaceutical manufacturing, petrochemical,
and other industry process [9-11], mainly due to their low cost, quick
response, and simple maintenance. Generally, there are two types of
models for soft sensors: first-principle models (also called model-driven
models) and data-driven models [12]. First-principle models need de-
tailed knowledge of the underlying physical phenomenon to build the
governing equations that can describe system behavior. However, in
real complex systems the equations are usually very difficult to solve
with many unknown or hard-to-estimate parameters. Out of this reason,
data-driven models have become popular, since they can mine histori-
cal data obtained from normal use or test systems to establish linear or
nonlinear models that can describe the relationship between inputs and
inferential outputs of the system. Numerous modeling techniques have
been successfully applied to data-driven soft sensors, of which the most
popular ones are Artificial Neural Networks [13-16], Support Vector
Machines [17], Partial Least Squares [18] and Principle Component
Analysis combining a regression model [19,20].

The implementation of soft sensors in heat pump systems are also
found in last decade studies [21,22]. The commonly utilization of soft
sensors in heat pumps is to estimate mass flow rate [23], refriger-
ant pressures [24], compressor power consumption [25]. Estimating
refrigerant mass flow rate is quite essential for system monitoring
and fault detection, but it is generally infeasible to install mass flow
meters especially for residential heat pump systems due to cost and
maintenance problems. Pressures in the refrigerant cycle can reveal
the operational performance of heat pump systems. However, pressure
sensors are usually expensive. Also, the installation of pressure sensors
are challenging since the refrigerant loop needs to be evacuated and
recharged. Moreover, pressure sensors may possibly cause refrigerant
leakage over time [26]. Compressor power consumption is an essential
indicator to evaluate the efficiency of heat pumps, but again power
meters are often not installed for economic reasons. Therefore, it is
critical to develop soft sensors based on easy-to-measure and low-cost
measurements, e.g., temperatures and revolutions per minute (rpm), so
that the soft sensors can take place of their hardware counterparts.

However, in most of the existing references, soft sensors can only
estimate one single measurement based on other measurements that
are also difficult or expensive to obtain. Table 1 summarizes commonly
seen soft sensors and associated inputs for heat pumps in literature.
As can be seen for the table, most soft sensors not only require easy
measurements like discharge temperature, suction temperature, or am-
bient temperature, but also need not readily available measurements
like condensing temperature, evaporating temperature or pressures as
inputs. What is more, based on our experience several or even all of
expensive or difficult-to-measure parameters are usually missing in the
existing heat pump monitoring systems. Thus, it is necessary to de-
velop models that can compensate multiple absent costly measurements
combined with more affordable physical sensors.

To bridge the research gaps mentioned above, this paper proposes
exploration on the application of data-driven soft sensors in heat pumps
through following:

1. Three data-driven models based on different additional resources
are introduced to compensate the missing measurements in ac-
tual heat pump monitoring systems.
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Table 1
Soft sensors and related inputs in referred literature.
Literature Soft sensor Inputs
[23] Refrigerant mass flow rate W, Tyiss Puiss Toes Poes Feomp
[271 Refrigerant mass flow rate Py P Toes Ty
[28] Refrigerant mass flow rate W, T, P, T, P, Ty Ty,
[24] Pressure sensors T, T,
[25] Compressor power T, T, fcomp
[28] Compressor power Tos Tes Tues Poe
Table 2

Available and missing variables for system performance analysis.

Available measurements Missing information

Compressor speed (rpm)
Water inlet temperature
Water outlet temperature
Brine inlet temperature
Brine outlet temperature Cooling capacity

Compressor inlet temperature Compressor power consumption
Compressor outlet temperature (¢0)

Condenser outlet temperature

Evaporation temperature/pressure
Condensation temperature/pressure

Mass flow rate of water/brine/refrigerant
Heating capacity

2. Considering the complexity of integrated multivariate polyno-
mial regression model, sensitivity analysis is conducted to figure
out the most dominated inputs.

3. Each model’s performance in terms of accuracy are compared for
every compensated variable.

The remainder of the paper is structured as follows: Section 2
describes the data analysis from the heat pump operation database
which motivated the design of soft sensors, and also for the analysis
of field test installation data which is used to build and validate the
models. Then Section 3 demonstrates the details of three different
models. In Section 4, soft sensors’ prediction and validation results are
presented. Finally, the main conclusions are given in Section 5.

2. Data analysis
2.1. Database analysis

This work is motivated by the prevalence of incomplete data col-
lection in a database containing operational data from over 4000
domestic heat pump installations across Sweden. The data collected
from thousands of domestic heat pumps share similar characteristics
since those heat pumps are equipped with almost the same type of sen-
sors. The analysis of monitoring data revealed that mass flow meters,
compressor power meters, pressure sensors and temperature sensors for
condensation and evaporation are typically not installed and therefore
not monitored, mainly due to economic barriers. This prevents the
direct evaluation and monitoring of system performance. Table 2 shows
the list of variables found in the database, along with a list of missing
variables that would allow the direct evaluation of system performance.
In order to fully utilize the database for heat pump innovative services,
a novel data-driven multi-model approach is proposed for soft sensors
that can predict several missing measurements at the same time without
the need for installing extra costly sensors or meters.

The missing measurements in the database motivated the develop-
ment of data driven soft sensors. Once soft sensors are accomplished,
they can be applied for thousands of heat pump installations. The
common status of missing variables in the big database 2 provides
guidance regarding which soft sensors should be developed. However,
for the purpose of developing and validating soft sensor models at the
same time, field test data is utilized, which is described in Section 2.2.
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Fig. 1. Schematic configuration of the investigated heat pump system.

2.2. Field test data analysis and preprocess

The models developed in this study have been validated using the
measurement data from one field test heat pump installation equipped
with several extra sensors, including energy meters and pressure sen-
sors. The heat pump is a classic ground source heat pump, whose
schematic configuration is shown as in Fig. 1. So apart from com-
mon measurements (i.e.,compressor speed, water inlet and outlet tem-
peratures, brine inlet and outlet temperatures, condenser inlet and
outlet temperatures, and evaporator outlet temperatures), extra mea-
surements like water mass flow rate, evaporation and condensation
pressures were also collected. The first part of the analysis consisted
in data cleaning, including the identification of outliers, anomalies and
data gaps. The outliers have been identified following the interquartile
range approach, typically used in visualization tools like Box whisker
diagram [29]. Besides, the sensor measurements are sometimes discon-
tinuous, and a time based interpolation is introduced to fill the missing
values which exist sporadically.

The operational range and distribution of the measurements are
quite important for developing models. If the ranges of data are too
narrow, the trained models are at high risk of over fitting. Violin plots
are adopted to explore the collected data, which can graphically show
the statistical features and density shape of numerical data [30].

During model developing process, 16 numeric variables are utilized
to train and/or validate data-driven models. The range and density
distribution of these 16 variables are shown with violin plots in Fig. 2.
The temperature ranges of outdoor, condensation and evaporation are
15°C, 15 °C, 5 °C respectively. The compressor frequency changes from
20 Hz to 45 Hz. The dataset shows a reasonable spread ensuring the
trained model is not over fitting.

3. Methodology
3.1. Framework of data-driven modeling

This work proposes a methodology based on a multi-model ap-
proach that aims at compensating the missing values through soft
sensors for heat pump monitoring systems, without requiring the instal-
lation of additional devices. The whole frame of research methodology
is demonstrated in Fig. 3. Three different data-driven models are de-
veloped in parallel for soft sensors by considering the availability of
different additional resources. An ANN model can be developed when
training data collected from installations with added sensors and meters
is accessed. With the data and information of heat pump components
from manufacturers, an integrated multivariate regression model can

Energy Conversion and Management 279 (2023) 116769

be built up. In the worst scenario, if neither training data nor data
of component is available, an empirical model is established as an
alternative with the heat pump performance map, which is normally
easy to obtain for most heat pump systems. The details of three models
are introduced in Section 3.2, Section 3.3 and Section 3.4 respectively.

3.2. Multi-inputs and multi-outputs ANN model

ANN is a very popular algorithm inspired by a biological neural
system which is composed of interconnected neurons in input, hidden
and output layers. Different neurons in different layers are connected by
weights and parameters, which can be trained with back propagation
algorithm. Recent studies proposed the implementation of ANN for heat
pump system analysis. The research areas of ANN analysis in heat pump
systems broadly include: (i) prediction of heat pump energy consump-
tion [31], (ii) prediction of the performance of sub-components [32,33],
(iii) prediction of properties of refrigerants [34]. Fannou et al. [31]
applied ANN to predict the heating capacity and compressor power
consumption of a direct expansion geothermal heat pump. In their
study, ANN model provided very satisfactory results for the 2 outputs
with 6 thermodynamic parameters as inputs, which demonstrated that
ANN is a good alternative approach in modeling complex systems.
Longo et al. [33] used ANN to predict heat transfer coefficients of
refrigerant condensation in a brazed plate heat exchanger. The result
showed much better performance than analytical-computation models
presented in the recent open literature. Wang et al. [34] developed a
ANN models to precisely predict viscosity and thermal conductivity of
the HFC/HFO refrigerants. Table 3 summarizes the inputs and outputs
of ANN models in the literature above.

In this study, since several missing values are need to be com-
pensated, a multi-inputs and multi-outputs back propagation neural
network are established. The schematic diagram of the ANN structure is
illustrated in Fig. 4, where the features on input layer are the measure-
ments that are commonly collected in domestic heat pumps, and the
outputs are missing values needed to be compensated. The hidden layer
plays a role of transmitting and transforming the information coming
from input layer to output layer through an activation function. Com-
monly used activation functions are Sigmoid, Tanh, ReLu, Leaky ReLu,
and ELU, etc. In this study, ReLu is chosen as the activation function
which is expressed by Eq. (1). Compared to other activation functions,
ReLu only activates the neurons if output of linear transformation is
larger than 0, which can greatly improve computation efficiency [35].

S (x) = max(0, x) @

Hyper-parameters play a prominent role on ANN model perfor-
mance. The process of optimizing hyper-parameters is to find an op-
timal point where the model has satisfied accuracy and at the same
time it is not suffering from over fitting. In this study, Adam is applied
as mini-batch stochastic gradient descent optimizer, which is efficient
in computation and has low memory requirement [36]. The hyper-
parameters to be optimized in this study are number of hidden layers,
number of hidden neurons, batch size, epochs, and learning rate.
Possible candidates for these hyper-parameters are listed in Table 4. A
total of 1260 different hyper-parameter combinations are considered.
To search optimized hyper-parameters there are mainly two ways:
grid search and random search. In grid search, each possible candi-
date combination is tried, while in random search, a fixed number
of randomly selected hyper-parameters are tried instead. It has been
proved that random search is more efficient than grid search for
hyper-parameter optimization [37]. In order to improve computation
efficiency, RandomizedSearchCV [38] method is adopted to randomly
select 250 candidate trials.

The whole dataset is divided into training and testing datasets
with proportions of 75% and 25%, respectively. Since variables with
different units do not contribute equally to the analysis, the dataset
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Fig. 2. Range and distribution of the measurements.

Table 3
Inputs and outputs of ANN models in referred literature.
Literature Inputs Outputs
Evaporator inlet temperature and pressure, Heati .
[31] Evaporator outlet temperature and pressure, eating capacity R
. . Compressor power consumption
Water inlet temperature in condenser,
Discharge pressure
Driving temperature difference,
[33] Vapor Su? erheat, . Heat transfer factor
Corrugation enlargement ratio,
Equivalent Reynolds number,
Liquid Prandtl number
Reduced pressure,
[34] Reduced temperature, Thermal conductivity

Mole mass,
Acentric factor

Viscosity

is normalized in training dataset as Eq. (2), where u, ¢ are the mean
and standard deviation of variable x respectively. The test dataset is
normalized with the same u and ¢ from training dataset for the same
variable. During training process, five-fold cross-validation is applied to
get the hyper-parameters with lowest loss function evaluated by mean
square error (MSE), as shown in Eq. (3), where N is the total number
of data points, f; is the value obtained from the model and y; is the real

value for data point i. After the training process, the optimized results
is shown in Table 4 and the MSE under this condition is 0.0062.

X; — p(x)
o(x)

1
MSE = - ;(f,- -2 3

X (2)

i,normalized =
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Fig. 3. Frame of research methodology.
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Fig. 4. ANN model structure.

Table 4
Hyper-parameter candidates.

are mainly designed for customers to select proper products like heat
exchangers or compressors. The interface of software is customer-
oriented, which means the inputs and outputs are mainly designed
based on the majority of customers’ need for selecting proper products.

Candidate values

[1,2,3] 3

Hpyer-parameters Optimized result

Number of hidden layers

Number of hidden neurons 5, 10, 15, 20, 25, 30,35] 25 From the stand point of model development, the data from manufac-
Learning rate [0.0001,0.001,0.01,0.1] 0.0001 t ? soft : ite inf ti d valuable. Hi the i t
Batch size 110, 20, 40, 60, 80] 20 urers’ software is quite informative and valuable. However, the inputs
Epochs [10, 50, 100] 50 and outputs of model are usually not the same with software interface.

The details of inputs and outputs of software and our models are shown
in Tables 5-7. Besides, in the monitoring database, a huge number

3.3. Integrated multivariate polynomial regression model

Considering the circumstance where training data for ANN model
are not available due to lack of extra sensors, an alternative integrated
multivariate polynomial regression model is designed to solve the
compensation task in this study. This model only needs the model type
information of sub-components (condenser, evaporator, and compres-
sor) and data from manufacturers’ software. Manufacturers’ software

of missing values are needed to be compensated along timestamps, it
is quite time consuming to run the manufacturers’ software for every
missing value. So the manufacturers’ software is usually not directly
useful for modeling. For these reasons, a reverse engineering procedure
is applied to develop models. Reverse engineering usually involves
deconstruct original product and extract design information to generate
new products. This method is commonly used in software systems,
where the purposes mainly cover: (i) determine internal relationships
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Fig. 5. Multi-variable polynomial regression model develop process for Subcomponents.

among software components and (ii) construct novel form or create
high-level representations of software [39,40]. In this study, firstly
the model types of heat exchangers and compressor are identified.
Then manufacturer’s software are figured out accordingly. After that
all possible operating conditions are ran to collect information and
data. According to measurements missing status in real database, inputs
and outputs are redefined and finally multivariate polynomial regres-
sion models are developed. The model is implemented to compensate
all missing information at fast speed. The development process is
demonstrated as Fig. 5.

In this paper, multivariate polynomial regression models of sub-
components: evaporator, condenser and compressor are developed sep-
arately. The detailed model is described in Sections 3.3.1-3.3.3. Then
a heat pump unit integrated model is established by combining the
sub-components together, which is described in Section 3.3.4.

3.3.1. Condenser multivariate polynomial regression model

As mentioned before, almost all of the existing heat pump instal-
lations monitored in this study are missing pressure sensors in both
low and high pressure sides. Therefore, condenser model is designed
to obtain condensation temperature or pressure. In this study, the
direct output of condenser model is condensation temperature and then
the condensation pressure is calculated from CoolProp, which is an
open-source thermophysical property library [41]. Based on Eq. (4)
to Eq. (8), and the availability of measurements (Table 2), the inputs
and output of the model are selected and demonstrated in Table 5.
The modeling purpose is to build a multivariate polynomial regression
expression matching the output and inputs, as shown in Eq. (9), where
b is the regression intercept, c¢; to c¢,, are coefficients of polynomial
terms, x; to x5 represents input variables: refrigerant mass flow rate,
water inlet temperature, water outlet temperature, condenser inlet
temperature, and condenser outlet temperature respectively, 7. is the
output of the model, namely condensation temperature. It is worth
mentioning when this sub-component model is being developed, the
data of all variables is extracted from a manufacturer’s heat exchanger
software according to specific condenser type provided by heat pump
manufacturer. Then the data is used to train and test the polynomial
regression model mapping the inputs and output in Eq. (9). But when
the completed model is being used as soft sensors for condensation
pressure and temperature, refrigerant mass flow rate as one missing

Table 5

Inputs and outputs of software and multivariate polynomial model for condenser.
Variables Software Model
Mass flow rate of refrigerant Output Input(x,)
Inlet temperature of water Input Input(x,)
Outlet temperature of water Input Input(x;)
Inlet temperature of refrigerant Input Input(x,)
Outlet temperature of refrigerant Output Input(xs)
Subcooling Input -
Heating capacity Input -
Condensation temperature Output Output(7,)

measurement, is the output from compressor sub-component model,
shown in Section 3.3.4.

Q,=UA-LMTD C))
O, = f(x1, h(xy, P.), h(xs, P,)) (5)
P. = (T, ©
LMTD = f(x,,X3,%X4,Xs) @)
UA - f(xp, X3, %4, %5) = f(x1, h(xy, T,), h(xs,T,)) ®)

5 5 5
T.=b+ Z xic; + Z X XiCsq t+ Z X2XiCoyi
i=1 i=1 i=2

5 5 5

+ Z X3XiClo4 Z X4XiClayi Z X5XiC154i
i=3 i=4 i=5

©)

To optimize model coefficients, ordinary least squares optimization
method [42] is applied. The accuracy performance of the model is
measured by relative root mean squared error (RRMSE) [43], defined
in Egs. (10), where f; is the ith result from models, y; is the ith actual
measurements, and y is the average of y; of all n data points. The
smaller this indicator is, the more precise a model is. The RRMSE is
0.1% for the optimized condenser model. The coefficients from ¢, to ¢y
are listed on the top of each subplot in Fig. 6, and the intercept term
b is 39.373. To make clear how each coefficient and polynomial term
contribute to the final result, an sensitivity analysis is conducted. Every
time, only one coefficient is changed by increasing 30%, decreasing
30% and totally dropping out to check how the RRMSE varies. In the
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C[1] = 0.348 C[2] = 2.505 C[3] = 3.919 C[4] = -0.017 C[5] = -0.568
+  RRMSE(Drop out) =0.9% RRMSE(Drop out) =6.4% RRMSE(Drop out) =10.0% / +  RRMSE(Drop out) =0.1% RRMSE(Drop out) =1.5%
3301 . RRMSE(+30%) =0.3% / RRMSE(+30%) =1.9% / RRMSE(+30%) =3.0% RRMSE(+30%) =0.1% / RRMSE(+30%) =0.5% /

RRMSE(-30%) =0.3%

%

RRMSE(-30%) =1.9%

310

RRMSE(-30%) =3.0%

g g
g g
N
‘\
h

RRMSE(-30%) =0.1% RRMSE(-30%) =0.5%

RRMSE(-30%) =0.5%

C[6] = -0.025 C[7] =-0.538 C[8] = 0.524 C[9] = 0.076 C[10] = -0.015
RRMSE(Drop out) =0.2% RRMSE(Drop out) =1.6% RRMSE(Drop out) =1.6% *  RRMSE(Drop out) =0.2% RRMSE(Drop out) =0.1%
330 »  RRMSE(+30%) =0.1% / RRMSE(+30%) =0.5% / RRMSE(+30%) =0.5% / »  RRMSE(+30%) =0.1% / RRMSE(+30%) =0.1% /

RRMSE(-30%) =0.1%

RRMSE(-30%) =0.5%

N

RRMSE(-30%) =0.1%

RRMSE(-30%) =0.1%

Condensation temperature from model [K]

C[11] = -1.072 C[12] = 4.880 C[13] = 0.497 C[14] = -2.693 C[15] = -1.867
RRMSE(Drop out) =3.8% RRMSE(Drop out) =16.9% / RRMSE(Drop out) =1.3% = RRMSE(Drop out) =9.4% RRMSE(Drop out) =6.5%
330 *  RRMSE(+30%) =1.1% / RRMSE(+30%) =5.1% RRMSE(+30%) =0.4% / *  RRMSE(+30%) =2.8% / RRMSE(+30%) =1.9% /
RRMSE(-30%) =1.1% RRMSE(-30%) =5.1% RRMSE(-30%) =0.4% RRMSE(-30%) =2.8% RRMSE(-30%) =1.9%
4
320 L/
4
4 Z P
310 / 4
300
290
C[16] = -0.420 C[17] = -1.291 C[18] = 0.020 C[19] = -0.117 C[20] = 2.036
*  RRMSE(Drop out) =1.1% RRMSE(Drop out) =4.5% RRMSE(Drop out) =0.1% «  RRMSE(Drop out) =0.3% RRMSE(Drop out) =7.2%
330f . RRMSE(+30%) =0.3% / RRMSE(+30%) =1.4% / RRMSE(+30%) =0.1% / = RRMSE(+30%) =0.2% / RRMSE(+30%) =2.2% /
RRMSE(-30%) =0.3% RRMSE(-30%) =1.4% RRMSE(-30%) =0.1% RRMSE(-30%) =0.2% RRMSE(-30%) =2.2%
y ) 2 J
320

310

N

300 310 320 330 300 310 320 330 300

310 320 330 300 310 320 330 300 310 320 330

Condensation temperature from software [K]

Fig. 6. Sensitivity analysis of condenser model coefficients.

upper left corner of subplots in Fig. 6, new RRMSE are listed when
corresponding coefficient is modified. For more intuitive, scatter plots
comparing model result against original data in software are exhibited.
As can be seen from Fig. 6, the top five prominent coefficients are
¢y, €3, Cjp, Ci4, and c¢yy. The corresponding polynomial terms with
these five coefficients are: x,, x3, x,x3, x,x5, and xg. This means,
water inlet and outlet temperature and condenser outlet temperature
are more indispensable and sensible for regression of condensation
temperature compared to refrigerant mass flow rate and condenser inlet
temperature.
n — 8 2
Zi:l(yl ft) /_)_/ (10)

RRMSE =
n

3.3.2. Evaporator multivariate polynomial regression model

Similar to condenser model, evaporator model is developed to cal-
culate evaporation temperature or pressure. The selection of inputs
to evaporator model is the same way as condenser except for the
refrigerant inlet temperature, since this temperature is usually not
measured in the monitored data. Out of this reason, inlet enthalpy is
selected as an input to evaporator model instead, because the expansion
process through the expansion valves are assumed to be isenthalpic.
Inputs and output of the model are shown in Table 6. The multivariate

polynomial regression model is expressed as Eq. (11), where b is regres-
sion constant coefficient, ¢, to ¢,, are coefficients of polynomial terms,
x; to x5 represent input variables: suction mass flow rate, evaporator
inlet enthalpy, evaporator outlet temperature, brine inlet temperature,
and brine outlet temperature respectively. T, is the out put of the model
(evaporation temperature). The data to develop the model is obtained
from a manufacturer’s heat exchanger software. But when this model
has been finished and is implemented in actual database, evaporator
enthalpy in and suction mass flow rate are not available from measure-
ments. The information regarding these two variables are provided by
outputs from condenser and compressor models respectively, which is
introduced in Section 3.3.4.

5 5 5
T,=b+ z Xici + Z X XiCs4 T+ Z X2XiCoqj
i=1 i=2

i=1 an

5 5 5
+ Z X3X;Clo4i T Z X4XiCraqi T Z X5X;Cl54i

i=3 i=4 i=5
With ordinary least squares optimization method, the coefficients
of the model are optimized, with RRMSE being 0.6%. On the top of
each subplot in Fig. 7, the coefficients from ¢, to ¢,, are recorded.
The intercept term b is —0.397. To further understand how much is
the model result sensible to every coefficient and polynomial term, an
sensitivity analysis is conducted. Only the coefficient listed on top of the
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Fig. 7. Sensitivity analysis of evaporator model coefficients.
Table 6 calculating refrigerant mass flow rate and compressor power consump-
Inputs and outputs of software and multivariate polynomial model for evaporator. tion with different inputs, as shown in Table 7. Compressor frequency,
Variables Software Model evaporation temperature and superheating are taken as inputs for mass
Mass flow rate of refrigerant Output Input(x,) flow rate model according to Egs. (12)-(13). While for power model,
Evaporator inlet enthalpy Output Input(x,) condensation temperature, evaporation temperature and compressor
Outlet temperature of refrigerant Output Input(x;) £ defined ) based h h 1t
Inlet temperature of brine Input Input(x,) requency are defined as inputs based on Eq. (14). Then the multi-
Outlet temperature of brine Input Input(xs) variate polynomial regression models for mass flow rate and power
Inlet quality to evaporator Input - consumption are expressed as Egs. (15) (16) respectively. In Eq. (15), b
Superheating Input - is regression constant coefficient. ¢, to ¢y are coefficients of polynomial
Cooling capacity Input - t t t th . t iables: f
Evaporation temperature Output Output(T) erms. x; to x; represent three input variables: compressor frequency,

subplot is increased by 30%, decreased by 30% and totally dropped out.
The changed RRMSE is cataloged in the upper left corner of subplots
in Fig. 7. The figure demonstrates the model is far more sensible to ¢,
and ¢5 compared to others. These two coefficients belong to x; and xs,
representing refrigerant mass flow rate and brine outlet temperature,
which are more crucial for the accuracy of evaporator model.

3.3.3. Compressor multivariate polynomial regression model

To our experience, most of the already installed domestic heat
pump systems lack power meters and mass flow meters. Two different
multivariate polynomial regression models are developed separately for

evaporation temperature and suction temperature. 7, is the output-
compressor suction mass flow rate. In Eq. (16), b is regression constant
coefficient. ¢; to ¢y are coefficients of polynomial terms. x; to xj
represent three input variables, namely compressor frequency, evap-
oration temperature and condensation temperature. W is compressor
power consumption, which is the output of the model. The data used
for training and test the polynomial regression models come from a
compressor manufacturer’s software based upon the compressor type
in actual heat pump. When the models are put into practice against the
real database, evaporation and condensation temperatures are supplied
from evaporator and condenser models, shown in Section 3.3.4.

4

mref =7l'fcamp' - 12

U= f(Tye>P,) 13
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Inputs and outputs of software and multivariate polynomial model for compressor.

Variables Software Power model Mass flow rate model
Compressor frequency Input Input(x,) Input(x,)
Evaporation temperature Input Input(x,) Input(x,)
Condensation temperature Input Input(x;) -
Superheating Input - Input(x;)
Power consumption Output Output(W) -
Suction mass flow rate Output - Output(m,, )
Subcooling Input - -
P e condensation temperature and pressure. Based on condensation pres-
W=pn —5_. Pl " =10V fromp sure and condenser outlet temperature, the enthalpy out of condenser
-1 Pe (14) is reckoned. In addition, other inputs to evaporator model are the
= f(P., Py feomp) guess refrigerant mass flow rate and three temperature measurements
= fTp Ty, feomp) (evaporator outlet, brine inlet and outlet). As output of evaporator,
evaporation temperature together with evaporator outlet temperature
3 3 and compressor frequency are subsequently sent to compressor model
o r =b+ inc[ + 2 XX;C34; that can calculate refrigerant mass flow rate. This mass flow rate is
i=1 i=1 5) then compared with the initial guess refrigerant mass flow rate. If
3 3 relative error of the two mass flow rates is smaller than threshold that
+ szxic5+i + 2x3xic"+i is set to be 0.05%, it means the cycle gets a converged refrigerant
=2, 3=3 mass flow rate. What is worthy of being mentioned is that until this
W=>b+ inci + Z X1X;€34i point, temperatures and pressures of condensation and evaporation
=1 = (16) have been successfully compensated based on the accurately guess

3 3
+ Z XpXiCs54; + Z X3XiCoyi
i=2 i=3

Both the mass flow rate model and power consumption model
are optimized by ordinary least squares optimization method, and the
RRMSE of the models are 0.5% and 0.2% respectively. The coefficients
in the models are recorded in Figs. 8 and 9. The intercept term of the
mass flow rate model is 10.12 and that of power consumption model is
0.458. Sensitivity analysis for each coefficient and polynomial term are
investigated, and the modified RRMSE are registered in the upper left
corner of subplots in Figs. 8 and 9 when only the coefficient listed on
top of the subplot is increased by 30%, decreased by 30%, or totally
dropped. From the analysis, it can be concluded that for mass flow
rate multivariate polynomial regression model, compressor frequency is
far more prominent compared to evaporation temperature and suction
temperature. While for power consumption multivariate polynomial
regression model, compressor frequency is the most important factor,
and condensation pressure ranks the second. The model is almost
not sensible to evaporation temperature since the RRMSE does not
change when the coefficients of evaporation temperature changes. In
this study, a scroll compressor is applied and the sensitivity analysis
results for refrigerant mass flow rate and power consumption are
quite similar as [44], where a critical analysis for scroll compressor
characterization is conducted. In that study, the compressor power was
also quite insensitive to evaporation temperature. For other types of
compressors like reciprocating compressors, the result may differ and
further investigation is needed.

3.3.4. Integrated heat pump multivariate regression model

In real circumstance, due to missing variable measurements, the
subcomponent models cannot work independently to serve as soft sen-
sors. For example, the compressor mass flow rate model cannot work
due to the absence of evaporation temperature. So after evaporator,
condenser and compressor models have been established, an integrated
heat pump model is developed by combining the aforementioned sub-
component models into an iteration loop, which is demonstrated in
Fig. 10. In this integrated model, the subcomponent models works
collaboratively with output of certain model as inputs to other models.

The iteration loop initiates from a guess refrigerant mass flow rate,
which serves as an input to the condenser model firstly. Together with
four measurements, namely condenser inlet and outlet temperatures
and water inlet and outlet temperatures, the condenser model yields

refrigerant mass flow rate and the refrigerant cycle has already been
fixed. Next, compressor power consumption can be obtained from
compressor model whose inputs are the compensated temperatures
of condensation and evaporation, as well as measured compressor
frequency. However, if the relative error between the calculated re-
frigerant mass flow rate from compressor model and the initial guess
value is larger than the threshold, then a new guess mass flow rate is
set to be the mean value of current guess mass flow rate and calculated
mass flow rate. Then the calculation restarts until the iteration reaches
a converged refrigerant mass flow rate.

In summary, this iterated cycle only takes available monitoring data
measurements as inputs, and makes up the missing values that are
paramount necessary to thoroughly understand about the thermody-
namic cycle of the heat pumps.

3.4. Empirical model based on performance map

In reality, it might happen that neither history training data nor
subcomponents data can be accessed. Out of this consideration, an
empirical model based on performance map working as soft sensors is
proposed in this study. Heat pump performance map is usually provided
by heat pump manufacturer, which is normally a table containing the
following parameters: compressor frequency, water mass flow rate,
water inlet temperature, brine mass flow rate, brine inlet temperature,
heating power and compressor power.

Fortunately, the heat pump performance is continuous with only
smooth trends, so polynomial models are usually efficient functions to
describe them. In this sense, compressors, which are the bases for the
heat pump performance, are very well studied in such type of empirical
models. The standard ANSI/ARI 540-2020 [45] proposes the commonly
called AHRI polynomials, two polynomial models to accurately char-
acterize the compressor energy consumption and mass flow rate as
a function of the evaporating and condensing temperatures, which is
expressed as Eq. (17), where ¢; to ¢, are coefficients, S and D are
the dew point temperatures at suction and discharge respectively, and
X can be mass flow rate and power consumption. Unfortunately, both
temperatures are only suitable parameters when the main objective is
to characterize the compressor as a single component. However, these
temperatures are dependent on boundary conditions at the evaporator
and condenser side, so polynomials based on the external parameters,
i.e., source/sink temperatures and compressor speed, should be able
to characterize heat pump unit performance. This is the approach
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Fig. 8. Sensitivity analysis of mass flow rate estimation model coefficients.

selected for example in [46,47], where the authors supply suitable
polynomials in order to characterize the performance - heating, cooling
and compressor power — of a brine-to-water heat pump. The equations
are Eq. (18), Eq. (19), Eq. (20), where ¢,’s are coefficients, 7,; is brine
inlet temperature, T,; is water inlet temperature, d7, is the brine inlet
and outlet temperature difference, dT, is the water inlet and outlet
temperature difference, and f,,,, is compressor frequency.

Based on the information from heat performance map, the coeffi-
cients in Eq. (18) to Eq. (20) can be optimized through ordinary least
squares optimization. Therefore, it is possible to predict the unit per-
formance without requiring detailed information about its components
or additional measurements.

X =c;+¢,S+c3D + ¢S +¢5SD + cg D?

3 2 2 3 (17)
+ ¢78° +¢gDS” + ¢cgSD” + ¢ D
Oc=feomp (Co+C Ty +Cy - T; +C3- T, - T,
+ Cy T2+ Cs-dT, + Cg - dT, 18)
+C; T, -dT, +Cy - T,; - dT,)
Q= feomp (Co+C Ty +C,-T; +C5- T, - T
+ Cy -T2 +Cs-dT, + Cg - dT, 19)

+ C, T, -dT, +Cy - T,; - dT,)

10

W = foomp (Co+Cy -T2+ Cy -T2+ Cy - dT,
+ CydT,+Cs Ty - dT, + Cg* foomp - Tui
2
+ C7'fcomp'Tci+c8'fwmp'Tei'Tci

)

(20)

+ C9 . fcamp 'dTe +C10 :
comp

Up to this point, temperatures and pressures of evaporation and
condensation are still missing and need to be compensated. Two cor-
relations regarding condenser and evaporator temperatures based on
external variables are listed in Eqgs. (21) and (22), where ¢;’s are coef-
ficients, T,, is water outlet temperature, T,, is brine outlet temperature
and f,,,, is compressor frequency. These correlations were obtained
in the same framework and unit analyzed in [46,47]. They use the
same approach of correlating the performance as a function of external
variables but selecting condensing and evaporating temperatures as
response variables.
Tc = Tco +cotep- fcomp +te- (Tco - eo) @D
TGO)

To optimize the coefficients in Egs. (21) and (22), a calculation
procedure is conducted as following:

Te = Teo tcptep- fcomp +te- (Tco - (22)
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Fig. 9. Sensitivity analysis of compressor power consumption model coefficients.

. Optimize the coefficients in Eq. (18) to Eq. (20) based on per-
formance map.

. Apply the optimized correlations in step 1 to compensate heating
capacity, cooling capacity and compressor power for the real
measurements.

. Create pressure functions based on CoolProp:

P. = f(T)
P, = f(T)

T, and T, are expressed in correlations Egs. (21) and (22) with
6 unknown coefficients.
. Create enthalpy functions based on CoolProp:

(23)

(24)

hdis = f(Pc’ Tdi:) (25)
hliq = f(Pc’ Tliq) (26)
hsuc = f(Pe’Tsuc) 27)

Tyis> Tizg» and Ty, are discharge temperature, liquid line temper-
ature and suction temperature from real measurements. P, and
P, are from step 3.

11

5. Create refrigerant mass flow rate functions based on energy
balance:

ml = Qc/(hdis - hliq) (28)
1y = Qe/(hsuc - hliq) (29
iy = W n/(h'dis - hsuc) (30)

0., Q, and W are the calculated results from step 2. hy;,, hyjy,
and hg,. are from step 4. n is compressor performance efficient.
6. Minimize the objective function:

M SE(h,, thy) + MSE(i, ., in3) + M S E(riny, rrs) (31)

to solve the 6 unknown coefficients in step 3, and 7 in step 5.

To minimize the objective function in step 6, Sequential Least Squares
Programming (SLSQP) is utilized. SLSQP is an effective optimization
algorithm to minimize a function with several variables combining
bounds, equality and inequality constraints [48]. In this study, conden-
sation temperature is higher than evaporation temperature should be
set as the constraint. After optimization, the coefficients in Eq. (21)
are: ¢y = 0.277, ¢; = 0.173, ¢, = —0.208. The coefficients in Eq. (22) are:
o = —0.270, ¢; = =0.117, ¢, = 0.094. n = 0.93 in step 5.
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Fig. 11. Soft sensors against real sensors.

4. Results and discussion

4.1. Relative error

Fig. 11 depicts how the results from ANN model, integrated mul-
tivariate polynomial regression model(named as integrated model for
convenience afterwards) and empirical model deviate from real mea-
surements. COP is calculated based on heating capacity and compressor
power consumption. To evaluate the accuracy of soft sensors with
quantification, absolute error (AE) (for temperature soft sensors) and
relative error (RE) (for the other soft sensors) are applied to measure
the deviation between model result from real time monitoring data for
every point. The expression of AE and RE is shown as Egs. (32) and

12

(33), where f; is the value obtained from the model and y; is the real
value for data point i. The error distribution of different variables from
the three models is displayed in Fig. 12. Concrete error distribution
information regarding lower quantile, median value, and upper quan-
tile are summarized in Table 8. The result shows that all the three
models provides satisfied RE result, with lower and upper quantile
of RE for all variables almost between +15%. Comparing the three
models, ANN model has the most narrow spread of RE distribution for
all variables than other two models. Besides, the median values of RE
for ANN model is always close 0, suggesting that ANN model has a
fairly accurate estimation for the compensated variables. By contrast,
integrated model gives a positive median RE for all the variables which
indicates it slightly overestimates all the variables. The empirical model
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Table 8
Summary of model error.
Model Type Quantiles AE statistics (K) RE statistics (%)
T. T. P P Hlyey O, w
Upper quantile 0.07 0.01 0.21 0.11 0.70 0.67 0.98
ANN model Median 0.03 —0.02 0.09 0.01 0.18 0.17 0.38
Lower quantile —0.02 —0.05 -0.01 -0.15 —-0.34 -0.33 -0.17
Upper quantile 0.12 0.55 0.61 1.72 11.41 11.36 7.77
Integrated model Median 0.03 0.46 0.36 1.42 9.05 9.00 5.59
Lower quantile -0.12 0.35 0.01 1.07 7.03 6.95 1.98
Upper quantile -1.25 0.36 -3.15 1.14 —-0.48 3.55 15.03
Empirical model Median -1.71 0.16 -4.12 0.50 —-0.69 2.04 11.47
Lower quantile -2.25 —-0.03 -5.33 -0.07 -0.91 —-0.06 8.84
Table 9
Summary of model regression performance.
Model type RMSE (K) RRMSE (%)
T, T, P, P, gy o, w
ANN model 0.09 0.09 0.25 0.29 1.14 1.13 1.37
Integrated model 0.18 0.53 0.51 1.65 9.29 9.25 6.29
Empirical model 1.83 0.36 4.58 1.13 0.89 3.29 14.25

has the widest spread of RE distribution for almost all variables but
refrigerant mass flow rate. It is understandable that the empirical model
has relatively low accuracy in general since it is developed based on
limited information from performance map.

AE = f; -y,
fi—vi

(32)

RE = (33)

Yi
4.2. Overall regression performance

The distribution of RE only reveals the accuracy of soft sensors for
every data point. To evaluate overall performance of the soft sensors,
RMSE (for temperature soft sensors) and RRMSE (for the rest) are
applied. Normally, the regression accuracy of a model is rated as
excellent when RRMSE <10%, good when 10% <RRMSE <20%, fair
when 20% <RRMSE <30%, and poor when 30% <RRMSE [49]. Table 9
summarizes the overall accuracy of all the data driven models in terms
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of RRMSE. It is clearly shown in Table 9 that ANN model has excellent
performance with RRMSE for all soft sensors below 10%. Even though
integrated model is not as precise as ANN model, its overall regression
accuracy can still be rated as excellent. For the empirical model, the
compressor power soft sensor has lowest accuracy, rated as good. The
rest of the soft sensors from empirical model have RRMSE below 10%
and can be ranked as excellent.

5. Conclusion

This study propose a multi-model approach for soft sensors in
heat pump systems. ANN model, Integrated multivariate polynomial
regression model, and empirical model are developed considering the
availability of different additional information. Comparing these three
models, ANN model can most accurately compensate the missing mea-
surements for heat pump monitoring data, but it strongly depends
on training data containing all indispensable parameters. That would
mean additional sensors need to be installed at least in one installation



Y. Song et al.

to collect the required training data. Considering the limitation from
ANN model, an integrated multivariate polynomial regression model
is developed based on data from component software utilizing reverse
engineering method. This model can compensate the missing variables
with high accuracy. During the submodel development process, sensi-
tivity analysis is conducted for different coefficients, which indicates
the importance of the coefficients and variables quantitatively. This
analysis can lead to development of simplified models by reducing
it to the most relevant variables as the input parameters. Given the
possibility that there is no corresponding manufacturer’s software, the
integrated multivariate polynomial regression model cannot be devel-
oped due to lack of data. Thus, an empirical model is proposed based
on heat pump performance map that is available in most cases. Because
the information that a performance map contains is limited, the soft
sensors’ performance is not as good as the other two models. Despite
this, the empirical model can still have relatively good performance
according to RRMSE metric. It is noteworthy that the empirical model
unexpectedly has a relatively high accuracy for refrigerant mass flow
rate estimation.

The three data-driven models for soft sensors provide multi-choices
depending on the type of supplementary sources. Choosing any of these
three methods can accomplish compensating missing measurements ac-
cording to the availability of additional information. If all the required
information is available, two or all three models can be developed in
parallel so that they can do cross validation to provide more reliable
results. Besides, the latency of developed soft sensors is negligible. To
be more specific, the longest response time pertains to the integrated
multivariate polynomial regression model, estimated to approximately
0.1s per set of results.

This study not only demonstrates the great potential of soft sensors
to substitute several costly physical sensors, but also paves the way for
exploiting the existing monitored data which is incomplete and lacks
key measured parameters to provide innovative services to the end-
users and manufacturers. Firstly, since soft sensors can provide accurate
estimation of refrigerant mass flow rate, condensation pressures and
temperatures, as well as evaporation pressures and temperatures, they
can be used to monitor heat pump operational state in case of devia-
tion from normal conditions to identify possible faults or performance
degradation. Secondly, the data driven soft sensors can predict power
consumption with high accuracy, which can be utilized to build smart
control methods to establish communication with the local electric grid
for electricity load management. Besides, the soft sensors developed in
this study can be utilized as the basis for development of digital twins
and consequently more advanced energy management of the heating
systems.
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