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Chapter 1

Introduction

The advent of deep learning models has changed the landscape for many different fields
and opened many new lines of research. After some years, the power and complexity of
these models have scaled rapidly, but their need of vast amounts of good quality data has
grown too. However, obtaining it on those quantities is by no means an easy or cheap work,
specially when working with multimodal models, where you need to process and annotate
different types of data.

One of the many task restricted by what is mentioned before is Image Captioning, an
important vision-language task, which often requires a tremendous number of finely labeled
image-captions pairs for learning the underlying alignment between images and texts [1].

On that sense, this thesis focuses on the proposal of a multimodal data augmentation
method that leverages the combination of recent text-to-image model Stable Diffusion and
Large Language Models, to not only add new samples of data from preexisting annotations,
but for creating new samples from scratch, generating new coherent pairs of image-captions.

1.1 Motivation

Image captioning is an important task at the intersection of computer vision and natural
language processing (NLP). For the longest time, researchers have focused their efforts on
optimizing models, refining extraction of informative features or developing better training
techniques. However, data is a critical dimension regarding the performance of the models,
but not as explored in comparison to those other axis, despite its recent surge in interest.

In their work, [2] show us how in different vision tasks, notable improvements in model
performance can be achieved just by increasing the number of data seen in training. Specif-
ically, [1] show us that having a large amount of high-quality pairs of image and captions
is often the desired for supervised image captioning tasks. This requires to invest large
amount of time and human resources in annotating images with descriptive sentences, and
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2 Objectives

doing so has resulted in some quite large datasets like COCO [3], which [4] argues that it
has a problem of containing an important amount of low quality images, simplistic anno-
tations and repeated contexts, limiting the generalization capabilities of a trained model on
the aforementioned dataset.

Historically, as with many other vision task, classic data augmentation techniques have
been used to address the data issue and increase the number of training examples, including
both augmenting the images [5, 6] and textual captions [7–9]. These classic techniques,
although still effective, do not address the problem of having an incredible limited amount
of data or only having one type of the of the data, specifically the textual one. In that
sense, seeing the success of works like [1,10], where they leverage the power of generative
models like Stable Diffusion to generate synthetic data, we apply similar methods for the
image captioning task and explore what results can be achieved with the usage of a synthetic
dataset, so going a step further, we use Large Language Models (LLMs) to increase the
amount of textual data we have at our disposition and feed it to a Stable Diffusion model to
generate the pairs of image and caption data. With that said, we hope to show how these new
generative models could be a more efficient and cheap alternative to increase the diversity
and quality of datasets for image captioning, or even a solution for those scenarios where
the lack of real sets of data is highly limited and constrict the possible solutions.

1.2 Objectives

The primary focus of this academic study is to explore the usage of generative models to
create synthetic datasets for the training of image captioning models and compare their per-
formance against the usage of real and human annotated pairs of image-caption. To achieve
this, we will address the following secondary objectives:

• Train an image captioning model with a popular dataset for the task, so we have a
point of comparison for the models trained according to the following points.

• Develop a pipeline for generating new high quality images using different Stable Dif-
fusion.

• Develop a pipeline for generating new consistent descriptive sentences using Large
Language Models.

• Combine the previously mentioned pipeline and develop a multimodal modal pipeline
for generating pairs of image-captions data points for image captioning.

• Create a new datasets using the aforementioned pipelines and test their performance
against real data.
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1.3 Structure

The structure of this thesis has been designed to build upon a knowledge base that allows
us to understand the working of all the components that make up this academic work. In
that same matter, and understanding there is no real state-of-the-art metric or evaluation we
can use to measure our efforts, it’s been included a review of related works so we can better
understand the context of this work and what it achieves.

• Chapter 2 presents a recap of the concepts and technologies used for the development
of this academic work, explaining inmore detail the task of Image Captioning, delving
into what are the core generative models used during this work, Stable Diffusion and
Large Language Models, and the usage of Data Augmentation techniques in Image
Captioning.

• Chapter 3 offers a review of relevant works related to our case of study, so we can
better understand the context of what we are doing and the goals presented in this
particular work.

• Chapter 4 will detail our case of study, going through the selected models, how the
synthetic data was generated and the function of our multimodal pipeline works.

• Chapter 5 present the experimentation done and the results obtained when working
with the with the synthetic datasets and the pipeline as a whole.

• Chapter 6 finalizes this thesis by synthesizing it and discussing whether we have
managed to address the proposed objectives. Likewise, we will also discuss future
work and what open lines of research this academic work leaves.





Chapter 2

Technological context

2.1 Image Captioning

As an everyday occurrence, individuals are exposed to vast amounts of images originating
from diverse sources, such as the internet, television, newspapers, publicity or promotional
materials, etc. While humans possess the innate ability to comprehend these visuals without
the help of detailed captions, translating this capability to machines has presented a difficult
task throughout the years.

First and foremost, image captioning is essential for advancing the development of arti-
ficial intelligence systems that can comprehensively understand visual content. Unlike tasks
such as image classification, where the goal is to assign a single label to an image, caption-
ing requires a deeper, more nuanced understanding of the scene, as it involves identifying
objects, actions, spatial relationships, and context [11]. This capability to generate coherent
and semantically rich descriptions from images a requires a higher level of understanding
of the language from the machines.

Now then, when talking about specific applications of this task, image captioning signif-
icantly enhances content retrieval and organization. In the context of image search engines
andmultimedia databases, textual descriptions generated by captioning systems enablemore
accurate indexing and retrieval of images [11,12]. Rather than relying solely on metadata or
manual tagging, which can be incomplete or inaccurate, automatically generated captions
provide a more detailed and contextually appropriate description of images, improving the
relevance and precision of search results. This has significant implications not only for
general web-based image searches but also for more specialized domains, such as medical
imaging, where accurate description and retrieval of visual data are essential for diagnostic
and research purposes.

Moreover, the task is critical for improving accessibility, particularly for individuals with
visual impairments. Automated image captioning technologies provide an invaluable tool
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for translating visual information into text, allowing people with disabilities to access and
engage with online content, from social media to educational materials [13].

2.1.1 Encoder-Decoder architecture for Image Captioning

As for any other vision task, understanding the contents of an image largely depends on the
quality of the features extracted and how informative they are. Themethodologies employed
for the extraction of these features can be classified into two main categories: traditional
machine learning techniques and deep machine learning techniques, with the latter being
the primary focus of this study.

As explained by Herdade et al. [14], the most conventional approach used for deep ma-
chine learning techniques is the encoder-decoder architecture, wherein an input image is
transformed into an intermediate representation that encapsulates the information present
in the image, which is then translated into a sequence of descriptive text. This encoding
process may involve a singular feature vector produced by a Convolutional Neural Network
(CNN) [11, 12], or it may incorporate multiple visual features extracted from various seg-
ments of the image, which are then fed to a Recurrent Neural Networks (RNNs) in order
to generate captions. In instances where multiple features are utilized, these segments can
either be sampled uniformly or determined using an object detection mechanism, the latter
of which has been evidenced to enhance overall performance [14]. In the Figure 2.1 we can
see a diagram showing in a simpler way the described architecture.

Figure 2.1. Diagram of a common encoder-decoder image captioning model.

This has been the common approach for many years, however, with the advent of Trans-
formers and encoder-decoder attention based models, the majority of the recent efforts on
the task leverages this new technologies, replacing common use of CNNs and Long Short-
Term Memory (LSTMs) as the models for the encoder and decoder modules [12].

2.2 Data Augmentation

As stated in previous sections, deep learning models and any field of artificial intelligence
in general, have been able to go through many breakthroughs in the last couple of years
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and the new advances seems to only keep coming faster. Shorten and Khoshgoftaar [15]
mention that the fast pacing of all these advances has been fueled by the combination of the
latest deep network architectures, more powerful computation, and access to big data.

Figure 2.2. Examples of different fitting states of a network.

Improving the generalization ability of these models is one of the most difficult chal-
lenges and the proper way to do it varies depending on the type of data and task at hand.
Generalizability in machine learning refers to a model’s ability to perform well on new,
unseen data that was not part of the training dataset. It is a key measure of a model’s effec-
tiveness, as the goal of most machine learning systems is not merely to perform well on the
training data, but to accurately predict or classify new instances that the model encounters
in real-world scenarios [15].

Generalizability hinges on the concept of the model capturing the underlying patterns
and structures in the data rather than memorizing the specific details or noise present in the
training set [16]. When a model generalizes well, it is able to infer from the learned data and
apply those insights to different, but related, data. Poor generalization typically indicates
overfitting, where a model has become too specialized to the training data, capturing noise
or irrelevant features that do not extend to new data points [17]. Underfitting, on the other
hand, occurs when a model is too simplistic and fails to capture the complexity of the data,
leading to poor performance on both training and unseen data.

When constructing a model, the desired tendency during training is that the validation
error must continue to decrease with the training error. The application of one or more data
augmenting techniques helps into achieving this decrease through the generation of new ex-
amples that hopefully can represent a more comprehensive set of possible data points, thus
minimizing the distance between the training and validation set, and as well as any future
testing sets [15]. Even though there exists other types of successful regularization tech-
niques, like dropout, batch normalization, transfer learning and some more, data augmenta-
tion approaches overfitting from the root of the problem, the training dataset [16]. However,
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it must be noted that this is done under the premise that the original dataset can yield addi-
tional insights through various augmentation techniques. Such augmentations serve to arti-
ficially increase the size of the training dataset, and this is normally achieved either through
methods of data warping or by employing oversampling strategies [15].

In the context of supervised learning, data augmentation is commonly applied in do-
mains such as image processing, natural language processing, and speech recognition. For
image-based tasks, augmentation techniques might include transformations like rotations,
flips, cropping, scaling, and color adjustments [17, 18]. In natural language processing,
augmentation can involve strategies such as synonym replacement, word swapping, or para-
phrasing. The idea is to create new samples that retain the essential features of the original
data while introducing variability to improve the model’s robustness [7].

2.3 Diffusion Models

Diffusion models in machine learning are a class of generative models that learn to generate
data by gradually denoising a random noise signal, effectively reversing a diffusion process.
These models are based on a process where data is progressively corrupted by noise over
a series of steps, and the model is trained to reverse this process, recovering the original
data from the noisy input. This approach is grounded in stochastic differential equations and
draws inspiration from thermodynamics, where a system evolves from order to disorder [19].
In diffusion models, the reverse process allows the system to move from disorder (noise) to
a structured output (data), such as images or text.

In practice, the training of diffusion models involves learning the parameters of a neural
network that can predict how to reverse each step of the noise corruption process. During
inference, the model starts with a sample of pure noise and iteratively denoises it to generate
new samples that resemble the distribution of the training data [20, 21]. This iterative re-
finement process allows diffusion models to produce high-quality, realistic samples across
various domains, such as image synthesis and speech generation [19].

2.3.1 Stable Diffusion

Stable Diffusion is a deep learning model designed for generating high-quality images by
applying diffusion processes, specifically focusing on generating images from textual de-
scriptions. It belongs to a class of diffusion models that incrementally denoise a random
noise distribution to produce structured outputs, following a reverse process of a learned
diffusion model. In contrast to other types of Diffusion models, Stable Diffusion employs
a latent diffusion process, which means that the denoising is performed in a latent space (a
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compressed representation of data) rather than directly on pixel-level data [18, 19, 21], as
shown in the Figure 2.3. This reduces computational costs and increases the efficiency of
the model while still producing highly detailed images.

Figure 2.3. Overview of Latent Stable Diffusion by Rombach et al.

The model operates by being conditioned on text, often using a pre-trained language
model like CLIP [22] (Contrastive Language-Image Pretraining) to interpret textual descrip-
tions. By coupling text and image representations in this manner, Stable Diffusion can gen-
erate images that align with the semantic content of the input text [18]. It is designed to
produce images iteratively, starting with a random noise input and gradually refining the
image across several steps based on learned denoising processes, resulting in a coherent
visual representation of the provided textual input [19, 21].

Stable Diffusion has become a prominent model in the domain of generative AI due
to its ability to produce diverse, high-quality outputs with relatively lower computational
demands compared to other models [18]. It has broad applications in art generation, content
creation, and other domains where synthesizing realistic or creative images from textual
prompts is required. The model’s architecture and training methodology also emphasize
scalability and versatility, making it adaptable to various use cases in computer vision and
natural language processing.

There are, in general, three main components in latent diffusion as shown in Figure 2.4:

• A Variational Auto-encoder (VAE) [23].

• A UNet.

• A text encoder.
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The function of the VAE is twofold: encoding complex visual data into a compact, con-
tinuous latent representation and then decoding the latent representations back into the orig-
inal image space [19, 24]. This allows the Stable Diffusion model to operate efficiently in
the latent space, significantly reducing the computational burden that would be required if
diffusion were applied directly to pixel-level data.

Figure 2.4. Diagram with a more simple look on Stable Diffusion.

The VAE in Stable Diffusion consists of two primary components: the encoder and the
decoder. The encoder maps the high-dimensional input image into a lower-dimensional
latent code, capturing essential features while discarding redundant information [25]. This
latent space is where the diffusion process, which involves iteratively denoising random
noise, takes place. Once the diffusion process is complete, the decoder reconstructs the
latent representation back into the image space, producing a high-quality image from the
refined latent representation [24, 25].

By incorporating the VAE, the Stable Diffusion model gains the ability to work in a more
computationally tractable space, which allows for faster and more resource-efficient image
generation without sacrificing quality [20, 25].

The U-Net [26] architecture serves as the core neural network responsible for learning
the denoising process during the diffusion phase. Specifically, U-Net is used to progres-
sively remove noise from a latent representation of the image, transforming noisy inputs into
clean, coherent outputs. This process is essential in the reverse diffusion process, where the
model begins with random noise and iteratively refines it to generate an image that corre-
sponds to the input text prompt [25].

The U-Net architecture is well-suited for this task due to its ability to capture both local
and global features through its symmetric structure, consisting of an encoder (downsam-
pling) and a decoder (upsampling) [25]. The encoder progressively reduces the resolution of
the input, extracting high-level, abstract features, while the decoder reconstructs the input by
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gradually increasing its resolution, this behavior. Skip connections between corresponding
layers in the encoder and decoder allow for the preservation of fine-grained details, facili-
tating a more accurate reconstruction during the denoising process [26]. These connections
are crucial for ensuring that both low-level details and high-level contextual information are
retained throughout the generation process.

Lastly, the text encoder transforms the input prompt into an embedding space, which
then acts as input for the U-Net. This embedding offers crucial guidance for the noisy latents
during U-Net’s denoising training. Generally the text encoder is a simple transformer-based
model that converts a sequence of input tokens into a corresponding sequence of latent text
embeddings. Importantly, Mishra [25] comments, Stable Diffusion does not create a new
text encoder; instead, it employs an existing pre-trained text encoder, specifically CLIP, as
introduced in the original research.

2.4 Large Language Models

LLMs are advanced artificial intelligence systems designed to process and generate human
language. These models are built using deep learning techniques, particularly the Trans-
former architecture, and are trained on vast amounts of text data from diverse sources, that
includes text from books, websites, articles, and other sources. LLMs are capable of per-
forming a variety of natural language processing tasks, including translation, summariza-
tion, and text generation, by learning patterns in language structure and semantics from the
training data [27–29]. Their large-scale architecture allows them to capture complex linguis-
tic nuances, making them highly effective for a wide range of language-based applications
via text generation [28, 29].

Tomake a quick distinction, current LLMs utilize comparable Transformer architectures
and pre-training goals, such as language modeling —that are also employed by smaller lan-
guage models. Nevertheless, LLMs markedly increase the dimensions of the model, the
volume of data, and the overall computational resources, often by several orders of magni-
tude, leading to a substantial enchantment of the models capabilities, like many researchers
have concluded [27].

2.4.1 GPT-3 model

GPT-3 [30], or Generative Pre-trained Transformer 3, is a state-of-the-art language model
developed by OpenAI. It is based on the Transformer architecture and represents a signif-
icant advancement in natural language processing due to its unprecedented scale and per-
formance. GPT-3 is pre-trained on massive datasets containing diverse text from a wide
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range of sources, enabling it to learn complex language patterns, semantics, and contextual
understanding [31, 32].

With 175 billion parameters, GPT-3 is capable of generating highly coherent and contex-
tually relevant text across various tasks. It can perform language-related tasks such as trans-
lation, summarization, text completion, and question answering without task-specific fine-
tuning, relying on its general understanding of language learned during pre-training [30,31].
One of the distinguishing features of GPT-3 is its ability to produce human-like text in re-
sponse to prompts, making it highly versatile for applications like content generation, dia-
logue systems, and automated writing.

Despite its impressive capabilities, GPT-3 has limitations, such as occasional factual
inaccuracies and an inability to understand beyond the patterns it has learned during training.
Nevertheless, it marks a significant step forward in the development of large-scale language
models and serves as a foundation for ongoing research in natural language processing,
artificial intelligence, and multimodal understanding [32, 33].

2.4.2 LLaMA model

The LLaMA (Large Language Model Meta AI) language model, developed by Meta (for-
merly Facebook), is a state-of-the-art generative language model designed to advance the
field of NLP. LLaMA builds upon the Transformer architecture, similar to models like GPT,
but distinguishes itself through its focus on efficiency and performance in low-resource set-
tings [33, 34].

LLaMA is designed with the goal of achieving strong performance in natural language
tasks while utilizing fewer parameters thanmany contemporary large-scale models. This ap-
proach allows it to maintain competitive accuracy and versatility across various NLP tasks,
such as text generation, summarization, question answering, and translation, while being
more computationally efficient. The model is pre-trained on a diverse dataset consisting of
text from books, articles, and websites, allowing it to learn linguistic patterns and context
for a broad range of applications [34].

The model’s smaller size, relative to other large language models like GPT-3, makes
it more accessible for researchers and developers who may not have access to extensive
computational resources [33]. Despite its reduced parameter count, LLaMA achieves high
performance on benchmarks and demonstrates that smaller models can still deliver strong
results, provided that they are trained effectively and optimized for specific tasks [35].



Chapter 3

Related work

This section synthesizes prior works directly relevant to our topic, highlighting methodolo-
gies, findings, and theoretical frameworks that have shaped the field. By critically analyzing
existing literature, we identify gaps and limitations that our research aims to address, posi-
tioning our work within the broader academic conversation. This review not only validates
the significance of our study but also demonstrates how it extends or challenges established
knowledge

3.1 Data issues and limitations in Image Captioning

In recent years, there has been significant progress in image captioning models, primarily
driven by advancements in deep learning techniques. A widely adopted and effective frame-
work is the Encoder-Decoder architecture, which employs CNNs to extract features from
images and utilizes RNNs to translate these features into coherent natural language descrip-
tions [11]. The integration of attention mechanisms [36] and Transformers [37] has further
enhanced the performance of these models. Nevertheless, the training of image caption-
ing systems through fully supervised methods necessitates extensive datasets comprising
paired images and captions, leading to suboptimal performance of state-of-the-art models
when data is scarce [1]. To mitigate this issue, researchers have proposed unpaired image
captioning (UIC) strategies alongside data augmentation methods.

UIC aims to generate captions using models trained on unpaired images and captions,
which can be obtained independently from various online sources, thereby alleviating the
financial burden associated with collecting paired datasets. This innovative approach has
garnered significant interest within the academic community. For example, Gu et al. [38]
implemented language pivoting by incorporating additional caption data in Chinese, while
Feng et al. [39] created a UIC framework that leverages a visual concept detector. Other
notable contributions, such as those by Laina et al. [40], have focused on utilizing extensive
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text corpora to develop shared multi-modal embeddings for images and textual descrip-
tions. Recent advancements, including the work of Zhu et al. [41], have sought to enhance
UIC by tackling visual concept recognition using only image-level labels. Furthermore,
semi-supervised learning techniques have been employed to augment these methodologies,
with Chen et al. [42] generating absent visual information from textual inputs and Kim et
al [43]. utilizing Generative Adversarial Networks (GANs) to assign pseudo-labels to un-
labeled images. A majority of UIC research relies on external datasets beyond traditional
image captioning and frequently necessitates additional information or annotations, which
can incur substantial costs.

In the realm of data augmentation for image captioning, the main goal is to create sup-
plementary training data that exhibits increased diversity. Although augmentation strategies
have been widely utilized for images and text independently across various machine learn-
ing applications, their application in vision-language tasks, such as image captioning, is
relatively rare [44]. Most investigations into data augmentation within this domain tend to
concentrate on either the visual component or the textual description, rather than concur-
rently adjusting both elements. For example, researchers like Katiyar and Borgohain [5],
along with Wang et al. [6], have utilized conventional image manipulation techniques, in-
cluding cropping, flipping, and mirroring. Nonetheless, these transformations can inadver-
tently introduce noise by altering the inherent meaning of the images. On the textual front,
Atliha and Šešok [44] implemented methods such as synonym replacement and paraphras-
ing using BERT, while other studies have examined techniques like word permutation, back
translation, and various natural language processing (NLP) augmentation strategies.

Nevertheless, the field of multi-modal augmentation, which involves the simultaneous
modification of both images and their corresponding captions, remains largely underex-
plored [1], and even less trying to fabricate a dataset without parting from some type of real
refenrence. Feng et al. [39] introduced an innovative approach that integrates CutMix [45]
with caption editing, wherein segments from a different image are incorporated, and the
caption is revised to accurately reflect the modified image. Despite the proposal of this
method, it has yet to be practically applied, and no empirical results have been presented
to validate its effectiveness. In that sense, this work hopes to introduce a valuable pipeline
that not only can simultaneously augment both types of data, but create new datasets from
scratch, without having any reference from real world examples.

3.2 Image and caption synthesis

Text-to-image synthesis represents a sophisticated multimodal challenge that entails the cre-
ation of high-quality images derived from descriptive textual prompts. Traditionally, this
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domain has been primarily influenced by generative models, notably Generative Adver-
sarial Networks (GANs) [46] and Variational Autoencoders (VAEs). Nevertheless, these
models exhibit specific drawbacks: GANs are often challenging to optimize and are limited
to datasets with restricted variability, while VAEs, despite their ability to generate high-
resolution images, frequently do not meet expectations regarding sample quality [1]. Re-
cently, a novel category of deep generative models, referred to as diffusion models, has
emerged, showcasing enhanced performance and outpacing GANs in the realm of text-
to-image generation. Although cutting-edge models such as DALLE-2 [47] and Imagen
[48] can produce exceptionally high-quality images, their inference processes tend to be
resource-intensive and protracted. In this research, we utilize an advanced Latent Diffusion
Model, specifically Stable Diffusion, for the purpose of text-to-image synthesis [1, 10, 28,
49]. Stable Diffusion is capable of generating high-resolution images that are on par with
those produced by leading models, while simultaneously demanding considerably fewer
computational resources and time [2].

Conversely, the application of generative models in image captioning tasks has been
relatively rare. For instance, Kim et al. [43] employed CycleGAN as a foundational model
for unpaired image captioning, although its effectiveness was limited. More recently, Li et
al [50]. illustrated that the optimal caption for an image is the one that facilitates the most
precise reconstruction of the original image, utilizing Stable Diffusion for text-to-image
generation alongside Flamingo [51] for the reverse process. However, despite the notable
achievements of diffusion models in text-to-image generation, their potential for enhancing
the quality of generated image captions remains largely unexplored.





Chapter 4

Case of Study

This section will present the pipeline constructed for creating the synthetic data developed
in this academic work and the set up created for its testing, in that sense, we will go through
the generation of the images and captions from real data, the assemble of the pipeline for
generating fully synthetic data and the models throughout all the experiments.

4.1 Dataset selection

We use the Dataset Flickr30K [52] as the base of our experiments and the construction of
the synthetic datasets. This a common dataset used for different vision task and consist of
31,783 annotated images, sourced from the Flickr platform, with five different descriptive
sentences each, so having 158,915 captions.

The captions, written by human annotators, provide rich and varied descriptions of the
visual content. This makes the dataset valuable not only for generating captions but also for
understanding the relationship between visual features and natural language descriptions
[52, 53]. The diversity of captions reflects the different ways in which people can describe
the same image, helping to train models that are robust to linguistic variations.

Flickr30k has been a key dataset for training and evaluating machine learning models
aimed at generating coherent and contextually accurate captions for images [53]. It is used
extensively in image captioning tasks where the goal is to generate human-like descriptions,
as well as in broader vision-language research such as visual question answering (VQA) and
visual grounding.

The decision to use Flickr30k instead of COCO, which is probably the most used dataset
for benchmarking and comparison for image caption stems from the fact that we are going
to recreate a scenario where we have a limited amount of data, so having more than a 100
thousands images for our experiments wans’t necessary and working with a smaller dataset
facilitated working with it. On the other hand, COCO pairs of image-captions have an
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irregular amount of descriptive sentences per image, contrary to Flickr in which all pairs
have 5 captions, in these was a desirable property for the experiments we wanted to conduct.

4.2 Generating synthetic images

So, first of all, when working Flickr, we used the Karpathy [54] split set as it is the most
common way of working with these datasets, so that is how we defined our train, test and
validation partitions. On the other hand, we reduced our training dataset to 12 thousand
examples, and this was mainly for two reasons, first is what was already mentioned, we
want to work parting from the fact we have a limited amount of data, and secondly, to ease
the amount of computation need for the execution of all the experiments.

Figure 4.1. Examples of images generated with different diffusion models, the upper left
one being the real image, the upper right generated with Stable Diffusion XL-Base-1.0, the
lower left with Stable Diffusion 3, and the lower right with Stable Diffusion 2.1.

First of all, we have Flickr, which consist of all the pairs of image-captions as they come
from the dataset and will be used for comparison. For generating our new pairs of data
we used 3 different models of Stable Diffusion, all of them available through Hugginface
or the Stability Ai website, these were Stable Diffusion 2.1, Stable Diffusion 3 and Stable
Diffusion XL-Base-1.0 [20]. As mentioned before, we apply our different Stable Diffusion
models using the captions found on Flickr for generating our synthetic images, with this, we
form our first synthetic datasets called SFlickr image , were we have pairs of real captions
and generated images. For the generation of the image we gave the longest description,
going with the intuition that these were the more detailed ones regarding the description of
the image. The predefined settings were used for all models except for Stable Diffusion 2.1,
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were we increased the number of denoising steps for better quality images, but only a small
amount was added taking into consideration the increase on computation time.

Regarding the prompting, for each of the models a very simple prompt was used, asking
to generate an image in accordance to the caption, the only relevant detail here was the
specification of making the generated images realistic.

On another note, we relied on the paid API of Stability Ai for the generation of the
images, the other two models were used on machines at our disposal. As a side note, asking
the images to be realistic or not was one of the possible options at our disposition using
the Stability Ai API, but nonetheless, we kept the specification of realism on the prompt,
assuring results like in Figure 4.1.

4.3 Generating synthetic captions

As suggested by prior research on Image Captioning, the diversity of the descriptive sen-
tences for the images plays a relevant role on increasing the performance of the models [1].
Thus, simulating a lack of annotations for the images, we randomly discarded 4 out of the
five captions we had for each pair and rephrased the remaining one, again, opting for using
the longest description out of the five. With these, we have obtained our second and third
dataset denoted as SFlickr caps and SFlickr pairs. This was done using GPT-3.5-turbo [30]
and Llama 3.1-8B-Instruct [35] for paraphrasing the captions like it has been done in related
works [2, 44, 49]. This lead to create a new dataset Flickr limitcaps where the number of
captions was randomly reduced up to only 2 captions per image.

This was the part if the experiment that required the most tweaking with the prompts,
but we will delve more into this issue in the next chapter. An parameters, we kept the
temperature of the model low, at around 0.5, this was enough for the models to have the
”creativity” to paraphrase the captions with sufficient variations. As for the final prompt.
we had the most succes using the following one:

“Your job is to paraphrase a sentence, keep the main adjectives and verbs unchanged,
the main subjects of the phrase should be consistent. For example: ”Two kids playing in a
park” could be paraphrased to ”A couple of kids playing outdoors at the playground”.“

This prompt was sufficient to generate good and different enough captions for most
cases.

4.4 Generating synthetic image-captions pairs

Next, we discarded the idea that we had the rest of the examples as only captions and created
totally synthetic pairs of image and captions. For this, we used GPT-3.5-turbo to randomly
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generate descriptions of common day scenarios (Figure 4.2), then use those with Stable Dif-
fusion XL-Base-1.0 to generate the images, and rely again on GPT-3.5-turbo to paraphrase
the captions, creating the SFlickr fully dataset. However, thanks to the limitations on the us-
age of the language model and the increasing difficulty of keep the descriptions diversified
enough, we could only successfully generate 7000 fully synthetic pairs.

Like this, combining all the other modules developed previously, we have a pipeline for
creating pairs of image-captions from scratch, without relying in any human annotation or
previously existing data.

Figure 4.2. Extract of random descriptions generated using GPT-3.5-turbo.

Doing a recap of all the synthetic datasets created, we have the following list:

• SFlickr image consist of 12 thousand pairs of image and 5 captions where the images
where generated using three different Stable Diffusion models that we are denoting
with a SD2.1, SD3 and SDXL. For the models running on our machines, we encoun-
tered that sometimes, especially for the Stable Diffusion 2.1 model, we had some oc-
currences of images being only a black background, so we had to discard and repeat
the process when we had average pixel values of 0 for the generated images.

• SFlickr caps consist of 12 thousand pairs of image and 1+n captions, where those n
captions are the ones generated through paraphrasing, noting that some of the captions
n captions are discard for being the same using a simple character based approach, as
we don’t wanted to compare them in a semantic way. Knowing that n is less or equal to
4, each image would always have one of the original captions and up to four synthetic
ones, meaning that all the pairs had less or exactly 5 captions.

• SFlickr pairs is a combination of the previous two datasets, where the pairs consiste
of synthetically made images and paraphrased captions deriving from a subset of the
original captions in Flickr.
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• SFlickr fully consisted of 7 thousand pairs of image and n captions. The base captions
were discarded the same way as in the previous dataset, and the process of generating
the images and additional captions per example was done the same way as described
for the other first two datasets.

4.5 Image captioning model

The model used for testing our new synthetic datasets is based on the work of Xu et al. [36].
The resulting model keeps the same architecture as described in their work, however, see-
ing the recent increase on the usage of Vision Transformers as the backbone for the image
encoder mentioned by Croitoru et al. [55], the model used a Swim Transformer [56], specif-
ically one of the checkpoints available through the models API of PyTorch.

For themost part, we used a standard architecture for Image Captioning having the Swim
model as the image encoder, a simple attentionmechanism described on the referenced paper
and a Long Short-Term Memory (LSTM) module to generate captions, just as described in
the Section 2.1. The selection of a simpler model and not trying to recreate the latest state-
of-art at image captioning stems from the fact the we are only trying to address the issues
related to data used for training these types of models, so the knowledge produced during
this experiments should translate to more complex models and, in such case, benefit at some
degree too.

4.6 Metrics selection

For the evaluation of Image Captioning models there exists multiple metrics for the mea-
suring of performance, in general, we can use metrics found in some NLP tasks such as
machine translation thanks to the fact that, at bottom line, we are evaluating how pertinent
a generated text compares to a set of annotations. On the execution of this academic work,
the trained models were evaluated using the following two metrics.

4.6.1 BLEU

BLEU [57] (Bilingual Evaluation Understudy) is a metric commonly used in the domain of
machine learning to evaluate the quality of text generated by models, particularly in tasks
such as machine translation. It measures the similarity between a machine-generated output
and one or more human reference texts by comparing n-grams (contiguous sequences of n
words) within the two. The core idea behind BLEU is to quantify how much overlap exists
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between the n-grams of the generated text and the reference text, thus assessing the accuracy
and fluency of the model’s output [16].

BLEU computes scores for various n-gram sizes, such as unigrams, bigrams, trigrams,
and so on, and assigns a precision-based score to the output. However, instead of focusing
purely on exact word matches, BLEU also incorporates a brevity penalty to penalize outputs
that are too short, thereby encouraging models to generate outputs that are not only precise
but also complete [16, 57, 58]. The final BLEU score is a weighted geometric mean of
the n-gram precision values, providing a single score that reflects the overall quality of the
generated text in terms of both its correctness and completeness.

While BLEU is widely adopted for its simplicity and ability to provide a quantitative
measure of text generation quality, it has limitations. One significant issue is that it tends
to reward exact word matches, which can lead to penalizing valid paraphrases or linguistic
variations [16,58]. As a result, BLEU is often complemented by other metrics that account
for semantic similarity, as it primarily focuses on surface-level lexical overlap rather than
capturing the full meaning or context of the generated text. Despite this, BLEU remains a
foundational metric in machine learning, especially in the evaluation of machine translation
and other language generation tasks [58].

4.6.2 CIDEr

CIDEr [59] (Consensus-based Image Description Evaluation) is a metric designed for eval-
uating the quality of captions generated by machine learning models, particularly in image
captioning tasks. Unlike simpler metrics that focus purely on word overlap, CIDEr places
emphasis on capturing both syntactic and semantic similarity between the generated cap-
tions and a set of human-provided reference captions [16]. By doing so, it aims to more
closely reflect human judgments of caption quality.

As Vedantam et al. [59] exposes in their work, the metric operates by comparing the
n-grams (sequences of n words) in the generated caption to those in the reference captions,
weighting these comparisons using a variant of term frequency-inverse document frequency
(TF-IDF). This weighting helps ensure that more important and informative words con-
tribute more to the final score, while common or less significant words are down-weighted.
Additionally, CIDEr takes into account the diversity of human annotations by rewarding
captions that reflect consensus among multiple human references, which helps address the
natural variability in how different people describe the same image.

In academic research, CIDEr is recognized for its ability to better capture the nuances
of natural language compared to earlier metrics like BLEU or ROUGE. By focusing on
meaningful n-grams and considering consensus across human captions, CIDEr provides a
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more nuanced assessment of caption quality, balancing linguistic precision with flexibility
in expression [16]. This makes it a preferred evaluation metric in tasks where capturing the
richness and variability of human language is essential, particularly in image captioning and
other multimodal generation tasks.





Chapter 5

Experiments and Results

As stated before, we generated our datasets using a combination of Stable Diffusion models
and LLMs. For the generation of the images only for Stable Diffusion 2.1 the number of
denoising steps was slightly increased from 50 to 65, all the parameters are frozen for the
during the generation process and we initially discarded some of the images that resulted
in a black background only. For the textual data, we used LLMs to paraphrase some of the
original captions founded on Flickr30K, doing a similar approach to the ones commented
by Koshla and Saini [49].

For the implementation of the model, as discussed before, we used the work of Xu et
al. [36] for the implementation and used the Karpathy split during the evaluation. For the
training in question, the weights of the Swim model were frozen, and an early stopping
policy based on the BLEU was used, always training the model up to a max of 30 epochs.
After those first steps of training, themodels were trained for a couplemore steps, unfreezing
some of the last layers of the image encoder. All the metrics reported where obtained from
the test set coming from original from Flickr30K.

5.1 Synthetic Data vs real available data

For the first experiment, we trained our models as described before so we can compare
how does the model perform when completing their data with synthetic ones. Here we are
assuming that we have always the same 12 thousand examples and for each model varies the
origin of the images and the number of captions and their origin. The experiments results
are shown on Table 4.1.

We can see that the results obtained from the training of the model is consistent through
the different datasets (Table 5.1). First thing to notice is that dramatically reducing the
number of captions per pair represents a considerable drop on the performance of the model.
On the other hand, we can see that the synthetic images produced with Stable Diffusion 3 and
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Training Data BLEU CIDEr
Flickr 24.6 46.7
Flickr limitcaps 16.7 24.8
SFlickr caps GPT3 25.3 47.5
SFlickr caps Llama 24.4 45.8
SFlickr image SD2.1 19.3 36.8
SFlickr image SDXL 22.4 43.1
SFlickr image SD3 24.3 45.8
SFlickr pairs SD2.1 GPT3 20.1 38.1
SFlickr pairs SDXL GPT3 22.7 42.7
SFlickr pairs SD3 GPT3 25.1 47.2
SFlickr pairs SD2.1 Llama 19.1 35.5
SFlickr pairs SDXL Llama 21.8 41.8
SFlickr pairs SD3 Llama 24.1 45.1

Table 5.1. Results of only real data against synthetically augmented sets. Flickr: Orig-
inal dataset | Flickr limitcaps: Original dataset with most of their captions discarded
per sample | SFlickr: Dataset augmented with synthetic data | caps: Contains syn-
thetic captions | image: Contains synthetic images | pairs: Contains both synthetic
images and captions | SD: Stable Diffusion.

XL-Base achieved nearly the same results as if training with only the original data. When
exploring the images produced with Stable Diffusion 2.1 we can notice a real degradation
on the quality of the images when there are faces or more complicated objects present, this is
probably due to the fact that human or animal faces require a lot more details to be adequately
represented, which the model is no able to produce in the amount of inference steps used
during the generation.

Finally, and what is more interesting, removing some of the original captions and para-
phrasing them with the GPTmodel achieves a higher score on BLEU and CIDEr (regardless
of the images used) than when training with all the five original captions. This could relate
to the observation made by Suprabhanu et al. [4] and Atliha and Šešok [44], where the di-
versity of the captions plays an important role on the performance of the models and, in
contrast, there are many examples of simplistic or vague annotations in relation of what it’s
seem on the image. However, being the increase only of a few tenths, is difficult to conclude
how big of an impact this could actually be.
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5.2 Usage of fully synthetic data

For the second half of the experiments, we are now working with the fully synthetic pairs
of images-captions. In this case, we will be training with our original pairs, but adding a
certain amount of fully synthetic data, demoted as Flickr + XK SFlickr fully.

Training Data BLEU CIDEr
Flickr 24.6 46.7
Flickr + 1K SFlickr fully 24.8 47.2
Flickr + 3K SFlickr fully 25.4 48.4
Flickr + 5K SFlickr fully 25.9 49.7
Flickr + 7K SFlickr fully 27.1 55.2

Table 5.2. Performance when using different amounts of synthetic data, including
model trained on only synthetic data. Flickr: Original dataset | SFlickr fully: Dataset
created synthetically from scratch | NK: Number of data points taken as a sample.

As shown in Table 5.2, the addition of fully synthetic data does show a noticeable in-
crease in the performance of the model. These results were expected, adding more good
quality examples helps the models to generalize better and this aligns with what is shown in
the bibliography. That’s why it became of more interest to test this fully synthetic dataset
in other ways, specifically, we are comparing how the models perform using only synthetic
data and when only using real one.

To achieve this, a random split of the original was made data, and it was discarded 5
thousand pairs, doing this we end up with two datasets of 7 thousands of image-captions
pairs. Of course, the original pairs remained with 5 captions per image and the synthetic
one had between 3 to 5 captions.

Aswe can see in Table 5.3, our crafted synthetic achieves basically the same performance
as the original one, so our methods of generating the captions and images seems capable of
already imitating the same quality as real, human annotated examples. This results follows
the results of Akrout et al. [10], where they were able to construct a dataset for skin diseases
detection which obtain almost the same results as working with the real data. This hint us
that modern generative models, at some point, will reach a point in which they will solve
many of the current data issues that we find not only in image captioning but across many
other tasks on the field of computer vision, an even beyond that.
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Training Data BLEU CIDEr
Flickr reduced 16.3 23.7
SFlickr fully 16.1 23.3

Table 5.3. Performance of the fully synthetic dataset against one with real, human
annotated pairs. Flickr reduced: Original dataset reduced to 7k data points | SFlickr
fully: Dataset of 7K pairs of data points created synthetically from scratch.

5.3 Qualitative analysis of the pipeline

As mentioned before, some prompting engineering and reviewing of the generated content
was necessary for seeking good quality of the images and captions. For the image generation
the issues where more concrete, the main example being that there is a clear problem when
generating faces the amount of distortion was problematic, as shown in Figure 5.1. Even
though this happened with all models, this was especially noticeable for the model of Stable
Diffusion 2.1.

Figure 5.1. An example of distortion on faces generated with Stabel Diffusion.

In the Figure 5.2, we see that sometimes the images can be generated with a cartoonish or
not realistic style when not specified on the prompt, this was a common issue found specially
for Stable Diffusion XL-Base-1.0. However, in contrast to the one mentioned before, this
issue was solved rather easily and consistently by specifying on the prompt the style we
wanted to use during the generation.
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Figure 5.2. At the left we have the original image, at the upper right there is the image
without asking for realism, the lower right one is the result when specifying a realistic style.

As mentioned in the previous chapter, going for too simple prompts when doing the
paraphrasing of the captions for the augmented data resulted in to vague description in com-
parison to the original one, as shown in Figure 5.3, when asking themodels to just paraphrase
the caption, for the case of a black and white dog, we ended up having the dog described as
a ”spotted dog”, which may be true as a matter of fact, but a dog can have spots of many
different colors, so this types of losses in the original description creates inadequate captions
for some of the images.

Figure 5.3. A comparison of the results of different prompts when generation new captions.

All of these issues mentioned during the generation process of the data is probably the
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biggest bottleneck, because they were manually spotted when reviewing the examples gen-
erated during the experiments, so this is an important limitation on the consideration for the
usage of this pipeline on datasets of bigger dimensions.



Chapter 6

Conclusions

With the completion of this academic work, we have created a successful prototype of a
pipeline for multi-modal data augmentation for the specific use of the image captioning
task, allowing to a research to expand and introduce more variability to an already existing
and limited dataset. On the other hand, we have explored the possibility of creating fully
synthetic datasets. This has shown us to that, for a small amount of data points, synthetic data
can achieve results comparable to using real one. Of course, more extensive experiments
should be conducted to better understand the effect of these techniques when working on
more extensive sets of data, or if the generative models have the capability of producing
variable enough examples when trying to achieve amounts of data like COCO, who ranges
in the hundred of thousands pairs of image and captions.

Another important aspect that limits the usage of a pipeline is the inability to measure
in a quantitative way the pertinence of the augmented data is relation to the original infor-
mation they come from and, in the case of the captions, how well they relate to the other
synthetic data generated for the same data point. Having said this, the effectiveness of syn-
thetic images are constrained by the capabilities of the text-to-image models utilized. For
instance, if we where to try and build a dataset for tasks such as human face recognition,
it is improbable to attain satisfactory results, as models like Stable Diffusion demonstrate
limitations in accurately rendering human faces.

The other issue that arises is in regards to limitations on processing power and the cost
of the generative models, especially Stable diffusion, as creating just one of these datasets
takes days or even weeks when only working with one machine with standard hardware
specs.

Having said this, we find that it could be opportune to work on the next proposals after
concluding this work:

• Explore the possibility of creating a robust way of assessing the quality of the gener-
ated data. A generalized multimodal data quality assessment is an open line of work
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that should contribute greatly in the future.

• Study the effects of working generating bigger and more diverse datasets, so it can be
properly measured the current applications of these techniques for a system tackling
a real case.
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