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Abstract

It is well known that the Steffensen-type methods approximate the derivative appearing in Newton’s
scheme by means of the first-order divided difference operator. The generalized multistep Steffensen it-
erative method consists of composing the method with itself m times. Specifically, the divided difference
is held constant for every m steps before it is updated. In this work, we introduce a modification to this
method, in order to accelerate the convergence order. In the proposed, scheme we compute the divided dif-
ferences in first and second step and use the divided difference from the second step in the following m−1
steps. We perform an exhaustive study of the computational efficiency of this scheme and also introduce
memory to this method to speed up convergence without performing new functional evaluations. Finally,
some numerical examples are studied to verify the usefulness of these algorithms.
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Iterative processes, convergence order, computational efficiency index, divided differences,
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1. Introduction

Within the field of numerical analysis, the solution of nonlinear equations and systems of equations
is one of the most relevant and most studied aspects. This is because other large blocks of this field,
like ordinary differential equations, partial derivative equations or nonlinear integral equations, can be
reduced in some part of the process to finding the solution of a nonlinear system of the form F (x) = 0.
Generally, it is very difficult to find the exact solution of this type of problem, so iterative methods to
approximate their solution have been an important field of research in recent years.

Newton’s method is the best known iterative methods to approximate the solution of F (x) = 0, [18].
This method is a simple, efficient and optimal method. However, it can be applied only to differentiable
operators due to the presence of derivatives in its iterative scheme.

When derivatives are difficult to obtain, either due to the computational cost of F ′(x) or due
to the operator being non-differentiable, derivative-free methods are considered, among which
Steffensen’s method is the first option ([1, 5, 8, 13]). In the multidimensional case, this method
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approximates the derivative present in Newton’s scheme by means of the first-order divided difference
operator [x;x+ F (x);F ].

Definition 1.1. We denote by L (X,Y ) the space of bounded linear operator of X to Y . An operator
[x, y;F ] ∈ L (X,Y ) is called first order divided difference for the function F : Ω ⊂ X → Y at points
x and y (x ̸= y) if

[x, y;F ](x− y) = F (x)− F (y).

Amat et al. in [4] improved the applicability of Steffensen’s method, ensuring its second order of
convergence, presenting the following generalization of Steffensen’s method:

x0 ∈ Ω

uk = xk − aF (xk), a ∈ R+,

vk = xk + bF (xk), b ∈ R+, k ∈ N,
xk+1 = xk − [vk, uk;F ]−1F (xk), k ≥ 0.

(1)

where a and b are arbitrary constants such that a ̸= 0 or b ̸= 0 and a ̸= b. In [4] it is shown that this
generalization preserves the efficiency and the quadratic order of convergence presented by Steffensen’s
method. However, increasing the convergence speed of this scheme involves performing more functional
evaluations of the nonlinear operator and more calculations.

As a consequence, many articles focus on the construction of derivative-free multistep iterative schemes,
which manage to increase the order of convergence of methods such as Steffensen or (1), without greatly
increasing the number of operations performed in each step.

[3] and [15] a multistep iterative process based on the composition of method(1) with itself m times are
studied, so that in each of the m steps the divided difference already evaluated in the first one is used.
We center in the iterative method defined in [15] that has the following algorithm:

S1m :



x0 ∈ Ω,

x
(1)
k = x

(0)
k − [vk, uk;F ]−1F (x

(0)
k ),

...
x
(m−1)
k = x

(m−2)
k − [vk, uk;F ]−1F (x

(m−2)
k ),

x
(m)
k+1 = x

(m−1)
k − [vk, uk;F ]−1F (x

(m−1)
k ), k ⩾ 0,

(2)

where uk = xk − aF (xk), vk = xk + bF (xk), xk = x
(0)
k , a and b are arbitrary constants such that

a ̸= 0 or b ̸= 0, a ̸= b and xk+1 = x
(m)
k , with m ≥ 1. It is well known that this iterative method reaches

convergence order m+ 1.

In order to accelerate the convergence order of this method and, in turn, improve its efficiency, in this
article we build a new derivative-free multistep iterative scheme and study its speed of convergence;
this is done in Section 2. To compare these methods with other multistep schemes, we will not only pay
attention to the order of convergence but also study its efficiency by measuring it under different criteria;
thus, in Section 3 we deal with the computational efficiency of different methods. Next, in Section 4
we use some processes seen in [15] to introduce memory to this method, so that its convergence speed
is improved without performing new functional evaluations. In Section 5 some numerical examples
are studied to verify the usefulness of these algorithms. Finally, Section 6 is devoted to draw some
conclusions and final remarks.

2



2. Generalized multistep Steffensen’s methods by freezing the second divided difference

In this Section we present a new multistep method based on the Steffensen’s method, which manages
to achieve a higher order of convergence than the generalized Steffensen method given in (1). The idea
of this process starts from composing the Steffensen’s method m times but, in this case, using two
divided differences in each iteration. The algorithm consists in performing two steps of the generalized
Steffensen’s method updating the divided difference operator in both of them and from the third step
on, we will “freeze” the divided difference operator used in the second step to calculate the rest of the
steps:

S2m :



x0 ∈ Ω,

x
(1)
k = x

(0)
k − [rk, sk;F ]−1F (x

(0)
k ),

x
(2)
k = x

(1)
k − [vk, uk;F ]−1F (x

(1)
k ),

...
x
(m−1)
k = x

(m−2)
k − [vk, uk;F ]−1F (x

(m−2)
k ),

x
(m)
k+1 = x

(m−1)
k − [vk, uk;F ]−1F (x

(m−1)
k ), k ≥ 0,

(3)

where sk = x
(0)
k − aF (x

(0)
k ), rk = x

(0)
k + bF (x

(0)
k ), uk = x

(1)
k − cF (x

(1)
k ), vk = x

(1)
k + dF (x

(1)
k ); a, b,

c and d are nonzero arbitrary constants, a ̸= b, c ̸= d and xk+1 = x
(m)
k , with m ≥ 2.

We denote this method by S2m. It is obvious that S2m will have a higher computational cost than the
generalized Steffensen ’s method S1m for the same number of steps as the divided difference operator
is evaluated twice. However, we can reach the same order of convergence than this method with less
steps. So, we are interested in studying which method is more convenient in terms of efficiency as a
function of the number of steps m, the size n of the system to be solved, of the order p and the number
of iterations k that each one needs to perform to approximate the solution of a problem.

First of all, in the following result we will prove that the method (3) has convergence order 2m, where
m is the number of steps of the method (m ≥ 2). For this purpose, we consider the characterization of
divided difference operator introduced in [17], given by

[x, x+ h;F ] =

∫ 1

0
F ′(x+ th) dt, (x, h) ∈ Rm × Rm. (4)

Now, integrating the Taylor’s expansion of F ′(x+ th) around x we have:

[x, x+ h;F ] = F ′(x) +
1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3). (5)

Then, we establish the following result:

Theorem 2.1. Let F : Ω ⊂ Rn −→ Rn be a smooth function in the neighborhood of x∗, that is a
nonempty open convex set Ω ⊂ Rn such that F (x∗) = 0. Then the m-step iterative method given by (3)
with a, b, c and d non-negative arbitrary constants and x0 a close approximation to x∗, converges to x∗

with convergence order 2m.

Proof. We will do the demonstration by induction on the number of steps m ≥ 1.

• For m = 1, we are studying the order of convergence of a one-step method, which is the general-
ization of Steffensen’s method.

Let e(0)k = x
(0)
k −x∗ the error in the k-th approximation to the solution x∗ of the system F (x) = 0.
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Define e1 and e2 as follows

e1 =sk − x∗ = x
(0)
k − aF (x

(0)
k )− x∗ = e

(0)
k − aF (x

(0)
k ),

e2 =rk − x∗ = x
(0)
k + bF (x

(0)
k )− x∗ = e

(0)
k + bF (x

(0)
k ).

(6)

We write the operator [rk, sk;F ] of method (3) using the Taylor series expansion of an operator
of the form [x+ h, x;F ], considering x = rk, x+ h = sk and h = sk − rk = e1 − e2. Thus we
obtain

[rk, sk;F ] = F ′(rk) +
1

2
F ′′(rk)(e1 − e2) +

1

6
F ′′′(rk)(e1 − e2)

2 +O((e1 − e2)
3) (7)

where

F ′(rk) = F ′(x
(0)
k + bF (x

(0)
k )) = F ′(x

(0)
k ) + bF ′′(x

(0)
k )F (x

(0)
k ) +

1

2
b2F ′′′(x

(0)
k )F (x

(0)
k ) + . . . ,

F ′′(rk) = F ′′(x
(0)
k ) + bF ′′′(x

(0)
k )F (x

(0)
k ) +

1

2
b2F (iv)(x

(0)
k )F (x

(0)
k ) + . . . .

(8)

Now, to be able to substitute in the expression (8), let’s consider the Taylor expansion of F (x
(0)
k )

around x∗:

F (x
(0)
k ) = Γ

(
ek +A2e

2
k +A3e

3
k +A4e

4
k +A5e

5
k +A6e

6
k +O

(
e7k
))

, (9)

where Γ = F ′(x∗), ek = e
(0)
k = x

(0)
k − x∗ and Aj = 1

j!F
′(x∗)−1F (j)(x∗) ∈ Lj(Rn,Rn) with

Lj(Rn,Rn) the set of j-linear functions of bounded functions, j = 1, 2, 3, . . . .

Then, we substitute the derivatives of F (x
(0)
k ) in an environment of x∗ in the two equations of (8)

and, taking into account that e1 = e
(0)
k − aF (x

(0)
k ) and e2 = e

(0)
k + bF (x

(0)
k ), we substitute the

resulting expressions in (7) to obtain the error equation for the divided difference operator:

[rk, sk;F ] = Γ
(
I + (−aΓ + bΓ + 2I)A2ek +

(
ΓA2

2(b− a)− 3(aΓ− I)(bΓ + I)A3

)
e2k +O

(
e3k
))

.

(10)

Then, we can obtain the error equation for its inverse operator, in a similar way as in [12] (see
equations (2) and (3)). So by performing a step of (3) using divided differences and denoting I
the identity matrix of order n, we get:

ek+1 = e
(1)
k = x

(1)
k − x∗ = x

(0)
k − x∗ − [rk, sk;F ]−1F (x

(0)
k )

= ((b− a)Γ + I)A2e
2
k +O(e3k).

(11)

In this case, the method has order p = 2.
• For m = 2 we are facing a two-step method. Calculating the expression of the second divided

difference of the schema (3) and the expansion of F (x
(1)
k ), we will obtain the equation for the

error of the method (3) for m = 2.

Let e(1)k = x
(1)
k − x∗ be the error in the k-th approximation to the solution x∗ of the system

F (x) = 0 of the first step of the generalized 2-step Steffensen method with frozen second divided
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difference. Define e1 and e2 as follows

e1 =uk − x∗ = x
(1)
k − cF (x

(1)
k )− x∗ = e

(1)
k − cF (x

(1)
k ),

e2 =vk − x∗ = x
(1)
k + dF (x

(1)
k )− x∗ = e

(1)
k + dF (x

(1)
k ).

(12)

We write the operator [vk, uk;F ] of the method (3) using the Taylor series expansion of an
operator of the form [x + h, x;F ], considering, in this case, x = vk, x + h = uk and
h = uk − vk = e1 − e2:

[vk, uk;F ] = F ′(vk) +
1

2
F ′′(vk)(e1 − e2) +

1

6
F ′′′(vk)(e1 − e2)

2 +O((e1 − e2)
3) (13)

where

F ′(vk) = F ′(x
(1)
k + dF (x

(1)
k )) = F ′(x

(1)
k ) + dF ′′(x

(1)
k )F (x

(1)
k ) +

1

2
d2F ′′′(x

(1)
k )F (x

(1)
k ) + . . . ,

F ′′(vk) = F ′′(x
(1)
k ) + dF ′′′(x

(1)
k )F (x

(1)
k ) + . . . .

(14)

To be able to substitute in the expression (14), we need, as in the first step, the Taylor expansion
of F (x

(1)
k ) around x∗ and that of its derivatives. Substituting them in (14) and, in turn, using these

expressions in (13), we get the expression of [vk, uk, F ].

[vk, uk;F ] = Γ(((b− a)Γ + I)((d− c)Γ + 2I)A2
2e

2
k

+ ((d− c)Γ + 2I)((3(b− a(bΓ + I))Γ + 2I)A3

−
(
a2Γ2 − 2aΓ(bΓ + I) + b2Γ2 + 2bΓ + 2I

)
A2

2)A2e
3
k +O(e4k)).

(15)

where, to simplify the notation, we have denoted ek = e
(1)
k = x

(1)
k − x∗.

Then, we take the inverse of (15), in a similar way as in [12] (see equations (2) and (3)), and,
using the Taylor series expansion of F (x

(1)
k ), we obtain the error equation of the method (3) for

m = 2:

ek+1 = e
(2)
k = x

(2)
k − x∗ = x

(1)
k − x∗ − [vk, uk;F ]−1F (x

(1)
k )

= ((b− a)Γ + I)2((d− c)Γ + I)A3
2e

4
k +O(e5k).

(16)

That is, for m = 2, we obtain that the theoretical order of convergence of the method is p =
2m = 4.

• Assuming that the theorem holds up to m − 1, that is, that all the methods of j steps have order
p = 2j for 1 ≤ j ≤ m− 1, we are going to prove that this theorem also holds for m. To do this,
we use the error equation of the (m− 1)-steps of the form method (3) with order p = 2(m− 1):

ek+1 = e
(m−1)
k = x

(m−1)
k − x∗ = x

(m−2)
k − x∗ − [vk, uk;F ]−1F (x

(m−2)
k )

= −((b− a)Γ + I)m−1((d− c)Γ + 2I)m−3((c− d)Γ− I)m−4A
2(m−1)−1
2 e

2(m−1)
k

+O(e2m−1
k ),

(17)

where ek = e
(m−2)
k and m ≥ 4.

As step m uses [vk, uk;F ], already developed in (15), and F (x
(m−1)
k ) for the calculation of x(m)

k ,
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we only need to perform the Taylor series expansion of F (x
(m−1)
k ) around x∗:

F (x
(m−1)
k ) = (−1)m−2((b−a)Γ+ I)m−1((c−d)Γ− 2I)m−3((c−d)Γ− I)A

2(m−1)−1
2 e2(m−1).

Substituting this development and the inverse expression (15) in the m-th step of the method
(3), we obtain the following error equation for the generalized m-step Steffensen’s method with
frozen divided second difference:

ek+1 = e
(m)
k = x

(m)
k − x∗ = x

(m−1)
k − x∗ − [vk, uk;F ]−1F (x

(m−1)
k )

= −((b− a)Γ + I)m((d− c)Γ + 2I)m−2((c− d)Γ− I)m−3A2m−1
2 e2mk +O(e2m+1

k ),

(18)

where m ≥ 3 is the number of steps we perform in the method. Then, observing the error equa-
tion, we deduce that for m steps the result is also verified since the order of convergence is
p = 2m. Therefore, the theorem is proved for all number of steps m.

3. Computational efficiency

To complete the study of the new multistep iterative method for nonlinear systems of equations, denoted
by S2m presented in the previous section, we analyze the computational cost of the methods in order to
compare their efficiency with the family of methods given by S1m. To do this, we use the computational
efficiency index (CEI), defined in [2],

CEI(µ0, µ1, n) = p
1

C(µ0,µ1,n) , (19)

where p is the order of convergence, n is the dimension of the problem and C is the computational cost
per iteration. For a system of n nonlinear equations and n unknowns, the expression for C is

C(µ0, µ1, n) = a0(n)µ0 + a1(n)µ1 + p(n), (20)

where a0(n) and a1(n) is the number of functional evaluations of F (x) and F ′(x), respectively, per
iteration, p(n) is the number of products/quotients needed per iteration and µ0 and µ1 are the ratios
between the products/quotients and the functional evaluations of F and F ′(x), respectively.

On the other hand, in order to study the efficiency by taking into account the number of iterations
performed by each method, we will also use the total computational efficiency index, defined previously
in [10] by the following expression:

TCEI(m,n, k, µ0, µ1) = p
1

kC(µ0,µ1,n) , (21)

where k is the number of iterations performed by an iterative method in order to reach a established
stopping criteria, p the convergence order and C is the computational cost given in (20). Note that this
index depends on the system to be solved, the required tolerance and the initial estimate chosen.

We notice that an iteration on a system of size n requires n functional evaluations of a vector function
F (x), n2 functional evaluations for obtaining F ′(x), n2 − n functional evaluations and n2 quotients
in the computation of a first-order divided difference operator of the form [x, y;F ], 1

3n
3 − 1

3n prod-
ucts/quotients in decomposition LU and n2 products/quotients in the solution of 2 triangular systems

6



used to solve a linear system. Note that if we need to solve m linear systems with the same coefficient
matrix the computational cost is 1

3n
3 +mn2 − 1

3n operations since only one LU decomposition is per-
formed and the two triangular systems are solved m times.

In Table 5 we can see the expression for the computational cost of iterative methods S1m and S2m.
Observe that, as Steffensen-like methods do not use derivatives, the ratio µ1 does not appear.

Table 1. Computacional cost

Method C(µ0, µ1, n) Notation

S1m (n2 + (m+ 1)n)µ0 + 1
3
(n3 − n) + (m+ 1)n2 + 2n N1

S2m (2n2 + (m+ 2)n)µ0 + 2
3
(n3 − n) + (m+ 2)n2 + 4n N2

3.1. Comparing methods

We are interested in comparing the computational efficiency between the multistep iterative methods
S1m and S2m whose iteration functions are given by (2) and (3). So, we notice that although S1m has
convergence order m+1, we can obtain convergence order equal to or even higher than m with S2 : m′

with m′ < m. In other words, S2 : m′ reaches the same order as S1m with about half the steps, specif-
ically m′ ≥ m+1

2 .

Table 2. Relation between number of steps and convergence order for
methods S1m and S2m

m S1m S2m S2m−1 S2m−2 S2m−3 S2m−4

2 3 4
3 4 6 4
4 5 8 6
5 6 10 8 6
6 7 12 10 8
7 8 14 12 10 8
8 9 16 14 12 10
9 10 18 16 14 12 10
10 11 20 18 16 14 12

In Table 2 we can see for a number of steps from 2 to 10, the different possibilities for obtaining same
or higher order with S2m but with less steps. For instance while with m = 7, S1m reach order 8, we
can perform m− 3 = 4 steps with S2m for reaching the same order. In other words, for m = 7 we can
perform until 3 less steps for getting order higher with S2m than with S1m. This is very important in
order to compare the efficiency index of the families of iterative method defined in the previous section,
because we take into account the total computational efficiency and we can assume that as the order of
convergence of a method increases, the total number of iterations decreases.

We perform an exhaustive study for comparing the efficiency of both families of methods in the follow-
ing term and by taking the ratio µ0 = 2.

Theorem 3.1. Let be m the number of steps we perform with the iterative method S1m for solving a
nonlinear system of size n ≤ 46 and performing k iterations. Then, if an iterative method of family S2m
performs a maximum of k − 1 iterations it is verified that:

(1) If k ≤ 5, n ≤ 15 and m ≥ 5 then TCEIS2m
(m,n, k − 1) > TCEIS1m

(m,n, k)
(2) If k ≤ 4, n ≤ 30 and m ≥ 5 then TCEIS2m

(m,n, k − 1) > TCEIS1m
(m,n, k)

(3) If k ≤ 4, n ≤ 40 and m ≥ 7 then TCEIS2m
(m,n, k − 1) > TCEIS1m

(m,n, k)
(4) If k ≤ 4, n ≤ 15 and m ≥ 5 then TCEIS2m

(m− 1, n, k − 1) > TCEIS1m
(m,n, k)

(5) If k ≤ 4, n ≤ 30 and m ≥ 7 then TCEIS2m
(m− 1, n, k − 1) > TCEIS1m

(m,n, k)
(6) If k ≤ 4, n ≤ 46 and m ≥ 10 then TCEIS2m

(m− 1, n, k − 1) > TCEIS1m
(m,n, k)

7



Proof. By applying the definition of total computational efficiency index, (21), we have that if N1 ans
N2 are the total number of operations performed per iteration by S1m and S2m respectively, see Table
5, while k and k−j are the iterations performed by these methods, we have that S2m it is more efficient
than S1m if (

2m
) 1

(k−j)N2

>
(
m+ 1

) 1

kN1

by taking logarithms it follows

1

(k − j)N2
log(2m) >

1

kN1
log(m+ 1)

that is,

log(2m) >
(k − j)

k

N2

N1
log(m+ 1) (22)

we take the exponential function in both sides and by denoting the second part of (22) by function
A(m,n, k) we consider the difference

E(m,n, k) = 2m− exp(A(m,n, k))

that is decreasing in terms of n. We observe Figure 1, on the right, where we have represented E(5, n, k)
in function of k with j = 1 and for different values of n ≤ 15. So, we can appreciate that in all cases the
function is positive for k ≤ 5, that means that the corresponding iterative method derived from family
S2m is more efficient than the one corresponding to S1m if performs at least one less iteration, that is
very probable because the order is higher than the corresponding method of S1m.

1 2 3 4 5 6 7 8 9 10

k

-4

-2

0

2

4

6

8

10

12
2*6-exp(A(k))

n=3

n=6

n=9

n=12

n=15

1 2 3 4 5 6 7 8 9 10

k

-15

-10

-5

0

5

10

15

20
2*(11-1)-exp(A(k))

n=10

n=16

n=22

n=28

n=34

n=40

n=46

Figure 1. Limit values of m for having S2m more efficient than S1m associated to case (1) of theorem 2, right and case (7) on the left side.

Then, in case (1) we fix n = 15, m = 5 and j = 1 so it follows that E(5, 15, k) > 0 and the function
remains positive until the root of the nonlinear equation E(5, 15, k) = 10− exp(A(5, 15, k)) = 0, that
it is k = 5.1784, so (1) is proved for m = 5.

Obviously E(m,n, k) is an increasing function in m so by performing the same process with m =
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6, . . . , 10 we find always a root greater than five, then this case is proved.

In case (2) we take n = 30, now the equation to solve is E(5, 30, k) = 10 − exp(A(5, 30, k)) = 0
whose root is 4.3121. Next, for n = 40, m = 7, the value 4.2867 gave us the limit for case (3). Finally
in case (4) the value is 4.0847. Now, in cases (5) to (7) notice that the equation needed to solve is

log(2(m− 1)) >
(k − 1)

k

N2

N1
log(m+ 1) (23)

or equivalently

E(m,n, k) = 2(m− 1)− exp(A(m,n, k)).

With a similar reasoning to the previous cases and taking the appropriate parameters we can obtain the
limit of iterations performed by S2M in order to be more efficient than S1M . These values are 4.31,
4.1181 and 4.0383, this last value can be observed in the left part of Figure 1.

Theorem 3.2. Let be m the number of steps we perform with the iterative method S1m for solving a
nonlinear system of size n ≤ 1000 and performing k iterations, then if we find an iterative method of
family S2m performing a maximum of k − 2 iterations it is verified that:

(1) If k ≤ 7, n ≤ 50 and m ≥ 5 then TCEIS2m
(m,n, k − 2) > TCEIS1m

(m,n, k)
(2) If k ≤ 7, n ≤ 45 and m ≥ 7 then TCEIS2m

(m− 1, n, k − 2) > TCEIS1m
(m,n, k)

(3) If k ≤ 6, n ≤ 150 and m ≥ 4 then TCEIS2m
(m,n, k − 2) > TCEIS1m

(m,n, k)
(4) If k ≤ 5, ∀n ∈ N and m ≥ 4 then TCEIS2m

(m,n, k − 2) > TCEIS1m
(m,n, k)

(5) If k ≤ 5, n ≤ 150 and m ≥ 5 then TCEIS2m
(m− 1, n, k − 2) > TCEIS1m

(m,n, k)
(6) If k ≤ 5, n ≤ 1000 and m ≥ 7 then TCEIS2m

(m− 1, n, k − 2) > TCEIS1m
(m,n, k)

Proof. The proof is similar to the corresponding of previous theorem so it is omitted. The values limited
for each case are 7.0754, 7.0214, 6.0569, 5.6, 5.1589 and 5.0575. Cases (2) and (7) can be seen in the
left and right sides of Figure 2, respectively.
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Figure 2. Limit values of m for having S2m more efficient than S1m associated to cases (2) and (6) of Theorem 3.
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4. Iterative schemes with memory

This section focuses on the construction of two memory multistep methods based on the non-memory
generalized m-step Steffensen method with frozen divided second difference (3). To do this, we will
introduce memory as they do in [15] with the S1m method.

In Section 2 we have studied the generalized multistep Steffensen’s method freezing the divided differ-
ence of the second step and we have deduced that, for m steps, this method has convergence order 2m
and that its error equation is of the form:

ek+1 = e
(m)
k = x

(m)
k − x∗ = x

(m−1)
k − x∗ − [vk, uk;F ]−1F (x

(m−1)
k )

= −(I − aΓ + bΓ)m(2I − cΓ + dΓ)m−2(−I + cΓ− dΓ)m−3A2m−1
2 e2mk +O(e2m+1

k ),
(24)

where m ≥ 3 is the number of steps we carry out in (3).
We want to increase the speed of convergence of this method without performing new functional eval-
uations. To do this, we are going to study which are the appropriate expressions for the accelerating
parameters a, b, c and d. As we can see in the error equation (24), we have many options to increase the
order of convergence of the method to 2m+ 1.
To achieve this order, we need to cancel one of the three terms of (24). However, it is not possible to
make any of them totally zero since we do not know Γ = F ′(x∗). Therefore, we are going to try to re-
duce the influence of these factors on the error equation as much as possible by defining the parameters
a, b, c and d.

In this case we will try to minimize the impact of more than one term at a time to accelerate the conver-
gence as much as possible. This is possible because the constants a and b allow the convergence of the
first step to be accelerated while the constants c and d accelerate that of the rest of the steps, because the
divided difference of the second step is the one used in the rest of the steps. Although there are several
ways to add memory, in this article we will only present one way to increase the convergence order
of(3).

From the error equation (24), it is clear that we will obtain convergence order 2m + 1 if we find a
solution of the matrix equation for b− a such that:

I − aΓ + bΓ = I + (b− a)[F ′(x∗)] = 0. (25)

We will also get order 2m+ 1 if we find a solution of the matrix equation for d− c such that:

2I − cΓ + dΓ = 2I + (d− c)[F ′(x∗)] = 0. (26)

As we have explained before, we will not be able to find parameter values that cancel (25) and (26) and
achieve 2m+ 1 convergence order.

In order to accelerate the convergence of the method (3) as much as possible, we use an appropriate
approximation Bk of b− a and a Ck of d− c to decrease the first and second term of the error equation.
Thus, using data from the current and previous iterations to approximate [F ′(x∗)]−1 in (25) and (26),
we assume that the parametric matrices Bk and Ck have the following form:

Ck = b− a = −[rk−1, sk−1;F ]−1 ≈ −[F ′(x∗)]−1, for k ≥ 1,

Bk = d− c = −2[vk−1, uk−1;F ]−1 ≈ −2[F ′(x∗)]−1, for k ≥ 1.
(27)
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We propose an iterative method with memory from the method (3) defined by the following scheme:

S2mM



x0 ∈ Ω,

x
(1)
k = x

(0)
k −Q−1

k F (x
(0)
k ),

x
(2)
k = x

(1)
k − P−1

k F (x
(1)
k ),

...
x
(m−1)
k = x

(m−2)
k − P−1

k F (x
(m−2)
k ),

x
(m)
k+1 = x

(m−1)
k − P−1

k F (x
(m−1)
k ), k ≥ 0,

(28)

where Qk = [rk, sk;F ], sk = x
(0)
k − γ1CkF (x

(0)
k ), rk = x

(0)
k + δ1CkF (x

(0)
k ), Pk = [uk, vk;F ],

uk = x
(1)
k − 2γ2BkF (x

(1)
k ) and vk = x

(1)
k +2δ2BkF (x

(1)
k ). Here, γ1 and δ1 are arbitrary constants that

must satisfy the condition δ1 − γ1 = I as in the first section. In turn, γ2 and δ2 are constants that must
also satisfy the condition δ2 − γ2 = I .

We know that this method with memory increases to some extent the convergence order, 2m of method
(3), but we don’t know what the convergence order will be. Therefore, we present the following result
that will allow us to know the order of convergence of (28) depending on the number of steps m.

Theorem 4.1. Let F : Rn −→ Rn a sufficiently differentiable function in a neighbourhood Ω ⊂ Rn of
a point x∗ such that F (x∗) = 0. We assume that F ′(x) is a continuous and non-singular at x∗ and that
the arrays Bk and Ck in the iterative method (28) are recursively calculated by the expressions (27).
Then the method given by (28) converges to x∗ with convergence order m+

√
m2 + 2m− 2 for m ≥ 1.

Proof. Let {xk} be the sequence of approximations which converges to the solution x∗ with R-order
≥ r and ek = xk − x∗, then we can write

ek+1 ∼ Dk,re
r
k (29)

where {Dk,r} is a sequence that tends to the constant asymptotic error Dr of the method when k → ∞.
The notation s ∼ t symbolizes that they have magnitudes of the same order.

Therefore, we will have

ek+1 ∼ Dk,r(Dk−1,re
r
k−1)

r = Dk,rD
r
k−1,re

r2

k−1. (30)

Using the expansion of the inverse of (10) for k − 1, we get:

[vk−1, uk−1;F ]−1 = [I − (2A2 + (b− a)ΓA2)ek−1 +O(e2k−1)]Γ
−1.

Thus we obtain the expressions of the Ck and Bk arrays of the iterative method (28):

b− a = Ck = −[rk−1, sk−1;F ]−1 = −[I − (2A2 + Ck−1ΓA2)ek−1 +O(e2k−1)]Γ
−1,

d− c = Bk = −2[vk−1, uk−1;F ]−1 = −2[I − (2A2 +Bk−1ΓA2)ek−1 +O(e2k−1)]Γ
−1.

(31)

From these developments, we obtain:

I + ΓCk = (2I + Ck − 1Γ)A2ek−1 +O(e2k−1) ∼ ek−1,

2I +BkΓ = 2(2I +Bk−1Γ)A2ek−1 +O(e2k−1) ∼ ek−1.
(32)

11



We rewrite the error equation (24) using the accelerator parameters,

ek+1 = (I + CkΓ)
m(2I +BkΓ)

m−2(I +BkΓ)
m−3A2m−1

2 e2mk +O(e2m+1
k ), (33)

and we substitute (32) in (33) to obtain:

ek+1 ∼ emk−1e
m−2
k−1 e

2m
k ∼ emk−1e

m−2
k−1 (e

r
k−1)

2m ∼ e2mr+2m−2
k−1 . (34)

We know from the equation (30) that ek+1 ∼ er
2

k−1. Therefore, comparing the exponents of (30) and
(34), we obtain

r2 = 2mr + 2m− 2. (35)

We solve the quadratic equation (35) and obtain the positive real root m +
√
m2 + 2m− 2, which is

the lower bound of the R-order of convergence of the method (28).

5. Numerical results

In this section we will use the above proposed iterative methods S1m, S2m and S2mM to approximate
the solution of several nonlinear systems of equations in order to confirm the theoretical results and
verify their efficiency. Furthermore, we will use the numerical examples to compare these three methods
to the two memory versions of the S1m method, presented in [15], which we will denote as S1mM1

and S2mM2.

To better understand all the methods that we will use, we present the following table with some of their
characteristics:

Table 3. Theoretical order and computational cost of the methods

Method Order C(µ0, µ1, n)

S1m m+ 1 (n2 + (m+ 1)n)µ0 + 1
3
(n3 − n) + (m+ 1)n2 + 2n

S1mM1
(m+1)+

√
(m+1)2+4

2
(n2 + (m+ 1)n)µ0 + 1

3
(n3 − n) + (m+ 2)n2 + 2n

S1mM2
(m+1)+

√
(m+1)2+4(m−1)

2
(n2 + (m+ 1)n)µ0 + 1

3
(n3 − n) + (m+ 2)n2 + 2n

S2m 2m (2n2 + (m+ 2)n)µ0 + 2
3
(n3 − n) + (m+ 2)n2 + 4n

S2mM m+
√
m2 + 2m− 2 (2n2 + (m+ 2)n)µ0 + 2

3
(n3 − n) + (m+ 4)n2 + 4n

where n is the size of the system to be solved, m the number of steps per iteration of the method and µ0

the ratio between functional evaluations and products.

For the computational calculations, the software used has been RMatlab 2019b and the processor used
has been Intel(R) Core(TM) i7− 9700 CPU@3.00GHz with 32GB of RAM.

In the three examples studied, we compare the approximation obtained, the norm of the distance between
the last two iterations, the number of iterations needed to satisfy the tolerance required in each example,
the CEI and TCEI of S1m and S2m, assuming a ratio µ0 = 2, the computational time and the
approximate computational convergence order ACOC, [7], which has the following expression:

ACOC = ρ ≈ ln (∥xk+1 − xk∥/∥xk − xk−1∥)
ln (∥xk − xk−1∥/∥xk−1 − xk−2∥)

. (36)
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Example 1: Model of a photomultiplier device

A photomultiplier tube (PMT) is an electronic device that receives light and transforms it into (ampli-
fied) electric current, allowing to detect light intensities as small as a photon. The light arrives at the
cathode which emits electrons that are multiplied in cascade by different electrodes called dynodes. Fi-
nally, the electrons are captured by the last electrode, the anode, generating a measurable current. PMT
devices are widely used in different applications, in particular in medicine, they are utilised in diagnosis
(PET/CT scanners, gamma camera, Anger camera for SPECT scanners, real time PCRs) as well as for
therapy monitorisation (Compton camera, planar image devices) [9].
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Figure 3. Schematic of an N -stage PMT connected to a voltage bias VB in negative polarity mode and a chain of resistors Ri with i ∈
[1, N + 1]. The vacuum tube (in yellow) consists of one photocathode (i = 0), N dynodes (i = 1, . . . , N ), and one anode (i = N + 1).
The electrode voltages V (i) are shown in purple for i ∈ [0, N + 1]. The power supply bias current is IB. The electrode currents are Ic,
Idy,i, i ∈ [1, N ], and Ia, whereas the current flowing through the resistors is labeled as IR,i, i ∈ [1, N + 1]. A photon (γ), shown in blue,
generates a photoelectron in the cathode. The electrons (small balls) flow in vacuum in the direction of the dashed blue arrow. The dashed
green arrows show the sign convention of the definition of the inter-electrode vacuum currents Iv,i. Adapted from [11].

Figure 3 shows a simple model of a PMT device. Using Kirchhoff’s current law and Ohm’s law, the
equations governing the PMT model can be formulated [11] as follows for i = 1 . . . N + 1:

IR,i + Iv,i = IB, (37)

Vi − Vi−1 = IR,i ·Ri, (38)

Iv,i = Ikηi

i−1∏
j=1

kj [Vj − Vj−1]
αj , (39)

where (39) for i = 1 is defined instead as just Iv,1 = η1Ik.
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In order to determine the state of the PMT we have to solve a system of N non-linear equations in terms
of the electrode voltages Vi (i = 1, . . . , N ):

Vi − Vi−1

Ri
=

Vi+1 − Vi

Ri+1
+ Iv,i+1 − Iv,i i = 1, . . . , N (40)

where V0 = −Vb and VN+1 = 0.

The model shown in Figure 3 can be solved applying the presented iterative methods to the former
equations with N = 8, ηi = 1 for i = 1, . . . , N + 1, Ri = 330 kΩ for i = 1, . . . , N , RN+1 = 160 kΩ,
α = 0.881 and k = 0.0936.

This system of non-linear equations is solved considering the inner node voltages Vi, i = 1, . . . , N as
unknowns. As initial estimation we take, for the unknowns Vi, N values linearly interpolated between
−Vb and 0, excluding both extremes.

We solve the systems for two different parameter values Ik = 10pA and Ik = 100 pA, with tolerance
10−3. We have taken m = 1, a = c = 1.1, γ = 1.1 · I , b = d = 2.1 and δ = 2.1 · I in the corresponding
methods. The results are shown in Table 4.

Table 4. Results of the PMT model for different parameter values

Ik = 10pA Ik = 100 pA

Method ACOC iter ∥f(xk)∥ ACOC iter ∥f(xk)∥

S1m 1.5738 3 1.0115e− 11 2.0141 4 2.6454e− 13
S1mM1 2.5380 3 1.3487e− 18 2.8882 4 8.2955e− 19
S1mM2 2.2092 3 1.0272e− 18 2.1271 5 8.9457e− 19
S2m 1.5738 3 5.8366e− 11 2.0141 4 3.3774e− 11
S2mM 2.2889 3 5.2732e− 19 2.1687 4 1.5049e− 18

As Ik increases, so does the system nonlinearity, and the methods need more iterations to converge, but
the error in terms of the norm of the residual and the ACOC have similar values.

Example 2: A differentiable operator

We consider the following system of n equations and n unknowns:{
xi sin(xi+1)− 1 = 0, 1 ≤ i ≤ n− 1,
xn sin(x1)− 1 = 0.

(41)

For this example we will use variable precision arithmetic with 850 digits iterating from two initial
estimates x(0) = [1.1, . . . , 1.1]t and x

(0)
2 = [1.4, . . . , 1.4]t up to a distance between consecutive

iterations less than the tolerance 10−200. We have also solved Example (41) for n = 30 and n = 50 by
varying the number of steps of all the methods from m = 5 to m = 4 to numerically check some of the
conclusions of the Theorem 3.1 and Theorem 3.2. The numerical results are shown in Table 5.
As we know, most of these methods are generic and, therefore, have constants that we must determine.
In this example, for S1m we have chosen a = 1.1 and b = 2.1, for S2m a = c = 1.1 and c = d = 2.1
and for S1mM1, S1mM2 and S2mM we have worked with γ1 = γ2 = 1.1 · I and δ1 = δ2 = 2.1 · I
such that they verify δ1 − γ1 = δ2 − γ2 = I .

In all cases, we obtain as an approximation of the solution of the equation (41) the following vector
x
(m)
k+1 = [1.11415714087193, . . . , 1.11415714087193, . . .]T .

For this example we see that the numerical results for each method are quite similar. The greatest
difference observed between the methods is reflected in the ACOC of the method S1m and its variants
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Table 5. Example 2 results for different sizes and steps

Method n m ACOC iter ∥x(m)
k+1 − x

(m)
k ∥ CEI TCEI time

S1m 5.999999 4 3.229847e− 648 1.00010787 1.00002696 25.3906
S1mM1 6.161404 4 5.126769e− 789 1.00010385 1.00002596 26.3594
S1mM2 30 5 6.701992 4 4.682497e− 817 1.00010782 1.00002695 25.4219
S2m 9.913360 3 4.972061e− 302 1.00008102 1.00002707 43.8438
S2mM 10.995597 3 6.536994e− 358 1.00007933 1.00002619 43.5000

S1m 5.000000 6 1.614601e− 926 1.00002693 1.00000448 242.4063
S1mM1 5.192271 5 2.414904e− 1020 1.00002646 1.00000529 212.7031
S1mM2 50 4 5.646294 5 2.479962e− 881 1.00002750 1.00000550 206.9688
S2m 8.000000 4 3.4147252e− 625 1.00002396 1.00000599 305.2500
S2mM 8.999502 4 3.216070e− 1037 1.00001925 1.00000481 314.0781

with memory and the method S2m and its version with memory. On the other hand, we observe that
the numerical results coincide with the theoretical ones since the TCEI of S2m is greater than that of
S1m and, in addition, the first method is more efficient than the other methods from the perspective
of this efficiency index. We must also add that, in general, in S1m and S1mM fewer iterations are
required than in the rest. Finally, as expected, we see that the methods that perform a greater number of
iterations make less error in the approximation.

Example 3: A non-differentiable operator

In this example we solve a nonlinear integral equations that appears in some applied problems in elec-
trostatic and electro magnetic problems, among many others situations ([6], [20]). We consider the
nonlinear integral equation of Hammerstein type given by

[H(x)](s) = x(s)− f(s)−
∫ b

a
G(s, t)( x(t)3 + 5|x(t)|) dt, s ∈ [a, b]. (42)

where a, b ∈ R, G is the Green function, f(s) = 1, ∀s ∈ [0, 1] and x is the solution to be obtained.
We transform the problem H(x) = 0, where H : Ω ⊂ C[a, b] → C[a, b] into a nonlinear system of equa-
tions. To begin with, we approximate the given integral by a quadrature formula with the corresponding
weighs, tj and nodes qj , j = 1, 2, ..., n. So, we have the following nonlinear system:

xj = fj +

n∑
i=1

pji (λx(t)
3 + σ|x(t)|), j = 1, 2, . . . , n, (43)

where

pji = qiG(tj , ti) =

{
qi

(b−tj)(ti−a)
b−a , i ≤ j,

qi
(b−ti)(tj−a)

b−a , i > j.

The interest of this example is to show the applicability of the methods seen in this article to a non-
differentiable operator.

For this example we will use variable precision arithmetic with 400 digits iterating from an initial
estimate x(0) = [−2.8, . . . ,−2.8]t up to a distance between consecutive iterations less than the tolerance
10−150. We have solved the Example (43) for a system size n = 8 and with a number of steps m = 4.
The numerical results are shown in Table 6.
In this example we have used the same method constants as in the previous. We have obtained as an
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Table 6.

Method ACOC iter ∥xk+1 − xk∥ time

S1m 4.998270 5 7.127831e− 333 245.4375
S1mM1 5.187298 4 1.034017e− 168 195.2656
S1mM2 5.617349 4 3.414139e− 175 190.7188
S2m 7.999571 4 8.067708e− 223 354.9844
S2mM 8.609689 4 4.298286e− 406 348.5156

approximation to the solution of the equation (43) the following vector

x
(m)
k+1 = [−3.307603,−3.029411,−2.890455,−2.759186,−2.611678,−2.611678,−2.759186, . . .]T .

In this second example we see numerical results similar to the previous one. Again the numerical method
with the highest ACOC is S2mM followed by its non-memory version S2m. In addition, both methods
present a smaller error in the approximation if we take into account that both perform k = 4 iterations.
In this example, to compare the CEI and TCEI of the S1m and S2m methods, we have drawn the
graphs 4.

In these figures we can see the importance of comparing the efficiency of the methods using the CEI or
the TCEI . The second index is the one that seems most appropriate to talk about efficiency as it takes
into account the number of iterations performed by each method and k is of great importance when
calculating the computational cost. Therefore, for a system size n between 6 and 12, we can see in the
graph 4 that the method S2m is more efficient than S1m.

(a) CEI of methods S1m and S2m (b) TCEI of methods S1m and S2m

Figure 4. Efficiendy of S1m and S2m.

6. Dynamical study

In this section we analyze the behaviour of the methods S1m and S2m from the point of view of their
dynamics. The idea is that the application of the methods to simple equations will provide insights on
their behaviour in general situations. This approach has been widely used in the literature since the onset
of complex dynamics.

Consider an function G : C −→ C in the complex plane. The orbit of a point z ∈ C is the sequence
of images {zn}∞n=0 = {z, G(z), G2(z), . . .}. The points of the complex plane are classified according
to the behaviour of their orbits. If the orbit converges to a limit z∗, then G(z∗) = z∗, so that z∗ is a
fixed point of G. A fixed point z∗ of G is attracting if |G(z∗)| < 1, repelling if |G(z∗)| > 1 and super-
attracting if G′(z∗) = 0. The points whose orbit converges to a fixed point form the attraction basin of
this fixed point. The dynamic plane is obtained by coloring differently each basin. We have considered
that an orbit {zn} converges if the distance between two consecutive iterates is less than 10−6 before
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200 iterations and that diverges to infinity if |zn| > 106 for some n. Other cases can include slow
convergence or divergence, but they are anyway undesired dynamics. We have not observed periodicity
in the considered algorithms.

Let us begin with the standard second degree polynomial f(z) = z2− 1 in the complex plane C, whose
roots are ±1. The application of the generalized multistep Steffensen method S1m with m = 1, which
coincides with the generalized Steffensen method, to f(z) results in the rational iteration function

G(z) =
(a− b)z3 − z2 − (a− b)z − 1

(a− b)z2 − 2z − a+ b

which depends only on the parameters difference a− b. The fixed point equation G(z)− z = 0 is

z2 − 1

(a− b)z2 − 2z − a+ b
= 0,

so that, its only fixed points are z = ±1, independently of the parameter values.

If a = b, G(z) is the iteration function of Newton’s method, whose dynamics is well known. In this case,
the divided differences are the central ones, which exactly approximate the derivative for second degree
polynomials. The attraction basins are the semiplanes Re(z) < 0 and Re(z) > 0, and the imaginary
axis is the Julia set. The dynamics is richer when a ̸= b.

The iteration function of S1m with m = 2 is slightly more involved in the general case, but still it
depends only on the difference e = a− b:

G(z) =
e3z7 − 4e2z6 − (3e3 − 6e)z5 + (6e2 − 3)z4 + (3e3)z3 − 6z2 − (e3 + 6e)z − 2e2 + 1

e3z6 − 6e2z5 − (3e3 − 12e)z4 + (12e2 − 8)z3 + (3e3 − 12e)z2 − 6e2z − e3
.

For a− b = 1, it results

G(z) =
z7 − 4z6 + 3z5 + 3z4 + 3z3 − 6z2 − 7z − 1

z6 − 6z5 + 9z4 + 4z3 − 9z2 − 6z − 1
.

There are 6 fixed points, the two super-attracting roots and four more repelling points.

For the simpler case a = b, the iteration function

G(z) =
3z4 + 6z2 − 1

8z3

has four fixed points, ±1 and ±
√
5/5. The fist two fixed points, the roots of f , are super-attracting,

G′(z) = 0, whereas the others are repelling, |G′(z)| = 6 > 1, so that they do not affect the convergence
of the method.

For m = 2, the iteration function of S1m with a− b = 1 applied to z2 − 1 presents 14 fixed points, two
of them, the roots, are super-attracting and the rest repelling.
For a = b, the iteration function results

G(z) =
39z8 + 124z6 − 46z4 + 12z2 − 1

128z7
.

It has 8 fixed points, the roots, which are super-attracting, and 6 more, which are repelling. These exam-
ples show that the generalized multistep Steffensen method has good dynamical behaviour, because the
only attracting fixed points are the roots of the polynomial. Figure 2 shows that the dynamics is richer
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for a ̸= b, so that, the other case is preferable from the point of view of stability.
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Figure 5. Dynamical planes for the multistep generalized Steffensen method S1m for z2 − 1 with different parameter values and number
of steps. The red dots are the roots of the polynomial and their basins are coloured in green and yellow. The points whose orbits diverge to
infinity are in deep blue and the light blue represents the points whose orbit does not fulfill the convergence criteria.

Let us now analyze the dynamics of method S2m for the quadratic polynomial z2 − 1. For the shake
of simplicity, we consider a = c and b = d. As before, the iteration function G(z) depends only on the
difference a−b, although it is more complex than for S2m. For example, for m = 2, G(z) = p(z)/q(z),
where p(z) is a polynomial of 9-th degree and q(z) of 8-th degree.

Taking a− b = 1, it results

G(z) =
z9 − 4z8 + 3z7 + 4z6 + 3z5 − 18z4 − 3z3 + 16z2 + 12z + 2

z8 − 6z7 + 11z6 − 15z4 − 6z3 + 17z2 + 12z + 2
.

It has 6 fixed points, the roots of z2 − 1, which are super-attracting, and another 4, which are repelling.

On the other hand, if we take a = b, the iteration function simplifies to

G(z) =
2z5 + 12z3 + 2z

8z4 + 8z2
,

whose fixed points are ±1, super-attracting, and ±
√
−3/3, repelling.
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Figure 6. Dynamical planes for the multistep generalized Steffensen method with frozen second difference S2m for z2 − 1 with different
parameter values and number of steps. The red dots are the roots of the polynomial and their basins are coloured in green and yellow. The
points whose orbits diverge to infinity are in deep blue and the light blue represents the points whose orbit does not fulfill the convergence
criteria.

Taking m = 3 in S2m, the iteration function G(z) is the quotient of polynomials of degrees 21 and 20.
In the case of a− b = 1, there are 18 repelling fixed points, besides the 2 super-attracting roots.

For a = b, G(z) is the quotient of polynomials of degrees 11 and 10, and there are only 8 fixed points,
including the 2 super-attracting roots. The remaining fixed points are repelling.

Figure 6 shows that the different instances of S2m behave better than their S1m counterparts that achieve
the same convergence order.

A similar dynamical study has been performed using the third degree polynomial f(z) = z3. The results
are graphically presented in figures 7 and 8.
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Figure 7. Dynamical planes for the multistep generalized Steffensen method S1m for z3 − 1 with different parameter values and number
of steps.

20



-3 -2 -1 0 1 2 3

α=1,  β=1,  m=2

-3

-2

-1

0

1

2

3

(a)

-3 -2 -1 0 1 2 3

α=1,  β=1,  m=3

-3

-2

-1

0

1

2

3

(b)

-3 -2 -1 0 1 2 3

α=1.5,  β=0.5,  m=2

-3

-2

-1

0

1

2

3

(c)

-3 -2 -1 0 1 2 3

α=1.5,  β=0.5,  m=3

-3

-2

-1

0

1

2

3

(d)

Figure 8. Dynamical planes for the multistep generalized Steffensen method with frozen second difference S2m for z2 − 1 with different
parameter values and number of steps.
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7. Conclusions

In this paper we present a new family of derivative-free iterative methods with m steps per iteration.
The constructed scheme not only allows us to generalize the family of iterative methods published
in [15], but also increases the order of convergence from m + 1 to 2m. As we can see, the order of
convergence has increased considerably, so that the difference between the two families is notable
for large values of m. This fact has also been reflected in the study of efficiency, since the compu-
tational cost increment is minor, taking into account the great improvement in the order of convergence.

Due to our interest in further accelerating the convergence of some methods in the family, we have
introduced memory in some appropriate cases. This study leads us to build a method with memory that
converges with very high order for large m, but it takes too long to converge. Despite the execution
time, we have observed that with this technique we improve the results obtained by S2m.

Finally, we have carried out a dynamic study to show the good behavior of the methods introduced
in the paper.

This article and its results have inspired new ideas to deepen the study of the family of iterative
methods S2m. The first idea deals about putting memory into S1m and S2m using Kurchatov’s divided
differences. On the other hand, in order to study this family from other points of view, we are carrying
out a local convergence analysis of this method in order to theoretically determine which methods have
better accessibility.
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