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A B S T R A C T 

We have evidence of X-ray flares in several galaxies consistent with a star being tidally disrupted by a supermassive black hole 
(MBH). If the star starts on a nearly parabolic orbit relative to the MBH, one can derive that the fallback rate follows a t −5 / 3 

decay. Depending on the penetration factor, β, a star will be torn apart differently, and relativistic effects play a role. We have 
modified the standard version of the smoothed-particle hydrodynamics (SPH) code GADGET to include a relativistic treatment 
of the gravitational forces between the gas particles of a main-sequence (MS) star and a MBH. We include non-spinning post- 
Newtonian corrections to incorporate the periapsis shift and the spin-orbit coupling up to next-to-lowest order. We find that tidal 
disruptions around MBHs in the relativistic cases are underluminous for values starting at β � 2 . 25, i.e. the fallback curves 
produced in the relativistic cases are progressively lower compared to the Newtonian simulations as the penetration parameter 
increases. While the Newtonian cases display a total disruption, we find that all relativistic counterparts feature a survi v al core 
for penetration factors going to values as high as 12.05. We perform a additional dynamical numerical study that shows that the 
geodesics of the elements in the star converge at periapsis. We confirm these findings with an analytical study of the geodesic 
separation equation. The luminosity of TDEs must be lower than predicted theoretically due to the fact that the star will partially 

survive when relativistic effects are taken into account. A survival core should consistently emerge from any TDE with β � 2 . 25. 

K ey words: relati vistic processes – quasars: supermassive black holes – transients: tidal disruption events. 
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 MOTIVATION  

 star passing very close to a massive black hole (MBH) may be torn
part because of the tidal effects, and the interaction of the stellar
ebris in the vicinity of the black hole will give rise to a burst of
lectromagnetic radiation. The characteristics of this tidal disruption 
vent (TDE), such as its temperature, peak luminosity, and decay 
ime-scale, are functions of the mass and spin of the central MBH.
he subsequent accretion of the debris gas by the black hole produces
dditional emission, and leads to phases of bright accretion that may 
eveal the presence of a MBH in an otherwise quiescent galaxy 
see, e.g. Wheeler 1971 ; Hills 1975 ; Frank & Rees 1976 ; Carter &
uminet 1982 , 1983 ; Rees 1988a ; Murphy, Cohn & Durisen 1991 ;
agorrian & Tremaine 1999 ; Syer & Ulmer 1999 ; Freitag & Benz

002 ; Gezari et al. 2003 ; Wang & Merritt 2004 ), with rates that vary
epending on various factors but are of the order of 10 −5 –10 −6 yr −1 

see e.g. Rees 1988b and Stone et al. 2020 for a recent re vie w on the
ates and characteristics). These phenomena can be used as a probe 
f accretion physics close to the event horizon (Brenneman 2013 ; 
eynolds 2014 ). 
Many disruption candidates have already been detected with 

OSAT , Chandra , Swift (see e.g. https://tde.space ), and the ZTF
van Velzen et al. 2020 ), and the number will surge with upcoming
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ransient surv e ys like the Large Synoptic Surv e y Telescope (LSST),
RG/eROSITA (Khabibullin, Sazono v & Sun yaev 2014 ), as well as

he ESA L2 mission Athena (Nandra et al. 2013 ). 
A conondrum related to optically-disco v ered TDEs is that their

olour temperatures are significantly below the values predicted 
y theoretical models (Gezari et al. 2012 ; Arcavi et al. 2014 ;
hornock et al. 2014 ; Holoien et al. 2014 ; van Velzen & Farrar
014 ). Observations depict a temperature and bolometric luminosity 
ell below theoretical predictions based on accretion, and based on 

he same model, the derived blackbody emission radius implies an 
rbital motion below the expected theoretical values. In general, the 
allback model requires masses much less than a solar mass in order
o explain the difference in luminosity between the observed flares 
nd the theoretical expectations. 

Different theoretical models have been put forward to explain this 
 act. The w ork of Li, Narayan & Menou ( 2002 ) suggested that the
ow luminosity may indicate that the disrupted star is a brown dwarf
r a planet. An alternative explanation is that the assumption that the
as immediately circularizes when it comes back close to the MBH
s not accurate, and could trigger internal shocks that would result
n a reduced luminosity. In particular, Piran et al. ( 2015 ) suggested
hat the released energy via internal shocks is responsible for the
bserved optical TDE candidates. More recently, Zhou et al. ( 2020 )
rgued that the disc does not circularize and remains eccentric, which,
s a consequence, leads the orbital energy of the stellar debris to be
dvected onto the MBH without being radiated away. 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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In this work, we show with a set of smoothed-particle hydrodynam-
cs (SPH) simulations with relativistic corrections that unbound stars
ead to partial disruptions, which naturally explain the difference in
he observed luminosity, for penetration values as deep as β = 12 . 05.

 RELA  TIVISTIC  IMPLEMENTA  T I O N  

elati vistic ef fects have been considered in the related literature by
.g. Tejeda et al. ( 2017 ), which implemented a relativistic description
f the evolution of the hydrodynamical elements with a quasi-
ewtonian treatment of the fluid’s self-gravity. 
Earlier this year, Ryu and collaborators presented a series of

orks that also addressed TDEs in a relativistic fashion. For this
pproach, they depart from the intrinsically conserv ati ve GR hy-
rodynamical numerical code of Noble, Krolik & Ha wle y ( 2009 ),
esigned to study magnetohydrodynamic (MHD) turbulence in
ccretion discs around MBHs. To study TDEs, they assume that
pace–time is Schwarzschild plus contributions from the star self-
ravity, and the dynamics of the star is described by hydrodynamics,
olving the general-relativistic energy-momentum equations in the
chwarzschild background. This, hence implies that in the absence
f material forces, the fluid elements strictly follow geodesics. The
elf-gravity of the star is described in the weak field, taking into
ccount only the Newtonian gravitational potential. They then evolve
he hydrodynamical equations in a frame where the metric is nearly
at and mo v e the whole system in a rigid way along the orbit using
arallel transport of the local frame. Hence, it is the trajectory of the
ystem that ‘sees’ the Schwarzschild metric but the fluid elements
lmost live in a flat space–time. 

More precisely, they consider a modified metric, ˜ g μν = g μν + h μν ,
ith g μν the Schwarzchild metric and h μν accounts for the self-
ravity of the star. They assume the self-gravity is weak, so that
he only non-zero component of the self-gravity perturbations is
he time–time one: h tt = −2 � sg /c 

2 , where � sg is the Newtonian
otential of the star in the sense that it satisfies a Poisson equa-
ion, where the mass density is replaced by the star proper rest-mass
ensity. The procedure to incorporate this self-gravity is a bit more
ntricate than adding it to the Schwarzschild metric. The assumptions
ade to compute the self-gra vity contrib ution include that the metric

f Schwarzschild should not deviate from the Minkowski metric.
ere is where the intrincacy mentioned comes in, since they need a
arallel-transported tetrad adapted to the star, as mentioned before,
o that in that frame the assumptions made are valid. It is important
o note that they separate the problem of solving the hydrodynamical
quations from the motion of the star around the MBH. This can
e envisaged as having a frame centre at the (centre of mass) star
here the metric, in an orthonormal basis, is exactly Minkowski

deviating as we mo v e from the centre of mass). Then they solve the
ydrodynamical equations in this frame, and the motion of the star
s ‘rigid’ (only the centre of mass mo v es) according to the parallel-
ransport equations for the orthonormal basis (see Ryu et al. 2020b ).
n their calculations, all stars have net bound orbits by an amount
f the order ∼10 −10 c 2 –10 −3 ( σ 2 / 2), where σ is the bulge dispersion
nd c the speed of light. 

With this scheme, they investigate TDEs in four additional works.
n Ryu et al. ( 2020a ), they find that the critical pericenter distance
or full disruptions is enhanced by up to a factor of ∼3 as compared
o the Newtonian case, and that it depends on the mass of the star in a
on-trivial way (see Guillochon & Ramirez-Ruiz 2013 , for previous
ork). The results of Ryu et al. ( 2020c ) regarding partial disruptions

how that due to the little mass distributed at low energies, late-time
allback is suppressed. The mass return rate should then be ∝ t −p with
NRAS 533, 1233–1250 (2024) 
 ∈ [2 , 5] in partial disruptions. In Ryu et al. ( 2020d ), they show that
elati vistic ef fects induce width delays in the debris energy so that the
agnitude of the peak return rate decreases. These results had already

een pointed out by the previous work of Ivanov & Chernyakova
 2006 ), Kesden ( 2012 ), Servin & Kesden ( 2017 ), although Ryu
nd collaborators provided quantitative corrections to these previous
reatments. In Krolik, Piran & Ryu ( 2020 ), they discuss the event
ates and the fate of the rest of the star, which is not disrupted (i.e.
he amount of mass still inside the computational box when they
topped the simulation), which might interact with the MBH on a
econd periapsis passage or rejoin the stellar cluster. As we will see,
n this work we find a surviving core in all relativistic simulations,
hich is in contradiction with a total disruption. 
In this work, we modify the acceleration computation of GADGET

Springel 2005 ) to include relativistic corrections, which are based
n the post-Newtonian (PN) formalism for the interaction between
wo bodies (in our case, each of the hydrodynamical particles and the

BH). This means that we simply add relativistic correcting terms
o the Newtonian gravitational forces calculated between the MBH
nd the hydrodynamical particles that form the star during the whole
imulation, which initially is set on a completely unbound orbit.
his approximation allows us to capture the relativistic effects while
llowing us to study the evolution of the star to larger radii without
ny other approximation than those inherent to SPH methods and
he post-Newtonian expansion, valid in this regime of low (but yet
elativistic) velocities. In this regard, our scheme is self-consistent
nd all phenomena related to relativistic effects and hydrodynamics
merge naturally by integrating the system. 

The relative acceleration, in the centre-of-mass form, i.e. following
he scheme of Brem, Amaro-Seoane & Spurzem ( 2013a ), including
ll PN corrections can be written in the following way: 

d � v 

d t 
= −Gm 

r 2 
[(1 + A ) � n + B � v ] + 

� C 1 . 5 , SO . (1) 

n this equation, � v = � v 1 − � v 2 is the relative velocity vector, m =
 • + m gas , the total mass with M •, the mass of the MBH, and m gas 

he mass of a gas particle, r the separation and � n = � r /r . A and B
re coefficients that can be found in Blanchet & Iyer ( 2003 ). Since
e are modelling extremely light gas particles around a MBH, we

dopt the terms in the limit m gas = 0. We consider the leading order
pin-orbit interaction, with the term 

� C 1 . 5 , SO , in which the subscript
O stands for spin-orbit coupling, which can be found in (Tagoshi,
hashi & Owen 2001 ; Faye, Blanchet & Buonanno 2006 ), and the
rst post-Newtonian correction to periapsis shift. We do not include
issipative terms because, contrary to an extreme-mass ratio inspiral
Amaro-Seoane 2018 ), the star only has one periapsis passage, and
he gravitational radiation can be neglected. All the PN interactions
re only considered between a gas particle and the MBH and are
 v aluated at all times during the whole integration. In all simulations
ith spin, we set the dimensionless spin vector to � a = (0 . 7 , 0 . 7 , 0),

o we get maximum precession of the orbit of the star orbit lying in
he X –Y plane. 

The implementation of these relativistic terms follows the pre-
cription given in the work of Kupi, Amaro-Seoane & Spurzem
 2006 ), which was the first work published about the inclusion
f post-Newtonian corrections in the context of stellar dynamics.
he addition of the spin to the problem was presented, also for the
rst time, in a stellar-dynamics context in Brem, Amaro-Seoane &
purzem ( 2013b ). Both the periapsis shift and the spin terms have
een tested in detail, and partially published in the work of Brem
t al. ( 2013b ), with a series of comparisons with the semi-Keplerian
pproximation of Peters ( 1964 ). 
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 INITIAL  C O N D I T I O N S  

n all simulations, the mass of the MBH is m • = 10 6 M �, the mass
f the star is m � = 1 M �, and it is set on an unbound, parabolic
rajectory around the MBH, placed at the focus. It must be noted
hat while bound orbits are less ‘e xpensiv e’ computationally, the 

ost natural orbits are unbound ones, i.e. parabolic or hyperbolic, 
ecause we do not expect the region of phase-space close to the MBH
o produce bound orbits, at least in a Milky Way-like galaxy (see, e.g.
maro-Seoane 2018 ; Baumgardt, Amaro-Seoane & Sch ̈odel 2018 ; 
allego-Cano et al. 2018 ; Sch ̈odel et al. 2018 ). 
When the stars approach the MBH, it will experience strong tidal 

orces whenever the work exerted over the star by the tidal force
xceeds its own binding energy, (all energies are per unit mass),
hich is 

 bind = 

3 Gm � 

(5 − n ) r � 
, (2) 

here n is the polytropic index (Chandrasekhar 1942 ), m � the mass
f the star. This allows us to introduce a typical radius for this to
appen, the tidal radius r t . Considering r � � r t , 

 t = 

[
(5 − n ) 

3 

m •
m � 

]1 / 3 

2 r � . (3) 

ith m • the mass of the MBH. For a solar-type star, considering an
 = 3 polytrope, and m • = 10 6 M �, we have that 

 t = 110 R � ∼ 0 . 51 au . (4) 

The initial distance of the star to the MBH is set to 20 times
he axis of symmetry of the parabola, i.e. the pericentric distance 
etween the MBH and the star. In order to investigate the fate of the
ound material to the star and the fallback rate, we have chosen a
eries of trajectories with different penetration factors β, which is 
efined to be the ratio between the tidal radius and the distance of
eriapsis, 1.5, 2, 3, 4, 5, and 9, and run for each case (i) a Newtonian
imulation, (ii) a relativistic simulation taking into account only the 
eriapsis shift of the SPH particles, and (iii) a relativistic simulation 
aking into account this effect and the spin correction. 

It must be noted that the value for the penetration factors has
een estimated by assuming a point-particle trajectory. Ho we ver, 
n the relativistic cases, an initially assigned value for β diverges 
s the star progresses in its orbit towards the MBH as a function
f the penetration factor. When the extended star achieves the 
 erte x of the parabola, the penetration factor has differed from the
nitially chosen value. Hence, we initially set the star in that point-
article trajectory for those specific β values, and we derive the 
eal penetration factor when it reaches the verteces of the relativistic 
ases. These are β = 1 . 64 , 2.26, 3.62, 5.15, 6.83, and 12.05, and
e use them in the Newtonian cases as well so as to be able

o compare the results. These values in turn correspond to the 
ollowing distances of periapsis: r peri ∼ 0 . 32 , 0.22, 0.14, 0.1, 0.07,
.04 au. For a parabolic orbit, the velocity of the star at periapsis is
 peri = 

√ 

2 μ/r peri , with μ = Gm • � 1 . 3 × 10 26 m 

3 s −2 , so that the
orresponding velocities are v peri ∼ 7 . 37 × 10 7 , 8 . 88 × 10 7 , 1 . 11 ×
0 8 , 1 . 32 × 10 8 , 1 . 57 × 10 8 , 2 . 08 × 10 8 m s −1 , which in units of the
peed of light c are, respectively, 0 . 24 , 0 . 29 , 0 . 37 , 0 . 44 , 0 . 52 , 0 . 69.
n Fig. 1, we show 12 different snapshots in the evolution of a
epresentative case with relativistic corrections, β = 12 . 05. We have 
isplayed in red the densest regions of the star. 
The stars are modelled as main-sequence (MS) stars with a 

olytrope of index 3 constructed initially following the method of 
Freitag & Benz 2005 , in particular; see their online complements). 
e employ half a million particles to construct the polytrope, which is
nough to solve the tidal disruption process. Increasing the number of
articles by less than an order of magnitude (or a factor of 10) does not
ecessarily lead to a significant impro v ement of the simulation (see
ection 3 of Rasio 2000 ), as we show in Section 7.3 , in particular of
he stellar density and temperature profile. We adopt a fixed softening
ength for the gas particles of 0 . 01 R �. Taking into account that the
eepest penetration factor we have used is of 12.05, and that the
idal radius is of 110 R �, as we can see in equation ( 4 ), this means
hat the closes periapsis distance is of ∼9 . 13 R �; i.e. almost three
rders of magnitude larger than our softening, so that the simulation
s well resolved. The has smoothing is adaptive, whereby the number
f neighbours with which each particle interacts is constant, and set
o 50. 

 QUANTI TATI VE  ANALYSI S  

ne important aspect in the process is the evolution of the star
fter the first periapsis passage. To determine which part of the gas
articles in the simulation is still bound or unbound to the star, we
ollo w the follo wing prescription (based on the work of Lai, Rasio &
hapiro 1993 ; Fulbright, Benz & Davies 1995 ): So as to decide
hether a gas particle i is bound to the star, we calculate the specific

nergy of this particle relative to the star, 

i = u i + 

1 

2 
v 2 rel −

∑ 

j 

Gm j 

r ij 
, (5) 

here u i and v rel are, respectively, the internal energy and the relative
elocity of gas particle i to the centre of mass velocity of all the gas
articles belonging to the star. The potential part is summed up o v er
ll star particles j . If εi > 0, the particle is considered unbound from
he star, otherwise bound. In the first step of the iteration, all particles
re assumed to be star particles. After e v aluating equation ( 5 ),
articles are reassigned to be either still part of the star or unbound.
n the next step, the specific energy is e v aluated with respect to
he reduced fraction of star particles. We stop the iteration when
eassignments to the unbound component cannot be made. After the 
teration is complete, we check which part of the gas that is no longer
ravitationally bound to the star is on Keplerian orbits around the
BH or completely unbound from the system. This part of the gas

s then considered for the luminous fallback onto the MBH. 
In Fig. 2 , we show the fate of the material stripped (bound) from

to) the star for the different penetration factors mentioned before up
o 3.62. The scaling of the first two panels in all these figures is the
ame in order to be able to compare better. In all figures, we also
dd a third panel showing the long-term evolution of the Newtonian
ases. We can see from these figures that the amount of bound mass
o the star, i.e. the survi v al star, is in all cases larger in the relativistic
imulations than in the Newtonian counterparts. For the relativistic 
ases, about 0, 40, and 20 per cent of the star survives the disruption
fter one day for the first three values of β = 1 . 64 , 2.26, and 3.62,
hile in the Newtonian simulations, this quantity is only about 50,
, 2 per cent. These results are generally in agreement with the
mount of mass of the survi v al core found in the work of Ryu et al. 
 2020c ). 

In Fig. 3 , we depict the same as in Fig. 2 for the two most
xtreme penetration factors, β = 5 . 15 , 12 . 05 (this last penetration
actor, the star is still at a distance of two Schwarzschild radii from
 Schwarzschild MBH of mass 10 6 M �). In this case, the amount of
ound material to the star in the Newtonian case further decreases as
ompared to larger β values. It is about 1 and 0 per cent, respectively.
MNRAS 533, 1233–1250 (2024) 
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M

Figure 1. Tidal disruption of the β = 12 . 05 case with relativistic corrections. We can observe, from the top to the bottom, right to left, how the star becomes 
more elongated along its parabolic orbit around the MBH, represented with a black dot at the origin. After the stretching and compression of periapsis, the star 
reco v ers a somewhat spherical architecture to be stretched again. At much longer time-steps, which correspond to the last panel, the star is again more spherical, 
although with deformations. We do not show all the gas particles that we used in the simulation for clarity, and in red the densest regions in the star. 
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o we ver, the relati vistic cases sho w a much larger survi v al stellar
bject, with a mass of about 40 per cent. In the relativistic simulations,
he amount of bound material to the star is larger than in their
ewtonian counterparts, even at the smallest value of β. 
In this first case, for β = 1 . 64, we observe in the Newtonian case

f Fig.( 2 ) that a significant amount of matter of the star survives the
lose interaction with the MBH. Indeed, Guillochon & Ramirez-Ruiz
 2013 ) estimated that (Newtonian) TDEs have 100 per cent disruption
nly for penetration factors β > 1 . 85. Recently, Miles, Coughlin &
ixon ( 2020 ) have studied (Newtonian) partial disruptions that

orroborate the fallback rate proportion of ∝ t −9 / 4 . Other scenarios,
NRAS 533, 1233–1250 (2024) 
ike the progressive disruption of a star as result of a tidal separation,
o we ver, lead to different eccentricities that predict a different scaling
f ∝ t −1 . 2 Amaro-Seoane, Miller & Kennedy ( 2012 ). Also, Ryu et al.
 2020c ) find ∝ t −p with p ∈ [2 , 5] depending on the mass of the star
nd the role of their relativistic implementation. 

In Fig. 4, we show the last snapshot of the Newtonian simulation
ith β = 1 . 64 using the visualization tool of Price ( 2007 ) to render

he gas particles. Embedded in the figure, we have added a zoom
f the area corresponding to what seems to be the remaining core
f the star. Ho we ver, this is a transient feature, as we can see in the
ppermost, right-hand panel of Fig. 2 . We integrated the system for
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Figure 2. Amount of bound and ejected stellar mass for β = 1 . 64 as a function of time. In blue pentagons, we depict bound stellar mass to the star, i.e. this 
represents the evolution of how much of the star remains after the TDE. In grey circles, the amount bound to the MBH, and in cyan squares, the unbound stellar 
mass, i.e. the mass of the star that is ejected. The left-hand and middle panels correspond to the relativistic and Newtonian simulations set to the same limits, so 
as to be able to compare. The right-hand panel is the Newtonian case integrated significantly further than in the left panel (labelled ‘long’). 
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p to some ∼18 d from the starting point, and we can see that the
mount of mass decays very quickly with time, while the amount of
atter of the original star bound to the MBH is kept constant. This

pisodic core will not be bound to the star at later times. Ho we ver, it
ppears later as an enhanced fallback of debris in the first panel of
ig. 5 at later times, as we will explain in the next section. 
 FA LLBAC K  R AT E  

o as to test the implementation of the orbit and the behaviour of
he SPH star, we calculate the fallback rate on to the MBH. For this,
e calculate the required time for the bound debris to come back

gain to periapsis by estimating the specific energy of each particle,
MNRAS 533, 1233–1250 (2024) 
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Figure 3. Same as Fig. 2 but for the two more extreme penetration factors, β = 5 . 15 and 12.05. 

Figure 4. The last snapshot of the Newtonian simulation for β = 1 . 64. Both 
panels have a reference bar showing the length of a solar radius (‘Rsun’) to 
set the scale. The bar depicting the logarithm of the column density of gas in 
the zoom has been set to the minimum and maximum values of −3.43 and 0, 
respectively, for better identification of the structure. 
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 = G ( M + m ) / (2 a), with G the gravitational constant, M and m
he masses of the MBH and one SPH particle, respectively. 

From the angular momentum, one can derive that 

 = 

√ 

1 + E 

(
L 

μ

)2 

, (6) 

here we have introduced μ = GM and neglect the contribution of
 . If we define �t as the ellapsed time between the first periapsis
assage and the current position of the particle’s position at a radius
 from the MBH and time T , the necessary time for the next periapsis
assage is t peri = T − �t . 
This distance is 

 = a ( 1 − e · cos ε) , (7) 

ith ε the eccentric anomaly, so that ε < π for outbound motion and
> π for inbound motion. The mean anomaly can be calculated as 

 = 2 πδt/T = ε − e · sin ε, (8) 

nd allows us to calculate the ellapsed time since the last periapsis
assage (at M = 0). We integrate the star’s orbit until its centre of
ass has travelled far away from the tidal radius out to 3000 R �, i.e.
12 730 R Schw , with R Schw the Schwarzschild radius of the MBH.
rom this point on we assume, the gas particles to be travelling on
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Figure 5. Fallback rate for a polytrope of index 3, mass 1 M �, radius 1 R � and 500 000 particles. The curves delimit the upper part of histograms relative 
to the amount of bound stellar mass per time interval, distributed in intervals of T peri , in days. The dotted, blue curve corresponds to the Newtonian (N) 
simulations, the long-dashed, gre y curv es to the relativistic cases without spin (R, no S) and the solid, gre y curv es to the relativistic runs taking into account 
spin corrections (R). The solid, light-orange line depicts the power law described in the work of Rees in which the fallback rate is ∝ t −5 / 3 . The reason for the 
exponent being −2/3 and not −5/3 is to correct for the logarithmic representation of the results, since the deri v ati ve of the mass M respect to the logarithm of 
time, t , d M/ d( log ( t)) ∝ t · d M/ d t . Hence, for a relation such as d M/ d t ∝ t −x , d M/ d( log ( t)) ∝ t −x+ 1 , and so −5 / 3 + 1 = −2 / 3. 
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ndependent, non-interacting Keplerian orbits solely determined by 
heir orbital energy and angular momentum. From these values we 
ompute the classical time until the subsequent pericenter passage, 
 peri . 

We present the results as fallback curves, which are mass his-
ograms o v er t peri in Fig. 5 for dif ferent v alues of the penetration
actor β. We can see that the lower value of β leads to a drop
n the Newtonian fallback between 10 2 and 10 4 d, which can be
nvisaged as a result of matter falling back more quickly. This forms
he depression around the later enhanced fallback. This is matter 
hat is bound to the MBH, not to the original star, which has started
o become bound to itself after the evolution. The relativistic cases 
lso display this feature, but at much earlier times and with much
maller depressions. This partial disruption leads to fallback values 
n the Newtonian case that are similar to the relativistic ones, as in
he next value of β = 2 . 26. From that value upwards, the Newtonian
ases lead to fallback values significantly higher than the relativistic 
nes, starting with about half an order of magnitude up to about
ve orders of magnitude for the deepest penetration and the spin
ase. We can observe only a clear effect of the spin when we go to
xtreme penetration values in the lowermost, right-hand panel, with 
= 12 . 05. 
In Fig. 6 , we show a mosaic with nine different snapshots in the

volution of the Newtonian case of β = 2 . 26. As we zoom-in, we can
ee that at later times, 5.73 d, no surviving core is left. This situation
hanges completely when we consider the relativistic corrections, as 
e can see in its counterpart, Fig. 7 , which takes into account the
ost-Newtonian correcting terms. We can clearly see the survival of 
 core that is bound to the original star, as shown in Fig. 2 . 

This difference becomes even more evident when comparing the 
xtreme case of β = 12 . 05, in Fig. 8 , the Newtonian case and Fig. 9 .
hort after the passage through periapsis, nothing is left from the
riginal star in the Newtonian case, while in the relativistic one, we
nd a surviving core at much later times. 

 OPENI NG  O F  T H E  DEBRI S  

n the simulations with a spin component, the debris opens and
xpands outside of the initial plan of the orbit. In Fig. 10 , we display
MNRAS 533, 1233–1250 (2024) 
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Figure 6. Mosaic of different instants of time corresponding to the Newtonian simulation of penetration factor β = 2 . 26. From the top to the bottom, left to 
right, we show six different moments in the evolution of the star in its reference frame, more specifically at (approximately) T = 0 , 0.07, 0.24, 0.25, 0.29, 0.56, 
and 5.73 d. As a reference point, we show the length corresponding to one solar radius in each panel, and the (logarithm) of the column density of the star at the 
top on the right. Both the zoom factor and the depth of the logarithmic scale in the column density have been chosen in each frame to show the most interesting 
features, and they do not necessarily match from frame to frame. The last three panels depict the last moment, 5.73 d, at different zoom levels of the densest 
region. The last one shows an empty area because the depth of the column density is set to values not found. 
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his feature for one of the relativistic cases with spin. We show how
he z -component of the angular momentum L z normalized to the spin
f the MBH evolves in time as compared to the x component, L x ,
nd we note that the results are similar for the y component. This
utcome is particularly interesting because it could potentially lead
o the intersection of the gas as it falls back onto the MBH with parts
f the same debris, which are closer to the MBH. Such shocks can
ead to afterglow flares, which are potentially observable. 

Ho we ver, one cannot solve this problem with an SPH-based code,
ince we cannot solve shocks. On the other hand, the amount of time
eeded for integration for the gas particles to achieve the maximum
istance and fall back onto the MBH is too long. The accumulation
f numerical errors and required integration time make the e x ercise
ointless. This is indeed why we have integrated analytically the
volution of the gas particles in the first place, as we explained before.
ne could come up with the idea of converting these particles again

nto blobs of gas after the analytical integration, but then the question
emains open as to what thermodynamics those clumps of gas should
ollow. It would be wrong to assume that their thermodynamical
NRAS 533, 1233–1250 (2024) 
quation of state is the same as it was when the star underwent the
idal disruption. For all of these reasons, we just indicate here that
he gas does spread out after the disruption, but we do not make any
ttempt at trying to continue the simulation to follow any potential
nteresting electromagnetic emission. 

 PROPERTIES  O F  T H E  SURV I VI NG  C O R E  

n this section, we e v aluate the properties of the core in the Newtonian
nd relativistic case for the most extreme case we have studied,
= 12 . 05. In Figs 11 and 12 , we show the projection in the X - and
 -plane of the column density for both the Newtonian and relativistic
ases at approximately the same time. As in the previous sections,
e can observe a peak of density in the relativistic case, pinpointing

he location of the surviving core. It is also interesting to observe that
he relativistic case has a more complex structure than the Newtonian
ne, due to the twisting of the spin acting on the internal structure of
he star. 
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Figure 7. Same as Fig. 6 for the relativistic counterpart. While in the previous figure, the last panels show a thread-like distribution of the gas debris, in the 
relativistic counterpart, we see a survival core with a size of about half of the initial star. Both, the lengths and the density of the gas have been set to almost 
identical values to those shown in Fig. 6 , so as to be able to compare panel by panel of both figures. 
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.1 An extreme case 

n order to understand how much the orientation and magnitude of
he spin affect the general results, we address the evolution of a
tar, which is tidally disrupted in the deepest penetration factor, β = 

2 . 05, that we have considered so far for a particular configuration, in
hich the massive black hole has a spin value of 1 in the z -direction.

n Fig. 13 , we zoom-in from the largest possible picture to the size of
he core. As in all previous relativistic cases, we see that the general
esults remain the same. 

Although the structure of the star may appear to be, and is, in fact,
ifferent, it is dangerous to try to o v erinterpret the consequences
nd implications of this fact. We should remember that we are using
n SPH method that, by construction, cannot or does not properly 
esolve shocks in the system under study. On the other hand, even
f we were to study the evolution of the system o v er v ery long
eriods of time to see if the debris intersects, it would be difficult to
nderstand how to translate that fact into observables, since we would 
ave accumulated a non-negligible numerical error. The alternative 
f analytically integrating the ballistic trajectories of the gas particles 
o later re-form hydrodynamic structures is unrealistic, as mentioned 
efore, since we would have no information on the thermodynamic 
roperties that these structures should have once the gas particles 
gglomerate. 
.2 Fate of the core 

ndeed, for the abo v e reasons in Section 7.1 , although it is interesting
o understand the subsequent evolution of the core, in particular to
ee if it remains bound to the MBH, so that it returns to the pericentre
f the orbit to undergo further disruptions, it does not make sense
o do so numerically. Therefore, we integrate the system until a
easonable time, i.e. until the core of the star is at such a distance from
he MBH that any relati vistic ef fect is clearly negligible. Typically,
his distance is at least a thousand solar radii. At this point, we
alculate the centre of mass of the core to determine its coordinates
nd velocities, as well as its mass. Assuming that the core follows a
eplerian orbit, we integrate its evolution to determine how long it
ill take to reach both the apocentre of the orbit and the pericentre.

n the case that the core is bound and returns to the MBH, we would
av e to inv estigate the role played by the dissipativ e terms of the
ost-Ne wtonian approximation. Ho we ver, in all the cases we have
resented in this paper, the core resulting from the TDE is not bound
o the MBH, so that the possibility of successive TDEs is ruled out.
ow this depends on the initial conditions and the limitations of the
umerical method we have used needs to be investigated in detail.
o we ver, all this would result in much more dense work than what
e are already presenting and will be investigated elsewhere. 
MNRAS 533, 1233–1250 (2024) 
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Figure 8. Same as in Fig. 6 but for a value of β = 12 . 05 and different times of the total integration. The last panel again shows nothing because the scale of 
the column density of the star is set to the same values as in Fig. 9 , which we have chosen to show the survival core of the star. In this Newtonian case, however, 
the gas density is so low that nothing appears. 
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.3 The role of the number of particles in the hydrodynamical 
imulations 

o as to see whether the number of particles we have used previously
s enough to capture the physics of the problem, we have performed
n additional simulation with a total of 2 × 10 6 particles. Going
eyond this number led to memory problems in the computer that
e used to create the initial conditions. In Fig. 14 , we show the usual
ensity projection of the gas debris and surviving stellar core. In
ig. 15 , we depict the density as a function of the three different axes.
hen comparing these results to their lower-resolution counterparts,

.e. Figs 9 and 12 , we can see that the results we derived previously
old. 

 DISTANCE  BETWEEN  G E O D E S I C S  O F  

A RTICLES  O N  A  PA R A B O L I C  O R B I T  

RO U N D  A  SPINNING  MASSIVE  BLACK  H O L E  

.1 Numerical study 

ne better way to try to understand why a core survives in relativistic
imulations is to calculate the geodesic convergence (or divergence)
f the elements of the star as it approaches the pericentre of the MBH.
NRAS 533, 1233–1250 (2024) 
he idea is to investigate if, in the relativistic case, the particles, which
re to be envisaged as representative parts of the star, will come closer
r not in the relativistic case as compared to the Newtonian one. In
rder to do so, we simulate the trajectory of six test particles using
he numerical programme ARChain (Mikkola & Merritt 2006 , 2008 ).
his programme does not take into account hydrodynamics but pure,
oint-like dynamics. The advantage is that it is very accurate and
eatures the implementation of the post-Newtonian terms as first
resented in Kupi et al. ( 2006 ), which is the same we have used in
he hydrodynamical experiments. 

In Fig. 16 , we show the Newtonian and relativistic cases without
pin for six test particles on an initially parabolic orbit around a

BH. I.e. we want to see whether the particles tend to get closer in the
elativistic case of this ‘dust star’ as compared to the Newtonian case.
s we can see in the figure, in the Newtonian case, the particles follow

he usual Keplerian trajectory (modulo some fluctuations due to their
utual attraction). The relativistic case undergoes precession, and

he particles follow ballistic trajectories after the periapsis passage.
hat ulterior evolution is not representative of what different parts

n a star would do, since, as explained, we are not taking into
ccount hydrodynamics. The time-scale for the star to readjust to
 perturbation caused by the gravitational interaction with the black
ole is determined by the star’s sound-crossing time, which is the
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Figure 9. Same as Fig. 8 for the relativistic counterpart. Already in early times, the star in relativistic cases suffers a less significant spread in size. Also in this 
case, a survi v al core is found clearly in the simulation. 
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ime it takes for a sound wave to travel across the star’s diameter. For
 typical main-sequence star with a radius of R � ≈ 6 . 96 × 10 8 m
nd a sound speed of c s ≈ 10 5 m s −1 , the sound-crossing time is
n the order of a few minutes. In the dynamical simulations,
he time for a particle to go though the periapsis distance is 
maller. 

In Fig. 17 we show a similar comparison but for a relativistic case
hich takes into account the spin. 
It is important to note that for this comparison to make sense,

e need to focus at what happens at periapsis and not much
arther beyond that point. Ho we ver, the time-scale that dominates 
t periapsis is the relativistic one, so we can neglect hydrodynamics 
nd assume point particles interacting only via gravity. 

In Fig. 18 , we depict the difference between the orbits in a two-
article case. We include two different relativistic treatments: one 
hat does not take into account the spin of the MBH and another that
oes. As we can see, in the second case, the difference is the largest,
eaning that the particles are getting a factor two of compression in

he relativistic case when compared to the Newtonian one. Beyond 
he periapsis, the three different cases have very different evolutions 
ecause, as previously explained, we are in a purely dynamical 
egime; i.e. we do not take into account the hydrodynamics. It is
nteresting to see how the peaks in the difference of the relativistic
ases are shifted as compared to the Newtonian one, since a smaller
ericentre distance leads to a larger velocity and hence a shorter
mount of time spent in that region. 

The purpose of these dynamical test particle simulations is to 
llustrate why, in the relativistic case, particularly if we have spin, the
tar has a surviving core. As the star passes through periapsis, it will
ndergo an internal compression that will increase the density of the
tar, particularly at its centre. This result does not pro v e, but suggests
hat relativistic effects could indeed compress the star enough to 
llow some of it to survive the tidal stresses as a self-gravitating
bject. This is what we observe in Figs 2 and 3 . 

.2 Analytical study 

ow that we have seen that the dynamical study of the dust star
eads to smaller distances at periapsis, confirming the results of the
ydrodynamical simulations, what remains is to understand why this 
s the case, i.e. what is the physical reason for it. For this, let us
onsider the equation of geodesic deviation in proper time, 

D 

2 ξ r 

d τ 2 
= 

[ 

R 

r 
ttr 

(
d t 

d τ

)2 

+ R 

r 
θθr 

(
d θ

d τ

)2 

+ R 

r 
φφr 

(
d φ

d τ

)2 
] 

ξ r , (9) 

here 

D 

d τ
= ∇ u = u 

μ∇ μ (10) 
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Figure 10. Components z and x of the angular momentum of the gas particles normalised to the spin of the MBH after the star has passed through periapsis. 
From the top to the right, we can see the evolution of the debris as a function of time in days. 

Figure 11. Projection of the density of the gaseous debris in the X -, Y -, and Z axis for β = 12 . 05 in the Newtonian case after 1.77 d. 
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s the covariant derivative along the observer’s four-velocity; and 

R 

r 
ttr = 

2 Gm •
r 3 

(
1 − 2 Gm •

rc 2 

)

R 

r 
θθr = 

Gm •
rc 2 

 

r 
φφr = 

Gm •
rc 2 

sin 2 θ, (11) 
NRAS 533, 1233–1250 (2024) 

l

ee e.g. Chandrasekhar ( 1998 ), and we have replaced the
chwarzschild radius with 

 Schw = 2 
Gm •
c 2 

. (12) 

t is important to note that, since we are neglecting the role of
ydrodynamics and self-gravity, the test particles that conform to
he dust star strictly follow geodesics. We consider a co-moving
bserver along these geodesics (i.e. an observer in the Fermi or free-
all coordinates), located on one of the test particles, who observes a
ocally flat space–time. Thus, 
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Figure 12. Same as Fig. 11 bur for the relativistic case. The spike corresponds to the surviving core. 

Figure 13. Density of the gaseous debris and surviving stellar core for the case in which the massive black hole is maximally spinning around the z -axis, in the 
relativistic case, after 2.08 d, for β = 12 . 05. From the top to the right, we show a progressive zoom-in of the projection to visualize the surviving core, which, 
as in the previous cases, has a size of about half a solar radius. Note that the column density ranges from different values as we zoom in, so as to define a more 
clear depiction of the gaseous particles in each panel. 
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d t 

d τ
= c 2 (13) 

d x i 

d τ
= 0 for any spatial coordinate , (14) 

nd hence 

D 

2 

d τ 2 
= 

d 2 

d t 2 
+ 

2 Gm •
r 2 

(
1 − 2 Gm •

c 2 r 2 

)−1 d 

d t 
+ 

(
2 Gm •

r 2 

)2 

. (15) 

As a result, the geodesic deviation equation becomes 

d 2 ξ r 

d t 2 
+ 

2 Gm •
r 2 

(
1 − 2 Gm •

rc 2 

)−1 d ξ r 

d t 

+ 

[ (
2 Gm •
r 2 c 2 

)2 

− 2 Gm •
r 3 

(
1 − 2 Gm •

rc 2 

)] 

ξ r = 0 , (16) 
hich is a second-order linear, homogeneous differential equation. 
uch an equation admits the general solution of the following type 

r = C 1 e 
λ1 t + C 2 e 

λ2 t , (17) 

ith C 1 and C 2 being two constants that are a result of the initial
onditions and λ1 and λ2 two exponents that must fulfil 

λ2 + 

2 Gm •
r 2 

(
1 − 2 Gm •

rc 2 

)−1 

λ

+ 

[ (
2 Gm •
r 2 c 2 

)2 

− 2 Gm •
r 3 

(
1 − 2 Gm •

rc 2 

)] 

= 0 . (18) 

his leads to the solutions 
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Figure 14. Same as Fig. 9 but for 2 × 10 6 gas particles. 

Figure 15. Same as Fig. 12 but for 2 × 10 6 gas particles. 

Figure 16. Trajectories in the XY plane of six test particles around a MBH in the Newtonian (left) and relativistic (right) cases. In both panels, we display the 
evolution of the particles and a zoom-in at the pericentre for the Newtonian case. The relativistic one also includes a zoom-in of the initial trajectories of the 
particles, which are slightly shifted but are otherwise identical. The MBH is located initially at the origin. The test particles have a mass 10 −14 times smaller 
than than of the MBH. The initial penetration factor is set to β = 1 . 2 for numerical reasons, since the programme will declare the particles as relativistic mergers 
for deeper factors. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/2/1233/7718110 by guest on 30 Septem
ber 2024
NRAS 533, 1233–1250 (2024) 



Underluminous tidal disruptions 1247 

Figure 17. Trajectories in a volume XYZ of two test particles around a MBH for the relativistic case without (left) and with spin (right). In the second case, the 
trajectories leave the initial plane of the orbit and obtain a z component. We display in arrows the sense of the motion of the test particles in the upper, left-hand 
panel. 

Figure 18. Difference between two particles along their orbit around a MBH in the Newtonian and relativistic case. In the latter, we also display the case with 
and without spin for the MBH (right-hand panel). We include a zoom-in in the right panel to clearly show the difference at the periapsis passage. 
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1 = −Gm •
r 2 c 2 

(
1 − 2 Gm •

rc 2 

)−1 

+ 

[ 

Gm •
c 2 r 4 

( 

Gm •
c 2 

[ 

r (
1 − 2 Gm •

rc 2 

)2 − 20 

] 

+ 8 r 

) ] 1 / 2 

(19) 

2 = −Gm •
r 2 c 2 

(
1 − 2 Gm •

rc 2 

)−1 

−
[ 

Gm •
c 2 r 4 

( 

Gm •
c 2 

[ 

r (
1 − 2 Gm •

rc 2 

)2 − 20 

] 

+ 8 r 

) ] 1 / 2 

, (20) 

hich are al w ays real when r > R Schw . 
We can derive the values of the two constants by considering the

nitial conditions. Since the two test particles are part of the dust star,
nitially the distance between the two is a fixed quantity, which, at

ost, admits a value of 2 R � since that is the diameter of the star;
lso, at time t = 0, the change in the distance is zero. I.e. the particles
re neither mo ving a way from each other nor closer because the star
s considered to be in equilibrium. Therefore, 

r (0) ≤ 2 R �, 
d ξ r 

d t 

∣∣∣∣
(0) 

= 0 . (21) 

e therefore have that 

r (0) = C 1 + C 2 ≤ 2 R �, (22) 

d ξ r 

d t 

∣∣∣∣
(0) 

= λ1 C 1 + λ2 C 2 = 0 . (23) 

rom the last equation, we obtain 

 1 = 

ξ r (0) 

2 
(1 − χ ) (24) 

 2 = 

ξ r (0) 

2 
(1 + χ ) , (25) 

here we have defined 

: = 

r 2 Gm •
2 

[ 
Gm •

(
2 c 6 r 3 + 40 c 2 G 

2 m 

2 
•r 

+ ( c 2 − 16) c 4 Gm •r 2 − 32 G 

3 m 

3 
•
)] −1 / 2 

. (26) 
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Figure 19. Evolution of the two exponents resulting from the solution of 
the geodesic deviation equation, λ1 (blue curve) and λ2 (orange curve), 
with respect to the radial distance (normalized by half R Schw ). The MBH 

Schwarzschild radius is noted with a black vertical line. Within this radius, 
both solutions are identical and represented by the same blue curve. We name 
the region corresponding to the range of values for which both exponents are 
ne gativ e the maximum compression zone. 
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his quantity drops rapidly as r grows. This means that, far away
rom the MBH, the two coefficients tend to the same. As a result,
oth exponential solutions ( e λ1 t and e λ2 t ) are non-zero and neither
an be assumed to be very small and negligible. 

At this point, in order to examine which of the exponents
s more significant, it is useful to examine their behaviour with
espect to the radial distance. Notably, one solution ( λ1 ) is al w ays
e gativ e for r > R Schw ; hence, the corresponding exponential (e λ1 t )
efers to a shrinking solution for any radial distance of the star
rom the MBH. The second solution ( λ2 ), ho we ver, alternates
ign; it is ne gativ e when R Schw < r < 2 R Schw , and positive when
 > 2 R Schw . As a result, the corresponding exponential solution is
hrinking when the particles (i.e. the star) are close to the MBH,
nd expanding when they are way from it, as we can see in
ig. 19 . 
As we can see from Fig. 19 , the effect of convergence of

eodesics is maximized when R Schw < r < 2 R Schw , which we dub
he maximum compression zone, because both exponents are nega-
i ve. Ho we ver, not all test particles will necessarily fall this close
o the MBH. The star will generally have a larger penetration
actor. For larger radii, one of the two exponents is not negative
nymore (the orange curve, λ2 ). In order to understand how the
istance between the two test particles will evolve in the case
n which we are outside of the maximum compression zone,
e observe that in equation ( 8.2 ), the coefficient of d ξ r / d t is

arger for small r , but drops faster than the coefficient of ξ r , so
hat it can be safely ignored outside the maximum compression
one. In this regime therefore the geodesic deviation equation 
ecomes 

d 2 ˜ ξ r 

d t 2 
+ 

[ (
2 Gm •
r 2 c 2 

)2 

− 2 G m •
r 3 

(
1 − 2 Gm •

rc 2 

)] 

ξ r = 0 . (27) 

he solution is again of the form 

˜ r = C 1 e 
λ1 t + C 2 e 

λ2 t , (28) 
NRAS 533, 1233–1250 (2024) 
here the exponents can be determined by the characteristic equa-
ion to be 

1 = 

1 

r 2 

√ 

2 Gm •r 
(

1 − 4 Gm •
rc 2 

)

2 = − 1 

r 2 

√ 

2 Gm •r 
(

1 − 4 Gm •
rc 2 

)
, (29) 

nd 

 1 = C 2 = 

ξ r (0) 

2 
(30) 

re the constants (determined by the same initial conditions, as
efore). These solutions contains two exponential functions; one
hrinking and the other one expanding at the same pace. Obviously,
or large times (i.e. large r ), the growing exponential will dominate
nd the geodesics will deviate, as we saw in the numerical calcula-
ions, e.g. Fig. 17 . This was indeed expected since we are not taking
nto account the hydrodynamics of the problem because we do not
eed it for the short time-scales of interest. Therefore, this solution,
lthough mathematically correct, is physically irrele v ant. 

In more interesting (shorter) time-scales, as the star (and hence
he dust particles) is getting closer to the periapsis distance of the

BH, both terms will contribute. One exponent will tend to bring
loser together the test particles and the other one to increase their
istance. To ponder how these two concurring exponents affect the
lobal evolution of the two geodesics, we introduce a ‘half-life’ time-
cale, a characteristic time-scale for an exponent to dominate over
he other, 

 HL = 

1 

λ1 
= 

1 

| λ2 | . (31) 

his time-scale is calculated to be 

 HL = r 2 
[

2 Gm •r 
(

1 − 4 Gm •
r 

c 2 
)]−1 / 2 

∝ r 3 / 2 , (32) 

hich means that the time-scale of the growing exponential to
ominate the shrinking one grows with r 3 / 2 . As a result, the solutions
an be expressed as 

˜ r ∼ ξ r (0) 

2 

[
exp 

(
t 

r 3 / 2 

)
+ exp 

(
− t 

r 3 / 2 

)]
. (33) 

f course, as the particles travel in a parabolic orbit, they initially
ome close to the MBH ( r drops o v er time until they reach periapsis),
nd then they go away from it ( r grows o v er time after the y leav e
eriapsis). This effect is captured by the initial growth of the ‘half-
ife’ time, which is followed by a rapid shrinkage, as illustrated
n Fig. 20 . As a result, as the particles come close to periapsis,
he geodesics converge (the closer they come to the MBH, the
maller the distance between them). At later times, and as we
iscussed previously, the dust particles will start to deviate in their
eodesics, but this effect is not physical. What matters is the effect
n shorter time-scales as the star is approaching periapsis, because
he convergence of geodesics, when generalised to a full star, imply
he building up of a core that will withstand the tidal forces of the
rocess and survive the disruption, as we find in the hydrodynamical
imulations. We note that, although in our configuration the star
nitially is in the plane of the orbit, in a more general case in
hich θ and θ̇ do not vanish, the result remains qualitatively the

ame, as we are working from the point of view of a comoving 
bserver. 
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Figure 20. Schematic illustration of the ‘half-life’ time-scale, which grows 
as the star approaches the MBH, reaching a maximum at pericentre. Later, 
it drops as the star mo v es a way from it. During the first half, the geodesics 
converge, leading to the buildup of a central core. The closer the star comes 
to the MBH the stronger this effect. During the second half, as the star is 
mo ving a way from the MBH, the geodesics div erge, but this re gime is not 
rele v ant, as explained in the main body of the text. 
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 C O N C L U S I O N S  

n this work, we have addressed the problem of TDEs being less
uminous than theoretically expected in the accretion disc model. We 
un a set of Newtonian SPH simulations of an unbound star of one
olar mass and a MBH of mass 10 6 M � with penetration parameters
anging from 1.64 to 12.05. We re-do the simulations with exactly 
he same β parameters and initial conditions, but taking into account 
elati vistic (post-Ne wtonian) corrections. For this, we consider two 
ifferent sets of simulations: one that only includes the first correction
o periapsis shift in the equations of motion and another that 
dditionally takes into account the spin-orbit coupling correction 
p to next-to-lowest order. For β values starting at β � 2 . 25, all
elativistic simulations feature a surviving core of the original star. 
he Newtonian simulations, however, do not. Only the lowest value 
f β = 1 . 64 in the Newtonian case displays a core that does not last
ong enough to be bound to the original star. As a consequence, the
allback rates are lower in the corresponding relativistic cases, and 
ence the luminosity is also lower. The deeper the TDE, the bigger
he difference in luminosity between the Newtonian and relativistic 
imulations. The effect of the spin only plays an important role, as
 xpected, for e xtremely deep penetration f actors. This w as also noted
y the work of Gafton & Rosswog ( 2019 ), who find that precession
eads to debris configurations that are absent in the Newtonian 
ases. 

Moreo v er, in the relativistic cases, the energy distribution is more
pread out, so that in each specific energy bin there is less matter.
ence, the fall back rate in every time-step is lower; d M/ d t is closely

elated to d M/ d E, with E the specific energy relative to the MBH.
his can be seen in, e.g. fig. 3 of Evans & Kochanek ( 1989 ) and

he work of Ryu et al. ( 2020a , 2020b ), which show that TDEs in the
elativistic case have an energy distribution with significant wings, 
s well as fig. 2 of Ryu et al. ( 2020c , 2020d ) for a full disruption. If
 is wider, d M/ d E will be smaller and, thus, d M/ d t as well. 
We also study the opening of the debris in the relativistic case

nd find that the spin allows it to leave the initial plane of the orbit.
he probability of debris from the gas, which has been confined
ithin the plane, colliding with itself or with parts of the star is high.
s the debris follows different ballistic trajectories, the different 

ractions of the star, both on their way to the apocentre and those that
ave been left behind, may eventually interact, producing energetic 
ursts. 

The analysis has been primarily addressed with SPH simulations, 
omplemented by a dynamical numerical toy model of test particles. 
or this, we examine the behaviour of geodesics in the context of

est particles of a star approaching a black hole, neglecting the role
f hydrodynamics, i.e. a dust star. We e v aluate the distance between
he geodesics of these test particles with a precise dynamical code,
RChain, which features post-Newtonian corrections as the ones we 
ave implemented in the hydrodynamical code, since the scheme is 
lso based on the work of Kupi et al. ( 2006 ). This exercise is useful
ecause we can neglect the role of the hydrodynamics in the regime in
hich the relativistic corrections are important, i.e. during the periap- 

is passage. The idea is that the time-scale in which hydrodynamics
lays a role is longer than the time-scale during which relativity
lays a role. Hence, the results are to be interpreted only during
he periapsis passage. The trajectories of the particles represent the 
idal deformation experienced by the star as it approaches the black
ole. We find that this distance decreases in the relativistic case, in
articular in the one with spin, as the star gets closer to the black
ole, indicating that the star is being stretched by the tidal forces.
his stretching effect is a key factor in the tidal disruption of the star.

t is important to note that we find that this distance remains finite,
ndicating that the star does not get completely disrupted but retains
 core. Finally, we investigate these results analytically using the 
elativistic equation of geodesic deviation and confirm the numerical 
ndings, i.e. different parts of the star experience a compression 
uring periapsis passage, which is responsible for the building up of
 denser core that survives the disruption, contrary to the Newtonian 
alculations. 

Our results suggest that in Nature TDEs must have deeper penetra-
ion parameters than previously thought to explain the observations. 
hese orbits naturally lead to the consequence of a reduced observed

uminosity regardless of the accretion disc, simply due to the fact
hat relativity allows a part of the star to survive the disruption. 
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