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Abstract: Cybersecurity threats, particularly those involving lateral movement within networks, pose
significant risks to critical infrastructures such as Microsoft Active Directory. This study addresses the
need for effective defense mechanisms that minimize network disruption while preventing attackers
from reaching key assets. Modeling Active Directory networks as a graph in which the nodes
represent the network components and the edges represent the logical interactions between them, we
use centrality metrics to derive the impact of hardening nodes in terms of constraining the progression
of attacks. We propose using Unsupervised Learning techniques, specifically density-based clustering
algorithms, to identify those nodes given the information provided by their metrics. Our approach
includes simulating attack paths using a snowball model, enabling us to analytically evaluate the
impact of hardening on delaying Domain Administration compromise. We tested our methodology
on both real and synthetic Active Directory graphs, demonstrating that it can significantly slow down
the propagation of threats from reaching the Domain Administration across the studied scenarios.
Additionally, we explore the potential of these techniques to enable flexible selection of the number of
nodes to secure. Our findings suggest that the proposed methods significantly enhance the resilience
of Active Directory environments against targeted cyber-attacks.

Keywords: cybersecurity; lateral movement; threat mitigation; unsupervised learning; attack graphs;
active directory; hardening placement

1. Introduction

The digital security landscape is increasingly threatened by sophisticated attackers
who navigate and manipulate enterprise networks to compromise critical assets. In this
context, preventing or significantly impeding lateral movement within networks is a
crucial defense strategy for cybersecurity professionals. The goal is to limit the reach
of such incursions and slow down adversaries as they attempt to breach the targeted
infrastructure. This task is particularly challenging in complex network environments,
where maintaining a balance between effective security protocols and optimal network
performance is essential.

Networks incorporating Microsoft Active Directory (AD) are especially vulnerable to
these challenges. AD, predominantly used in Windows-based environments to manage
user permissions and resources, is a prime target for cybercriminals due to its central role
in network administration [1]. A breach in AD infrastructure can lead to severe disruptions,
as evidenced by several high-profile cyber incidents in recent years.

Examples include operations by the self-named Ransomware as a Service (RaaS)
group, Black Basta, between 2022 and 2024, which compromised over 500 organizations.
They exploited AD environments to perform domain enumeration and expand their attack
surface within compromised networks. Another recent case is the ransomware attack on
Ascension Health by the Akira group in May 2024, disrupting critical healthcare operations
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across the United States. These incidents underscore the significance of such threats that can
compromise AD, as well as the serious consequences that follow. Both of these threats have
recently been highlighted by the U.S. Cybersecurity and Infrastructure Security Agency
(CISA) in their #StopRansomware communications series [2,3].

Given this context, there is an urgent need for innovative defense mechanisms that are
both effective and minimally disruptive to network performance. Our research proposes
the use of Unsupervised Learning (UL) techniques, specifically density-based clustering
algorithms based on centrality metrics, to enhance the security of AD infrastructures. This
approach leverages concepts from graph theory to model the logical architectures that
govern permissions and trusts in these environments, as well as from epidemiological
models to simulate threat propagation within them [4].

As shown in Figure 1, our proposed methodology utilizes graph-based models of
AD infrastructure, where network actors (computers, users, groups, domains, etc.) are
represented as nodes connected by edges that denote different relationships between them.

We model the progression of attackers from their initial access point to critical organi-
zational assets using an Attack-Path-Based (APB) approach [5]. This involves simulating a
snowball attack [6,7], where attackers advance by chaining credentials and permissions
from the network’s entry point towards their targets, progressively compromising more AD
components. In network graph terms, attackers compromise more nodes as they traverse
the connecting edges. The resulting paths from the network’s periphery to its central critical
elements form the attack paths, which are the focus of this research.

MemberOf

HasSession CanRDP

GenericAll

WriteOwner

GenericWrite

MemberOf

AdminTo

ForceChange

Password

Figure 1. Example of an AD graph model illustrating some typical relationships between net-
work actors.

We apply centrality metrics to assess the strategic importance of each node in potential
attack paths to domain management. By employing unsupervised density-based clustering
on these metrics, we identify and prioritize critical points where hardening (i.e., applying
safeguards) can significantly mitigate the risk of lateral movement, thus protecting the
organization’s critical assets while minimizing operational disruption.

This strategic immunization approach mimics epidemiological interventions, targeting
nodes whose security enhancements yield significant network-wide benefits. Through
extensive simulations of potential attack scenarios, we assess the effectiveness of our
immunization strategies in curbing the success of cyber threats. These scenarios include
evaluations on both a real network graph and three more generated using various widely
referenced tools (BadBlood, BloodHoundDBCreator, AD Simulator).
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In parallel, we evaluate two well-known clustering algorithms (DBSCAN [8] and
HDBSCAN-GLOSH [9]) to determine their respective benefits based on the nature of the
analyzed networks.

We adopt a Time to Compromise (TTC)-based evaluation framework [10], which
highlights the impact of our measures on the time it takes for attackers to compromise the
network, specifically targeting the Domain Administration (DA). In summary, the novel
contributions of our research that advance this goal are as follows:

• Network graph modeling is applied to AD infrastructures, focusing on generating
subgraphs that capture the dynamics of attack paths that lateral-movement-based
threats might follow from the network periphery to the DA. This approach optimizes
the subsequent application of UL techniques. Unlike other studies, our research
analyzes four varied AD graphs, including one from a real network infrastructure.
Additionally, related studies limit their scope to a few specific types of edges in the
AD attack graph (typically MemberOf, AdminTo, and HasSession), whereas our model
encompasses all possible enumerated edges.

• UL techniques combined with centrality metrics commonly applied in epidemiology
are used to identify network elements whose hardening can delay the time it takes
for threats to reach the DA in the AD, thereby reducing the likelihood of full network
compromise. In contrast to most related studies, we do not consider these metrics
in isolation but instead employ clustering to detect global anomalies throughout the
attack graph.

• HDBSCAN-GLOSH is analyzed and evaluated as a method for identifying candidate
network points for hardening, which does not depend on clustering groupings. This
includes a comparative accuracy analysis against DBSCAN for the same purpose. This
method enables the flexible determination and prioritization of the desired number of
candidates based on a continuous scoring system.

• Inspired by epidemiology, we assess the impact of hardening identified network points
through a tailored compartmental Susceptible–Infected (SI) propagation model, which
realistically simulates all possible lateral movement dynamics from the network’s
periphery (where threats typically originate) to the DA. Our model stands out by
considering multidirectional propagation, allowing us to analyze the global impact of
intrusions on the attack graph without requiring the attacker to iteratively choose a
specific path.

• Yielding on the stochastic nature of the aforementioned propagation model, we con-
struct a Continuous-Time Markov Chain (CTMC) to reflect, probabilistically, the
impact of countermeasures on slowing down attack progress (i.e., a higher success
rate per edge decreases the time it takes for an attacker to traverse it).

• We address the mitigation of targeted threats in AD environments as a node-hardening–
placement problem rather than one of node-blocking or edge-blocking. We achieve
this by modeling hardening a node as a delay factor α on the average time required
to compromise it rather than completely preventing the attacker from being able
to achieve it (i.e., α = ∞). This enables us to propose a set of nodes for hardening
(node budget) that are not restricted to distinct paths towards the DA but are instead
distributed across the entire graph.

• Regarding the temporal nature of our proposed model, we define a novel TTC-based
metric that quantifies the delay imposed on attackers reaching the DA after applying
countermeasures. This is measured throughout extensive simulations as the Median
Time to Compromise DA (MTCDA).

Our approach aims to enhance the resilience of AD environments by providing a
defense mechanism primarily intended for rapid and effective protection following the
detection or suspicion of an ongoing intrusion. Beyond this, our ultimate goal is to offer
a scalable framework for securing all types of complex and hierarchical network infras-
tructures against lateral movement in targeted cyber-attacks. Our experimental results
demonstrate that the use of UL-based hardening–placement techniques can delay threats
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by 2 to 7 times in reaching the central DA of the AD, depending on the analyzed graph and
the delay factor α associated with the application of countermeasures. Additionally, the
findings suggest that depending on the topology of the graphs, in most cases, comparable
or even superior benefits can be obtained by employing techniques that provide greater
flexibility in selecting the number of nodes to harden.

This paper is structured as follows: Section 2 discusses the most relevant works
related to our research. Section 3 presents the system model, including how we model
lateral movement processes on AD graphs, the graphs we analyze, and the considerations
regarding the origin and targets of the threats we study. Section 4 introduces the UL-based
algorithms that underpin our proposed node identification strategies for threat mitigation,
the centrality metrics on which they are applied, and the subgraphs on which these metrics
are calculated. Section 5 presents our study’s results. Finally, Section 6 summarizes our
contributions and outlines further research avenues.

2. Related Work

Recent advancements in cybersecurity have leveraged graph-based models, Machine
Learning (ML), and Reinforcement Learning (RL) to enhance threat detection and mitigation
in multiple environments. Modeling networks as graphs to study lateral movement has
been extensively utilized in previous research [4,11,12]. These models help visualize and
analyze the complex relationships within a network, allowing for effective detection and
mitigation of lateral movement threats. For instance, Ref. [13] employed graph theory to
propose a centrality-based methodology for analyzing and reducing potential attack vectors
in Microsoft cloud environments. Unlike our approach, their proposal focuses exclusively
on Microsoft Azure capabilities and uses centrality metrics isolated from each other. In [14],
a methodology to build a threat model based on multilayer graphs is proposed, alongside
a set of techniques to reconfigure the network in order to mitigate the risk over assets.

At the same time, ML and RL have emerged as powerful tools for enhancing cyberse-
curity and network resilience. Ref. [15] developed ML-driven anomaly detection systems
to protect against zero-day attacks, and Ref. [16] explored deep learning techniques for
threat detection and anomaly analysis. Refs. [17,18] proposed the use of Graph Neural Net-
works (GNNs) for detecting Structural Hole Spanners (SHS) in generic dynamic networks.
These studies highlight the crucial role of advanced learning algorithms in improving the
detection and response capabilities against sophisticated cyber threats.

Deepening in graph-based models, the concept of APB analysis is fundamental to
understanding and mitigating lateral movement in networks. Ref. [5] introduced APB
analysis, where network relationships are viewed as “hops” forming attack paths within a
graph. Ref. [7] developed Heat-ray, a system combining ML and combinatorial optimiza-
tion to reduce the potential of identity snowball attacks within large networks. Ref. [19]
further contributed to this field by modeling hops between machines in parallel graphs,
utilizing centrality metrics to rank nodes for immunization (once again, unlike us, using
these metrics in isolation from one another).

Building on the concept of immunization, epidemiological approaches have been
adapted from public health to various fields, including cybersecurity, to model and mitigate
the spread of threats. Refs. [20,21] discussed the application of these epidemiological
models in public health, which have also been applied to social networks [22,23] and
financial analysis [24]. The authors of [25] conducted an in-depth study on the dynamics
of epidemiological infection processes in generic networks, leading to the development
of a framework for simulating these processes [26], which enables the evaluation of the
impact of mitigation strategies in real infrastructures. In the area of epidemiology and
cybersecurity, the works of [4,10] stand out by modeling the spread of cyber threats as
analogous to epidemiological infections. Notably, Ref. [4] proposed the use of clustering for
identifying key nodes in lateral-movement-based threats spreading within AD networks.
However, unlike our approach, their methodology did not experimentally employ a tailored
epidemiological model and relied solely on DBSCAN applied to authentication graphs
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between computers. In [10], the authors further extended these methodologies to whole AD
network graphs, integrating centrality metrics with k-shell decomposition to enhance node
selection for immunization and network reconfiguration. Unlike our current approach,
their proposal focuses on mitigating non-targeted threats (i.e., without a defined target) and
does not explore the use of more flexible node-ranking strategies for hardening–placement,
such as those based on HDBSCAN-GLOSH.

Focusing on the defense against threats in AD attack graphs, several recent works are
relevant to our study, employing both edge-blocking strategies [6,27–31] and node-blocking
strategies [32,33]. Refs. [27–30] primarily focus on using RL-based strategies to generate
attack policies, which are then used to apply Evolutionary Diversity Optimization (EDO)
techniques to identify optimal edge budgets for defense. In contrast, Refs. [6,31] adopt
Fixed-Parameter Tractable (FPT)-based approaches to achieve optimal defense. However,
scalability issues lead them to tightly link their proposals to the ideal characteristics of
AD networks (assuming high tree-likeness and absence of cycles) or resort to GNN-based
heuristics. All of these proposals are inapplicable to the problem we address, as they
focus on identifying edges rather than nodes. Interestingly, although these studies use
probabilistic models as we do, they distinguish between the failure rate, detection rate, and
success rate for each edge, except for the authors of [31]. Similar to this work, and since we
do not tackle threat detection, we focus exclusively on the success rate.

In [32,33], while the focus is indeed on node identification, their approach focuses on
detection via decoy placement rather than threat mitigation. Specifically, Ref. [33] seeks
to ensure intrusion detection by positioning decoys that, within a given budget, cover the
maximum number of shortest paths (SPs) between the DA and a defined set of entry points
to the network. Ref. [32] extends this approach by adopting a temporal-based approach,
similar to our methodology (TTC-based), but with the aim of maximizing the time between
threat detection and the attacker reaching the target.

These edge-blocking and node-blocking strategies also differ from our work in their
use of a Stackelberg Game model, where the attacker and defender make iterative decisions
based on each other’s actions. This contrasts with our focus on hardening–placement
strategies, as these approaches rely on blocking strategies, either by removing links (i.e.,
failure rate = 1) or assuming detection as the primary means of mitigation. Additionally,
they limit their scope to a few specific types of edges in the AD attack graph (typically
MemberOf, AdminTo, and HasSession), whereas our model encompasses all possible enu-
merated edges. Finally, none of these studies incorporate real AD attack graphs into their
experiments, further distinguishing our approach.

In conclusion, the integration of graph-based models, ML, RL, and epidemiologi-
cal techniques provides a comprehensive framework for enhancing cybersecurity in AD
environments. The synergy between these approaches facilitates effective threat detec-
tion, mitigation, and overall network security, underscoring the importance of continuous
advancements and interdisciplinary methodologies in this critical field.

3. System Model

Our proposal relies on a network model using directed graphs designed to efficiently
and accessibly aggregate all information regarding an organization’s various assets and
the interdependencies among them. We specifically target Microsoft AD, the predominant
tool for network management at the enterprise or organizational level [34]. During our
research, we evaluated our proposal using four distinct AD graphs—one derived from a real,
anonymized network infrastructure (referred to as RS) and three generated using different
synthetic tools: BadBlood https://github.com/davidprowe/BadBlood (accessed on 1
January 2024), AD Simulator https://github.com/nicolas-carolo/adsimulator (accessed
on 1 January 2024), and BloodHound DB Creator https://github.com/BloodHoundAD/
BloodHound-Tools/tree/master/DBCreator (accessed on 1 January 2024) (referred to as
BB, AS, and BH, respectively). RS and BB graphs were collected using SharpHound
https://github.com/BloodHoundAD/SharpHound (accessed on 1 January 2024). AD
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Simulator and BloodHound DB Creator are widely used in AD security research [27–
30,32,33] due to the lack of studies using real graphs because of their sensitive data. To
enrich our analysis, we also incorporate BadBlood, a well-regarded tool within the AD
community. Unlike typical synthetic graph generators, it automates the deployment of
a whole simulated AD domain, which we subsequently enumerate as a real graph. As
we will discuss later, the structure of the BB graph closely resembles that of the RS graph,
especially concerning the low exposure of the DA. See Table 1 for detailed information on
the nodes and edges of all these graphs.

Table 1. An overview of node and edge categories in the studied graphs based on AD elements. ∗AD
Simulator generated a graph with four domains: one primary and three empty ones. All analyses in
this paper focus solely on the primary domain.

Graph RS BB AS BH

Node Type

User 102,589 99,957 10,004 99,957
Computer 3236 3236 341 3237
Group/Container 984 1026 154 1005
OU 399 223 41 21
GPO 159 2 18 22
Domain 1 1 4 ∗ 1

107,368 104,445 10,562 104,243

Edge Type

AddKeyCredentialLink 0 206,382 0 0
AddMember 959 0 3 1
AdminTo 85 5 1467 11,181
AllExtendedRights 734 0 10,070 0
AllowedToDelegate 0 0 64 646
CanPSRemote 0 3 64 0
CanRDP 18 3 64 645
Contains 106,180 104,390 10,386 1021
DCSync 0 11 0 0
ExecuteDCOM 0 2 64 646
ForceChangePassword 204,728 0 3 1
GenericAll 535,998 598,000 31,416 104,191
GenericWrite 1471 104,219 10,528 2
GetChanges 4 1 3 2
GetChangesAll 2 1 2 3
GetChangesInFilteredSet 0 1 0 0
GpLink 198 2 33 42
HasSession 449 0 15,086 99,827
MemberOf 636,600 118,128 125,419 453,667
Owns 105,936 158 10,527 0
ReadLAPSPassword 0 0 2 0
SQLAdmin 1 0 0 0
TrustedBy 0 0 4 0
WriteDACL 108,271 0 10,636 4
WriteOwner 53 261 10,632 4

1,701,687 1,131,567 236,473 671,883

Our primary objective is to assess the risk exposure of critical network elements. One
prevalent risk factor is lateral movement, which enables attackers to compromise one or
more low-value network elements and subsequently navigate through the network by
exploiting multiple security vulnerabilities until critical assets are reached. To represent
this behavior in our network graphs, we model a snowball attack [6,7] on AD. This entails
the attacker’s initial access to various elements of the AD network (e.g., users, computers)
and the progressive expansion of the attack, element by element, through the chained
use of stolen credentials and the exploitation of existing privileges among the network’s
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entities. For cybersecurity purposes, this type of attack involving the spread of malware is
categorized as a lateral-movement-based attack.

3.1. Lateral Movement through Active Directory as an Epidemiological Process

Most proposals related to AD defense cited in Section 2 utilize a Stackelberg Game
model. In this framework, the attacker, starting from a defined set of entry points, makes
decisions based on the defensive strategy while considering various conditions (such as
prior knowledge of the network, the risk of detection, the ability to reattempt exploitation
of edges, etc.).

In contrast, our approach evaluates hardening–placement in a much broader and
demanding context. We simulate an attacker who moves indiscriminately throughout
the network, similar to an epidemiological process, where any prior knowledge of the
network structure is irrelevant and any technique for exploiting an edge in the attack graph
is applicable. This model enables us to accurately capture all possible lateral-movement-
based attack dynamics on AD.

We utilize an SI epidemiological model [25], which is extensively employed across var-
ious research fields, including cybersecurity. We model lateral movement as a probabilistic
infection mechanism within a compartmental framework. Each simulation begins with a
single initially infected node and concludes once the DA is compromised. This approach al-
lows us to evaluate the effectiveness of threat mitigation by strategically hardening specific
nodes, thereby slowing the progression toward the DA takeover.

We utilize an SI model rather than a Susceptible–Infected–Recovered (SIR) model, as
the SI model allows for both preventive and reactive countermeasures. This is because
the countermeasures considered in our research can be applied preventively or reactively
without altering the dynamics of the SI model. These countermeasures influence the
infection transmission rate between nodes in the graph rather than the state transitions
(i.e., recovery) of already infected nodes. Here, S represents the set of susceptible nodes
and I the infected nodes. At any time t, S(t) and I(t) denote their respective counts. The
infection rate is β, with N being the total number of nodes. The dynamics of infection are
captured by the following equations:

dS
dt

= −βI(t)
S(t)
N

;
dI
dt

= βI(t)
S(t)
N

(1)

This model assumes nodes transition from susceptible to infected. The infection rate
β is expressed as τN, where τ is the transmission rate per edge. Thus, the equation for
dI
dt becomes:

dI
dt

= τ I(t)(N − I(t)) (2)

The success rate per edge inherent in node-blocking and edge-blocking models is
analogous to this transmission rate τ, carrying over its meaning to the hardening–placement
problem we address. This factor allows us to model the difficulty an attacker faces in
compromising a specific relationship in the graph. The higher the transmission rate of
an edge, the shorter the expected time for the attacker to compromise it. The impact of
hardening on this transmission rate will be discussed further in Section 5.1.

To incorporate randomness, we model the process as a CTMC using Kolmogorov
equations to describe the probability of different numbers of infected nodes over time.
Building on this model, we created a tailored Discrete Event Simulator (DES) to study
the infection process based on the models implemented in [26]. The simulation begins
with an initially infected node located as far as possible from the DA and proceeds to
compromise it. Initially, all nodes are marked as susceptible, and infection events for the
initial compromised node are scheduled at t = 0. The simulator processes the event queue
iteratively, with infection events governed by an exponentially distributed (X ∼ Exp(λ))
time interval ∆t, determined by the rate λ = τ−1. At each iteration of the simulator at a
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given time t, the node(s) scheduled for infection will transition to an infected state (i.e.,
S → I). New infection events will then be queued for all newly reachable nodes from those
just infected, provided they remain susceptible. Notably, if a node has an infection event
scheduled in the queue, but a new event for the same node is queued for an earlier time,
the original event will be replaced by the incoming one.

This behavior of our DES is key to understanding the multidirectional nature of the
attacker we model. It allows us to assess the effectiveness of our approach under attack
conditions that go far beyond an attacker simply choosing the most optimal available
path into the network while remaining undetected. Consider, for instance, an Advanced
Persistent Threat (APT) whose presence in the network is suspected or even detected, but
the full extent of the intrusion remains unknown.

Our main goal would be to avoid network collapse by minimizing the time between
threat detection and complete remediation or, conversely, by delaying DA compromise as
long as possible. In this scenario, we would not know from what distance to which the DA
countermeasures should be applied without severely affecting the network’s functionality.
Additionally, the attacker might pivot through suboptimal paths to ensure persistence.
Therefore, a hardening–placement strategy that proposes nodes distributed throughout
the network (regardless of their distance from the DA, and even including those along the
same attack paths) by prioritizing hardening over blocking (i.e., reinforcing paths rather
than splitting them) emerges as a critical defense mechanism since maximizes network
coverage by securing the largest possible segment [35,36].

Our DES is designed to evaluate different hardening–placement strategies by sim-
ulating a multidirectional attacker as described, subjecting them to all potential lateral
movement dynamics, including the aforementioned scenarios.

3.2. Domain Administration as the Target of the Attackers

While our previous research focused on the analysis of lateral movement spreading
horizontally in AD networks [10], our current contribution aims to conduct an analogous
analysis regarding the vertical spreading of attackers (i.e., privilege escalation). But what
does this horizontal–vertical duality mean in terms of lateral movement propagation?

To understand this differentiation, it is essential to recall the network model we are
working with. In this model, we find numerous elements of the organization’s network,
as well as all the trust relationships, privilege grants, and memberships among them. It is
no secret that the ultimate goal of attackers is to compromise the element with the highest
functional capacity over the network (i.e., the highest level of privilege). Since we are
dealing with environments orchestrated by AD, this critical asset is the main server or
Domain Controller (DC), which is responsible for the overall DA. Based on the data model
inherent to the graphs we analyze, we observe that, in all cases, administrative users or
groups, as well as the computer acting as DC (if enumerated in the graph), ultimately have
a direct outgoing link to the Domain-typed node. From now on, we will refer to this single
node as the DA. Notice that, for simplicity, our study does not consider multi-domain AD
networks.

Furthermore, keeping in mind Microsoft’s privilege grant pyramid for AD-based
environments (AD Tier Model), we observe a well-defined vertical hierarchy with several
levels or tiers. According to this hierarchy, the DC and other assets capable of compromising
the entire network are located in tier 0. These critical assets are logically the least numerous.
Conversely, non-administrator user accounts and common workstations are the most
numerous elements at the base of this pyramid (i.e., tier 2). Their lower value within the
organization typically confers a lower degree of cybersecurity hardening. When considering
that these elements are often operated by non-IT users or individuals without security
knowledge, it becomes evident that one or more elements from this tier are likely to be
initially compromised during an attack. This is usually where lateral movement attempts
to progress from. In real-world scenarios, this often happens through social engineering
techniques, phishing or spear phishing, mail spoofing, etc.
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With this hierarchical pyramid in mind, it becomes much easier to understand what
we mean by horizontal or vertical progression of lateral movement. When discussing
points in the network that, if compromised, enable attackers to access a broad segment of
the network (regardless of the value or privilege level of those exposed elements), we refer
to the horizontal expansion of the lateral movement. Conversely, when discussing points
in the network that allow attackers to access higher privilege elements, whether few or
many, we refer to vertical progression. This is analogous to malware spreading across an
AD environment horizontally along the general privilege pyramid or escalating from the
bottom to the top.

In [4], the author explains how the spread of cyberattacks is fundamentally due to
three types of nodes in the affected organization, based on the role they play in lateral
movement progression: spreaders, gatekeepers, and escalators. Considering the network
as a directed graph to model a snowball attack, spreaders are nodes that allow access to
many others, i.e., horizontal propagation. On the other hand, we have nodes involved in
the vertical propagation of threats, known as escalators and gatekeepers.

Escalators are nodes that enable access to higher privilege nodes, i.e., performing
cross-tier logins. A clear example would be the exposure of an administrator’s credentials
(tier 0 or 1) on a machine regularly used by non-administrator accounts (tier 2). This could
occur due to the residual presence of privileged credentials from a previous session, such
as one initiated for maintenance tasks. In the attack graph, this scenario would manifest as
a HasSession edge between the two nodes, allowing an attacker, after compromising the
machine, to retrieve those credentials and, therefore, escalate.

Gatekeepers, on the other hand, are topologically close nodes or immediate ancestors
of the escalators within the attack graph. This means that an attacker must pass through
them to reach the escalators. Their role is specifically defined to designate them as detection
agents where monitoring measures can be applied. However, since our work focuses on a
post-detection scenario (or one where the risk of detection does not influence the attacker’s
behavior), we can operationally consider them as escalators since they also contribute
indirectly to the attacker’s vertical progression through the network.

Our objective is to identify this latter group (escalators and gatekeepers) related to the
attackers’ progression from the most mundane elements in tier 2 to the top of the pyramid
in tier 0, the DA.

3.3. Identifying Entry Points to the Network

In AD environments, attackers typically aim to compromise the DA. To model a
directional snowball attack, we must consider not only the targets of intrusions but also
their origins. As previously mentioned, attackers usually gain initial access to the network
by compromising one or more non-administrative elements with low privilege levels and,
consequently, low value to the organization.

Following this premise, to evaluate the effects of threat mitigation in AD during our
research, we define the set of entry points P as the network elements (nodes in the network
graph) from which the attacker begins lateral movement during simulations. Inspired by
existing research [6,31], we select these nodes based on their distance from the DA in the
network graph. These nodes must satisfy the following conditions:

• Each entry point p ∈ P must be part of the node set V in the analyzed graph G.
• Each entry point p ∈ P must have at least one path leading to the DA (i.e., p → DA).
• The SP from any p to the DA (SP(p, DA)) must have the maximum path length (i.e.,

the number of hops) among all nodes v ∈ V in the graph G that have a path to the DA.
Note that nodes v without any path to the DA (i.e., v ↛ DA) are excluded from this
calculation.

Considering these conditions, we formally define our selection of the entry points for
attackers into the network as follows:

P = {p ∈ V | (p → DA) ∧ SP(p, DA) = max({SP(v, DA) | v ∈ V ∧ (v → DA)})} (3)
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Additionally, we define the set R of non-reaching nodes as those nodes from which
there is no path to the DA in G.

R = {r ∈ V | (r ↛ DA)} (4)

4. Unsupervised Learning for Active Directory Threat Mitigation
4.1. Domain Reachability Graphs

In the literature on attack graph studies, both generally and specifically for AD,
attack graphs typically represent the paths an attacker might traverse to achieve their
objectives, given one or more initial starting points [6]. In our study, we begin with
network graphs representing all interactions related to privilege grants and memberships
among network elements indiscriminately. We use the previously defined entry points P
as access points for attackers, and the node representing the DA as their ultimate target.
The subgraph extracted from the original network graph—considering the starting point,
tentative attack destination, and the routes in between—can already be considered an attack
graph. However, the method for extracting this attack graph, as well as the volume of data
or routes it contains, is not arbitrary.

Initially, we considered composing an attack graph that strictly contains all
SP(p ∈ P → DA). This graph would exhibit a Directed Acyclic Graph (DAG) nature, ensur-
ing that all optimal paths an attacker would take to achieve their goal are reflected. If we
also ensure a tree-like structure by guaranteeing only one path i → j between each pair
of vertices (i, j), the resulting attack graph could accurately reflect the attack dynamics
leading attackers optimally to the DA. But what should be the nature of the attack graph?

To answer this question, we must consider the analytical purpose of our desired attack
graph. Our goal is to analyze the centrality of the attack graph nodes via UL (specifically
using density-based clustering algorithms) to determine nodes where applying security
safeguards would drastically reduce attackers’ success chances. Therefore, referencing an
attack graph that only reflects the optimal route from each node p to the DA ensures threat
mitigation for those specific routes, without considering all other possible routes. These
include other routes of equal length if we have taken only one SP(p → DA) between each
pair (p, DA), as well as longer routes (e.g., only one hop longer), even if we calculated all
SP(p → DA) of equal length between each pair. Additionally, the tree-like nature of the
optimal SP-based attack graph conceals another possibility for attackers during analysis:
the ease with which attackers pivot from one route to another.

Thus, we conclude that we are interested in the attack graph capturing the maximum
number of possible routes and their interactions without cycles. Logically, this graph
would contain not only the SPs but also all paths mediating between P and the DA (i.e.,
{(p → DA) | p ∈ P, (p → DA) ⊆ G}). The granularity of the solution we seek will depend
on this. If we aim to mitigate the most critical network routes effectively and in isolation,
the attack graph will contain only one or a subset of SPs between each pair (p, DA). If we
seek a solution to apply safeguards in a general way throughout the network, the subset
of SPs will grow (first taking, one by one, all the SPs of equal length, then starting to take,
one by one, the shorter ones of greater length than the first ones, and so on) until finally
resulting in the graph of all paths between each pair (p, DA).

Unfortunately, calculating the attack graph based on all routes or a subset of SPs
between P and the DA is computationally impractical. Therefore, our proposed approach
introduces an attack graph we call the Domain Reachability Graph (DRG). Our interest is
to cover as much of the network as possible when determining where to apply safeguards
to evaluate our proposal under the most demanding scenario. Thus, the DRG theoretically
seeks to approximate that graph encompassing all paths of any length between each pair (p,
DA) by finding the graph that contains all nodes involved in at least one route to the DA.

Recalling the previously defined set R as non-reaching nodes, the graph we seek
contains all nodes v ∈ V in the network graph G that are not part of the set R. Additionally,
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the set E of edges in the original graph is reduced to E′, containing only the edges mediating
between nodes also included in the resulting DRG. Thus:

DRG(V′, E′) :
{

V′ = {v ∈ V | v /∈ R}
E′ = {(u, v) ∈ E | u ∈ V′ ∧ v ∈ V′} (5)

Finally, it is worth noting that this DRG generation mechanism does not exempt us
from encountering cycles among different routes to the DA. While this might compromise
the precision of the subsequent centrality-based analysis, we must consider the inherent
tree-like nature of logical AD graphs like those we work with [6,31]. Since we generate the
DRG through a mere node elimination process, the original graph’s tree-like nature will
remain. This property ensures the minimal presence of cycles along the routes between
different node pairs in the graph and, thus, the impact of ignoring them when calculating
node centrality. Notably, given the characteristics of the simulation process carried out to
evaluate the proposal’s effectiveness, detailed in Section 5.1, the presence of cycles in the
graph will not affect the obtained results.

4.2. Centrality Analysis

Below, we present the centrality metrics calculated prior to applying UL-based tech-
niques to them. We draw on multiple previous works, particularly those focused on
cybersecurity and attack graphs [4,10,13,19], to select a set of six widely used centrality
metrics that, in our view, provide valuable insights from sufficiently orthogonal perspec-
tives when evaluating the role nodes play in the overall connectivity of the aforementioned
DRGs. We decided to use a set of well-known metrics that, although widely used in the
security domain, are as general-purpose as possible. A deeper exploration remains to assess
the performance of more specialized metrics tailored to specific contexts.

It is worth noting that [4,10] have already demonstrated the effectiveness of using
these metrics, among others, to identify key nodes relevant to lateral movement on AD
through the application of density-based clustering. Ref. [13] also addresses AD security
using some of the metrics we propose. Additionally, Ref. [19] highlights the benefits of
adapting the calculation of these metrics to specific attack subgraphs when dealing with
threats targeting a defined objective, rather than considering the entire network. In our
case, we achieve this by calculating these metrics on our DRGs. Let V be the set of nodes,
and E the set of edges of a given DRG:

• The betweenness centrality Bi of a node i is a measure of the node’s influence over the
flow of information in the network:

Bi = ∑
a ̸=i ̸=b

a ̸=b

δab(i)
δab

, (6)

Here, δab denotes the total number of SPs from node a to node b, and δab(i) repre-
sents the count of those paths that pass through node i, normalized by dividing by
(V − 1)(V − 2).

• Closeness centrality Ci for a node i indicates how close the node is to all other nodes
in the network:

Ci = ∑
j ̸=i

1
dij

, (7)

where dij represents the SP distance between i and j. If no path exists, dij → ∞. The
values are normalized by dividing by (V − 1).

• The eigenvector centrality ei of a node i is determined by the principal eigenvector of
the adjacency matrix:

Me = µe, (8)
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where M is the adjacency matrix, and µ is the largest eigenvalue. Normalization is
achieved by dividing by the Euclidean norm ∥e∥2:

∥e∥2 =

√√√√ V

∑
i=1

e2
i . (9)

• Katz centrality zi for node i incorporates both the number and the quality of connections:

zi = βMyi + γ, (10)

Here, M is the adjacency matrix, and γ is a vector representing initial centrality values,
usually set to 1. The attenuation factor β adjusts the influence of nearby versus distant
nodes and must be less than the inverse of the largest eigenvalue of M. Normalization
uses the Euclidean norm ∥y∥2.

• The degree centrality gi of a node i is its degree, defined as:

gi = |{(i, j) ∈ E : i ̸= j}|+ |{(j, i) ∈ E : i ̸= j}|, (11)

where (i, j) is a directed edge from i to j. Values are normalized by dividing by
2(V − 1).

• The number of descendants Di of node i represents the count of reachable nodes:

Di = |{j ∈ V \ {i} : i → j}|, (12)

Path i → j is calculated using the Breadth First Search (BFS) algorithm [37]. The values
are normalized by dividing by (V − 1).

4.3. Density-Based Clustering Techniques

The use of centrality metrics to evaluate the significance of elements within a network
(i.e., nodes in graph-based models) is a well-established method in both general epidemiol-
ogy [38,39] and cybersecurity research applied to ICT networks [4,10,13,19]. Many of these
studies [13,19,38,39] explore various strategies for achieving this through ranking based
on individual centrality metrics, which often limits the scope of the analysis. Ref. [19]
emphasizes the importance of combining multiple metrics into a unified ranking system
to better prioritize safeguards in attack graphs. However, it stops short of exploring more
advanced methods for effectively aggregating these metrics beyond simple weighting and
combining individual rankings.

We based our proposal on the works in [4,10]. Identifying key nodes whose hardening
can significantly delay an attacker’s progress toward their objectives (i.e., the DA in the
case of an AD attack graph) is feasible through the use of UL-based techniques, specifically
clustering. Ref. [4] introduces a novel approach by applying density-based clustering on
centrality metrics in AD authentication graphs between computers, allowing the aggrega-
tion of information from multiple metrics simultaneously. The proposal is grounded in the
observation that centrality values, especially when considering multiple metrics per node,
tend to show high concentrations in a small subset of nodes. In Section 5.1, we explore
how this phenomenon also occurs in the metrics we calculate. This leads to the idea of
identifying these potentially critical nodes as outliers (i.e., nodes that remain unclustered
after applying density-based clustering) in an n-dimensional metric space. This aligns with
the concept highlighted in [19] (p. 3), “highly ranked hosts are more likely to be used in an
attack”, but offers a more comprehensive perspective centered on identifying global max-
ima within the examined metric space. Our previous work on detecting superspreaders in
non-targeted AD reachability graphs [10], which differs from our current focus on targeted
attacks as explained in Section 3.2 further supports the validity of applying UL techniques
to the problem at hand. Additionally, in this work, we explore performance not only in a
global anomaly detection framework but also in a combined global and local context.
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We have considered two different UL algorithms based on clustering techniques:
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [8] and a variant
of DBSCAN called Hierarchical DBSCAN (HDBSCAN) [40]. Next, we briefly describe both
clustering techniques.

The foundations of DBSCAN are based on the principle that for each node in a
cluster, the neighborhood with radius ϵ must contain at least a minimum number of nodes
minsamples. This is equivalent to stating that the cardinality of the neighborhood must
exceed a certain threshold. Specifically, the concept of a cluster corresponds to the set of all
nodes that are density-reachable from a core node within the cluster. DBSCAN examines
the ϵ-neighborhood of each node in the graph, and if it contains more than minsamples
nodes, a new cluster is formed. It then checks the ϵ-neighborhood of all nodes that have
not yet been processed. In our study, the neighborhood is defined within the 6-dimensional
space determined by the metrics specified in Section 4.2. It is important to note that both ϵ
and minsamples are tunable hyperparameters. Given that our goal is to identify nodes with
atypical centrality as candidates for safeguard application (i.e., outliers in the clustering),
the minsamples parameter will be the one we modify. The higher the desired number of
outliers, the greater the value of the minsamples should be.

On the other hand, HDBSCAN follows Hartigan’s model of density–contour clusters
and is capable of producing a complete clustering hierarchy that encompasses all possible
DBSCAN-like clusterings for an infinite range of density thresholds. From this result, a
simplified cluster tree can be easily extracted using Hartigan’s concept of rigid clusters [41].

The hyperparameters of HDBSCAN are also tunable. In this case, the two main
parameters are minsamples and minclustersize. Once again, adjusting minsamples will
govern the number of outliers resulting from the clustering process, while minclustersize
determines the granularity of the clustering (i.e., the minimum size a cluster must reach to
be recognized as such, rather than being merged with another existing bigger cluster).

Moreover, and crucial to our work, the density-based hierarchy produced by HDB-
SCAN can be utilized for outlier detection using Global–Local Outlier Scores from Hier-
archies (GLOSH) [40]. In our research, we focused on using this algorithm specifically
for outlier detection rather than relying on clustering results in HDBSCAN. Nevertheless,
from now on, we refer to this approach as HDBSCAN-GLOSH, as its execution depends on
HDBSCAN. Its distinctive features are as follows:

• The ability to consider both local and global outliers during detection. This allows
for the identification of anomalous values in the 6-dimensional metrics space both
unidimensionally and multidimensionally.

• The result of outlier detection is independent of the number and size of the resulting
clusters. HDBSCAN-GLOSH thus provides a general scoring for all nodes in the
graph based on their degree of anomaly (i.e., a score indicating how anomalous each
node is).

This second aspect is what specifically motivates us to include HDBSCAN-GLOSH
in our study as a UL-based alternative to DBSCAN. The resulting scoring offers a much
more flexible framework for outlier detection since, when selecting candidate nodes for
hardening, we can choose the desired number of nodes without being constrained by the
number of nodes left unassigned to any cluster after detection. Once a specific node budget
has been determined, this approach also allows for the optimal application or planning of
countermeasures. Within the identified set of nodes, we retain an outlier score that enables
us to rank them based on the priority of action, ensuring efficient resource allocation.

5. Experiments

Below, we detail the outcomes derived from the application of UL analysis on the
DRGs extracted from the different graphs whose results we compared: RS, BB, BH, and
AS (see Table 2). Finally, we present and compare the simulation results obtained after
applying security safeguards based on the findings from this analysis.
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Table 2. A summary of the number of nodes and edges per original graph and its associated DRG.

Graph
Original DRG

#Nodes #Edges #Nodes % #Edges %

RS 107,368 1,701,687 150 0.14% 1001 0.06%
BB 104,445 1,131,567 374 0.36% 3251 0.29%
AS 10,562 236,473 2474 23.42% 49,674 21.01%
BH 104,243 671,883 10,011 9.60% 53,737 8.00%

5.1. Experimental Settings

The first step involves calculating the centrality metrics mentioned in Section 4.2 for
all nodes in each of the DRGs under study. To analyze the obtained values, we refer to
Figure 2. This figure presents the descending progression of values for each metric across
all nodes in each graph. It is important to note that, for better data visualization, the values
shown for each metric are min-max normalized, and the progression of nodes on the X-axis
is logarithmic. We observe that in all graphs, to a greater or lesser extent, a relatively small
subset of nodes exhibits centrality values that significantly deviate from the overall trend
in at least one or more of the calculated metrics.

This distribution of values is precisely what ensures that identifying nodes with
atypical centrality (i.e., outliers in the clustering) will allow us to pinpoint network elements
that play a critical role in network connectivity, as discussed in Section 4.3. Here, we have
to demonstrate that the identified elements play a role, such that, when security safeguards
are applied to them, we achieve a significant impact on the potential intrusions based
on lateral movement, both in terms of delaying the expected time to reach the DA and,
therefore, the risk to which it is subjected.
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Figure 2. The distribution of centrality metrics along the DRG nodes.

Within the six-dimensional space of centrality metrics generated for each graph,
we employed UL methods to identify anomalies. This approach involved the use of
DBSCAN and HDBSCAN-GLOSH algorithms. To simplify the hyperparameter tuning
and considering that we do not seek an excessively large number of candidate nodes for
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safeguard application (relative to the total number of nodes), we varied the possible values
for the minsamples parameter in DBSCAN. For each graph, we selected the value that best
suited our analysis based on the number of candidate nodes identified.

For HDBSCAN, the goal was to perform detection under conditions as similar as
possible to those used in DBSCAN to allow for a fair comparison of the results obtained
from both algorithms. Therefore, we determined the minsamples value analogously to the
method used for DBSCAN in each case. As for the minclustersize parameter, we set it by
default to be equal to the minsamples value.

As shown in Table 3, given the varying sizes of the DRGs associated with each network
graph, and to ensure that we can analyze the results across a broader range of scenarios, we
selected different minsamples values for each graph. This approach allowed us to generate
cases with varying rates of candidate nodes for hardening while consistently maintaining a
relatively small number of candidates in relation to the DRG node count.

Table 3. Overview of candidate node number per graph for applying security countermeasures.

Graph #DRG Nodes Minsamples #Candidate Nodes Candidates Rate

RS 150 5 13 8.67%
BB 374 5 19 5.08%
AS 2474 20 60 2.43%
BH 10,011 45 128 1.28%

With this in mind, the following scenarios were considered during the experimen-
tal phase for hardening–placement techniques aimed at mitigating lateral-movement-
based threats:

• Baseline: This scenario involves no hardening techniques. The infection process will
proceed under the normal conditions inherent to the network graph being simulated.
This scenario serves as a baseline to observe the impact of the various strategies
applied in the subsequent scenarios on the infection process.

• ULdb: In this scenario, hardening is applied to the nodes identified as candidates
through the execution of the DBSCAN algorithm. Here, the candidate nodes are those
not belonging to any of the identified clusters (i.e., those considered outliers by the
clustering algorithm).

• ULgl: In this scenario, hardening is applied to the nodes identified as candidates
through the execution of the HDBSCAN-GLOSH algorithm. For each graph, if DB-
SCAN identifies n candidate nodes, HDBSCAN-GLOSH will identify the n nodes with
the highest anomaly scores, ensuring that the candidate sets have equal cardinality in
both cases.

• RNDngb: In this scenario, hardening is applied to the nodes identified as candidates
using the immunization algorithm proposed in [42], which favors the random selection
of nodes with high degree centrality. As in the previous scenario, the number of
candidate nodes selected using this strategy will match the number identified by
DBSCAN for each graph. This scenario serves as a reference to evaluate whether
the effect achieved by UL-based strategies represents a significant improvement. To
ensure a fair comparison of results, random node selection will be performed on the
DRGs, ensuring at least one path exists from any proposed node to the DA.

Given the characteristics of our simulator, as detailed in Section 3.1, it is important
to note that throughout the entire simulation phase, there will be no practical difference
between using the original network graphs or their corresponding DRGs. Since the simu-
lations will start from the various entry points P identified for each graph and converge
upon reaching the DA, any nodes in the original graphs that are not included in the asso-
ciated DRG will not play a role in the simulated infection process. To optimize resource
usage, such as memory during simulations, we will conduct the simulations on the DRGs
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extracted from each original graph. However, whether we use the original graphs or the
DRGs will not affect the outcomes of the simulations.

To measure the effectiveness of the safeguards applied to the identified nodes, we
introduce a TTC-based metric called MTCDA. It is important to remember that the simu-
lations involve a sequence of infection events that unfold over a certain period until the
DA is compromised, meaning the attacker has traversed the DRG from start to finish. The
simulation ends at this point. The critical data point is when the DA is compromised
or, in other words, when the simulation concludes. Naturally, our objective is to delay
this moment as much as possible by implementing countermeasures. Thus, the MTCDA
represents the median time it takes for the attacker to reach the DA across all iterations of
the simulation. The number of iterations performed by the simulator will be determined
by three factors:

• Entry Points (P): We conducted multiple simulations, initiating the infection process
from each of the entry points p ∈ P that were initially identified for each graph. The
count of these entry points can be found in Table 4.

Table 4. Number of nodes acting as entry points P for each graph.

Graph RS BB AS BH

|P| 9 1 3 6

• Hardening–placement strategy: We carried out various simulations where hardening
measures were applied to mitigate lateral movement on different sets of nodes identi-
fied through the strategies described earlier (ULdb, ULgl, and RNDngb), as well as a
scenario where no mitigation strategy was applied (Baseline).

• Equal setup simulations: Given specific initial conditions (i.e., a particular infection
source node and a selected mitigation strategy, if any), and to account for the inher-
ent randomness of the stochastic process governing the simulations, we performed
500 iterations of the simulator under these conditions. This approach ensures that the
confidence intervals (CIs) for the MTCDA are precise enough.

Taking all of this into account, the total number of simulator runs I performed for each
graph is given by the following expression:

I = |P| × 4 × 500 (13)

where |P| represents the cardinality of the set of entry points, the factor 4 corresponds to
the number of hardening–placement strategies applied, and the factor 500 accounts for the
number of iterations with the same initial setup in each case. To execute all these simu-
lations, we used multi-threaded Python 3.10 code (optimized with Numpy and Numba),
running on an Intel Xeon server with 48 cores and 128 GB of RAM.

Finally, we need to clarify how we model the application of security countermeasures
(i.e., hardening) to the various network nodes identified through the aforementioned
strategies. We model this by introducing a mitigation factor α that takes effect whenever
the infection attempts to reach a node designated for hardening. This factor α implies
that each time the infection process tries to reach one of these nodes, the expected average
time for that transition to occur (derived from the mean λ−1 of the probability distribution
X ∼ Exp(λ) governing the time between infections) will be increased by a factor of α
(i.e, redefining the distribution mean as λ = ατ−1). Without loss of generality, we set a
uniform value of τ = 50% for all edges in the graph and a value of α = 10 for the incoming
edges to hardened nodes. It is important to emphasize that our model aims to establish a
framework for estimating the impact on the compromise time of the hardened nodes. This
will enable us to assess the area of the network that we can secure through the application of
countermeasures. However, a quantitative analysis of the specific impact of implementing
these countermeasures remains to be conducted.
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5.2. Experimental Evaluation

In this section, we present the experimental results obtained from applying the pro-
posed methodology developed throughout this work, following the preliminary considera-
tions detailed in Section 5.1.

We focus on the results derived from the TTC-based evaluation we propose, which
aims to determine the impact of hardening by implementing security countermeasures at
specific points in the network identified via UL techniques (i.e., DBSCAN and HDBSCAN-
GLOSH) to mitigate lateral-movement-based threats. This mitigation is reflected in the
delay imposed on potential attackers in reaching the organization’s critical assets (i.e., the
DA or Domain node), assuming that they initiate the compromise by lateral movement
from the farthest point in the network from which this objective can be achieved.

The objective is to make it as difficult as possible for attackers to traverse the network
when attempting to compromise the entire affected AD environment. This approach not
only reduces the likelihood of a successful attack but also extends the available reaction
time for incident response teams to take reactive measures, if necessary, before the network
is fully compromised.

Figure 3 illustrates the distribution of time values (TTC-DA) that attackers, modeled
as an infection process, took in each of the proposed scenarios to reach the DA, across all
iterations conducted by the simulator. The figure also highlights the median value of these
times (MTCDA) in each scenario. Note that the time in these figures is dimensionless, as
we are focused on a consistent comparison among techniques.

At first glance, it is evident that the ULdb strategy yields outstanding results, not only
significantly outperforming the baseline scenario but also surpassing the RNDngb strategy,
which serves as a reference. A deeper analysis of these results can be found in Table 5, where
the median values (MTCDA) for each scenario are presented along with the corresponding
CI-95%. Additionally, the gain indicator GULdb is defined as the ratio between the MTCDA
using the ULdb strategy and the MTCDA for the baseline scenario where no hardening
has been applied to the network. For simplicity, this gain is not calculated for the other
scenarios since ULdb clearly stands out as the most advantageous.

Table 5. MTCDA and CI-95% (lower and upper bounds) for the different graphs and hardening–
placement strategies.

Graph

RS BB AS BH

Med CIlo CIup Med CIlo CIup Med CIlo CIup Med CIlo CIup

Baseline 10.47 0.144 0.178 20.10 0.671 0.909 2.43 0.060 0.057 8.39 0.122 0.127
ULdb 41.87 1.214 1.195 144.60 6.751 5.116 4.65 0.095 0.111 21.91 0.326 0.234
ULgl 21.04 0.475 0.449 69.93 3.149 3.432 4.04 0.092 0.076 11.63 0.138 0.140
RNDngb 24.98 0.884 0.882 81.66 4.442 3.344 4.32 0.092 0.085 15.24 0.296 0.260

GULdb 3.9970 - - 7.1925 - - 1.9168 - - 2.6101 - -

The results show that the expected time for attackers to reach the DA, after applying
countermeasures to the nodes identified through DBSCAN, increases by approximately
2 to 7 times, depending on the graph. Furthermore, a clear trend is observed: graphs
where attackers would naturally take longer to reach the DA due to the network’s inherent
topological characteristics are the cases where the gain is even greater. This makes logical
sense, as the more of the network the attacker must traverse through lateral movement, the
more likely they are to encounter the points where we have implemented the appropriate
countermeasures (i.e., the application of safeguards according to our proposal has a broader
effective action area).
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Figure 3. TTC-DA for different hardening–placement techniques.

On the other hand, we observed less favorable results with our secondary proposal,
which used the ULgl strategy for hardening–placement. While the MTCDA did increase
compared to the scenario without countermeasures, the improvement was not significant.
In fact, the RNDngb strategy showed greater benefits in all study cases. The goal of applying
the ULgl strategy, based on HDBSCAN-GLOSH, was to explore an alternative to ULdb that
could provide a general anomaly score for all nodes in the graph. This would allow for
flexible selection of the number of candidate nodes for hardening. Although the initial
results did not meet expectations, we hypothesize that the issue may stem from incorrect
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hyperparameter tuning. This would imply that although HDBSCAN-GLOSH accounts for
both global and local outliers, this distinction from DBSCAN is not the cause of the problem.
This makes sense, as DBSCAN effectively identifies nodes crucial to network connectivity
across multiple factors in the six-dimensional centrality metric space. However, a node’s
local importance in just one of these factors might also indicate its relevance.

We then assessed whether varying HDBSCAN-GLOSH hyperparameters could im-
prove the performance of the ULgl strategy on each graph. The basic hyperparameters for
HDBSCAN-GLOSH were minsamples and minclustersize. By default, we set both values to
be equal, but this time we decoupled them from the minsamples parameter in DBSCAN.

We kept the other hardening–placement strategies (baseline, ULdb, and RNDngb) un-
changed. We then redefined a new GLOSH-based strategy called ULgl’. For this strategy,
the execution of HDBSCAN-GLOSH remained the same; however, we adjusted the ref-
erence values of its hyperparameters and recalculated the outlier scores. Since our goal
was to match the results of applying ULgl’ with those of ULdb, we selected the parameter
values to identify a set of nodes for each graph with the highest possible overlap with
the set previously identified by DBSCAN. Table 6 shows the parameter values used for
this configuration, as well as the number and proportion of nodes identified that coincide
between both strategies (i.e., ULdb and ULgl’).

Table 6. Overview of #nodes per graph identified by both DBSCAN and HDBSCAN-GLOSH, and
their rate relative to DBSCAN’s original candidates.

Graph #Candidate Nodes Ulgl’ Hyperparameters #Coincident Nodes Overlap Rate

RS 13 10 12 92.31%
BB 19 25 18 94.74%
AS 60 500 30 50%
BH 128 1750 29 22.66%

In Figure 4 and Table 7, we present the extended results for each graph, including the
new ULgl’ strategy. Since the new ULgl’ parameters were obtained by seeking to maximize
node overlap with ULdb, it is expected that cases with higher overlap rates (i.e., RS and BB)
show closer results between both strategies. Conversely, cases with lower overlap (i.e., AS
and BH) are more likely to produce differing results.

Table 7. MTCDA and CI-95% (lower and upper bounds) for the different graphs and hardening–
placement strategies, including ULgl hyperparameter variation (ULgl’).

Graph

RS BB AS BH

Med CIlo CIup Med CIlo CIup Med CIlo CIup Med CIlo CIup

Baseline 10.47 0.144 0.178 20.10 0.671 0.909 2.43 0.060 0.057 8.39 0.122 0.127
ULdb 41.87 1.214 1.195 144.60 6.751 5.116 4.65 0.095 0.111 21.91 0.326 0.234
ULgl 21.04 0.475 0.449 69.93 3.149 3.432 4.04 0.092 0.076 11.63 0.138 0.140
ULgl’ 41.39 1.260 1.122 136.07 4.913 6.859 9.93 0.234 0.300 14.90 0.224 0.204
RNDngb 24.98 0.884 0.882 81.66 4.442 3.344 4.32 0.092 0.085 15.24 0.296 0.260

GULdb 3.9970 - - 7.1925 - - 1.9168 - - 2.6101 - -
GULgl’ 3.9513 - - 6.7679 - - 4.0911 - - 1.7753 - -

Overall, we observed a positive effect. With a simple adjustment to HDBSCAN-
GLOSH hyperparameters, the TTC-DA distribution for ULgl’ and the median value
MTCDA increased significantly in three out of the four scenarios studied. This effect
can be summarized by noting that the gain from this new strategy (GULgl’) is nearly identi-
cal to that originally achieved by DBSCAN (GULdb) for both the RS and BB graphs, with
MTCDA increasing nearly 4 and 7 times, respectively, compared to the scenario without
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countermeasures. This was expected since the set of nodes to harden under both strategies
overlapped nearly 100% for these graphs (see Table 6).
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0 20 40 60 80 100 120

 

Baseline ULdb ULgl ULgl' RNDngb

Infection time

BH
 graph

AS graph
BB graph

RS graph

Figure 4. TTC-DA for different hardening–placement techniques, including ULgl hyperparameter
variation (ULgl’).

Additionally, we explore these results further in Figure 5, which shows, for all graphs,
the histogram of outlier scores given by HDBSCAN-GLOSH segmented into 20 equal-sized
bins, alongside a complementary CDF plot (i.e., CCDF or 1 − CDF) illustrating the ratio of
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nodes whose outlier score is equal to or higher than a given value. We observe that for the
RS graph, the number of nodes is relatively small at high scores, gradually increasing as
lower scores are considered. This suggests that there are no significant concentrations of
nodes in any high sub-range of outlier scores. In a less regular and gradual manner, we
observe a similar trend in the BB graph, too. Thus, by applying the ULgl’ strategy and
selecting the top percentage of nodes (i.e., Candidates Rate) with the highest outlier scores,
we effectively capture a homogeneous set of the most relevant nodes for hardening, which
is almost identical to that obtained by ULdb.
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Figure 5. Histogram (left) and CCDF (right) of outlier scores given by HDBSCAN-GLOSH for
each graph.
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In the case of the AS graph, the overlap between the two strategies was only 50%,
resulting in more unequal outcomes. Notably, the ULgl’ strategy not only matched but
significantly exceeded the results obtained by ULdb, increasing the MTCDA from approxi-
mately 2% to over 4%. Upon examining Figure 5, we observe a distinct trend compared to
previous findings. A considerable proportion of the outlier scores given by HDBSCAN-
GLOSH are concentrated in the higher ranges. This is particularly evident when considering
the top decile (D9) of the score values, which stands at 0.946 for the AS graph, whereas for
the RS, BB, and BH graphs, its value is 0.56, 0.698, and 0.827, respectively. This suggests
that by employing the ULgl’ strategy, we successfully captured a subset of nodes exhibit-
ing markedly anomalous centrality, thus highlighting their critical importance for being
hardened. Furthermore, focusing on the differences between the sets of nodes identified
by ULdb and ULgl’, we note that when using DBSCAN, a particularly high minsamples
value was not configured (i.e., 20, as indicated in Table 3). This may have prevented it from
considering “doubtful” outliers. Returning to Figure 5, we observe that the percentage of
nodes designated as candidates (i.e., Candidates Rate) excludes many other nodes with simi-
larly high scores that are close to those selected. This might explain why ULdb identified a
distinct subset of nodes whose hardening also offers significant benefits, despite not being
as pronounced as those achieved by ULgl’.

In the case of the BH graph, we observe that the hyperparameter adjustments applied
to ULgl’ have only a marginal impact, resulting in a slight improvement that merely brings
its performance on par with the RNDngb strategy, which remains significantly inferior
to that of ULdb. Notably, the node set identified by DBSCAN in this scenario required a
substantially higher minsamples parameter to reach the desired cardinality (1.28% of DRG
nodes), as compared to the other graphs (i.e., 45, as shown in Table 3). This suggests that
there may be a relatively low proportion (relative to the large size of the DRG, as seen
in Table 2) of strongly anomalous nodes within the clustered metric space, complicating
DBSCAN’s ability to detect significant outliers when minsamples is low. Figure 5 further
supports this, as the difficulty in detecting pronounced anomalies is also evident for
HDBSCAN-GLOSH. There are few nodes with high scores (i.e., 0.9 or above), and only
below the threshold of 0.85 does the node count increase considerably. Furthermore, when
evaluating the Candidates Rate threshold cutoff point, we observe that it excludes in the
score range (0.8, 0.85) a significant number of nodes with scores very close to those selected.
Given the large size of the BH DRG graph, which increases the need for accurate node
selection, these factors force ULgl’ to identify a set of less strongly outlier nodes, making
the selection less reliable. Consequently, ULdb proves to be a more consistent and effective
strategy for selecting nodes to harden in this case.

In summary, we observe that tuning the HDBSCAN-GLOSH hyperparameters does
not necessarily provide a viable alternative to DBSCAN. Our analysis shows that in cases
like the RS and BB graphs, where the subgraph of nodes capable of reaching the domain
(i.e., DRG) is smaller and centrality distribution results in a progressively lower presence of
outlier nodes as they become more anomalous, both hardening–placement strategies yield
similar results. In cases where there is a significant presence of strongly outlier nodes, such
as the AS graph, HDBSCAN-GLOSH has demonstrated its ability to capture them more
extensively and reliably than DBSCAN, significantly surpassing its outcomes. Conversely,
in cases like the BH graph, which exhibits a very low presence of strongly outlier nodes,
HDBSCAN-GLOSH’s results fall short of those achieved by DBSCAN.

Given these findings, it becomes clear that the morphology and centrality distribution
of the graph play a crucial role in determining which algorithm is more effective. Further
exploration across a broader range of AD attack graphs with varying structures is essential
to fully understand the conditions under which DBSCAN is suitable, as well as under
which HDBSCAN-GLOSH can reach or even outperform it. However, it is evident that
while tuning DBSCAN’s minsamples parameter adjusts the number of identified nodes in a
somewhat uncontrolled manner, the proper tuning of HDBSCAN-GLOSH hyperparameters
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(without needing to control the number of identified nodes) remains essential for accurate
anomaly detection.

6. Conclusions

Over time, industries and other organizations have increasingly been affected not only
by the growing amount of cyber threats globally but also by the continuous advancement
in the complexity and professionalization of these threats. One of the most prevalent
techniques employed by these cyber threats, and whose mitigation is crucial, is lateral
movement. In this study, we explore threat mitigation possibilities through the application
of ML (specifically UL), focusing on network infrastructures orchestrated by Microsoft AD,
one of the most widely used technologies in the world, for this purpose.

We defined DRGs that isolate the dynamics of lateral movement propagation, targeting
the most critical asset of AD networks, the DA. Various widely used centrality metrics were
calculated on these subgraphs, allowing us to apply density-based clustering (DBSCAN)
on the resulting sets. This approach identified anomalous nodes where applying security
countermeasures could significantly slow lateral movement before the domain is compro-
mised. Additionally, we applied the HDBSCAN-GLOSH algorithm to attempt to match,
or even surpass, the results obtained with DBSCAN by providing a continuous anomaly
score for all nodes, enabling the flexible determination of the number of network points
to harden.

Our analysis was conducted on four AD graphs: one extracted from real, anonymized
infrastructure and three others generated synthetically utilizing widely used tools (Bad-
Blood, ADSimulator, and BloodHoundDBCreator). The application of DBSCAN yielded
significantly positive results. Depending on the graph and a given delay factor α (used to
model node hardening), we were able to delay the compromise of DA by up to seven times
compared to scenarios without countermeasures. We also found that HDBSCAN-GLOSH,
depending closely on the characteristics of the analyzed graph and its proper hyperparam-
eter tuning, can achieve results similar to or even surpassing those of DBSCAN while also
providing the advantage of specifying the desired number of nodes to harden.

Despite these positive outcomes, our research remains open to further advancements.
The main ones are outlined below:

• We aim to explore the optimal hyperparameter tuning characteristics for DBSCAN and
HDBSCAN-GLOSH to achieve the best possible results, as well as to include a broader
and more diverse range of AD graphs within the scope of our study to validate them.
This includes the addition of more real attack graphs whenever possible, as well as
the use of state-of-the-art synthetic generation tools like ADSynth [43].

• We plan to analyze the performance of these proposals as we adjust the budget for the
number of nodes to be hardened, as well as the selection of centrality metrics used,
considering both their quantity and complexity.

• We aim to conduct a quantitative analysis of the exploitability of each type of edge
within the AD graph. This will enable us to estimate the exploitation difficulty
associated with each edge, as well as the effort and impact involved in implementing
specific countermeasures for each case.

• We will explore other UL-based clustering algorithms, including classical methods
like OPTICS (Ordering Points to Identify the Clustering Structure) [44], as well as
more recent ones as proposed in [45]. Additionally, we will examine other anomaly
detection techniques, such as Isolation Forest [46], which is particularly suited for
outlier detection.

• In addition to exploring a broader range of anomaly detection techniques (both
clustering-based and otherwise), we aim to enhance our research by establishing
new baselines for evaluating future proposals. To achieve this, we will explore the
applicability of untapped solutions in AD security from other fields of study, such as
those based on SHS [17,18].
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• We are also considering the possibility of developing a general risk reduction frame-
work that integrates our study on identifying key nodes for attackers to reach AD
administration (escalators and gatekeepers) with the work in [10] on identifying
generic superspreaders in AD infrastructures.

Additionally, this research could extend even further by generalizing analyses to apply
to more types of logical graphs from not only AD-based infrastructures [14]. Moreover,
we are considering including dynamic graphs [33,47] in our research scope, which can
represent the reaction dynamics of incident response teams when a threat is being mitigated.
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The following abbreviations are used in this manuscript:

AD Active Directory
APB Attack-Path-Based
APT Advanced Persistent Threat
BFS Breadth First Search
(C)CDF (Complementary) Cumulative Distribution Function
CI Confidence Interval
CTMC Continuous-Time Markov Chain
DAG Directed Acyclic Graph
DA Domain Administration
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DC Domain Controller
DES Discrete Event Simulator
DRG Domain Reachability Graph
EDO Evolutionary Diversity Optimization
FTP Fixed-Parameter Tractable
GLOSH Global–Local Outlier Score from Hierarchies
GNN Graph Neural Network
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
ICT Information and Communication Technology
ML Machine Learning
MTCDA Median Time to Compromise Domain Administration
OPTICS Ordering Points to Identify the Clustering Structure
RaaS Ransomware as a service
RL Reinforcement Learning
SHS Structural Hole Spanners
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SI Susceptible–Infected
SIR Susceptible–Infected–Recovered
SP Shortest Path
TTC Time to Compromise
UL Unsupervised Learning
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