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ABSTRACT The study of technological materials made by meticulously arranging acoustic elements
has received a lot of attention over the past three decades with the goal of generating improved acoustic
properties, often going beyond the behavior of materials found in nature. These are frequently referred
to as acoustic metamaterials, and because of the way wave propagation phenomena is managed, they
exhibit unusual properties. Improvements in noise mitigation techniques of acoustic systems based on
metamaterials principles have been made effectively and precisely using combined or hybrid numerical
methods and improved numerical formulations. These noise mitigation properties should be optimized by
modifying topology and inner elements properties, which requires a huge search space. This work focuses
on metamaterials called sonic crystals with Helmholtz resonators, and its innovative insulation properties
as noise barriers are optimized with the Particle Swarm Optimization (PSO). This evolutionary algorithm
provides a mono objective solution for the multi-dimensional search space inspired in animal behavior
looking for food and communicating between each other. In order to assess the results obtained by the
proposed approach, the presented PSO algorithm is compared with a Genetic Algorithm (GA): the results
show that the PSO algorithm provides a better solution that pursues the objective of satisfying the acoustic
comfort without exceeding the imposed practical constraints.

INDEX TERMS Acoustic metamaterials, noise barriers, particle swarm optimization, sonic crystals.

I. INTRODUCTION
The manipulation and control of wave propagation is a
fundamentally interesting subject, at the basis of several
applications in various fields of science and technology.
Localization and concentration of the wave energy, also
known as local enhancement of the wave energy, is a crucial
aspect of wave manipulation. Artificial compounds, partic-
ularly artificial crystals, are showing promise as devices for
modifying wave propagation [1], [2]. Sonic crystals (SCs) are
artificial periodic materials that are used in the study of sound
waves and are structurally like photonic crystals used in the
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study of optics. They are synthetic infills from a periodic
distribution of elements or scatterers with different properties
(e.g., elasticity and density) from the host medium, in case of
SCs, the host medium is air. This causes a periodic variation
of the medium’s acoustic characteristics at the wavelength
scale. Due to their unusual dispersive qualities, these mate-
rials have a strong ability to manipulate the propagation of
sound waves.

The sound waves manipulation has so far been used to
illustrate a helpful effect in the noise environment field, such
as the development of Band Gaps (BGs), frequency ranges
where the waves cannot propagate [3].

Novel devices including acoustic diffusers, waveguides,
and noise barriers have been developed and proven using
these wave propagation properties [4], [5].
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The concept of using these periodic acoustic media as
attenuation devices is, for example, an alternative to noise
barriers based on the ability of manipulating the sound by
use of SCs [6]. However, the size and position of these
BGs, depend on several variables, including the arrange-
ment of the scatterers or the incidence angle of the wave.
Therefore, the simple existence of multiple scattering BGs
from an acoustical perspective is insufficient to use SCs as
noise barriers. The main reason is because traditional noise
barriers are insulating from 100 Hz until 5 kHz, covering
the full traffic spectrum and SCs only have big insulation in
the BGs. Hence, the global insulation value would be very
low. To address these issues, certain methods to improve the
acoustical characteristics of SCs have been recently explored,
like the addition of Helmholtz resonators embedded in the
scatter’s topology [7], [8]. By adding the Helmholtz res-
onators, new insulation ranges can appear considering the
whole frequency range (100 Hz – 5kHz) and consequently
the global insulation value will increase.

Additionally, the investigation of SCs manufactured with
scatterers having resonant effects has been conducted, with
promising results, particularly at frequencies lower than the
BGs. Recently, several works combined these effects to
improve the SCs’ applications as noise barriers [9], [10].

On the other hand, numerical simulation techniques,
as finite elements method (FEM), are useful engineering tools
in the current research of development of acoustic materials
and assembled systems.

As a result, several acoustic issues have come out where
numerical modeling has been crucial in improving the acous-
tic properties of various acoustic metamaterials and systems
within the context of a wide scope of applications such as
acoustic black holes [11], resonant phononic crystals with
acoustic imaging properties [12], transmission characteristics
of H-type metamaterials [13] or coupled resonant materials
that can reduce noise [14].

The development of numerical algorithms to assess the
acoustic performance of these devices is crucial to accu-
rately predict the acoustic performance of new noise barriers
before their construction. Hence, these simulation techniques
have aided the advancement of acoustics technology and
the creation of novel devices, such sonic crystals noise
barriers (SCNB).

Furthermore, numerical simulation techniques combined
with optimization algorithms are efficient design procedure
for obtaining improved acoustic performance and new func-
tionalities of the devices [15]. In the specific case of SCNB,
evolutionary genetic algorithms have been applied to opti-
mize the acoustic devices, through numerical models and by
modifying the properties of the structure [16], [17]. In these
works, multi-objective optimization approaches of SCNB
are used by selecting only one or two input parameters.
If new input parameters are added in the optimization model,
the search space turns into extremely huge and complex,
so the need of avoiding local maximum/minimum solutions
becomes a main handicap to deal with.

In this paper we overcome the previous drawbacks,
by proposing a new technique to optimize the parameters of
SCNB. More precisely, the SCNB is described by 2D simu-
lation models and the best insulation levels of the barriers are
obtained by applying a Particle Swarm Optimization (PSO)
algorithm [18], [19].

Note that the PSO algorithms have been applied to several
acoustics’ cases, such as acoustic radiation [19], porousmate-
rials [20], ultrasonic transducers [21], acoustic filters [22],
room acoustics [23], all of them having an enormous ranges
for the search space, in the optimization process.

The numerical technique used for modelling the system
and assessing the performance of each possible solution is
the Finite Elements (FE) simulations.

In particular, this paper focuses on a key element of the
SCNB: the optimization of the scatterer’s topology and the
periodicity of the metamaterial that depends on the lattice
constant distance.

To assess the results obtained by the proposed approach,
the presented PSO algorithm is compared with GA.

PSO and GA are both popular metaheuristic optimization
algorithms used to solve complex optimization problems. It is
important to note that the performance of PSO and GA can
depend on the specific problem being solved [24], [25], [26].
In the considered case, the following advantages of PSO over
GA are deduced by the simulation analysis and study.

1. Less prone to getting stuck in local optima: We ver-
ified that in the considered problem PSO is less likely
to get stuck in local optima than GA because it uses
velocity and position to update the particles’ position in
the search space. This allows PSO to escape from local
optima and continue exploring the search space. On the
other hand, the search space of the presented problem
has large 4-dimensional range of possible combina-
tions. All these combinations can bring very different
fitness values even modifying only one of the physical
parameters to optimize.

2. Smaller computational effort: In the performed
experiments we verified that PSO converged to the
optimal solutionmore quickly thanGA. This is because
PSO combines global and local search mechanisms
which allow exploring the search spacemore efficiently
than GA.

3. Robustness: PSO resulted more robust than GA
because it does not require a fitness function that is
differentiable or continuous. PSO can handle noisy and
discontinuous fitness functions as the noise barriers
global insulation value presented in this study.

The results show that the PSO algorithm provides a
good solution that pursues the objective of satisfying the
acoustic comfort without exceeding some imposed practical
constraints.

The paper is organized as follows. Section II presents the
employed methodology and Section III specifies the case
study of SCNB optimization module. Moreover, Section IV
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FIGURE 1. 2D Finite elements model of periodic sonic crystal noise
barrier. 3 rows of scatterers to be optimized and the distance between
them too with the PSO algorithm.

presents the results and Section V discusses the comparison
with GA and random values. Finally, Section VI summarizes
the conclusions and the future works.

II. METHODOLOGY
The tools and procedures to optimize the SCNB are presented
in this section. First, the specifications of the model that
should be optimized is described, second the applied opti-
mization algorithm is presented, third the GA and random
search used to enlighten and compare the obtained benefits
are explained.

A. FINITE ELEMENTS 2D MODEL
In this subsection we describe the FE 2D model of the SCNB
that needs to be optimized. The aim is to obtain a precise
simulation model requiring low computational cost to apply
the optimization process that calls for several iterations.

Moreover, an exact estimation of the acoustic performance
of the various proposed designs is requested. In addition,
since the SCNB are typically built throughout extremely long
extensions of kilometers in the borders of highways or rail-
roads, the model showed in Fig. 1 represents a semi-infinite
width barrier. This barrier receives the sound coming from
the left part of the model and the remaining acoustic pressure
that pass through the noise mitigation device is evaluated at
the right part of the model at the red points.

To eliminate unwanted reflections (free field condition),
Perfectly Matched Layers (PMLs) are positioned at the ver-
tical contours (left and right), and the incident plane wave
(IPW) travels from left to right [27]. The horizontal contours
are periodic conditions that repeat the model in the Y axis,
the evaluation points are placed one meter away from the
edge of the last scatter. These values are averaged to cover
a more general behavior in the performance zone of the
barrier.

The four physical parameters that define the topology of
the scatterers and the periodicity of the SCNB are represented
in Fig. 1:

• the lattice constant x1 that is the periodicity of the meta-
material, i.e., the separation between rows and columns
of the center of the scatterers .

• the external radius of the cylindrical scatter x2;
• the internal radius of the cylindrical scatter x3;
• the width of the mouth of the Helmholtz resonator
embedded in the scatter x4.

We remark that by using the described model, the computa-
tional cost of the result of each simulation is varying depend-
ing on the topology and how the elements of the domain are
adapting to the shape with the FE mesh.

B. THE PARTICLE SWARM OPTIMIZATION
The PSO is part of the evolutionary algorithm’s family and
is based on the animal behavior. The original version of the
algorithm tried to simulate the social behavior of the animals
to model their fly, changing of position and researching the
global best position. In the PSO algorithm several compo-
nents, called particles, are placed in the search space of the
problem, and each of them evaluates the fitness (or objec-
tive) function at its current location. Each particle determines
its movement through the search space by combining some
aspects of the history of its own current and best positions
with those of the nearest members of the swarm. The next
iteration takes place after all particles have been moved. The
swarm as a whole, like flock of birds foraging for food, moves
close to an optimum of the fitness function [28].

Each particle of the swarm is composed of three
D-dimensional vectors, where D is the dimension of the
search space: the current position Xj, the previous best posi-
tion Xbestj, and the velocity vj. The current position Xj,
considered as a set of coordinates describing a point in the
space, is evaluated as a possible problem solution. If such
position results to be better than the previous ones, then
its coordinates are stored in the vector Xbestj. The value
of the resulted best function is stored in a variable called
previous best pbestj, for comparison on the later iterations.
The objective of the algorithm is to find better positions and
update Xbestj and pbestj. Moreover, the algorithm iteratively
updates the velocity vector vj and calculates new points by
adding the vj coordinates to Xj.
A version of the PSO algorithm can be explained according

to the following algorithm steps [29].
PSO Algorithm

1) STEP 1
Initialize a population array of N particles with random posi-
tions and velocities on D dimensions in the search space.

2) STEP 2
At the iteration k execute the loop:

1. For each particle, evaluate the desired optimization fit-
ness function inD variables by simulating the described
FE model.
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2. Compare particle’s fitness evaluation with its pbestj.
If the current value is better than pbestj, than set pbestj
equal to the current value, and Xbestj equal to the
current location Xj ∈ RD+ where R+ is the set of real
positive numbers.

3. Identify the particle in the group of N particles with the
best success so far and assign its index to the vector
Xgbest and variable gbestj.

4. Change the velocity and position of the particle accord-
ing to the following equations, respectively:

vj (k + 1) = w · vj (k) + c1 · r (k)
1

·
[
Xbest j (k) − X j (k)

]
+ c2 · r (k)

2 ·
[
Xgbest j (k) − X j (k)

]
(1)

X j (k + 1) = X j (k) + vj (k + 1) (2)

5. If a stop criterion is met, then exit loop.

In the velocity equation (1) the w factor is called inertia
weight. It was introduced in [30] to reduce the effect of the
maximum velocity, affecting the impact of v(k) on v(k + 1).
In addition, r1 and r2 are random numbers in the range
[0,1], c1 and c2 are positive constants, called acceleration
coefficients, which are responsible for appropriately weight-
ing both the cognitive and social components. Indeed, the
velocity of particles drives the optimization process through
the cognitive component, based on particle’s historical infor-
mation, and the social component with information about the
best solution found by the swarm.

Some parameters must be appropriately chosen, depending
on the problem to be solved, to guarantee the algorithm
convergence. The number of particles is typically chosen
between 10 and 50. But depending on the search space dimen-
sion, it can be necessary to increase the number of particles
to have a wider exploration. The maximum velocity of each
parameter to optimize is given by the following equation:

vmax = h ∗
(Xmax − Xmin)

2
, (3)

where 0 ≤ h ≤ 1 is the clamping factor, and
XT
max = [x1max , x2max , x3max , x4max] and XT

min =

[x1min, x2min, x3min, x4min] are the vectors including the max-
imum and minimum values that each element of X j can be
settled in the optimization process, respectively. Note that
maximum the velocity of each particle is limited by the range
[-vmax , +vmax].

Generally, the inertia weight w at iteration k is given by the
following equation:

w (k) = wmin +
(itrmax − k) · (wmax − wmin)

(itrmax − 1)
(4)

where itrmax is themaximum number of iterations of the algo-
rithm and k is the current iteration. Typically, itrmax = 10 and
w(k) decrease in the interval [0.9, 0.4], by guaranteeing the
equilibrium between exploration and exploitation.

The following relationship between c1, c2 and w guaran-
tees the PSO algorithm convergence [30]:

w >
1
2

(c1 + c2) − 1 (5)

In particular, choosing w = 0.7298, c1 = c2 = 1.49618
provides good convergent behavior [31].

C. GA AND RANDOM SEARCH
With the goal of having amore global vision of the case study,
two more methodologies are compared with the PSO in the
SCNB model, i.e., GA and Random search.

As it has been said in the introduction, GA has been already
used to optimize SCNB without Helmholtz resonators, so in
this case the model and the function to optimize would be the
same as the PSO case to compare the optimization process
and results.

Concerning the random search, the number of the sim-
ulations to be evaluated is chosen equal to the number of
simulations needed to find the convergence in the PSO best
Fitness value. So, we select with uniform probability the
components of X j between the values of the corresponding
components of XTmin = [x1min, x2min, x3min, x4min] and
XT
max = [x1max , x2max , x3max , x4max].
In a ‘‘box and whiskers’’ plot, the results of random sim-

ulations and the corresponding fitness function values are
represented. More specifically, the boxplot shows with the
red line the median of all values, and the blue limits of the
box are the upper and lower quartiles, respectively. The red
crosses are the outliners of the foundminimum andmaximum
values.

III. CASE STUDY: THE SCNB OPTIMIZATION MODULE
APPLYING PSO ALGORITHM
In this section we present the SCNB optimization module.
In detail we consider a specified application of the opti-
mization that is applied to determine the optimal topology
of the scatterers and periodicity of the 2D model showed
in Fig. 1. The aim is guaranteeing the biggest attenuation
possible in the frequency range [100-5000Hz] included in the
European Standards [32], [33], one of the main objectives of
the noise barriers. The problem is solved by using the PSO
that turns out to be an effective tool to optimize this type of
problems with such a difficult search space. Indeed, the PSO
algorithm has the properties of fast execution, not complex
implementation, parallel behavior, and no need to have the
problem optimization to be differentiable [22].

A. FITNESS FUNCTION
The fitness function gbest to optimize is a single value
to express how good is the barrier insulating noise. The
European Standards EN 1793-3 [32] and EN 1793-6 [33]
define the calculation proceeding of the single-number rat-
ing of the airborne sound insulation for road traffic (sound
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TABLE 1. Normalized traffic noise spectrum.

insulation index DLSI ) as follows:

DLSI = −10 · log

(∑18
i=m 100,1·Li ·10−0,1·SI i∑18

i=m 100,1·Li

)
dBA (6)

where m is the number of the third octave band frequency
spectrum and Li is the dB-value of the i-th third-octave band
of the traffic noise spectrum, represented in Table 1, accord-
ing to EN 1793-3 [32].
SIi is the value in dB of the i-th third-octave band of the

sound insulation spectrum which is calculated in the FEM
Model at the evaluation points:

SI= 20·log10

∣∣∣∣PinPt
∣∣∣∣ dB (7)

where Pin is the value of the incident effective pressure
without the barrier and Pt is the value of the effective pres-
sure transmitted with the barrier placed. Both pressures are
obtained at the same evaluation points showed in Fig. 1.

Even if the standards only have the central frequency
of each octave band, in the FEM model, the average of
3 frequencies of each octave band has been calculated to
achieve a more precise representation of the full frequency
spectrum.

The upper and lower bounds of the 4-dimensional search
space (D = 4) to optimize are limited to create as maxi-
mum, 1 m length of noise barrier and only 3-rows of scat-
terers, which means according to the external radius and the
lattice constant that 2∗(x1 + x2) = 1. Hence, we impose
XT
max = [0.3900, 0.1755, 0.1667, 0.3301] and XT

min =

[0.1000, 0.0300, 0.0015, 0.0001].
In doing this, the models are more realistic approaches to

already existing conventional noise barriers length.

B. PROCESS OF THE OPTIMIZATION
The PSO algorithm is described by the following pseudocode
that implements the steps described in Section II-B.

Particle Swarm Optimization Algorithm for SCNB
1stphase: Initialize particles with k = 0

1: Set the configuration coefficients N, itrmax , c1, c2, wmin, wmax
2: Set search space (D = 4), upper and lower bounds of X
3: Set (k = 0), (DLSIgbest = 0) and N particles: pj= (Xj, Xbestj, vj)
4: for j = 1: N do
5: Set random values of Xj = [x1j, x2j, x3j, x4j]T

6: pj = (Xj, (0,0,0,0),(0,0,0,0))
7: end for

2ndphase: Evaluate Fitness values

8: k = k +1 until k = itrmax
9: for j = 1: N
10: for i = m = 1: 18
11: Simulate the Finite Elements Model with Xj
12: Obtain Pt and Pin
13: Calculate SIi
14: end for
15: Calculate DLSIj
16: end for

3rdphase: Analysis

17: for j = 1 : N
18: if DLSIj > DLSIpbestj
19: Xbestj= Xj
20: end if
21: end for
22: DLSIgbest=max (DLSIgbest , maxj=1:N(DLSIgbest ))
23: Xgbest = select j=1:N{pjthat DLSIj = DLSIgbestj)

4thphase: Swarm updates

24: for j = 1: N at k iteration
25: Calculate inertia w(k) according to equation (4)
26: Calculate future velocity vj(k+1) according to equation (1)
27: Calculate future position Xj(k+1) according to equation (2)
28: Set pj = (Xj(k+1), Xbestj, vj(k+1))
29: end for
30: if k< itrmax Go to 2nd phase

5thphase: End of the process

31: Xoptim=Xgbest

32: Return Xoptim

33: end of optimization process

34: EXIT

The optimization process is carried out according to the
block diagram shown in Fig. 2. Multiple simulations have
been run on the extensive 4-dimensional search space, seek-
ing for the optimal PSO coefficients and varying population
sizes. It is important to remark that in this iterative procedure,
each particle X j = [x1j, x2j, x3j, x4j]T requires a new model
set up modification of the one described in Section II-A.

IV. RESULTS
In this section the results of the PSO application are pre-
sented, together with the parameters that assure the best value
of the fitness function and the behavior of the optimized
SCNB.
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FIGURE 2. Block diagram of the PSO process.

A. ACCELERATION COEFFICIENTS
Two different configurations of coefficients w, c1 and c2 have
been chosen to run the optimization. The term c1 stands
for the cognitive component and depicts the tendency of the
particles to go to their best positions, while the coefficient
c2 is the social component and depicts the attraction of the
particle toward the location connected to the overall best
value.

The first configuration is called coef.1 where w = 0.7298,
and c1 = c2 = 1.49618 are settled following the proposal of
Eberhart and Shi [31], for a solid and fast convergence.

Moreover, to address the complexity of the 4-dimensional
search space, a second parameter configuration is considered
for obtaining a wider exploration of the local maximums.
Hence, in the second parameter configuration, called coef.2,
it holds w ∈ [0.4, 0.9] (i.e., the value of w decreases starting
from w = 0.9 at each iteration k according to equation (4)),
c1 = 1.53 and c2 = 2.03. In this second case more importance
is given to the social behavior of the particles (c2) rather than
the individual component (c1) [29].
The faster convergence obtained with the configuration

coef.1 with respect to coef.2, is shown in the results of Fig. 3
in the 100 particles case.

B. PSO COMPUTATIONAL PERFORMANCE
The results obtained by considering different populations (50,
100 and 150) and the two proposed sets of coefficients in the
4-dimentional search space are shown in the Fig. 3.We do not
report the results obtained with larger number of populations
because we verified that the results do not improve with the
number of particles greater than 150.

First, population number is as much important as acceler-
ation coefficients, since bigger populations can follow other
particles and stop exploring just because the inertia and coef-
ficients force to do it.

Second, as expected, coef.1 goes into solid convergence
results, but falling in local maximums. On the other hand,
the coef.2 allows us to obtain a better exploration and a
higher maximum is found: the first iterations of 150 particles
population give the best value DLSI of 16.80 dBA as Fig. 3
illustrates.

FIGURE 3. Particle Swarm optimization with 100 iterations and different
populations and coefficients.

FIGURE 4. Convergence detail for the best configuration of coefficients
and population.

Even though the European standards only consider values
with two decimals for the DLSI , to model a more precise
scatter, values until four decimals are evaluated to find the
convergence. In Fig. 4, the meticulous adjustment of the
fitness value and its convergence for the best optimization
case are represented.

In particular, Fig. 4 shows that the convergence of the Fit-
ness value is found at iteration number 30 with a population
of 150 particles, after simulating 4500 different models of
the SCNB.

By using themodel described in Section II-A, the computa-
tional cost of the result of each simulation is varying depend-
ing on the topology and how the elements of the domain are
adapting to the shape with the FE mesh. Computational time
of each simulation varies from 7 seconds to 20 seconds. The
MATLAB environment is run in a single-thread mode with a
computer MAC-mini equipped by a 3 GHz Intel Core i5 of
6 cores and 8 GB of RAM memory.

C. FITNESS OPTIMIZATION PARAMETERS
Table 2 shows the values that maximize the fitness function
and yield a DLSI value of 16.80 dBA. The local maximums
are always discovered with the same shape topology as the
global optimal solution, but with a different lattice constant
x1. This makes the lattice constant be the dominant parameter
and the most crucial one to set in the SCNB. The scatter’s
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TABLE 2. Optimal parameters Xoptim that maximize the DLSI .

FIGURE 5. Detail of the 2D model with the optimized SCNB.

parameters (external and internal radius and mouth width)
discover the global maximum by setting them to values just
below the upper bound’s limits.

The periodic metamaterial’s exterior radius is the 45% of
the lattice constant value, the mouth of the resonator is 99%
of the internal radius value, and the internal radius is 95% of
the external radius.

The final 2D model of the SCNB with the optimized
parameters is represented in Fig. 5 with a length of 0.81m.
That size will make it easier to place it in the highways
and other noisy environments where the barrier will mitigate
noise traffic spectrum. It is simple to see from the shape
how large the inner resonant air mass is and how thin the
surface of the C-shape scatterers is. The tiny amount of stiff
material required in the future will reduce the costs associated
with fabricating this wide-spectrum SCNB using 3D printing
technology.

D. THE OPTIMIZED SCNB BEHAVIOR
Figure 6 shows the outcome of the optimized SCNB sound
insulation SI (equation 7) at 1m away from the last scatter
in a Finite Elements simulation using the 2D model seen in
Fig.1. The Helmholtz resonator’s wide-open mouth, which is
embedded in the scatter, enhances the barrier’s low-frequency
insulation, particularly in the range of 150–550 Hz, which
is a recurring problem with complex real solutions for thin
noise barriers (less than 1m of length). In addition, Fig. 6
represents the third-octave band average of the spectrum that
is used in equation (6) to evaluate the Fitness function. Also,
those central frequencies showed in Table 1 are the ones
considered in the European Standards EN 1793-3 [32] and
EN 1793-6 [33]: the average of values (in red in Fig. 6) of

FIGURE 6. Sound Insulation (SI) of the SCNB FEM simulation that
maximizes the fitness function.

TABLE 3. Categories of noise barrier according to their airborne sound
insulation.

each frequency band helps to avoid the uneven behavior at
high frequencies (more than 1000 Hz).

To show the noise maximum and minimum levels spatially
distributed in the SCNB, Fig.7a displays a Sound Pressure
Level (dB) map of the model. In that representation it can be
clearly seen the attenuation of approximately 90 dB in Fig. 7a
at the shadow zone of the barrier, more specifically at the
frequency of the maximum in the Insertion Loss spectrum.
Figure 6 shows the maximum sound insulation at 486 Hz
which reports a value of 103.5 dB.

The first BG frequency produced physical structure of
the barrier, and more specifically depending on the lattice
constant occurs at FBragg = 549 Hz, and Fig. 7b illustrates
a 40 dB attenuation level at that frequency. The two noise-
control mechanisms in this SCNBmodel are multiple scatter-
ing and Helmholtz resonances, although absorbent materials
frequently utilized as a third to improve attenuation of higher
frequencies [34]. Above 2 kHz, the harmonics of the BG and
Helmholtz resonance frequencies produce enormous attenua-
tion peaks with narrow frequency ranges, which increase the
average attenuation of the SCNB, as seen in Fig. 6.
The optimized barrier is assigned a D2 category in Table 3

of the European Standard Classification [35], rounding
DLSI = 16.80 dBA to 17 dBA.

V. DISCUSSION AND COMPARISON
In this section, the results obtained by the PSO optimizations
are compared with two optimization strategies: the GA and
the random simulations. With the purpose of comparing the
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FIGURE 7. Maps of Sound Pressure Level (dB) of the FEM model at
maximum attenuation frequency (a) and Bragg’s frequency (b).

FIGURE 8. Genetic algorithm with 100 generation and different
population sizes to optimize the SCNB model.

results with the methodology usually applied in these noise
barriers optimizations with acoustic metamaterials, a bench-
mark with a GA is made [36]. In these optimizations, the
diagram process is like the diagram shown in Fig. 2 but
instead of updating the position of the particles, the GA
changes the gens of the next generation of the population.

FIGURE 9. Box and whiskers plot of 4500 random simulations of the
SCNB model and the best values of PSO and Genetic algorithm
optimizations.

The algorithm parameters for all the population cases are
the following: mutation probability equal to 0.1, crossover
probability is 0.9, and 0 value of linear crossover. This con-
figuration is established by default in the GA for a best
behavior in almost all cases. In Fig. 8, the performance of
the optimization is represented, giving a convergence result
of DLSI = 14.0861 dBA, rounded to 14.09 dBA. One of the
best properties of the PSO algorithm is its ability to avoid
local maximums/minimums. Indeed, the results obtained by
the GA proved that in the search space there is a strong
local maximum located of 14.09 dBA that the PSO is capable
to overpass, giving a result almost 3 dBA greater than that
value.

In order to have a more comprehensive understanding of
the case study, a third method is compared to this SCNB
model. In particular, the values of the SCNB model param-
eters are randomly selected in the interval [Xmin, Xmax]
with uniform probability obtaining 4500 random SCNB
models.

Figure 9 reports the best values of the fitness function (6)
obtained by the GA (with 200 population and 100 genera-
tions), the PSO (after 4500 simulations and 150 particles at
30th iteration), and the random methodology, respectively.
In particular, the random results are plotted by a ‘‘box and
whiskers’’. As it is clearly seen, both optimization algorithms
(GA and PSO) have improved the random results. Also, they
have brought values nearly the double of the Fitness function,
with 14.09 dBA in the GA case and 16.80 dBA in the PSO
case.

VI. CONCLUSION
This paper’s main research objective was to optimize a SCNB
model, which is typically syntonized to attenuate a few cho-
sen frequency ranges and making it cover the entire spectrum
of traffic noise. Without the addition of absorbent material,
as wide-band sonic crystal existents in literature were prone
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to do, the PSO algorithm has brought about a novel topology
for scatterers. Also, the thin geometry of the final scatterers
will help to 3D printed or built it with low costs. This study
has demonstrated how metamaterials like Sonic crystals can
have a strong performance as a noise barrier competing with
the traditional barriers attenuation levels and tested with the
European Standards by combining a PSO with FEM simu-
lations in a periodic model. In particular, the single-number
rating of the airborne sound insulation for road traffic is
DLSI = 17 dBA in accordance with European Standards
EN 1793-6 and EN 1793-3. Regardless of the length of this
optimized SCNB is shorter than 1m (0.81 m), which makes it
easy to install it along highway edges, and the Helmholtz res-
onances help it to achieve a very high level of low-frequency
noise insulation. According to the classification of European
standards, the sound insulation single value (DLSI ) of 17 dBA
is a D2 category barrier.

In the future research, a comparison with other numerical
methods as Finite Difference Time Domain (FDTD) or the
experimental validation of the results will be considered.
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