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ABSTRACT Magnetic resonance images are usually corrupted by noise during the acquisition process,
which can affect the results of subsequent medical image analysis and diagnosis. This paper presents a
denoising recurrent convolutional neural network for Brain MRI denoising. The proposed model consists of
a one-level autoencoder architecture with a shortcut, in which the standard convolutional blocks are changed
for a new recurrent convolutional denoising block. This block is based on the gated recurrent units combined
with local residual learning, allowing us to filter the noisy image recursively. Additionally, we adopt global
residual learning to directly estimate the corrupted image’s noise instead of the noise-free image. The
proposed model requires less computation than other models based on neural networks and experimentally
outperforms state-of-the-art models on clinical brain MRI datasets, particularly for high noise levels.

INDEX TERMS Autoencoder, convolutional neural network, denoising, gated recurrent units, MRI
denoising, recurrent convolutional neural network.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is a non-invasivemedical
imaging technique based on magnetic field technology that
obtains images of organs and tissues, which are used for
monitoring, diagnosis and detection of different alterations.
During the acquisition process, these images are corrupted by
noise; this fact explains the distortion and loss of information.
The statistical distribution of the noise depends on the
number channels (single or multi-channel coils) and the
reconstruction method (sum of square, root sum of square,
spatial matched filter) for combining the data [1]. According
to experimental results, see McVeigh et al. [2], the noise in
both the k-space and the image domain is Gaussian with
zero mean and equal variance in the real and imaginary
parts. For the previous reason, a common assumption is
to consider the real and imaginary components of the MR
complex raw data corrupted by white additive Gaussian noise
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with the same variance in the real and imaginary parts. This
assumption is valid for single and multi-coil acquisitions [3].
In case of single coil acquisitions, it is known that magnetic
resonance magnitude images can be modeled with a Rician
distribution [3], [4], [5]. That is, let R and I the real and
imaginary parts of anMRI image, respectively, themagnitude
of the noise-free MRI image y and its corresponding noisy
image x are defined as follows:

y =

√
R2

+ I2, (1)

x =

√
(R+ ηR)2 + (I + ηI )2, (2)

where ηR, ηI ∼ N (0, σ ), i.e., the magnitude x of the
complexMR image is described by a Rician distribution. The
presence of noise affects the subsequent image processing
tasks, such as image analysis and interpretation. Therefore,
image denoising is a crucial step during image processing
to improve image quality [6], allowing the analysis algo-
rithms’ better performance. For instance, Hua et al. [7]
provide an analysis of different clustering algorithms for the
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segmentation of brain tissues. In this research the authors
consider different image noise levels and confirm the need
of the denoising step before the segmentation, in order to
increase the precision of all clustering techniques for brain
tissue detection. Prakash et al. in [8] propose the use of
denoising networks to improve the performance of other
DL-based image segmentation methods. A similar research
is carried out in [9]. In this work, the authors assess the
impact of different denoising techniques on classification task
for medical images. The authors also show that the use of
denoising methods yield a significant improvement of the
classification and prediction results.

There are classical methods that address the denoising
problem considering the self-similarity of patterns in the
image [5], [10], [11]. The main idea of this class of
methods is to reduce noise by averaging similar patterns.
Majon et al. [5] propose a variant of non-local means filter
considering the sparseness and self-similarity properties,
i.e., the pre-filtered rotationally invariant non-local means
(PRI-NLM). This method combines the discrete cosine
transform and a modified version of the non-local means
filter based on rotationally invariant similarity. Similarly,
Maggioni et al. [10] propose a collaborative filtering by
exploiting the local correlation between voxels and the
non-local correlation between voxels (BM4D). Kong et al.
[11] propose a collaborative filtering method based on the
tensor decomposition framework (MNL-tSVD) and consider
the self-similarity property and the 3D structure of magnetic
resonance images. The mentioned techniques have been used
successfully for denoising of volumetric MRI data because
they considerably reduce and smooth the noise, achieving
high PSNR. It is worth to mention two merits of these
conventional techniques: its computational efficiency and
they require less training data [12]. However they have a
limitation of a fine tuning on specific data, lack adaptability to
consider different kinds of noise and the extraction of features
for different dataset is hard. For more details see [13].
More recently, deep learning techniques have emerged

as a successful alternative for MRI denoising [14], [15],
[16], [17]. Some of these models have assumed a resid-
ual autoencoder convolutional neural network in order to
maintain structural details that are present in the noisy
image. Ran et al. [15] propose a model that combines
a residual autoencoder with the Wasserstein generative
adversarial network (RED-WGAN), and for the training,
they propose a combined loss function that includes the
mean square error, a perceptual loss, and a discriminative
loss. Dongsheng Jiang et al. [14] propose a multichannel
denoising convolutional neural network (MCDnCNN) which
is an extension of the Residual Convolutional Neural Network
(DnCNNs) originally proposed by Zhang et al. [18] for
natural image denoising.

While self-similarity methods and CNNs serve different
purposes and operate at different levels of abstraction,
they both contribute significantly to the field of image
processing and analysis. Deciding between self-similarity

methods and CNNs for denoising hinges on the specific
characteristics of the noise, the desired level of detail
preservation, available computational resources, and the
availability of training data. Self-similarity methods perform
exceptionally well in scenarios characterized by uniform
noise and specific requirements for preserving texture.
In contrast, CNNs provide a more generalizable approach
capable of effectively managing varied noise patterns and
achieving cutting-edge results given adequate training data
and computational resources. Combining both approaches or
tailoring the choice based on specific task requirements can
lead to optimized solutions for denoising images in various
practical applications, see a summary in Table 1, see also [19]
and references therein.

In this paper, we present a denoising recurrent convolu-
tional neural network (DRCnet) for Rician noise reduction
in MR images. The main contributions of this paper are:

1) ADeep recurrent convolutional neural network that can
be efficiently used for MRI denoising.

2) A new denoising block that integrates factorized
convolutions in a gated recurrent neural network, i.e.,
the recurrent convolutional denoising block (RCDB).

We assess both the state-of-the-art methods and the
proposed model for the task of removing Rician noise.
The experiment setup includes two MRI datasets and the
corresponding datasets corrupted by Rician noise with levels
in the range [1%, 15%]. According to the experiments, the
proposed method yields competitive results compared to
state-of-the-art methods.

The rest of the paper is organized as follows: Section II
describes the proposed architecture, including the recurrent
convolutional denoising block and a brief study of parameters
(ablation study); in Section III we present details of the
training step, some experimental results, and a discussion;
finally Section IV presents the conclusions.

II. PROPOSED METHOD
The proposed model is shown in Fig. 1. The aim of MRI
denoising is to restore the original MR image y from the
corresponding noisy image x. The general idea is to remove or
reduce the noise level of the noisy image x in order to achieve
a high-quality estimation ŷ. Therefore, this problem can be
formulated as finding the parametric function G(·; 2) such
that ŷ = G(x; 2), where ŷ is an estimation of the clean MR
image y, and 2 are unknowns parameters of the function.

In order to estimate the parameters of the function G(·, 2),
we can follow a standard machine learning technique. That
is, given a training dataset {(xi, yi)}

N
i=1 containing N pairs

of noisy and clean images, respectively, we can estimate the
parameters 2 of the function G(·; 2) solving the following
optimization problem:

2∗
= argmin

2

1
N

N∑
i=1

L
(
G(xi; 2), yi

)
+

λ

2
�(2), (3)
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TABLE 1. Comparing self-similarity methods and CNN-based methods.

FIGURE 1. Architecture of the proposed model. The recurrent convolutional denoising block (DRCD) is shown in an unfolded form, see Fig. 2a.

where the first term is the fidelity term, the second term is
the regularization term, L(·, ·) is the loss/cost function and
λ > 0 is a hyperparameter that controls the trade-off between
fidelity and regularization terms. In particular, in this workwe
use ℓ1-norm and ℓ2-norm as fidelity and regularization terms,
respectively. In the case of L(·, ·), we use the ℓ1-norm since it
is known that ℓ1-norm is a robust metric, this makes themodel
more robust and less prone to overfitting. This metric has
also been used with success for natural image denoising [20].
On the other hand, for the regularizer �(2) we use the
ℓ2-norm, that penalizes the model for having large weights.

Since the purpose is to reconstruct the original image
from the noisy image x, and noting that x contains the main
structures of y, this suggests modeling the function G (·; 2)

as follows:

G (x; 2) = F (x; 2) + x, (4)

i.e., the above equation models the additive noise, through
F (x; 2), while maintaining the observed information x. This
formulation, Eq. (4), is called Global Residual Learning
(GRL).

The main structure of our proposal is therefore the function
F (x; 2) and it consists of three blocks: one encoding

block, one processing block, described in Sec. II-A, and one
decoding block. Additionally, the encoding and decoding
blocks are connected through a shortcut, Eq. (4).

• Encoding block: The first block consists of a convolution
with a kernel size k = 3×3×3, and it is used for feature
extraction of the noisy brain volume x. Afterward,
a convolution with kernel size k = 2 × 2 × 2 and
stride size of 2 is used to downsample the image, halving
its spatial dimension, which consequently reduces the
computational cost.

• Processing block: The main process is carried out
during this stage (denoising block) and is applied to the
downsampled image obtained from the previous block,
see details in Sec. II-A. The idea of this process is to
reduce recursively the noise, i.e., this module basically
corresponds to a recurrent Convolution Denoising Block
based on Gated recurrent units (GRUs).

• Decoding block: The processed image in the previous
stage is upsampled using a transposed convolution with
kernel size k = 2 × 2 × 2 and stride 2, and its
result is concatenated to the image generated by input
convolution. Finally, a convolution with kernel size k =

1×1×1 and another convolution with k = 3×3×3 are

128274 VOLUME 12, 2024



J. Gurrola-Ramos et al.: MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

FIGURE 2. Main building blocks of the proposed model.

performed to estimate the residual noise of the input
image and perform the residual learning according to
Eq. (4).

Each convolution of the proposed model generates 64 feature
maps. These convolutions use Parametric Rectified Linear
Unit (PReLU) or Sigmoid as activation function.

A. RECURRENT CONVOLUTIONAL DENOISING BLOCK
We consider the denoising operation as a sequence of image
filtering to reduce the approximation error. Then, based on
Eq. (4), we can estimate a filtered image xt+1 using the
following recurrence

xt+1 = xt + ht , (5)

where xt is the filtered image from the previous iteration,
and ht is the hidden state used to filter the image generated
from the previously filtered image xt . This operation can be
performed under a gated recurrent network scheme that we
call Recurrent ConvolutionDenoising Block (RCDB). Unlike
recurrent neural networks (RNNs) where every recurrence
receives an input vector xt at every time t , the RCDB
generates the filtered image xt+1 using the hidden state ht
and the previously filtered image xt . The proposed RCDB is
shown in Fig. 2a.
Typical gated recurrent units (GRU) operate using fully

connected units, i.e., they learn parameter matrices and
operate on vectors. However, the convolutions applied to
MRI volumes are 4D tensors. Thus, applying the GRU
to a vectorized volume can be computationally expensive;
moreover, vectorized volumes do not take advantage of the
local structure present in the feature maps. To overcome
the previous drawbacks, we replace the fully connected

operations in GRU with convolution operations. The RCDB
is defined by the following equations:

zt = σ (kz ∗ [ht−1, xt ]) , (6)

rt = σ (kr ∗ [ht−1, xt ]) , (7)

h̃t = g
(
[rt ⊙ ht−1, xt ]; θg

)
, (8)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t , (9)

xt+1 = xt + ht . (10)

Then, given the initial image x0, and the hidden state, h−1 =

0, we can generate the sequence x1, x2, . . . , xt+1 where xt+1
depends on xt and the hidden state ht . Note that the hidden
state ht depends on ht−1 and xt .
The update gate zt decides howmuch information from the

previous hidden unit is passed to the future while the reset
gate rt allows forgetting the previous hidden state when the
values of rt are close to zero. On the other hand, kz, kr are
the convolutional kernels of the convolutions in the RCDB.
The symbol ∗ denotes the convolution operation, and xt is the
filtered image at time t . The function g(·; θg) represents a
set of dense asymmetric factorized convolutions described in
detail below, see also Fig. 2b.
Although the computational cost is reduced through

convolutions instead of full matrices, the number of learnable
parameters and operations performed can be high when
dealing with 3D images. For these reasons, we use factorized
convolutions, Fig. 2c, based on the Inceptionmodule from the
Inception-v2model [21]. Instead of performing a convolution
with kernel size 3×3×3, three asymmetric convolutions with
kernel sizes 3×1×1, 1×3×1, and 1×1×3 are performed
in parallel. Afterward, the resulting images are concatenated,
and the number of feature maps is reduced using a 1× 1× 1
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convolution. To illustrate the reduction of computational cost,
consider an MRI volume of size N1 ×N2 ×N3 with fi feature
maps and a 3D convolution with kernel size k × k × k with
fi input feature maps and fo feature maps that preserves the
spatial dimension of the image. This type of convolution
requires N1N2N3k3fifo multiplications. On the other hand,
using factorized 3D convolution, only 3N1N2N3fo(fik + fo)
multiplications are required. For k = 3, the asymmetric
convolution is 60% cheaper than the 3D convolution. As in
the rest of the model, every convolution generates 64 feature
maps.

In addition to the proposed model for the case of MRI
volumes, we present a simplified version to handle 3D
images by estimating 2D slices individually. This 2D version,
denoted as DRCnet-2D, uses standard 2D convolution, has
less trainable parameters, and the asymmetric factorized
convolution (See Fig. 2c) has only two convolutions with
kernel size 3 × 1 and 1 × 3 at the beginning. One advantage
of the 2D model over the 3D model is that it requires less
memory; however, the time to estimate the complete volume
is higher. The estimation of the j−th denoised slice is carried
out taking the neighbor slices {j − 2, j − 1, j + 1, j + 2} as
additional input channels, as in the case of the MCDnCNN
model.

B. ABLATION STUDY
Now, we compare the behavior of the DRCnet using
different configurations without modifying the number of
trainable parameters, which is 406.79 k. For the comparison,
we consider the number of unfolded RCDB from 1 to
4 and the use of global residual learning (GRL). The results
of the comparison are shown in Table 2. Based on this
comparison, the model DRCnet used for the experimental
section corresponds to the model with 4 unfolded RCDB and
global residual learning. Since the RCDB requires 10.78G of
multiplication-accumulation operations (MACs), this block
represents 77% of the computation of the DRCnet. For this
study we used the Hammersmith and Guys databases, see
details of these databases in Section III-A

TABLE 2. Ablation study: multiplication-accumulation operations,
execution time required to estimate a 64 × 64 × 64 volume and PSNR
values of T1 images for 9% noise level.

III. EXPERIMENTS
In this section, we validate the performance of the pro-
posed DRCnet model and its 2D version, i.e., the model

TABLE 3. Number of trainable parameters, multiplication-accumulation
operations, and execution time of the CNN-based models required to
estimate a 64 × 64 × 64 volume.

DRCnet-2D, described in Sec. II-A. We compare both
models with state-of-the-art MRI denoising algorithms, using
classical and CNN-based denoising models, all available
online. We conducted several experiments with clinical
datasets, using T1, T2, and PD sequences.

For the comparison, we consider the following classical
methods for MRI denoising: BM4D [10], PRI-NLM3D [5],
MNL-tSVD [11]. Additionally, we include well-known
CNN-based denoising methods: MCDnCNN [14] and RED-
WGAN [15]. For assessing the previous models, we use
the peak signal-to-noise ratio (PSNR) average [22] and the
structural similarity index (SSIM) average [23]. It is worth
mentioning we have only included classical and CNN-based
methods that have their source code publicly available by
the authors. For the classical techniques, we used the default
parameters provided by the authors. In the case of the CNNs,
we trained them from scratch using the same datasets used
for training the proposed model, see Sec. III-B.

A. DATASET
The clinical IXI dataset is available at https://brain-
development.org/ixi-dataset/ and consists of images acquired
from 3 different hospitals. For our experiments, we consider
Hammersmith and Guy’s subsets of the IXI dataset, which
were acquired using a Philips 3T system and a Philips 1.5 T
system, respectively. Please refer to the previously mentioned
website for more details of the scanner parameters. This
dataset was used to train the CNN-based models and test all
the compared models.

B. EXPERIMENTAL SETTING FOR TRAINING
To prepare the training, validation, and testing data sets,
we first split the Hammersmith and Guy data sets into three
subsets: 80% for training, 10% for validation and 10% for
testing respectively. The above corresponding subsets are
then combined to obtain the final training, validation and
testing datasets. Note that each dataset contains images from
both the Hammersmith and Guy datasets. The final datasets
are used for training and testing the CNN-based models. Each
CNN-based model was trained independently for each MRI
sequence, i.e., T1, T2, and PD.

During the training, we selected random patches of size
32 × 32 × 32 for the 3D models, and patches of size 32 ×

32 for the 2D models, generating 10320 samples per epoch.
We obtained the corresponding noisy patch for each patch by
adding random Rician noise (2) with noise levels in the range

128276 VOLUME 12, 2024



J. Gurrola-Ramos et al.: MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

TABLE 4. Results of different denoising methods on the IXI Hammersmith dataset.The best two results of PSNR (dB) and SSIM are highlighted in red and
blue respectively.

TABLE 5. Results of different denoising methods on the IXI Guys dataset. The best two results of PSNR (dB) and SSIM are highlighted in red and blue
respectively.

[1%, 15%]. Additionally, we applied flips and rotations in the
different axes of the MRI patches for data augmentation.

In order to optimize Eq. (3) we use the AdamW
algorithm [24]. The parameters of the AdamW algorithm
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FIGURE 3. Graphic illustration of the results in Table 4 for the IXI-Hammersmith dataset.

FIGURE 4. Graphic illustration of the results in Table 5 for the IXI-Guys dataset.

are β1 = 0.9, β2 = 0.999, ϵ = 10−8, and the
regularization parameter in Eq. (3) λ = 10−2. The initial
learning rate is α0 = 10−3, which is halved every 5 epochs.

The proposed model was trained with a batch size of
16 for 50 epochs. Our model was implemented in Python
3.6 using PyTorch framework. The training time was about

128278 VOLUME 12, 2024



J. Gurrola-Ramos et al.: MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

FIGURE 5. Comparison of average results between patch-based methods (Patch avg), CNN methods (CNN avg), and the DRCNet method for the
IXI-Hammersmith dataset.

FIGURE 6. Comparison of average results between patch-based methods (Patch avg), CNN methods (CNN avg), and the DRCNet method for the IXI-Guys
dataset.

20 hours in an Nvidia RTX Titan GPU. The source code,
pretrained model, and dataset splits are available at GitHub
(https://github.com/JavierGurrola/DRCnet).

C. RESULTS AND COMPARISONS
Tables 4 and 5 present comparative results on the
IXI-Hammermith and IXI-Guy’s datasets, respectively.
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FIGURE 7. Illustration of a noise-free slice of a T1 sequence taken from an IXI-Guys image. The noisy image is
obtained from the noise-free image with a noise level of 15%. The rest of the images correspond to the denoised
results using different methods.

FIGURE 8. Illustration of a noise-free slice of a T2 sequence taken from an IXI-Hammersmith image. The noisy image
is obtained from the noise-free image with a noise level of 15%. The rest of the images correspond to the denoised
results using different methods.
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FIGURE 9. Illustration of a noise-free slice of a PD sequence taken from an IXI-Hammersmith image. The noisy image is
obtained from the noise-free image with a noise level of 15%. The rest of the images correspond to the denoised results
using different methods.

TABLE 6. Dice coefficients of brain WM and GM tissues of a T1 image under different noise conditions for denoised and raw images, Fig. 11.

FIGURE 10. Dice coefficients of brain WM and GM tissues of a T1 image
under different noise conditions for denoised and raw images, Fig. 11.

Figs. 3 and 4 show the graphical corresponding to the
numerical results in Tables 4 and 5 respectively. It can be seen
that the classical methods have a good performance for low
noise levels, in particular for 1% and 3%, obtaining in some
cases a better performance than some CNN-based models.
However, when the level of noise increases, the CNN-based
models have a better performance than the classical methods
in general. Note the CNN-based methods are superior in

both PSNR and SSIM metrics, although the MNL-tSVD
method is very competitive. On the other hand, the other
classical techniques notably reduce their performance while
increasing the noise level. Observe that, the CNN-based
methods have more stable behavior. Their performance does
not decrease as drastically as the classical methods when the
noise level is increased. Note that the two proposed models,
in 3D and 2D, present the best performance in general, in the
three modalities T1, T2, and PD, and the PSNR and SSIM
metrics, showing stable results as the noise level increases.
Figs. 5 and 6 depict a comparison between the average
of patch-based methods BM4D, PRI-NLM3D, and MNL-
tSVD (Patch avg), the CNN-based methods MCDnCNN and
RED-WGAN (CNN avg), and the proposed method DRCnet.
Average results are calculated from Tables 4 and 5. It can
be observed again that on average the patch-based methods
(Patch avg) have a good performance for low noise levels.
However, when the level of noise increases, the performance
on average of CNN-based models (CNN avg) is better than
the patch-basedmethods. The improvement is better observed
for the SSIM metric. It can also be seen that the DRCnet
method achieves the best results in both metrics.
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FIGURE 11. Visual example of the impact of denoising in the segmentation process. In the upper row, a noise T1 (3 %) and
its corresponding tissue maps are shown. In the lower row, the same subject filtered with the proposed filter and the
corresponding tissue maps are shown. As can be noticed the tissue probability maps are visually more consistent after the
denoising process.

Note from Tables 4 and 5 that the numerical results of all
methods are higher on the Hammersmith dataset than on the
Guys dataset, i.e., all methods achieved better performance
with the best quality data set, which were obtained in this
case with a magnetic field strength of 3T. Figs. 7, 8 and 9
depict some visual results of the compared models applied to
MRI images of T1, T2 and PD sequences from the IXI Guy
and Hammersmith datasets. In all cases, the noisy image is
obtained from the noise-free image with a noise level of 15%.
Note that self-similarity-based methods tend to oversmooth
images, whereas CNN-based methods better preserve details.
We observe that the proposed method achieves excellent
visual results, and is able of reducing noise while preserving
details.

It is worth mentioning that the numerical outcomes
of classical methods could be improved by tuning the
hyperparameters for new databases. Nevertheless, tuning
hyperparameters is not always an easy task and its complexity
increases with number of hyperparameters, which could be
a challenging and time-consuming task. On the other hand,
the CNN-based methods presented here have been trained to
reduce the Rician noise for each image sequence T1, T2, and
PD. If the type of noise changes, for example in the case of
multichannel coils, or the image sequence is different, then
we need to retrain the models, which could be a limitation
of these models, including our proposals. Another alternative
to address these problems is to apply fine-tuning to existing

models for a new type of noise. In the case of new MRI
image sequences, we can also apply transfer learning. For
this, we can use pretrained models on larger datasets so that
we can improve denoising performance on medical image
datasets, even using smaller datasets (few-shot learning).
Transfer learning and few-shot learning have been recently
used to improve generalization for different machine learning
tasks in different domains [25], [26], [27].

D. COMPLEXITY OF CNN MODELS
Table 3 shows the number of trainable parameters of the
compared CNN-based models and the proposed model. In the
case of 2D model, we first compute the MACs and time
results for 64 × 64 images and then we report the previous
result multiplied by 64. That is, it is necessary to estimate
64 slices to compare all the models fairly. The results for
3D models correspond to 64 × 64 × 64 volumes. Note
that even though MCDnCNN has more parameters than the
DRCnet-2D, it requires less execution time and MACs to
estimate an image. This is due to the MCDnCNN model
does not perform any recurrence during the estimation of
the image. On the other hand, note that the DRCnet is only
45% larger than the DRCnet-2D, and it requires less time
to estimate the test volume, considering that the DRCnet-2D
needs to estimate 64 slices independently. We also measure
the average inference time for an image of IXI dataset with
size 256 × 256 × 150. In this case, the average CPU time is
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2908 ms and the average CUDA time is 1214 ms. One of the
drawbacks of CNN-based models, including our approach,
is that training and inference time can be high due to the large
number of operations required.

E. IMPACT OF DENOISING ON SEGMENTATION
Image denoising is a very important preprocessing step in
currentMRI analysis tasks. It has a significant impact onMRI
inhomogeneity correction (by reducing random dispersion
on specific tissues), registration (reducing also multimodal
intensity distribution dispersion) and segmentation for exam-
ple. To highlight the importance of the proposed denoising
method we evaluate the impact of the proposed method
in a well-known segmentation pipeline. For that purpose,
we selected a real low-noise MRI case from IXI dataset and
different amounts of random noise (1% to 15%) were added
to study its impact on the segmentation process. Finally,
we compared the Dice coefficient [28] of the noisy and
denoised versions compared to the original low-noise MRI.
To segment the IXI MRI case, we used the well-known
package SPM12 and obtained themasks for graymatter (GM)
and White Matter (WM).

Table 6 summarizes the results. As can be noted, see also
Fig. 10, the proposed denoising method improved the Dice
coefficient for all noise levels and for both tissues. In Fig. 11,
a visual example of the impact of the proposed method on the
estimation of the tissue maps is shown.

IV. CONCLUSION
In this paper, we presented a recurrent convolutional neural
network for brain MRI denoising. The model included
global residual learning in order to estimate the noise
of the corrupted image instead of the noise-free image
directly. As the main component, we introduced a recurrent
convolutional denoising block based on GRU, which allowed
us to reduce the number of trainable parameters, achieving
good performance. The denoising block was combined with
local residual learning to filter the noisy image recursively.
According to the conducted experiments with clinical brain
MRI datasets, the proposed models obtained a more stable
behavior and outperformed state-of-the-models for MRI
denoising. This result was most notable for medium and
high noise levels in the three studied modalities, T1, T2,
and PD, compared with classical denoising methods. Overall,
the CNN-based models excelled in image denoising tasks,
demonstrating their capability to effectively remove noise
while preserving important features and details in images.

REFERENCES
[1] O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser, and

S. O. Schoenberg, ‘‘Influence of multichannel combination, parallel imag-
ing and other reconstruction techniques on MRI noise characteristics,’’
Magn. Reson. Imag., vol. 26, no. 6, pp. 754–762, Jul. 2008.

[2] E. R. McVeigh, R. M. Henkelman, and M. J. Bronskill, ‘‘Noise and
filtration in magnetic resonance imaging,’’ Med. Phys., vol. 12, no. 5,
pp. 586–591, Sep. 1985.

[3] H. Gudbjartsson and S. Patz, ‘‘The Rician distribution of noisy MRI data,’’
Magn. Reson. Med., vol. 34, no. 6, pp. 910–914, Dec. 1995.

[4] R. D. Nowak, ‘‘Wavelet-based Rician noise removal for magnetic
resonance imaging,’’ IEEE Trans. Image Process., vol. 8, no. 10,
pp. 1408–1419, Aug. 1999.

[5] J. V.Manjón, P. Coupé, A. Buades, D. Louis Collins, andM. Robles, ‘‘New
methods for MRI denoising based on sparseness and self-similarity,’’Med.
Image Anal., vol. 16, no. 1, pp. 18–27, Jan. 2012.

[6] L. Fan, F. Zhang, H. Fan, and C. Zhang, ‘‘Brief review of image denoising
techniques,’’ Vis. Comput. Ind., Biomed., Art, vol. 2, no. 1, pp. 1–12,
Dec. 2019.

[7] L. Hua, Y. Gu, X. Gu, J. Xue, and T. Ni, ‘‘A novel brain MRI
image segmentation method using an improved multi-view fuzzy C-
means clustering algorithm,’’ Frontiers Neurosci., vol. 15, pp. 675–685,
Mar. 2021.

[8] M. Prakash, T.-O. Buchholz, M. Lalit, P. Tomancak, F. Jug, and A. Krull,
‘‘Leveraging self-supervised denoising for image segmentation,’’ in Proc.
IEEE 17th Int. Symp. Biomed. Imag. (ISBI), Apr. 2020, pp. 428–432.

[9] M. K. Raczkowska, P. Koziol, S. Urbaniak-Wasik, C. Paluszkiewicz,
W. M. Kwiatek, and T. P.Wrobel, ‘‘Influence of denoising on classification
results in the context of hyperspectral data: High definition FT-IR
imaging,’’ Analytica Chim. Acta, vol. 1085, pp. 39–47, Nov. 2019.

[10] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, ‘‘Nonlocal
transform-domain filter for volumetric data denoising and reconstruction,’’
IEEE Trans. Image Process., vol. 22, no. 1, pp. 119–133, Jan. 2013.

[11] Z. Kong, L. Han, X. Liu, and X. Yang, ‘‘A new 4-D nonlocal
transform-domain filter for 3-D magnetic resonance images denoising,’’
IEEE Trans. Med. Imag., vol. 37, no. 4, pp. 941–954, Apr. 2018.

[12] N. Nazir, A. Sarwar, and B. S. Saini, ‘‘Recent developments in denoising
medical images using deep learning: An overview of models, techniques,
and challenges,’’Micron, vol. 180, May 2024, Art. no. 103615.

[13] P. Kaur, G. Singh, and P. Kaur, ‘‘A review of denoising medical images
using machine learning approaches,’’ Current Med. Imag. Rev., vol. 14,
no. 5, pp. 675–685, Sep. 2018.

[14] D. Jiang, W. Dou, L. Vosters, X. Xu, Y. Sun, and T. Tan, ‘‘Denoising of
3D magnetic resonance images with multi-channel residual learning of
convolutional neural network,’’ Jpn. J. Radiol., vol. 36, no. 9, pp. 566–574,
Sep. 2018.

[15] M. Ran, J. Hu, Y. Chen, H. Chen, H. Sun, J. Zhou, and Y. Zhang, ‘‘Denois-
ing of 3D magnetic resonance images using a residual encoder–decoder
Wasserstein generative adversarial network,’’ Med. Image Anal., vol. 55,
pp. 165–180, Jul. 2019.

[16] Y. Zhu, X. Pan, J. Zhu, L. Li, andY. Liu, ‘‘Denoising ofmagnetic resonance
images with deep neural regularizer driven by image prior,’’ in Proc. IEEE
7th Int. Conf. Data Sci. Adv. Analytics (DSAA), Oct. 2020, pp. 255–263.

[17] R. Singh and L. Kaur, ‘‘Magnetic resonance image denoising using
patchwise convolutional neural networks,’’ in Proc. 8th Int. Conf. Comput.
Sustain. Global Develop. (INDIACom), Mar. 2021, pp. 652–657.

[18] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[19] M. Elad, B. Kawar, and G. Vaksman, ‘‘Image denoising: The deep learning
revolution and beyond—Asurvey paper,’’ SIAM J. Imag. Sci., vol. 16, no. 3,
pp. 1594–1654, Sep. 2023.

[20] J. Gurrola-Ramos, O. Dalmau, and T. E. Alarcón, ‘‘A residual dense
U-Net neural network for image denoising,’’ IEEE Access, vol. 9,
pp. 31742–31754, 2021.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
‘‘Rethinking the inception architecture for computer vision,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2818–2826.

[22] Q. Huynh-Thu and M. Ghanbari, ‘‘Scope of validity of PSNR in
image/video quality assessment,’’ Electron. Lett., vol. 44, no. 13,
p. 800, 2008.

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
‘‘Image quality assessment: From error visibility to structural
similarity,’’ IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

[24] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’ in
Proc. 7th Int. Conf. Learn. Represent., 2019, pp. 1–24.

[25] M. Kumar, V. Kumar, H. Glaude, C. de Lichy, A. Alok, and R. Gupta,
‘‘Protoda: Efficient transfer learning for few-shot intent classification,’’
in Proc. IEEE Spoken Lang. Technol. Workshop (SLT), Jan. 2021,
pp. 966–972.

VOLUME 12, 2024 128283



J. Gurrola-Ramos et al.: MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks

[26] T. T. Chungath, A. M. Nambiar, and A. Mittal, ‘‘Transfer learning and
few-shot learning based deep neural network models for underwater sonar
image classification with a few samples,’’ IEEE J. Ocean. Eng., vol. 49,
no. 1, pp. 1–17, May 2023.

[27] H. Wei and L. Jiao, ‘‘A survey of few-shot image classification based on
transfer learning,’’ in Proc. IEEE 6th Int. Conf. Pattern Recognit. Artif.
Intell. (PRAI), Aug. 2023, pp. 461–469.

[28] A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer,
‘‘Morphometric analysis of white matter lesions in MR images: Method
and validation,’’ IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 716–724,
Jul. 1994.

JAVIER GURROLA-RAMOS received the B.Eng.
degree in computer engineer from UAA
Aguascalientes, Mexico, in 2016, and the M.Sc.
degree in computer science and industrial math-
ematics from the Mathematics Research Center
(CIMAT), Guanajuato, Mexico, in 2018, where
he is currently pursuing the Ph.D. degree in
computer science. His research interests include
machine learning, optimization, image processing,
and pattern recognition.

TERESA ALARCON (Member, IEEE) received the
Engineer degree in automated systems of manage-
ment from Moscow Institute of Direction ‘‘Sergo
Orchonikidze,’’ in 1989, Russia, the master’s
degree in digital image processing from the ‘‘José
Antonio Echeverría’’ Polytechnic Institute, Cuba,
in 1999, and the Ph.D. degree in computer sci-
ence from the Center for Mathematics Research,
Guanajuato, Mexico, in 2007. She is currently
an Associate Professor with the Computational

Sciences and Engineering Department, University of Guadalajara’s Valley
Campus, Ameca, Jalisco. Her research interests include digital image
processing, including filtering, segmentation, and pattern recognition.

OSCAR DALMAU received the B.Sc.Ed. degree
in mathematics from ISP, Manzanillo, Cuba,
in 1989, and the M.Sc. degree in computer
science and industrial mathematics and the Ph.D.
degree in computer science from the Mathematics
Research Center (CIMAT), Guanajuato, Mexico,
in 2004 and 2010, respectively. He is cur-
rently with CIMAT. His research interests include
machine learning, optimization, image processing,
and computer vision.

JOSÉ V. MANJÓN is currently an Associate
Professor with the Universidad Politécnica de
Valencia, Spain, where he leads the medical image
processing area of the IBIME Research Group.
He is one of the pioneers in patch-based medical
image processing and has developed several state-
of-the-art algorithms for MRI denoising, super-
resolution, segmentation, and automatic diagnosis.

128284 VOLUME 12, 2024


