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Resumen 
 

La presente tesis doctoral titulada “NMR-based metabolomics for the identification of 

biomarkers of disease” se centra en explorar y mostrar el potencial de la metabolómica 

mediante espectroscopía de resonancia magnética nuclear (RMN) como herramienta 

para la detección de nuevos biomarcadores de enfermedad que permitan un 

diagnóstico temprano y no invasivo, así como un seguimiento del paciente. La 

metabolómica mediante espectroscopía de RMN se aplica específicamente en esta 

tesis al estudio de cuatro enfermedades: demencia tipo Alzheimer, glaucoma, 

aterosclerosis y vulnerabilidad de placa, y fibrosis pulmonar desarrollada tras 

neumonía por COVID-19. 

 

En la introducción se presenta una descripción del proceso de análisis metabolómico 

para la identificación de biomarcadores de enfermedad, así como de las principales 

plataformas empleadas en metabolómica. Posteriormente se profundiza en el proceso 

seguido para análisis metabolómico mediante espectroscopía de RMN, así como en las 

principales herramientas estadísticas utilizadas en esta tesis. Finalmente, se describen 

las principales características fisiopatológicas de las enfermedades estudiadas en esta 

tesis, así como las formas de diagnóstico actuales y la necesidad de identificar nuevos 

marcadores de enfermedad. 

 

A continuación, se describe el objetivo principal de esta tesis, así como los objetivos 

específicos que se abordan en los capítulos experimentales. 

 

En el primer capítulo, se identifican biomarcadores de la enfermedad de Alzheimer 

(Alzheimer disease, AD) y del progreso de pacientes con deterioro cognitivo leve (mild 

cognitive impairment, MCI) a enfermedad de Alzheimer mediante metabolómica de 

RMN en muestras de suero. Para ello, en primer lugar, se producen modelos de 

estadística multivariante de análisis discriminante de mínimos cuadrados parciales 
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(Partial least squares-discriminant analysis, PLS-DA) para la discriminación entre 

pacientes de AD y MCI y controles con cognición normal (healthy controls, HC). Los 

modelos de clasificación obtenidos para discriminar AD frente a MCI y HC mostraron 

excelentes parámetros de clasificación. Sin embargo, la discriminación entre MCI y HC 

no alcanzó significación, poniendo de manifiesto cómo el desarrollo de AD altera el 

metabolismo celular. Posteriormente, para la identificación de biomarcadores del 

proceso de evolución de MCI a AD, el grupo MCI se subdividió atendiendo a, si en un 

periodo de 1 a 3 años tras la adquisición de la muestra, su estado cognitivo había 

deteriorado a AD. Se observó que la lisina, el piruvato, la colina, la fenilalanina y las 

lipoproteínas, tenían unos valores de concentración relativa en suero diferente 

dependiendo si el paciente evolucionaba a AD o se mantenía estable. Además, se 

observaron diferencias en las rutas metabólicas entre estos grupos de pacientes.  

 

En el segundo capítulo de la tesis, se estudiaron las diferencias metabolómicas entre 

pacientes MCI y control de un grupo de pacientes diferente, por medio del análisis de 

los metabolitos presentes en muestras de plasma con espectroscopía de RMN, así 

como la presencia de marcadores de peroxidación lipídica, que fueron analizados por 

medio de espectrometría de masas acoplada a cromatografía líquida (UPLC-MS/MS). El 

proceso de oxidación celular se ha visto estrechamente relacionado con el desarrollo 

de la enfermedad de Alzheimer y, de hecho, en el trabajo presentado se observa como 

la adición de marcadores de peroxidación lipídica al conjunto de datos de 

metabolómica de RMN para su estudio mediante estadística multivariante mejora los 

modelos de clasificación para la identificación de biomarcadores de MCI. En este 

trabajo se realizaron modelos de clasificación PLS-DA utilizando los metabolitos 

identificados mediante espectroscopía de RMN, los marcadores de peroxidación 

lipídica detectados con UPLC-MS/MS, y la combinación de ambos, obteniéndose el 

resultado con una mayor significación estadística cuando se combinan ambas técnicas. 

Los metabolitos identificados como potenciales biomarcadores de MCI en plasma son 
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isoleucina, valina, 3-hidroxibutirato, 2-hidroxi-3-metilvalerato, glutamato, glutatión, 

cisteína, malonato, n-nitroso dimetilamina, taurina, prolina e isoprostanos. 

Especialmente, por su relación con la patología, se destacan como potenciales 

biomarcadores la isoleucina, la valina, el glutamato, la taurina, la prolina, la cisteína y 

los isoprostanos.  

 

En el tercer capítulo de la tesis, se analizaron lágrimas de pacientes de glaucoma 

primario de ángulo abierto (POAG) y controles por medio de espectroscopía de RMN, 

para la identificación de biomarcadores de la patología en un medio mínimamente 

invasivo, como son las lágrimas. Los modelos de clasificación obtenidos permitieron 

clasificar las muestras de POAG y controles con altos valores de sensibilidad y 

especificidad. Del análisis de los metabolitos participantes en el modelo de clasificación 

se determinaron como potenciales biomarcadores de POAG en lágrima la taurina, 

glicina, urea, glucosa, ácidos grasos insaturados, fenilalanina, fenilacetato, leucina, 

compuestos n-acetilados, el ácido fórmico y la uridina. De especial relevancia son la 

fenilalanina, glucosa, leucina, glicina y taurina por su relación con la patología.  

 

A continuación, en el cuarto capítulo se presentan los resultados obtenidos del análisis 

metabolómico mediante espectroscopía de RMN de muestras de placas de ateroma y 

suero de pacientes con estenosis de carótida. Se obtuvieron muestras de pacientes 

sintomáticos (que habían presentado algún signo de accidente cerebrovascular) y 

asintomáticos, a fin de determinar biomarcadores de vulnerabilidad de placa. De los 

análisis realizados en placa, por medio de espectroscopía de ángulo mágico de alta 

resolución (high resolution magic angle spinning, HRMAS), se determinaron como 

potenciales biomarcadores de vulnerabilidad el mio-inositol, glutamato, y ácidos grasos 

insaturados, teniendo especial relevancia el glutamato por su relación con la patología. 

La determinación de biomarcadores en suero resultaba más interesante a nivel clínico, 

y del análisis estadístico realizado se obtuvieron como potenciales marcadores de 

vulnerabilidad de placa la treonina, la histamina y los ácidos grasos insaturados.  
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En el quinto y último capítulo experimental se analizaron por medio de espectroscopía 

de RMN muestras de suero de pacientes que habían estado ingresados en el hospital 

por neumonía causada por el virus SARS-CoV-2, a fin de identificar biomarcadores para 

predecir el desarrollo de fibrosis pulmonar, una de las secuelas más graves 

desarrolladas tras la COVID-19. Los modelos de clasificación PLS-DA generados fueron 

capaces de discriminar que pacientes habrían desarrollado fibrosis pulmonar un año 

después del alta hospitalaria (y la toma de muestras) con altos valores de sensibilidad 

y especificidad. Los metabolitos propuestos como potenciales biomarcadores de 

desarrollo de fibrosis, por su participación en el modelo y la presencia de diferencias 

significativas en su concentración relativa entre ambos grupos son la glucosa, valina y 

ácidos grasos. 

 

Finalmente, se presenta la discusión general y las principales conclusiones generales de 

la tesis, así como las conclusiones derivadas del trabajo experimental aquí presentado. 

Esperamos que estos resultados abran la puerta al uso de la metabolómica mediante 

espectroscopía de RMN para la identificación de biomarcadores tempranos y no 

invasivos, y de este modo resolver una de las principales necesidades de la medicina 

actual.
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Abstract 

 

The present doctoral thesis entitled "NMR-based metabolomics for the identification 

of biomarkers of disease" focuses on exploring and demonstrating the potential of 

nuclear magnetic resonance (NMR) spectroscopy-based metabolomics as a tool for 

identifying new disease biomarkers that allow for early and non-invasive diagnosis, as 

well as patient monitoring. NMR spectroscopy-based metabolomics is here specifically 

applied to the study of four diseases: Alzheimer's disease, glaucoma, atherosclerosis 

and plaque vulnerability, and pulmonary fibrosis developed after COVID-19 

pneumonia. 

 

The general introduction provides a description of the metabolomic analysis process 

for the identification of disease biomarkers, as well as the main platforms used in 

metabolomics. Subsequently, it focuses on the process to follow for an NMR 

spectroscopy metabolomic analysis, as well as on the main statistical tools used in this 

thesis. Finally, the main pathophysiological characteristics of the diseases studied in 

this thesis are described, as well as the current diagnostic methods and the need to 

identify new biomarkers of disease. 

 

Next, the main objective of this thesis is described, as well as the specific objectives 

addressed in the experimental chapters. 

 

In the first chapter, biomarkers of Alzheimer's disease (AD) and the progression of 

patients with mild cognitive impairment (MCI) to Alzheimer's are identified using NMR 

spectroscopy-based metabolomics in serum samples. Classification models were 

produced for discriminating between AD and MCI patients and normal cognition 

controls (HC). The classification models obtained for discriminating AD from MCI and 
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HC showed excellent classification parameters. However, discrimination between MCI 

and HC was not as significant, highlighting how the development of AD alters cellular 

metabolism. Subsequently, for the identification of biomarkers of the MCI to AD 

progression process, the MCI group was subdivided based on whether, within a period 

of 1 to 3 years after sample acquisition, their cognitive status had deteriorated to AD. 

It was observed that lysine, pyruvate, choline, phenylalanine, and lipoproteins had 

different relative concentration values in serum depending on whether the patient 

progressed to AD or remained stable. Furthermore, differences in metabolic pathways 

were observed between these groups of patients. 

 

In the second chapter of the thesis, metabolic differences between MCI patients and 

controls from a different sample group were studied by analyzing the metabolites 

present in plasma samples by NMR spectroscopy, as well as the presence of markers of 

lipid peroxidation, which were analyzed using UPLC-MS/MS. The process of cellular 

oxidation has been closely related to the development of Alzheimer's disease, and 

indeed, in the presented work, it is observed that adding biomarkers of lipid 

peroxidation to NMR spectroscopy metabolomics data improves multivariate statistical 

classification models for identifying MCI biomarkers. In this work, PLS-DA classification 

models were performed using the metabolites identified by NMR spectroscopy, lipid 

peroxidation markers detected with ultra-performance liquid chromatography-mass 

spectroscopy (UPLC-MS/MS), and the combination of both, yielding greater statistical 

significance when both techniques are combined. The identified potential MCI 

biomarkers in plasma are isoleucine, valine, 3-hydroxybutyrate, 2-hydroxy-3-

methylvalerate, glutamate, glutathione, cysteine, malonate, N-nitrosodimethylamine, 

taurine, proline, and isoprostanes. Especially noteworthy are isoleucine, valine, 

glutamate, taurine, proline, cysteine, and isoprostanes due to their relationship with 

the pathology. 
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In the third chapter of the thesis, tears from primary open-angle glaucoma (POAG) 

patients and controls were analyzed using NMR spectroscopy to identify biomarkers of 

the pathology in a minimally invasive medium, such as tears. The classification model 

obtained allowed the classification of POAG and control samples with high values of 

sensitivity and specificity. From the analysis of the metabolites participating in the 

classification model, taurine, glycine, urea, glucose, unsaturated fatty acids, 

phenylalanine, phenylacetate, leucine, N-acetylated compounds, formic acid, and 

uridine were determined as potential tear biomarkers of POAG. Phenylalanine, glucose, 

leucine, glycine, and taurine are particularly relevant due to their relationship to the 

pathology. 

 

Next, in the fourth chapter, the results obtained from metabolomic analysis by NMR 

spectroscopy of atheroma plaque samples and serum from patients with carotid 

stenosis are presented. Samples were obtained from symptomatic patients (who had 

shown signs of a cerebrovascular incident) and asymptomatic ones to determine 

plaque vulnerability biomarkers. From the plaque analysis performed using high 

resolution-magic angle spinning (HRMAS), myo-inositol, glutamate, and unsaturated 

fatty acids were determined as potential vulnerability plaque biomarkers, with 

glutamate being particularly relevant due to its relation to the pathology. Determining 

biomarkers in serum was more clinically relevant, and potential plaque vulnerability 

markers were obtained from statistical analysis as threonine, histamine, and 

unsaturated fatty acids. 

 

In the fifth and final experimental chapter, serum samples from patients hospitalized 

for pneumonia caused by the SARS-CoV-2 virus were analyzed by NMR spectroscopy to 

identify biomarkers to predict the development of pulmonary fibrosis, one of the most 

severe sequelae after COVID-19. The PLS-DA classification models generated were able 

to discriminate which patients developed pulmonary fibrosis one year after hospital 
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discharge (and sample collection) with high values of sensitivity and specificity. The 

proposed metabolites as potential fibrosis development biomarkers, due to their 

participation in the model and significant differences in their relative concentration 

between both groups are glucose, valine, and fatty acids. 

 

Finally, the general discussion and the main general conclusions of the thesis are 

presented, as well as the conclusions derived from the experimental work presented 

here. We hope that these results pave the way for the use of NMR spectroscopy 

metabolomics to identify early and non-invasive biomarkers, thus addressing one of 

the main needs of current medicine.
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Resum 

 

Esta tesi doctoral titulada "NMR-based metabolomics for the identification of 

biomarkers of disease" es centra en explorar i mostrar el potencial de la metabolòmica 

d’espectroscopia de ressonància magnètica nuclear (RMN) com a eina per a la detecció 

de nous biomarcadors de malalties que faciliten un diagnòstic precoç i no invasiu, així 

com un seguiment del pacient. L’espectroscopia de RMN s’aplica ací específicament a 

l'estudi de quatre malalties: enfermetat d’Alzheimer, glaucoma, aterosclerosi i 

vulnerabilitat de placa, i fibrosi pulmonar desenvolupada després de la pneumònia per 

COVID-19. 

 

En la introducció es presenta una descripció del procés d'anàlisi metabolòmic per a la 

identificació de biomarcadors de malalties, així com de les principals plataformes 

emprades en metabolòmica. Posteriorment es profunditza en el funcionament de 

l'espectroscopia de RMN per a l'anàlisi metabolòmic, així com en les principals eines 

estadístiques utilitzades en aquesta tesi. Finalment, es descriuen les principals 

característiques fisiopatològiques de les malalties estudiades en aquesta tesi, així com 

les formes de diagnòstic actuals i la necessitat d'identificar nous marcadors de 

malalties. 

 

A continuació, es descriu l'objectiu principal d'aquesta tesi, així com els objectius 

específics que s'aborden en els capítols experimentals. 

 

En el primer capítol, s'identifiquen biomarcadors d’enfermetat d'Alzheimer (AD, de 

l’anglés Alzheimer Disease) i del progrés de pacients amb deteriorament cognitiu lleu 

MCI (de l’anglés mild cognitive impairment) a Alzheimer mitjançant metabolòmica per 

espectroscopia de RMN en mostres de sèrum. Per a això, en primer lloc, es produeixen 

models PLS-DA per a la discriminació entre pacients d'AD i MCI i controls amb cognició 
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normal (HC, de l’anglés healthy controls). Els models de classificació obtinguts per a 

discriminar AD davant MCI i HC van mostrar excel·lents paràmetres de classificació. No 

obstant això, la discriminació entre MCI i HC no va ser tan significativa, posant de 

manifest com el desenvolupament d'AD altera el metabolisme cel·lular. Posteriorment, 

per a la identificació de biomarcadors del procés d'evolució de MCI a AD, el grup MCI 

es va subdividir atenent a si en un període de 1 a 3 anys després de l'adquisició de la 

mostra, el seu estat cognitiu havia deteriorat a AD. Es va observar que la lisina, el 

piruvat, la colina, la fenilalanina i les lipoproteïnes, tenien uns valors de concentració 

diferent depenent si el pacient evolucionava a AD o es mantenia estable. A més, es van 

observar diferències en les rutes metabòliques entre estos grups de pacients. 

 

En el segon capítol de la tesi, es van estudiar les diferències metabolòmiques entre 

pacients MCI i control d'un grup de pacients diferent, mitjançant l'anàlisi dels 

metabolits presents en mostres de plasma en espectroscopia de RMN, així com la 

presència de marcadors de peroxidació lipídica, que van ser analitzats mitjançant UPLC-

MS/MS. El procés d'oxidació cel·lular s'ha vist estretament relacionat amb el 

desenvolupament de la malaltia d'Alzheimer, i de fet, en el treball presentat s'observa 

com afegir marcadors de peroxidació lipídica a la metabolòmica de RMN millora els 

models de classificació d'estadística multivariant per a la identificació de biomarcadors 

de MCI. En aquest treball es van realitzar models de classificació PLS-DA utilitzant els 

metabolits identificats per RMN, els marcadors de peroxidació lipídica detectats amb 

UPLC-MS/MS, i la combinació de tots dos, obtenint el resultat amb una major 

significació estadística quan es combinen ambdues tècniques. Els metabolits 

identificats com a potencials biomarcadors de MCI en plasma són isoleucina, valina, 3-

hidroxibutirato, 2-hidroxi-3-metilvalerato, glutamat, glutatió, cisteïna, malonat, n-

nitrosodimetilamina, taurina, prolina i isoprostans. Especialment, per la seua relació 

amb la patologia, es destaquen com a potencials biomarcadors la isoleucina, la valina, 

el glutamat, la taurina, la prolina, la cisteïna i els isoprostans. 
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En el tercer capítol de la tesi, es van analitzar llàgrimes de pacients de glaucoma primari 

d'angle obert (POAG) i controls mitjançant espectroscopia de RMN, per a la 

identificació de biomarcadors de la patologia en un mitjà mínimament invasiu, com són 

les llàgrimes. Els models de classificació obtinguts van permetre classificar les mostres 

de POAG i controls amb elevats valors de sensibilitat i especificitat i de l'anàlisi dels 

metabolits participants en el model de classificació es van determinar com a potencials 

biomarcadors de POAG en llàgrima la taurina, glicina, urea, glucosa, àcids grassos 

insaturats, fenilalanina, fenilacetat, leucina, compostos n-acetilats, l'àcid fòrmic i la 

uridina. De especial rellevància són la fenilalanina, glucosa, leucina, glicina i taurina per 

la seva relació amb la patologia. 

 

A continuació, en el quart capítol es presenten els resultats obtinguts de l'anàlisi 

metabolómico mitjançant espectroscopía de RMN de mostres de plaques d'ateroma i 

sèrum de pacients amb estenosis de caròtide. Es van obtindre mostres de pacients 

simptomàtics (que havien presentat algun signe d'accident cerebrovascular) i 

asimptomàtics, a fi de determinar biomarcadores de vulnerabilitat de placa. De les 

anàlisis realitzades en placa, per mitjà de HRMAS, es van determinar com a potencials 

biomarcadores de vulnerabilitat el mio-inositol, glutamat, i àcids grassos insaturats, 

tenint especial rellevància el glutamat per la seua relació amb la patologia. La 

determinació de biomarcadores en sèrum resultava més interessant a nivell clínic, i de 

l'anàlisi estadística realitzada es van obtindre com a potencials marcadors de 

vulnerabilitat de placa la treonina, la histamina i els àcids grassos insaturats.  

 

En el quint i últim capítol experimental es van analitzar per mitjà de espectroscopía de 

RMN mostres de sèrum de pacients que havien estat ingressats a l'hospital per 

pneumònia causada pel virus SARS-CoV-2, a fi d'identificar biomarcadores per a predir 

el desenvolupament de fibrosi pulmonar, una de les seqüeles més greus 
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desenvolupades després de la COVID-19. Els models de classificació PLS-DA generats 

van ser capaces de discriminar que pacients haurien desenvolupat fibrosi pulmonar un 

any després de l'alta hospitalària (i la presa de mostres) amb alts valors de sensibilitat i 

especificitat. Els metabòlits proposats com a potencials biomarcadores de 

desenvolupament de fibrosi, per la seua participació en el model i la presència de 

diferències significatives en la seua concentració relativa entre tots dos grups són 

glucosa, valina i àcids grassos.  

 

Finalment, es presenta la discussió general i les principals conclusions generals de la 

tesi, així com les conclusions derivades del treball experimental ací presentat. Esperem 

que estos resultats òbriguen la porta a l'ús de la metabolómica mitjançant 

espectroscopía de RMN per a la identificació de biomarcadores primerencs i no 

invasius, i d'esta manera resoldre una de les principals necessitats de la medicina 

actual. 
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1. Metabolomics as a source of biomarkers of disease 

 
Biomarkers are defined by the World Health Organization (WHO) as “almost any 

measurement reflecting an interaction between a biological system and a potential 

hazard, which may be chemical, physical, or biological. The measured response may be 

functional and physiological, biochemical at the cellular level, or a molecular 

interaction”.1 

 

For the diagnosis of disease, it has always been important to find reliable biomarkers 

to identify health problems and to provide adequate treatment when available. 

Precision medicine has emerged as the optimization of the current approach for a 

better classification of patients according to their specific conditions to improve 

diagnosis, prognosis, and response to treatment.  

 
In the last decades, the development of the omic sciences has provided great amounts 

of information that has contributed to understanding biological processes associated 

with health and disease.2 Genomics, transcriptomics, proteomics, and metabolomics 

are the main omic sciences, all of them being interconnected and showing different 

aspects of a living system.3 

 

Where the genome could be considered the instruction book for all the processes 

occurring in a given organism, the transcriptome reflects the information that is 

actually being executed for a given tissue or cell type at a specific time. The transcripts 

provide the code for the generation of proteins, which ultimately catalyze the chemical 

reactions in which the metabolites are involved or produced (Figure 1).2   
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Figure 1. Schematic representation of the main “omic” sciences. Omic sciences are 
consecutively displayed from genotype to phenotype, being metabolomics the one that 
best can represent the macroscopic phenotype.  
 

Metabolites are small molecules, of usually less than 1500 Da,4  including amino acids, 

fatty acids, or sugars, among other organic compounds which act as intermediaries or 

end products of the cellular metabolism.5  

 

The complete set of metabolites found in a specific biological sample is defined as the 

metabolome. The metabolome reflects the interplay between the alterations or 

changes produced in the expression of genes and protein activity and the influence of 

external factors, such as lifestyle, environment, stress, drug treatment, or different 

health conditions, being the omic science closest to phenotype.6 

 

Metabolomics is the omic science determining the relative or absolute abundance of 

metabolites in a biological sample. For the relative quantitation, the normalized signal 

from the analytical instrument given by a specific metabolite is considered a measure 

of that metabolite in a specific sample, which can be compared to that cohort or batch. 

However, as the concentration value does not have a specific measuring unit, 
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comparing samples or groups from different studies is difficult.7 For absolute 

quantification, calibration and internal standards (IS) are required.7 

 

By measuring metabolic perturbations compared to the reference state (samples from 

healthy donors or controls), information of biological processes related to phenotype 

can be inferred. The use of metabolomics is then a good strategy to seek potential 

biomarkers of disease as well as to find new therapeutic targets. 

 
 

1.1 Metabolomic Approaches 

Metabolomic studies are usually classified as untargeted or targeted.8 Targeted 

metabolomics are used when a defined set of metabolites is studied. Absolute 

quantification is easier in targeted analysis, and it is usually used when there is a pre-

existing hypothesis about changes in a specific metabolic pathway under a given 

condition that needs to be validated.9  

 

On the other hand, untargeted metabolomics aims to identify and measure as many 

metabolites as possible in a biological sample. It is usually used to determine the 

differences in the metabolome of groups of samples found under any differential 

condition (e.g., health and disease, treatment and placebo...), seeking for a specific 

pattern of metabolites that would allow to classify the groups. In this case more 

complex information is found, and usually, relative, more that absolute quantification 

is performed.9 This approach is more associated with the discovery of biomarkers.10–12 

    

1.2 The metabolomic workflow 

The first step in an untargeted metabolomic study is to define the objectives. According 

to this, the type of sample to be analyzed and the size of the study is established, as 
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well as the analytical platform. There are two main techniques used for metabolomic 

analysis, i.e. nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 

(MS).  

 

MS is performed coupled with different chromatographic methods, including gas 

chromatography (GC-MS) and liquid chromatography (LC-MS). Taking this into 

consideration, the pre-processing of the sample and the data acquisition parameters 

are defined, according to the requirements of each platform, NMR or MS. After 

acquisition, the data needs to be preprocessed, and quality control (QC) is checked. For 

obtaining meaningful data from the metabolomic spectrum, the signals produced by 

the metabolites need to be translated or exported into a standard format. A numerical 

matrix is generated with the information obtained from each meaningful signal in the 

spectrum for every sample. Then, statistical data analysis together with metabolite 

identification is performed to obtain meaningful results. Currently, there are several 

databases available for the study of the metabolome. One of the most relevant for the 

study of human metabolites is the Human Metabolome Database (HMDB).13 The HMDB 

contains information about all of the human metabolites identified up to date (more 

than 200.000) in different biofluids from urine or serum to tears, as well as tissues. 

Detailed information about each metabolite including its chemical structure, biological 

roles, physiological concentrations, among others, as well as reference MS/MS (tandem 

mass spectrometry), GC-MS and NMR spectra.13  

 

Finally, the biological meaning of the obtained results and its relationship with the 

pathology, or condition under study, is established. Biological data bases such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG)14 or small molecule pathway database 

(SMPDB)15 present wide information about metabolic pathways, which links the 

chemical reactions occurring between metabolites in a given biological process. A basic 

workflow of an untargeted metabolomic study is shown in figure 2. 
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Figure 2. General workflow of a metabolomic study. The main steps of a metabolomic 
study for the identification of biomarkers of disease are shown. 
 
 

1.3 Analytical platforms for metabolomics  

The development of metabolomics in the last decade has been possible due to the 

advances in analytical technology, which has allowed the performance of high-

throughput analysis.16 Compound identification can be difficult due to the complexity 

of the biological matrixes, and none of the techniques allows a complete qualitative 

and quantitative description of the full metabolome. Still, through the application of 

these analytical tools it is possible to identify a wide range of metabolites present in 

biological samples such as serum17 and plasma,11 urine10,18,19 or tears20 among other 

biofluids, as well as tissues,21–25 or cell cultures.26  

 

The analytical platform of choice for a given metabolomic study depends on several 

factors, as both NMR spectroscopy and MS present different advantages and 

limitations. In fact, the use of both platforms can be complementary to obtain an 

increased coverage of the metabolome.27  
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As has been previously mentioned, separation techniques, mainly GC or LC, are used 

before MS. The chromatographic method is generally chosen depending on the matrix 

or the nature of the compounds of interest. In GC compounds are separated depending 

on their volatility,28 whereas in LC, in most of the cases metabolites are separated 

according to their polarity (differentiating between polar and non-polar compounds).29 

Also, the advancements in analytical instrumentation have allowed the emergence of 

ultraperformance LC (UPLC), which improves the sensitivity, resolution and speed of 

LC.30 Briefly, after separation, metabolites are sent into the MS equipment, which is 

composed of an ionizer, a mass analyzer, and a detector. Then, the MS identification of 

compounds is based on the ionization patterns of molecules. The mass over charge 

(m/z) of ions, as well as their relative quantities is used to identify the metabolites.31   

 

For NMR analysis, the most common preparation consists of the addiction of a 

phosphate buffer for the regulation of the pH of the sample, and a deuterate solvent. 

The sample usually doesn’t require any further preparation, while concentration or 

lyophilization can be done previously. Then, the prepared samples are subjected to 

NMR spectroscopy, where metabolites resonate at distinct frequencies based on their 

chemical environments. By measuring these resonances and processing the resulting 

spectra, metabolites can be identified and quantified. 

 

MS has higher sensitivity than NMR, being able to identify compounds whose 

concentration is in the order of nanomolar (nM) or picomolar (pM) for some 

equipment. NMR can detect metabolites that are 10 or 100 times more concentrated. 

That also means that a higher number of compounds can be identified with MS.32 

 

On the other hand, NMR spectroscopy is more reproducible than MS and does not 

require any preparation step prior to the analysis of the sample.33 Furthermore, NMR 

is a non-destructive technique, so the samples can be further analyzed after NMR 

spectroscopy if needed. In contrast, MS is a destructive technique, but less volume of 
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sample is required for the analysis.33  Advantages and disadvantages of NMR and MS 

for metabolomic studies are summarized in figure 3. 

 

Figure 3. Comparison between NMR and MS for metabolomic studies. The figure 
shows the main differences between both techniques.33  
 

In this PhD thesis, the technique used is NMR spectroscopy. Theoretical fundaments of 

the technique and the most relevant features are further exposed in the following 

sections.  

 

1.4 Nuclear magnetic resonance spectroscopy 

NMR spectroscopy is a fundamental tool in chemistry, having a wide range of 

applications, among which we can find structure elucidation, purity assessment, or 

compound quantification. Beyond chemistry, other disciplines such as food, pharmacy, 
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biology, medicine, and materials also use this technique to support their studies. 

Moreover, this technique is a powerful tool for metabolomic studies.34  

1.4.1 NMR spectroscopy principles 

Spectroscopy, as a broad discipline, focuses on how matter interacts with 

electromagnetic radiation. Atoms and molecules possess distinct energy levels 

associated with various electronic, vibrational, or rotational states. This interaction 

involves the absorption and emission of photons by atoms. Spectroscopic techniques 

vary based on the frequencies employed. For instance, NMR spectroscopy utilizes radio 

frequencies typically ranging from 10 to 800 MHz.35 

 

NMR is the study of the magnetic properties (and energies) of nuclei. The absorption 

and emission of electromagnetic radiation can be observed when the nuclei are placed 

in a strong external magnetic field. The principles of NMR spectroscopy are based on 

the concept of nuclear spin.36 The spin is the nuclear angular momentum that makes 

nuclei act like magnets. The nuclear spin is the resultant of the spin and orbital angular 

moment of the neutrons and protons that form the nucleus. The neutron and the 

proton each have a spin quantum number 1/2. A nucleus with an odd mass number A 

has a half-integral value (1/2, 3/2, etc.). A nucleus with even mass number A has an 

integral value of I.37 Nuclear spin determines the energy levels that a nucleus can take 

under a magnetic field. Depending on the nature of the nucleus the interaction of the 

atom with an external magnetic field (B0) would be different. NMR principally studies 

nuclei with a spin of 1/2 (such us, 1H, 15N, 13C, 19F, 31P).38 A spin of 1/2 means that under 

an applied magnetic field it has two energy levels (Figure 4), depending on the spin’s 

orientation:  

1) + ½: a low energy state (α), that is produced when the spins are parallel 

with the applied magnetic field 

2) – ½: A high energy state (ß), that is produced when the spins are antiparallel 

to B0 
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As in any other physic system, the nuclei tend to be in the ground energy state. In the 

equilibrium, there would be nuclei associated to one spin state or the other, causing 

the macroscopic magnetization in the sample.38 The application of a radiofrequency 

pulse perpendicular to the magnetic field produce the transition of the nuclei between 

both stages. When the pulse finishes the nuclei come back to its basal state (relaxation), 

releasing the excess energy, that can be detected as a free induction decay (FID) (Figure 

4). 

 
Figure 4. Schematic representation of the fundaments of 1H-NMR spectroscopy. 
Nuclei are represented as green circles. The arrows indicate the orientation of the spin.  
 

Then, the application of the Fourier transform allows to convert this signal into a 

spectrum, transforming the time domain into the frequency domain. The resultant 

spectrum is formed by the x-axis, with the frequency (w), and a y-axis with the intensity 

of the signals (Figure 4).36 

 

The NMR signal (frequency w) produced by nuclei is influenced by the chemical 

environment of the nuclei. All nuclei are surrounded by an electron cloud, that shields 

it from the external electromagnetic field B0, generating a small magnetic field B1, 

generally in opposition to B0. The shape of the cloud depends on the electronegativity 
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of the neighboring atoms, so it is specific for each chemical compound.38 The frequency 

shift caused by the shielding of the electron clouds is called chemical shift (δ). The 

chemical shift is normalized to the magnetic field, being measured in part per million 

(ppm). The extent of this chemical shift is dependent on the electronic environment 

around the nucleus, which is influenced by the electronegativity of neighboring atoms 

and the overall molecular structure. 

 

For the identification of metabolites in a spectrum, spin-spin coupling (J) is also 

important that is produced by two or more adjacent protons in a molecule. This 

produces a splitting in the signal called multiplicity.38 The multiplicity is produced 

following rule n+1, where n is the number of nuclei of the same type in the neighboring 

environments (Figure 5). 

 

These two characteristics allow the identification of the molecules present in a sample. 

In complex matrixes, such as biological samples, the signals overlap due to the presence 

of hundreds of metabolites, making the identification of metabolites challenging. 

Furthermore, the intensity of the signals or the area under the peak can be related to 

the concentration of a given metabolite in the samples.39 
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Figure 5. 1H-NMR spectra of lactate. Lactate molecule and its NMR spectrum are 
displayed. The orange arrows indicate which 1H group is responsible for the generation 
of the signal. Lactate spectrum was downloaded from Biological Magnetic Resonance 
Data Bank (BMRB). 
 
 

Once acquired, spectra need to be pre-processed and quality controlled. The 

preprocessing of NMR spectra usually consists on the application of a windowing 

function (usually exponential line broadening), baseline correction and phase 

adjustment, as well as chemical shift calibration. The chemical shift can be referenced 

to the shift of an already known metabolite, or through the addition of reference 

compounds, such as 3-trimethylsilyl propionate (TSP) or 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS). 
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1.4.2 1H-NMR experiments 

Proton NMR (1H-NMR) is the most extended for metabolomic studies, due to the high 

abundance of 1H in biomolecules, which allows its identification and quantification. As 

has been previously mentioned, radiofrequency pulses are required to obtain NMR 

spectra. A pulse sequence is a series of pulses designed to acquire specific types of 

information from the sample. The most commonly used pulse sequences for 1H-NMR 

experiments in metabolomics are monodimensional versions of Nuclear Overhauser 

Effect Spectroscopy (NOESY)40 and Carr-Purcell-Meiboom-Gill (CPMG) sequences.41 

 

The most prominent signal in the spectra of samples with biomedical interest is the 

solvent (water), given that the samples are in an aqueous environment. To observe the 

signals of the metabolites, it is necessary to eliminate as much as possible the water 

signal. There are different ways to selectively suppress this signal. The 1D NOESY 

sequence allows an efficient suppression of the water signal with a resulting flat 

baseline close to the residual water signal. It is a highly reproducible method for the 

general acquisition of spectra from complex samples containing metabolites (small and 

large biomolecules).40 

 

Usually, the samples of biomedical interest contain molecules of high weight and with 

restrictions in relaxation that are in the origin of wide and low resolved signals, that 

compromise the baseline of the spectra. When a better identification of low molecular 

weight molecules is required, like in serum and plasma samples, the CPMG sequence is 

principally applied.41 It is based on the different relaxation properties of the nuclei 

depending of the size of the molecules allowing the elimination of wide signals.41 

 

As it has been mentioned previously, one of the limitations in metabolite identification 

of 1H-NMR is the overlapping of signals due to the complexity of biological samples. 

However, this problem can be in part solved with 2D experiments of correlation 

homonuclear (1H-1H) or heteronuclear (1H-13C for instance) which can be acquired 
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thanks to the possibility of observing multiple nuclei during a single NMR experiment.42 

In these experiments, the use of two dimensions enables the separation of peaks, that 

in 1D experiments would be overlapping, providing further information on the chemical 

structure of the molecule.42 Most used 2D NMR experiments include homo-nuclear 

experiments (1H-1H), such as 1H J-Resolved, COSY (COrrelation SpectroscopY) 42 and 

TOCSY (TOtal Correlation Spectroscopy), and heteronuclear experiments like HSQC 

(Heteronuclear Single Quantum Coherence) that can be acquired correlating signals of 

different nuclei as 1H-13C, 1H-15N or 1H-31P.43,44 

1.4.3 HRMAS NMR spectroscopy 

Metabolomics by NMR spectroscopy can also be applied in intact semisolids or 

semifluids, such as tissue biopsies or culture cells thanks to the application of high-

resolution magic angle spinning (HRMAS) NMR.45 This technique allows the acquisition 

of high-resolution spectra of such semisolid samples such as intact tissue to evaluate 

the metabolic composition.46 

 

In tissue there are limitations in the mobility of molecules, that are not found in liquids, 

which increase the proton dipolar interactions. This restriction together with the 

heterogeneity in magnetic susceptibility, results in broad lines of the NMR spectra.46  

To reduce the line broadening, the samples are mechanically rotated at speeds faster 

than the spectral broadening around an axis inclined 54o44’ (the magic angle), which 

decreases the effect of the interactions. Using HRMAS NMR spectroscopy the 

resolution of the tissue spectra is close to the resolution found in 1H-NMR of tissue 

extracts.46 
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1.5 Statistical analysis  

As it has been previously mentioned, after the data acquisition and pre-processing of 

the spectra, the signals are integrated, and a complex matrix of observations (samples) 

and variables (peaks) is formed. To identify the relevant information and to interpret 

the data, the application of statistical methods is required.  

 

The first steps are the normalization and the scaling of the data. Normalization allows 

to reduce the differences between samples produced by the nature of the sample (for 

example, urine samples could be more concentered or diluted prior to the analysis). 

The most common strategies for normalization are the normalization to the total area 

of the spectrum or to the area of a determined peak. The scaling is used to minimize 

the impact that bigger or more intense signals (which have higher values due to the 

characteristics of the analytical technique) have in the analysis. Scaling allows to 

prevent the presence of signals with high intensity from overshadowing or concealing 

the presence of other metabolites with lower signal intensity.47 In the works presented 

in this thesis, the scaling used is autoscaling, in which every variable is mean centered 

and divided by the standard deviation. Once the matrix of data is prepared, different 

statistical analyses can be performed.  

 

Univariate statistics, such as t-test or Mann-Withney U test (non- parametric version of 

t-test) allows to compare the specific value of a metabolite among groups. However, 

the current consensus suggests that the entire metabolic profile is more sensitive in 

identifying and characterizing disease compared to the study of single metabolites.48 

Bearing this in mind, the use of techniques able to provide a holistic picture of the 

samples is highly appealing and may find applications in the development of tools for 

diagnosis. In this context, given the high number of variables obtained from a 

metabolomic analysis, and the interconnections between the different metabolites 

that can provide redundant information, more potent statistics methods (multivariate 
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statistics) are generally used for the identification of potential biomarkers, and the 

generation of predictive models.  

1.5.1 Multivariate analysis 

The application of multivariate statistics allows the reduction of the dimensionality of 

the data, considering all the metabolomic features simultaneously, and identifying 

relationship patterns among them. The multivariate analysis can be unsupervised, 

which do not require information about type of sample (e.g., health and diseased), and 

supervised methods which are “directed” to discriminate the samples according to 

class, and therefore highlighting the metabolomic differences between the groups.  

 

1.5.1.1 Unsupervised data analysis (PCA) 
 

Principal component analysis (PCA) is the most widely used unsupervised multivariate 

tool employed in omic analyses.49 It is commonly used to determine whether the 

samples in a batch are grouped based on the characteristics under analysis, in our case 

the metabolome.49 

 

When PCA is applied, the information in a data set is reorganized in new uncorrelated 

variables called “Principal Components” (PCs), which are calculated as linear 

combinations of the original variables representing most of the information in the 

data.50 With this method, the first component explains the maximum variance in the 

data and the subsequent components explain consecutive reduced amounts of 

variance.50 After performing a PCA, every observation in a dataset is described by a set 

of scores according to the principal components. These scores indicate the position of 
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the data point in the new coordinate system created by those principal components 

(Figure 6).50 

Figure 6. Schematic representation of PCA dimensionality reduction. Dimensionality 
is reduced and a new system of variables that maintain most of the information is 
created, in such a way that similar samples are clustered together. (Image from Nashed, 
M. (2023) BioRender). 
 

In a metabolomic analysis, several factors can influence the final composition of the 

samples, and therefore commonly it is not possible to observe a structure on the data 

after PCA, or the structure formed does not represent the groups under study. To find 

patterns associated to groups a supervised analysis can be performed. 

 
1.5.1.2 Supervised data analysis (PLSDA) 
 

Supervised methods use the information about the groups present in the dataset to 

discover variable patterns associated to such groups.51 There are several supervised 

methods for the identification of discriminant variables between groups, such as 

support vector machine,52 artificial neural networks53 or partial least squares 

discriminant analysis (PLS-DA).54 PLS-DA has become the most popular algorithm used 

for metabolomic studies,54 and it is the algorithm used in the works presented in this 

thesis.  
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Partial least square (PLS) is a statistical tool that allows the generation of predictive 

models to find the relation between two matrices, a matrix of independent variables 

(predictors) and a secondary matrix of dependent variables (response). PLS creates new 

variables, in a similar way to PCA, called latent variables but instead of looking for 

maximum variance, latent variables (LV) are used for the generation of a regression 

model between predictors and response variables.55 

 

PLS-DA is a variation of PLS used when the response variable is categorical (i.e., health 

and disease). Therefore, it is useful for the generation of discriminative predictive 

models. The feature coefficients (loadings) represent the relative contribution of each 

predictor variable to the discrimination.55 

 

Once the predictive model is generated, its accuracy and predictive capacity (sensitivity 

and specificity) are studied. Sensitivity is defined as the rate of true positives divided 

by all the positive samples (true positive and false negative). Specificity is defined as 

the rate of true negatives divided by all the negative samples (true negatives and false 

positives).56 An interesting method for the representation of the sensitivity and 

specificity of a model, and to determine its “goodness” is the Receiver-Operating 

Characteristic (ROC) curve. In the ROC curve, sensitivity is displayed on the y-axis and 

1-specificity on the x-axis for different threshold points in the testing of samples (Figure 

7). As a result, the area under the curve (AUC) is a combined measure of sensitivity and 

specificity useful for the determination of the prediction capacity of the model.56 
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Figure 7. Schematic representation of ROC curves and distribution of positive and 
negative samples under a classification model. With an ideal classifier, positive and 
negative samples can always be distinguished (left curve). Most of the time, there is an 
overlap in the classification of positive and negative samples (middle curve). When the 
classifier is not able to separate samples by class, the classification is produced by 
chance (right curve).  
 
 
An important step when evaluating a classifier is to check for overfitting.57 Predictive 

models are trained prior to prediction, and with the use of too many latent variables, 

the model could be too suited for the current set of data but would not work for a 

different group of data. To ensure that the model is not overfitted, different strategies 

can be followed. In an ideal scenario, samples can be divided into a calibration group 

for training and a validation group for testing. However, if the available cohort is not 

big enough, cross validation (CV) and permutation test can be used to determine 

whether the model is overfitted.54  

 

CV determines the predictive capacity of a classifier or model using an iterative 

approach. At each round of CV, the dataset is split into different subsets (folds). The 
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model is trained on different combinations of these subsets, and a remaining subset 

(validation set) is used to evaluate the performance of the model. This process is 

repeated until all the samples have been used for validation. The average of these 

results provides an estimate of the performance and reliability of the predictive 

model.54  After CV, permutation test can be performed to determine the significance of 

the obtained predictive results. In the permutation test, the group labels are randomly 

assigned to the samples, and the CV is performed. This process is repeated hundreds 

to thousands of times, to generate a distribution of tests to assess the statistical 

significance. The null hypothesis would be that there is not difference between the 

results obtained when group labels are randomly assigned and the actual class of the 

samples. If the p-value is lower than the established threshold (usually 0.05) the null 

hypothesis would be rejected, and the model could be considered significant.58 

 

Variable selection methods  
 
Variable selection is a crucial step for the generation of predictive models in 

metabolomic studies. Different strategies can be followed to select the most 

representative variables of a PLS-DA model and refine the prediction results. In the 

works presented in this thesis, mainly two methods have been used for variable 

selection: variable importance in projection (VIP) scores and genetic algorithms (GA). 

 
Variable Importance in Projection (VIP) 
 
VIP scores indicate the importance of each variable in the prediction capacity of the 

PLS-DA model. It is calculated according to the weighted contribution of each variable 

to the model’s predictive performance across its latent variables. When a variable has 

a higher VIP value, it means that it contributes more to the discrimination between 

classes generated by the model.59  The refining of the model, by the only inclusion of 

variables with VIP scores above a given value, (e.g., VIP > 1) often improves CV 

performance and significance (while decreasing overfitting). 
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Genetic Algorithms (GA) 
 
Genetic algorithms (GA) is an optimization technique designed for the selection of 

variables. It is based on the concepts of mutation, natural selection, and evolution.60  

Variables are represented as genes in a chromosome, each chromosome being an initial 

random distribution of a subset of variables, that will be used for the prediction model. 

Fitness of the model is assessed, and in an iterative process, mutation and 

recombination (change of variables) and natural selection (progressive selection of the 

best performing model) is produced for a predefined number of generations, or until a 

certain fitness threshold is achieved. In the end, the group of variables that give the 

best prediction in the PLS-DA model is selected.60 

 

Based on the use of NMR-based metabolomics as a source of biomarkers of disease, 

different studies have been developed during this PhD thesis. We have sought an 

improvement in the diagnosis of four diseases: Alzheimer’s disease, primary open angle 

glaucoma, atherosclerosis and plaque vulnerability, and pulmonary fibrosis 

development after COVID-19 infection. The main pathological characteristics and 

current diagnosis procedures of these diseases are further discussed in the following 

sections. 

 

2. Alzheimer’s disease  
 
Dementia is a general term used to define a group of pathological symptoms produced 

in several age-related brain diseases. It is characterized by a progressive cognitive 

decline which causes an impairment with everyday activities, that is not produced with 

normal aging. Main dementia symptoms include memory and language problems, 

problem-solving disfunction, and difficulties in other cognitive skills, as well as 

behavioral problems.61  With the increased aging of the population, the development 

of dementia and its impact in society and economy is also rising. In 2019, about 55 
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million people were affected by dementia, a figure expected to rise to 139 million by 

2050.62  

 

Dementia has different potential causes, Alzheimer’s disease (AD) being the most 

prevalent cause. AD is a progressive and irreversible neurodegenerative disease, 

responsible of 60-80% of dementia cases.63 It is a complex multifactorial disorder 

caused by the interaction of genetic susceptibility and environmental factors, being 

aging the principal risk factor, with 10% individuals older than 65 having AD.64 

 

2.1 Etiology of the disease 

Alzheimer’s disease was first described in 1906 by the German psychiatrist Alois 

Alzheimer. In 1901, Alzheimer observed a patient named Auguste D. with a progressive 

loss of cognitive capacity. When she died, Alzheimer observed in a histological analysis 

of her brain the formation of plaques in the cortex, which today we know is amyloid-β 

(Aβ) accumulation, and the formation of neurofibrils, which we now understand are 

caused by the accumulation of hyperphosphorylated Tau protein.65 More than 100 

years after, the formation of Aß plaques and neurofibrillary tangles (NFT) are still the 

main pathological hallmarks of Alzheimer’s disease.66  

 

Amyloid-ß is produced from the cleavage of amyloid protein precursor (APP), which is 

a transmembrane protein related to membrane-limited organelles. The accumulation 

of Aß in the cerebral cortex is related to an increased neurotoxicity.67 
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On the other hand, Tau is a protein which associates with the microtubules to increase 

its instability and allow to form a stable network of microtubules and hold them 

together. Due to the accumulation of Aß, Tau protein is hyperphosphorylated, and 

oligomerized, which results in the formation of the NFT (Figure 8). Neurofibrillary 

tangles, together with Aß-plaques generate an inflammatory environment in the brain 

and produce an impairment in synaptic signaling.67 These changes lead to clinical 

manifestations that go from memory lapses to severe and debilitating loss of memory 

and cognitive function.66 

 
Figure 8. Formation of NFT tangles and Aß plaques in AD brain. The top scheme 
represents healthy brains with the presence of Tau protein stabilizing microtubules, 
resulting in healthy neurons. The bottom scheme shows an AD brain, with NFT and Aß 
plaques resulting in a diseased neuron with an impairment in the synapsis ability.  
 

Although AD is not a hereditary disease per se, several genetic factors have been 

associated with the development of the disease. There are more than 80 risk and 

protective genes for AD, most of them with small effects when evaluated individually. 

The apolipoprotein E (APOE) gene is the most important risk gene for AD.68  One of the 

three major allelic variants (APOE*ε4) is related to an increased risk and lower age of 
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AD onset. The effect that it has on the onset of the disease might be related to the 

inhibition of Aß clearance and promotion of Aß aggregation.69  

 

2.2 The course of Alzheimer’s disease 

AD is a chronic irreversible illness that can last between 8-10 years. However, it is 

preceded by preclinical and prodromal stages, which can begin up to 20 years before 

the onset of clinical symptoms.70  AD patients experience a gradual onset of the disease, 

with a slow, but progressive, decline in most of their cortical functions.71 
 

There are three principal stages in AD, with a progressive loss of cognitive capacities. In 

the first preclinical stage of AD, there are no clinical symptoms, but the aforementioned 

pathological changes in the brain, including the accumulation of Aß and 

hyperphosphorylated Tau protein, start occurring. Then, Mild Cognitive Impairment 

(MCI) is used to define those patients who do not have dementia but have some deficits 

in cognition. It could be defined as an intermediate stage between normal aging and 

dementia. People with MCI might have memory lapses and changes in cognition that 

can be measured.66 Finally, the progression to dementia can be divided into different 

substages (mild, moderate and severe dementia) according to the sequential loss of 

capacities.68 In this point it is also worth mentioning that not all MCI patients will 

progress to dementia, as MCI might not be caused by AD. In some cases, cognitive 

decline in MCI patients can be reverted or remain cognitively stable.72 Progressive 

deterioration in people with AD might vary according to the elements affected in 

cognition. First, word recall and orientation in time are affected. Then a progressive 

decline in language, attention and concentration, and finally, impairment in 

constructional praxis, orientation in place and immediate memory deterioration are 

observed in severe AD dementia.73 Changes in personality are as well observed (Figure 

9).74 
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Figure 9. Schematic representation of progressive cognitive impairments in AD. The 
main stages in the course of Alzheimer's disease and the limitations produced in each 
stage are represented.75  
 
 

2.3 Diagnosis criteria 

The diagnosis of AD involves the combination of different methods, including cognitive 

testing, physical examination, neuroimaging, and Aß and Tau proteins determination.  

 

First, cognitive tests are performed to determine the stage of dementia of the patients. 

Among the most popular cognitive tests are the Mini-Mental State Examination 

(MMSE), Clinical Dementia Rating (CDR), and Clock Drawing Test (CDT). The MMSE is a 

brief test consisting of 30 items with a total score that ranges from normal (30 points) 

to severe impairment (0 points). The questions are grouped into seven categories: 

orientation in time, orientation in place, registration, attention and concentration, 

recall, language, and drawing. The sub scores obtained in each category provide 

information about AD progression.73 In the CDR test, six functional domains are 

examined (memory, orientation, judgment and problem solving, community affairs, 

home and hobbies, and personal care), with scores ranging from 0 to 3, representing 

normal aging (0) to severe dementia (3).76 In the Clock Drawing Test, the level of 

dementia is established based on the evaluation of the patient’s drawing of a clock 

(Figure 10).77  
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Figure 10. Example of clock drawing images. Scores range from 0 to 5, according to the 
level of dementia. The number of images in each score is shown below the score label 
(Figure from Raksasat et al., 2013.77)  
 

In addition to clinical diagnosis, molecular biomarkers such as Aß, total Tau protein and 

phosphorylated Tau protein can be measured in cerebrospinal fluid (CSF), and recently 

also in blood.78 However, the lumbar puncture for CSF is an invasive procedure, and the 

measurement in blood is not validated for clinical use yet.68  Neuroimaging techniques 

are also used for the diagnosis of AD. Position emission tomography (PET) allows to 

study not only the concentration, but also the spatial distribution of Aß and Tau protein. 

However, the costs and infrastructural requirements limit its use. On the other hand, 

magnetic resonance imaging (MRI) is also useful for the diagnosis of AD, as allows the 

identification of structural changes in the brain and vascular pathology, but it is not 

specific for AD.68 Altogether, these diagnosis methods do not capture the full 

complexity of AD pathophysiology (as they only account for the presence of Aß, Tau, 

and NFT), ignoring processes also occurring in AD, such as inflammation and synaptic 

loss. Furthermore, the clinical symptomatology in most patients is produced by co-

existing pathologies like cerebrovascular diseases, and these techniques do not account 
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for the presence of mixed pathologies.68 The availability of molecular, non-invasive 

biomarkers would enable more effective diagnosis, patient stratification, treatment 

selection, and follow-up. 

 

2.4 The need for new biomarkers. Metabolism and AD 

As it has been previously mentioned, the clinical diagnosis of AD usually occurs decades 

after the initiation of the pathological processes. Currently, there are more than 187 

clinical trials conducted searching for an effective treatment of AD, most of them being 

disease-modifying therapies.79 However, therapy that begins when clinical symptoms 

appear is not effective, as it may be too late to reverse the damage already done. Efforts 

are being focused in finding biomarkers to determine which individuals would develop 

AD, time before pathological irreversible changes occur, and to develop new 

therapeutical interventions to slow down or to stop its progression.  

 

The identification of biomarkers of impaired metabolism in AD has previously been 

explored. AD has a wide effect on brain metabolism, affecting different pathways and 

functions. 

 

Oxidative stress is a well-known characteristic of AD, contributing to its pathogenesis 

and progression.80 Oxidative stress is produced due to the generation of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), which react with 

biomolecules producing oxidative damage that can be measured by the concentration 

of biomarkers of oxidative damage.80 Increased concentration in biomarkers of lipids 

(i.e. peroxidized lipids and isoprostanes),81 proteins (i.e. 3-Nitrotyrosine),82 and nucleic 

acids (i.e. 8-Hydroxy-deoxyguanosine and 8-Hydroxyguanine)83 in patients with AD 

have been reported. This oxidative environment damages the synaptic functions 

related to learning and memory observed in AD patients. 
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Furthermore, alterations in the energetic metabolism have been observed in the 

development of AD.80 For example, glucose metabolism becomes dysfunctional in AD 

brain due to mitochondrial impairment. Glucose hypometabolism has been observed 

in the brains of AD patients, suggesting that hypometabolism could be occurring before 

the onset of clinical symptoms.  

 

Altered lipid metabolism has also been related to AD. As previously mentioned, APOE 

is the principal risk gene for the development of AD, which encodes an apolipoprotein. 

Furthermore, high cholesterol levels in the brain have been associated with AD. 

Cholesterol is involved in the maintenance of neuronal functions in the brain, such as 

neurotransmitter release and synaptic plasticity.84,85 However, an excess of cholesterol 

in the brain can enhance the release of Aß.86 

 

Further analysis of previous metabolomic studies performed for the identification of 

biomarkers is exposed in Chapter 1. In this thesis, two studies (in Chapters 1 and 2) 

have been carried out, (i) one studies the potential of metabolomics for the 

identification of early biomarkers of MCI and AD, and potential indicators of the 

progression of MCI to AD, (ii) the other studies oxidative stress biomarkers of MCI 

patients, obtained by UPLC-MS in combination with NMR-based metabolomics.  
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3. Primary Open Angle Glaucoma 
 
 
Glaucoma is a term used to englobe a group of optic neuropathies, characterized by 

the progressive loss of retinal ganglion cells (RGC) together with supportive glia and 

vasculature. This produces morphological changes within the retinal nerve fiber layer 

and the optic nerve head.87 The disease is usually bilateral, but asymmetry can be seen, 

depending on the etiology of the disease.88 Glaucoma affects more than 70 million 

people worldwide and it is estimated that 111.8 million by 2040 will develop the 

disease. It is the leading cause of irreversible blindness and the second cause of 

blindness worldwide, affecting 3.5% of individuals aged between 40 and 80, a 

percentage increased to 10% for people older than 90.89  

 

3.1 Etiology of the disease 

There are two main types of glaucoma, according to its underlying anatomy and 

pathophysiology: open angle glaucoma (OAG) and angle closure (ACG). Both can then 

be subdivided into primary and secondary, depending on if it has an undelaying known 

cause (secondary), or not (primary).90   

 

The anterior segment of the eye has its own circulatory system, which maintains the 

crystalline nerves and the cornea, both of which lack a blood supply. The ciliary body, 

a structure located behind the iris, produces the aqueous humor which circulates 

through the pupil into the anterior chamber where it nourishes the avascular structures 

of the eye, and drains out through the trabecular meshwork, which is a structure in the 

iridocorneal angle, where the iris and the cornea meet.91 Primary angle closure 

glaucoma (PACG) is produced by disorders of the iris, lenses, and retro-lenticular 

structures which narrow the angle between the iris and the cornea, which leads to an 

increase in the intraocular pressure (IOP) as the aqueous humor cannot be correctly 
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drained. On the other hand, in primary open angle glaucoma (POAG) the angle between 

the cornea and the iris remains open, but the aqueous humor is not correctly drained 

due to an increased resistance through the trabecular meshwork (Figure 11).92 

 

 
Figure 11. Schematic diagram of open angle and angle closure glaucoma. The anterior 
eye in open angle (left) and angle closure (right) glaucoma is shown. It can be 
appreciated how the displacement of the iris and lens obstructs the fluid drainage 
through the trabecular meshwork.  (Figure from Krizaj, 2019.92) 
 

This inefficient drainage of the aqueous humor elevates the IOP which is related to the 

progressive apoptosis of the retinal ganglion cells (RGC).93 The retinal ganglion cells are 

the neurons that receive the signals from the photoreceptors, process them, and 

transmit them to the brain through their axons which form the optic nerve.94  Structural 

changes in the eye and impaired transport in the optic nerve are produced when there 

is an increase in IOP, low perfusion pressure (the pressure difference between the 

blood pressure and the intraocular pressure), or low CSF pressure.94 The loss of RGC 

leads to a progressive impairment of the visual field, beginning from the periphery, and 

progressing until only a central or peripheral island of intact vision remains.94 

 

POAG is the most prevalent form of glaucoma, and it has been associated with an 

increased IOP. However, although high IOP is a risk factor for the development of 

glaucoma, most patients with high IOP will not develop POAG, and conversely, not all 
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POAG patients have high IOP.90 This suggests that factors other than IOP are important 

in the development and evolution of POAG, especially in those patients with statistically 

normal IOP levels (21 mmHg or less), known as normal tension glaucoma.90 

Furthermore, the mechanisms leading to the increase in intraocular pressure in POAG 

are not fully understood.94 

 

The pathogenesis of POAG remains unclear, and the combination of different factors 

and systemic conditions is believed to be involved in the onset and progression of the 

disease. Among the potential risk factors of the disease are autoimmune dysfunction,95 

oxidative stress,96 systemic and ocular vascular factors,97 as well as sex, age, and 

ethnicity (Figure 12).98 

Figure 12. Risk factors associated with POAG. Schematic representation of the factors 
that have been associated with the development of POAG.  
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3.2 Current Diagnosis  

For the diagnosis of glaucoma, different factors are clinically evaluated: 

 

• First, the visual field is examined to determine the degree of functional 

impairment produced by the loss of optic nerve fibers, to determine any areas 

of visual loss.94   

• Then tonometry is used to determine intraocular pressure.94 The corneal 

thickness and curvature are measured at the same time as it can affect the 

accuracy of the IOP measurements.94   

• Optic nerve is examined with imaging techniques such as optical coherence 

tomography. The optic nerve head appearance and the optic nerve fiber 

thickness change in glaucoma, with a thinning of the optic nerve.94   

• Finally, gonioscopy is used to examine the chamber drainage angle at the time 

of initial diagnosis to assess if it is open or closed.94  

 

3.3 The need of new biomarkers. Metabolism and POAG 

Glaucoma symptomatology appears years after the initiation of the pathophysiological 

changes and as many as half of the RCG axons can be lost before the first pathological 

changes are detectable.99 In early glaucoma when symptoms are absent, diagnosis may 

be missed. There is a need for the identification of non-invasive biomarkers for the early 

diagnosis and follow up of glaucoma.100 Furthermore, the early diagnosis of the disease 

is extremely important, as currently the only way to prevent blindness is by early 

treatment reducing the IOP,99 and high IOP is not even a necessary or a sufficient 

condition for the development of POAG. Therefore, the identification of molecular 

biomarkers of glaucoma could not only allow an earlier diagnosis, but also lead to a 

better understanding of the pathophysiology of the disease, and to the development 

of new targets for treatment.  
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Some alterations in the metabolism have previously been associated with the 

development of glaucoma. Oxidative stress has an important impact in the pathology 

of glaucoma, as observed in AD. A significant decrease in the antioxidant capacity of 

POAG patients has been reported, as well as an increase in markers of lipid peroxidation 

such as malondialdehyde. It has been proved that ROS increases the oxidative DNA 

damage in the trabecular meshwork of POAG patients.101 Glucose metabolism has also 

been observed to be affected in POAG patients. Previous studies have shown 

alterations in the metabolism and transport of glucose and pyruvate.102  

 

When searching for molecular biomarkers of glaucoma, different biofluids can be 

explored. The process of glaucoma neurodegeneration occurs in the optic nerve and 

RGC in the inner retina. However, the sampling of this tissue would be highly invasive 

and not feasible. Serum, vitreous fluid, aqueous humor, and tear film are available and 

barely invasive biofluids (especially tear film) for the study of biomarkers of 

glaucoma.100 

 

The tear film is a thin layer of fluid that covers the surface of the eye. Although tear film 

is more distant from the glaucoma neurodegeneration sites, previous studies have 

found biomarkers associated with glaucoma in this biofluid. For example, endothelin-

1, which promotes the decrease in aqueous humor drainage, was found to be increased 

in tear samples of POAG patients,103 and factors related to the protection of RGCs were 

decreased in POAG patients tear film.100  The presence of POAG biomarkers in tears has 

been proposed to come mainly from the aqueous humor after scleral perlocation.104 

Previous metabolomic studies of POAG, as well as the identification of new POAG 

biomarkers through NMR-based metabolomics, are further assessed in this thesis in 

Chapter 3. 

 



General Introduction 
 

 33 

4. Atherosclerosis and plaque vulnerability 

Cardiovascular diseases (CVDs), principally stroke and ischemic heart disease (IHD) are 

the prevalent causes of death worldwide. In 2021 approximately 20.5 million people 

died from CVDs, accounting for approximately 30% of all global deaths.105  The main 

underlying cause of stroke and IHD is the development of atherosclerosis.106 

Atherosclerosis is a progressive inflammatory disease of the big arteries characterized 

by the accumulation of fibrous elements, lipids, and different cell types in the 

subendothelial layer of the arteries, forming what is known as atherosclerotic 

plaque.107,108  It is a complex disease produced by a combination of environmental and 

genetic factors,106 being hypertension, dyslipidemia (elevated circulating lipids), 

smoking, obesity, diabetes mellitus and insulin resistance, gender, and age, the main 

risk factors for the development of the disease.109 

Arteries are formed mainly by three layers. From outside to inside these layers are 

tunica adventitia, which is formed by epithelial cells; tunica media, formed by vascular 

smooth muscle cells (VSMC); and tunica intima, which is in contact with the blood and 

is formed by a single layer of endothelial cells (Figure 13).110 

 

 

 

 

 

Figure 13. Schematic representation of the cross-section of an artery. The three layers 
are shown with their main cellular type.  
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4.1 Etiology of the disease 

The atherosclerosis plaque formation begins with the accumulation of low-density 

lipoprotein (LDL) in the arterial intima due to an impairment in the endothelial barrier. 

In the sub-endothelial, the LDL particles are oxidized by lipoxygenases or ROS.104 The 

oxidation of the LDL starts a pro-inflammatory response with the activation of 

endothelial cells and recruitment of monocytes, which differentiate into macrophages, 

and lymphocytes. The oxidized LDL is internalized by the macrophages which are then 

transformed into foam cells. Due to the inflammatory environment, VSMCs migrate to 

the intima and secrete extracellular matrix, which covers the lesion forming a fibrous 

cap. Eventually, foam cells die releasing the LDL, forming the necrotic lipid reach core. 

Atherosclerotic plaques continue developing and can evolve to a stable situation or 

become vulnerable and rupture (Figure 14).   

Figure 14. Atherosclerosis progression. A schematic representation of the build-up of 
the atherosclerotic plaque is shown. The plaque can evolve to a stable situation or 
become vulnerable and rupture. In the example represented, the rupture of the plaque 
in the carotid artery leads to the generation of a thrombus that can block the brain 
vessels, leading to an ischemic stroke.  
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The rupture of the plaque exposes the collagen-rich core, and the pro-thrombotic 

factors accumulated inside the lesion to the bloodstream, which leads to the activation 

of the coagulation cascade. This results in the formation of a thrombus, necessary for 

the healing of the plaque.   However, a large thrombus can completely block the artery 

and impede the blood flow.111 The most important clinical complications of 

atherosclerosis are acute myocardial infarction and stroke, mainly produced when a 

thrombus occludes the blood flow in the coronary artery or in the carotid, respectively, 

due to the rupture of the plaque.   

 

4.2 Plaque vulnerability 

Vulnerable plaques are defined as non-obstructive silent carotid or coronary lesions 

that suddenly become obstructive and symptomatic. The vulnerability of the plaque 

and formation of thrombus rather than the degree of stenosis is responsible for clinical 

symptomatology in most cases.112 

There are three principal causes for the formation of a thrombus: plaque rupture, 

plaque erosion, and the calcification of the nodules. The rupture of the plaque is the 

most prevalent cause, being responsible for 70-75% of the events.112 Vulnerable 

plaques are characterized by a thinning on the fibrous cap previous to the rupture of 

the plaque, also known as thin cap fibroatheroma (TCFA). It is characterized by a thin 

fibrous cap, with a large necrotic core with increased free/esterified cholesterol ratio, 

increased plaque inflammation, vascular remodelling, increased vasa-vasorum 

neovascularization, and intraplaque haemorrhage.112  

The molecular processes that are underneath plaque vulnerability are not yet clear, 

although it is believed that immune cells and inflammatory mediators have an 

important role in the thrombogenesis of the plaque. Macrophages and T-lymphocytes 

are capable of degrading the extracellular matrix by phagocytosis and secretion of 
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proteases, weakening the already thin fibrous cap.112 Deficient resolution of 

inflammation results in more unstable and vulnerable plaques.113   

 

4.3 Current Diagnosis Strategies. 

Atherosclerotic plaques develop silently for decades, without the expression of any 

symptom until the moment of the event.114  In a situation of imminent risk, the clinical 

protocol indicates vascular interventions to restore the blood flow. Due to the absence 

of symptoms, in most cases, the intervention criteria are based on the evaluation of the 

degree of stenosis. However, there is increasing concern about the need to include 

parameters of plaque instability for the determination of vascular risk. 

 

The diagnosis of vulnerable plaques is challenging. Different imaging techniques are 

starting to be used, in an attempt to identify features associated with plaque 

vulnerability, such us computed tomography angiography (CTA), MRI angiography 

(MRA), and carotid duplex ultrasound (CDU), among others.115  

 

• CDU is widely used in clinical practice. It is a non-invasive technique that uses 

two dimensional ultrasounds to create images of the arteries. It allows the 

identification of factors of plaque vulnerability, such as irregularities of the 

plaque surface. Nevertheless, it is not useful to determine the internal 

components of the plaque and it is insensitive to plaque surface features, like 

fibrous cap thickness. Furthermore, it is highly affected by calcified sound and 

shadow, respiratory movement and operator dependence.116  

  

• CTA can provide information about location, shape and size of the 

atherosclerotic lesions. It is based in irrading X-ray to the tissue, as differences 

in thickness and density of tissue leads to different X-ray attenuation, 

combined with the injection of a contrast agent in the patient, which allows 
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obtaining two dimensional or three dimensional images of the vessels, after 

processing of the images. However, this technique is not effective in identifying 

vulnerable plaques, as it mainly provides information about the location, 

degree, and extent of stenosis. Furthermore, its use is not very extended in 

clinical practice. 116  

 

• MRA allows to obtain information about plaque composition, surface 

characteristics, and the presence of intraplaque hemorrhage or a lipid-rich 

core, characteristics associated with plaque vulnerability.116  

 

4.4 The need for new biomarkers. Metabolism and atherosclerosis. 

A better understanding of plaque vulnerability has been achieved thanks to the use of 

the aforementioned imaging techniques. However, the accurate prediction of plaque 

rupture is still far from being accomplished, in part due to the limitations of these 

imaging techniques and, in many cases, they are not implemented in the clinical 

routine. The identification of new molecular biomarkers, especially in biofluids, which 

could be obtained in a medical routine exam would allow a non-invasive, simple 

method to improve the diagnosis and intervention criteria, as well as allow the 

development of preventive treatments.   

 

Furthermore, a deeper understanding of the molecular events occurring locally in the 

plaque would also allow the identification of new targets for therapy for the 

stabilization of vulnerable plaques.  

 

Metabolic dysregulation in the different cell types involved in atherosclerosis plaque 

formation and progression have been previously described. An imbalance in lipid 

metabolism, glucose utilization, and amino acid metabolism has been described. 

Increased glycolysis in endothelial cells, VSMCs, macrophages, and T-cells is described 
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in unstable plaques. Increased glucose uptake and glycolysis lead to VSMCs 

dedifferentiation, migration, and proliferation. Furthermore, elevated lactate has been 

previously observed in unstable plaques compared to stable plaques.117 

 

NMR-based metabolomics could be a reliable and useful tool for the study of 

biomarkers of plaque vulnerability, as the impact of the cellular metabolism in the 

instability of the plaque as well as in the associated inflammatory process has 

previously been highlighted. In Chapter 4, further insights into the metabolomics of 

atherosclerotic plaque are described, as well as the generation of a predictive model 

for plaque vulnerability. 

 

5. COVID-19 and Pulmonary Fibrosis 
 
In December 2019, several cases of pneumonia without known origin appeared in 

Wuhan City. Isolation of the virus from the patients allowed to identify it as a new 

coronavirus (CoV), and the disease caused by it was named COVID-19 by the WHO.118 

In March of 2020, the World Health Organization declared a state of pandemic due to 

the rapid global expansion of pneumonia (COVID-19) caused by the virus Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).119 SARS-CoV-2 rapid spreading is 

due to its transmission from person to person through aerosol emission of droplets that 

are inhaled, getting the virus in contact with the nose, mouth, and eyes.120 Currently, 

more than 700 million people have been affected by COVID-19 worldwide (Figure 15). 

The number of deaths produced as a consequence of SARS-CoV-2 infection is above 7 

million.121   
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Figure 15. Total cumulative cases of COVID-19 reported to WHO. Almost 14 million 
COVID-19 cases have been reported in Spain at the moment of elaboration of this 
thesis.121   
 
CoV causes intestinal and respiratory infections in animals and humans. COVID-19 is 

mainly characterized by causing problems in the respiratory tract. However, the 

symptomatology presented by COVID-19 patients is wide, going from completely 

asymptomatic to mild or severe COVID-19. The principal presented symptoms are 

fever, cough, respiratory difficulties, or muscle pain, but also other symptoms such as 

diarrhea or vomiting,118 as well as loss of smell or taste.119 The presence of 

comorbidities, such as hypertension, diabetes, obesity, and cardiovascular diseases are 

risk factors associated with more severe symptomatology.122  Also, COVID-19 is mainly 

asymptomatic in people younger than 14, increasing its severity with age.123 However, 

the factors related to the severity of the symptoms, and sequelae depend on the 

personal characteristics of the individual, apart from the aforementioned risk factors, 

being some persons more susceptible to the development of a severe condition and 

serious sequelae.   
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5.1 COVID-19 pneumonia and post-COVID Pulmonary Fibrosis. 

The main complication of SARS-CoV-2 infection is the development of pneumonia, with 

approximately 15% of COVID-19 patients developing it. Symptomatology in these cases 

includes dyspnea, low arterial oxygen saturation, and high respiratory rate, among 

others. Around 5% of the cases progress to critical illness, presenting acute respiratory 

distress syndrome (ARDS), shock, or multiple organ failure, requiring admission to the 

intensive care unit and mechanical ventilation.124 The severity of these cases is 

produced due to an overwhelming immune response. The cytokine release syndrome 

(CRS) observed in some severe COVID-19 patients, results from an excessive release of 

cytokines, which causes severe inflammation leading to ARDS.125 In some cases, 

inflammation is not successfully resolved, leading to a state of chronic inflammation, 

which can result in the development of pulmonary fibrosis. Fibrosis occurs due to 

dysregulation of the wound-healing mechanism. Myofibroblasts are differentiated 

from fibroblasts to restore damaged tissue. These cells actively synthesize extracellular 

matrix (ECM) components during the restoration of lung tissue and are eliminated 

through apoptosis when enough ECM has been produced. However, during chronic 

inflammation, these myofibroblasts evade apoptosis, leading to the overproduction of 

ECM and pulmonary fibrosis.126 Pulmonary fibrosis stands out as one of the most 

concerning COVID-19 sequelae. Around 10-15% of COVID-19 severe patients develop 

medium and long-term consequences.127  Furthermore, patients who had mild COVID-

19 have also shown fibrotic changes after the infection, meaning that the virus itself 

could have a profibrotic effect.128 

 

5.2 Current diagnosis 

During the COVID-19 pandemic, pulmonary function testing demonstrated limitations 

in diffusion capacity in hospitalized patients. These tests measure lung volume and 

capacity, rates of flow, and gas exchange. The second tool used for determining 

pulmonary fibrosis is computed tomography (CT) scans. In CT scans, pulmonary fibrosis 
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can be observed as interstitial changes characterized by the appearance of ground glass 

opacities and irregular lines (Figure 16).129 The long-term prognosis of pulmonary 

fibrosis after COVID-19 can vary greatly among individuals. Some can experience mild 

symptoms and gradually improve over time, while others may develop progressive and 

chronic lung disease.130 Currently, two drugs are approved for the treatment of 

pulmonary fibrosis, pirfenidone and nintedanib. However, the efficacy of the drugs is 

limited, and they can merely stop the progression of the disease, far from cure it.131 The 

identification of early biomarkers of pulmonary fibrosis in COVID-19 is important to 

start the treatment and to preserve lung function for as long as possible. 

 

 

 
Figure 16. CT of lung from a COVID-19 patient.  CT of a 45-year-old infected with SARS-
Cov-2 woman showing peripheral patchy ground glass opacities in both lower lobes 
(white arrows). CT scan also demonstrated consolidation in the left lower lobe (black 
arrow). (Figure from Qiang Lei, et.al., 2021.132) 
 

5. 3 The need for new biomarkers.  

The development of fibrosis post-COVID-19 is a current clinical concern. Biomarkers are 

required to determine which patients are more likely to develop pulmonary fibrosis, 

and help to make treatment decisions, as long-term consequences are still not well 

studied. Research has been conducted in an attempt to identify biomarkers for the 

prognosis of pulmonary fibrosis in COVID-19 patients.  
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Metabolism appears to have an important role in infectious disease development 

depending on the individual, leading to more severe or milder symptoms.133 In this 

sense, metabolomics has proved to be useful for the identification of potential causes 

underneath the severity of the outcome of COVID-19 patients, as well as for the 

discrimination of patients according to disease severity, and to determine the effects 

of treatment and vaccination in different patients.134 Furthermore, previous 

metabolomics studies have been performed for the identification of biomarkers of 

fibrosis in idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction and metabolic 

reprogramming and regulation seem to be involved in the aberrant activation of 

signaling pathways in IPF.135   

 

NMR-based metabolomics is proposed in this thesis as a tool for the identification of 

biomarkers for the prognosis of pulmonary fibrosis development and progression in 

COVID-19 patients, as further described in Chapter 5.   
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There is a need for the identification of new biomarkers of disease, that in the 

context of personalized medicine, would allow a better classification of patients 

according to their specific conditions for an early diagnosis, prognosis, and response to 

treatment. NMR-based metabolomics stands out as a potent resource for the 

identification of non-invasive, early biomarkers of diseases. This PhD thesis, therefore, 

aims to explore the potential of NMR-based metabolomics for the identification of 

biomarkers in four highly relevant diseases 

 

The main objectives of this project are: 

 

- To elaborate predictive models for AD and MCI diagnosis, and to identify 

new biomarkers of MCI progression in serum. 

- To develop predictive models for the diagnosis of MCI based on the 

combination of NMR-based metabolomics and lipid peroxidation 

metabolites obtained by UPLC-MS/MS in plasma. 

- To obtain a predictive model for the diagnosis of POAG, and to identify 

biomarkers of POAG in tear samples. 

- To generate predictive models of plaque vulnerability and to identify 

biomarkers of plaque vulnerability in serum and atheroma plaque tissue 

samples. 

- To obtain biomarkers of pulmonary fibrosis in serum of post COVID-19 

pneumonia patients to predict fibrotic changes in CT suggestive of 

pulmonary fibrosis sequelae one year after hospital discharge.  
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1. Abstract 
 

Alzheimer’s disease is the most common type of dementia in the elderly. It is a 

progressive degenerative disorder that may begin to develop up to 15 years before 

clinical symptoms appear. The identification of early biomarkers is crucial to enable a 

prompt diagnosis and to start effective interventions. In this work, we conducted a 

metabolomic study using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy 

in serum samples from patients with neuropathologically confirmed Alzheimer’s 

disease (AD, n=51), mild cognitive impairment (MCI, n=27), and cognitively healthy 

controls (HC, n=50) to search for metabolites that could be used as biomarkers. Patients 

and controls underwent yearly clinical follow-ups for up to six years. MCI group 

included samples from three subgroups of subjects with different disease progression 

rates. The first subgroup included subjects that remained clinically stable at the MCI 

stage during the period of study (stable MCI, S-MCI, n= 9). The second subgroup 

accounted for subjects which were diagnosed with MCI at the moment of blood 

extraction but progressed to clinical dementia in subsequent years (MCI-to-dementia, 

MCI-D, n=14). The last subgroup was composed of subjects that had been diagnosed as 

dementia for the first time at the moment of sample collection (incipient dementia, 

Incp-D, n=4). Partial Least Square Discriminant Analysis (PLS-DA) models were 

developed. Three models were obtained, one to discriminate between AD and HC 

samples with high sensitivity (93.75%) and specificity (94.75%), another model to 

discriminate between AD and MCI samples (100% sensitivity and 82.35 % specificity), 

and a last model to discriminate HC and MCI with lower sensitivity and specificity (67% 

and 50%). Differences within the MCI group were further studied in an attempt to 

determine those MCI subjects that could develop AD-type dementia in the future. The 

relative concentration of metabolites and metabolic pathways were studied. 

Alterations in the pathways of alanine, aspartate and glutamate metabolism, 
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pantothenate and CoA biosynthesis, and beta-alanine metabolism, were found when 

HC and MCI- D patients were compared. In contrast, no pathway was found disturbed 

in the comparison of S-MCI with HC groups. These results highlight the potential of 1H-

NMR metabolomics to support the diagnosis of dementia in a less invasive way, and set 

a starting point for the study of potential biomarkers to identify MCI or HC subjects at 

risk of developing AD in the future.   

 

2. Introduction 
 

Alzheimer’s disease (AD) is the most common type of dementia in older adults.1 In 

2020, over 55 million people worldwide were estimated to have dementia, a figure 

expected to rise to 78 million by 2030.2 AD is a progressive neurodegenerative disorder 

characterized by the accumulation of extracellular plaques of ß-amyloid peptides and 

intracellular aggregation of tau protein, with the concomitant neuronal and synaptic 

loss,3 resulting in the development of cognitive dysfunction and dementia. The 

pathophysiological alterations usually start between 10 and 15 years before clinical 

onset.4 The definitive diagnosis of Alzheimer’s disease can only be made post-mortem.5 

However, dementia of the Alzheimer’s type is the clinical term to refer to dementia 

patients in which the Alzheimer’s diagnosis is achieved based on the clinical symptoms 

pre-mortem. Age is the greatest risk factor for AD, and the incidence doubles every five 

years after the age of 65.3 Mild cognitive impairment (MCI) is a pathological condition 

characterized by the manifestation of a premature cognitive decline.6 Dementia-

related MCI could be described as an intermediate state between normal aging and AD-

type dementia. The prevalence of MCI in the population ranges between 15% and 20% 

in adults older than 60 years. MCI population is of great interest since their annual rate 

of progression to dementia is in the range of 8% to 15%.7 In this context, there is an 

increasing interest in identifying the subjects with MCI that will progress to dementia. 

Anticipating the progression of these MCI patients to dementia would be of interest to 
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apply therapies in the early stages of the disease when these interventions may be 

more effective. 

Nowadays, there is no treatment to restore the cognitive decline of AD patients. Very 

recently, anti-amyloid immunotherapies have been approved by the FDA, showing a 

rather modest clinical benefit by slightly slowing down disease progression at early 

phases of the disease, albeit amid some safety concerns.8–10 AD patients are identified 

according to their cognitive state, neuroimaging studies and biomarkers profile. 

Current clinical biomarkers for AD are variations in the cerebrospinal fluid (CSF) levels 

of tau proteins (total tau protein and phosphorylated tau protein) and β-amyloid 1-42 

peptide (Aß42). AD patients show an increase in tau protein and a decrease in Aß42 

levels compared to healthy subjects.11 Unfortunately, CSF extraction requires invasive 

procedures and specialised staff, and it is not exempt from risks in aged patients who 

usually present concomitant pathologies. Considering these factors, the identification 

of new biomarkers is urgently needed to implement non-invasive diagnostic techniques 

for AD, to stratify populations for clinical trials, and to find new therapeutic targets to 

prevent cognitive decline. AD has lately been related to a metabolic disease. In fact, it 

has been shown that a metabolic dysfunction of the brain could be a potential driver 

of AD.12 These metabolic changes in the brain might be translated early on to other 

organs and biofluids. The observation of the global biochemical changes produced 

could provide information to reveal biomarkers related to AD and to further deepen 

our understanding of the molecular mechanism underlying cognitive decline and AD. 

Accordingly, the study of the metabolic profile seems relevant in this context. 

Metabolomics is the study of the footprint of all metabolic pathways and chemical 

processes occurring in a living system, that is, the study of those metabolites present 

in a biological sample.13 Metabolomics is closer to the phenotype than any other -omics 

discipline, and informs about what has happened, and not about the possibility of 

something happening as in other -omics.14 The analysis of differential metabolites in a 

biological sample isolated from a healthy subject and a patient gives information about 

the biochemical processes occurring underneath the disease and gives an insight into 
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new therapeutic approaches and the identification of biomarkers for the diagnosis of 

the disease. To perform metabolomic studies, nuclear magnetic resonance (NMR) 

spectroscopy together with mass spectrometry (MS) are the most predominant 

techniques. NMR spectroscopy allows the untargeted qualitative and quantitative 

analysis of a wide variety of biological samples (blood derivatives, urine, CSF, tissue, 

culture cells, and others).15–18 It is a non-destructive technique, thus enabling the 

performance of complementary assays in the same sample. The requirements to 

perform NMR spectroscopy metabolomic studies include straightforward sample 

processing procedures and small sample quantities. Moreover, there is a wide set of 

experiments for metabolite identification, and metabolite quantification is also 

possible with this technique. Remarkably, it is also a robust and very reproducible 

technique.19 

Metabolomics, either using NMR spectroscopy or MS, has been extensively applied to 

the study of AD. Different biofluids have been studied to find AD biomarkers of disease 

or progression. CSF is in contact with nervous tissue, and it is supposed to be closer to 

the pathology, so it would be the best candidate to provide information on AD. 

Different metabolomic studies have been performed in CSF.4,20,21 Ibáñez et al., 2012 

applied capillary electrophoresis-mass spectrometry (CE-MS) for the generation of 

models of AD progression, reaching 83% of accuracy in the discrimination of patients 

undergoing AD compared to MCI-AD patients and non-AD subjects. Metabolites such 

as choline, dimethylarginine, arginine, valine, proline, serine, histidine, creatine, 

carnitine, and suberylglycine were identified as potential AD progression biomarkers.20 

Jääskeläinen et al. compared the ability of classic CSF biomarkers (amyloid-ß 42, 

phosphorylated tau protein, and total tau) and metabolic profiles obtained by NMR 

spectroscopy for the classification of AD and healthy controls. The authors concluded 

that classic CSF biomarkers were better for classifying cognitive healthy controls (HC) 

vs. AD patients (AUC = 0.89), but metabolic subclasses by NMR spectroscopy were more 

effective for classifying MCI vs. AD samples (AUC = 0.68).21 Vignoli et al., 2020 used 

NMR spectroscopy to obtain the metabolomic profile of CSF samples, and generated 
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discriminant models with 86.1% accuracy in discriminating between AD and HC and 

70% accuracy for classifying AD vs. MCI. They found that acetate, valine, and 3-

hydroxyisovalerate were altered in AD.4 Despite the interesting results obtained from 

CSF samples, this is an invasive technique that implies a lumbar puncture. Therefore, 

different biofluids that require less invasive procedures for sample collection, such as 

urine or blood, have been explored to determine AD biomarkers. Recently, studies in 

urine using NMR spectroscopy and UHPLC-MS together with metabolic quantitative 

trait loci (mQTL) were used to calculate models able to classify correctly 82.96% of cases 

MCI converting to AD, and 77.78% of stable MCI vs. controls. However, urine is 

separated from the brain not only by the blood-brain barrier, but also by glomerular 

filtration.22 Blood fractions (serum, plasma) seem a compromise between less 

invasiveness and relation to the pathology. Olazarán et al., 2015 used UPLC-MS to 

determine metabolomic biomarkers for the diagnosis of AD using plasma as a biological 

sample in a set of 251 AD, HC and MCI subjects.23 In this study a panel of seven 

metabolites (glutamic acid, alanine, aspartic acid, 22:6n-3 DHA, deoxycholic 

acid, PE(36:4), SM(39:1)) was determined for the discrimination of AD from HC samples 

(AUC = 0.918) and MCI from HC (AUC = 0.826). Figuera et al., 2019 used NMR 

spectroscopy on serum to generate discriminative models able to classify AD and MCI 

samples from HC with AUC values of 0.61 and 0.71, respectively. In the study, the 

authors determined that the threonine-linked metabolic pathways were important in 

the pathological process.24 Graham et al. combined NMR and LC-MS to identify 

biomarkers able to discriminate AD and MCI from HC, obtaining models with sensitivity 

and specificity values ranging from 0.75-0.85 and 0.69-0.81, respectively. The authors 

concluded that the lipid metabolism was the most perturbed biochemical pathway in 

MCI and AD.25 

Aimed with this background, herein, we present a metabolomic study by NMR 

spectroscopy of serum samples from HC, MCI and AD patients to determine biomarkers 

of disease and early biomarkers of progression. 
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3. Material and Methods 
 

3.1 Patient selection  

Cognitively healthy, non-demented participants and subjects diagnosed with MCI 

(n=77) were recruited from the Vallecas project, a single-center, multidisciplinary, 

observational, longitudinal study of a cohort of 1,213 volunteers, aged 69–86 years and 

home-dwelling at baseline, recruited between 2011 and 2013 in Madrid, Spain, which 

is carried out in the Queen Sofia Foundation, funded by CIEN Foundation and Queen 

Sofia Foundation.23 Participants of the Vallecas project were cognitively healthy 

volunteers at baseline attending Queen Sofia Foundation Alzheimer Research Center. 

The AD group (n=51) consisted of clinically diagnosed patients with moderate to severe 

AD that were institutionalized at the Queen Sofia Foundation Healthcare Center. 

Written informed consent was obtained from all participants or representatives 

according to the Declaration of Helsinki. Approval was obtained from the Research 

Ethics Committee of the Instituto de Salud Carlos III (CEI PEI 46_2011-v2015; CEI PI 

78_2019). 

Healthy controls (n=50) and subjects included in the MCI group (n=27) were followed 

up for six years to determine their clinical evolution and observe their possible 

progression to dementia and AD (Figure 1). According to their clinical progression, 

subjects in the MCI group were classified into 3 subsets: i) first dementia diagnosis 

(incipient D, 4 subjects with a first diagnosis of dementia at the time of sample 

collection); ii) MCI diagnosis at sample collection were diagnosed with MCI but who, in 

the following one to three years, progressed to dementia (MCI-to-dementia, 14 

patients), and MCI patients that in the follow-up, remained stable in MCI condition 

(stable MCI, 9 patients). Clinical and demographic data are provided in table 1. The 

Figure 1 represents schematically the study. 
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Table 1. Sociodemographic and clinical data of participants in this study. 
 

 
 
 

Healthy 
controls 

(HC) 

Mild Cognitive Impairment (MCI) 

Alzheimer’s 
disease (AD) 

Stable MCI 
(S-MCI) 

MCI 
progressing to 

dementia 
(MCI-D) 

Incipient 
Dementia 
(Incp D) 

Age, Mean (range) 77.2 (72-87) 80.2 (74-91) 78.9 (71-85) 80.2 (76-86) 82.35 (58-93) 

Number (%) 50 (39.1) 14 (10.9) 9 (7) 4 (3.1) 51(39.8) 

Sex, male/female 17/33 4/10 5/4 10/17 9/42 

APOE4+ (%) 10 (20%) 2 (13%) 3 (37.5%) 2 (50%) 22 (43.1%) 

MMSE* / 

SMMSE** 

28.2 (24-

30)* 

25.9 (22-

28)* 
24.8 (19-30)* 21 (14-25)* 10.84 (0-30)** 

CDR*** 0 (0-0.5) (0.5) (0.5) (1) 2.75 (1-3) 

* MMSE = Mini Mental State Examination (0-30) 
** SMMSE = Severe MMSE (0-30) (validated for Spanish-speaking population)26 
*** CDR = Clinical Dementia Rating (0-3) 
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Figure 1. Schematic representation of the analysed groups. Serum samples were 
collected from patients with different clinical diagnosis (HC, MCI, and AD). Within the 
MCI group, the clinical stage at sample collection and the progression in the follow up 
were diverse. Some MCI patients were in clinical condition close to dementia at sample 
collection, and were classified as Incp-D. In the follow-up time, some of the MCI 
patients progressed to a more evolved state of dementia (MCI-D) whereas for other 
MCI patients the clinical diagnosis remained the same (S-MCI). Taken this into 
consideration, statistical analyses were performed to these sets of NMR spectra to 
determine metabolomic differences between S-MCI and MCI-D, together with the 
other clinical groups: HC, Incp-D and AD. 
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3.2 Cognitive assessment  

Participants from the Vallecas project cohort were cognitively assessed by the well-

known Mini Mental Scale Examination (MMSE) and the Clinical Dementia Rating (CDR) 

scales. To overcome the floor effect effect observed with the standard MMSE scale on 

moderate-to-severe AD population,27 the AD group was cognitively assessed with the 

Severe MMSE (SMMSE).28 The fact that scoring in both scales give a range of values 

between 0 and 30 can be confusing, but scores from both scales should not be directly 

compared.29 Thus, the CDR scale has also been included, which can be used with all 

groups studied (CDR=0, cognitively unimpaired; CDR=0,5, MCI; CDR=1 mild dementia; 

CDR=2, moderate dementia; CDR=3, severe dementia). 

AD-type dementia diagnosis was established according to the National Institute on 

Neurological Disorders and Stroke, and the Alzheimer's Disease and Related Disorders 

Association (NINCDS-ADRDA) guidelines.30 Forty three out of fifty one AD subjects had 

donated their brains, and the AD diagnosis was neuropathologically confirmed post 

mortem. Participants with MCI were defined using criteria described by Petersen et al., 

1999.31 

 

3.3 Sample preparation  

Serum samples from healthy controls and MCI subjects from the Vallecas Project cohort 

as well as AD samples from the CIEN Foundation Brain Tissue Bank (BT-CIEN), were all 

collected in fasting conditions by venous puncture. After clot removal, aliquots of 500 

µL were preserved at -80 ºC until the analysis. 

Samples were prepared following the protocol described by Beckonert et al.32 Briefly, 

before sample preparation, samples were thawed. Immediately, 400 µL of serum were 

introduced in 5 mm NMR tubes, and 200 µL of phosphate buffer (pH 7.4) were added. 

Phosphate buffer contained deuterated water (20% v/v) and sodium 2,2-dimethyl-2-
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silapentane-5-sulphonate (DSS) 1 mM as internal standard for chemical shift 

referencing.   

 

3.4 NMR spectra acquisition and processing  

Once the samples were prepared, NMR spectra were recorded in a Bruker Avance DRX 

600 MHz spectrometer (Bruker GmbH, Rheinstetten, Germany) at U26 NMR: 

Biomedical Applications II platform from Nanbiosis (Research Infrastructures & Services 

of CIBER-BBN). 1D 1H-NMR spectra were acquired for each sample using Carr-Purcell-

Meiboom-Gill (cpmg) pulse sequence with water signal suppression and a total spin 

echo of 32 ms for each sample (interpulse delay between 180º pulses was 0.001 s, and 

the number of loops was 16). This pulse sequence reduces the contribution of signals 

from high molecular weighted molecules to the spectra, such as proteins or other 

macromolecules, owing to their short times of transverse relaxation (T2). The 

temperature of the probe was set at 300 ºK (27 ºC). Together with the acquisition of 1H 

cpmg spectra, 2D homonuclear (1H-1H TOCSY) and heteronuclear spectra were acquired 

(1H-13C HSQC) in a reduced set of samples to unequivocally identify and assign the 

signals in the spectra. 

Once acquired, the 1D and 2D spectra were Fourier transformed and processed with 

TopSpin 4.0.0 (Bruker BioSpin Corporation). For processing the 1D spectra an 

exponential line-broadening function of 0.5 Hz was applied followed by Fourier 

transformation. Phasing, baseline correction and chemical shift referencing to the 

trimethylsilyl signal of DSS at 0.0 ppm was also performed. For the processing of the 2D 

spectra the phase was corrected for rows and columns, and the chemical shift 

referenced to the trimethylsilyl signal of DSS at 0.0,0.0 ppm. The main signals in the 

spectra were assigned according to the data in the bibliography 33,34 and the Human 

Metabolome Data Base (HMDB).35 

After processing, meaningful signals in the cpmg spectra underwent deconvolution 

using AMIX 4.0.2 software (Bruker BioSpin Corporation). The residual signals after 
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water suppression in the area between 4.5 and 5.0 ppm, and those regions with 

chemical shifts lower than 0.5 ppm and higher than 8.5 ppm were excluded from the 

analysis. A total of 130 signals were selected in the 1D spectra and included for 

deconvolution (Figure S1). Then, a mixed Gaussian/Lorentzian variable function was 

applied for deconvolution of these signals. After deconvolution, integrals were 

obtained for all cpmg spectra and were normalized to the sum of all integrals in each 

sample, resulting finally in a data set of 130 normalized integrals for each sample.  

 

3.5 Multivariate statistical analysis 

To determine differences between the serum metabolomic profiles of, HC, MCI and AD 

patients, multivariate statistical analyses were performed. For this purpose, the 

normalized data were fed into the software PLS_Toolbox Solo 8.9 (Eigenvector 

Research, Inc., Manson, WA, USA). 

Partial least squares-discriminant analyses (PLS-DA) were performed to generate 

predictive models able to classify the samples according to the clinical diagnosis, and 

using the information from the cpmg spectra deconvolution, i.e., based on its metabolic 

profile. Models were generated to discriminate HC vs. AD, and MCI vs. AD. 

Before PLS-DA analyses the data were split in discovery (66% of the data was included 

for training and calculating the models) and validation subsets (33% of the data was 

used to apply the calculated model and to see the performance of the model). The split 

in 70% and 30% has been empirically proven to provide accurate models and results.36 

Cross validation was used to determine the appropriated number of principal 

components.  

The performance of multivariate statistic calculations is generally improved when the 

number of variables and samples is equilibrated.37 With this purpose, variable selection 

strategies are usually included previous to these analyses.38 Accordingly, in this study 

first, applying the knowledge on the signals in the spectra, only one representative peak 

from each metabolite was selected, thus reducing the number of variables from 130 to 
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48. Afterwards, variable selection in the calibration sets was performed selecting those 

variables with values of Variable Importance in Projection (VIP) higher than 0.8.  

After variable selection in the discovery sets, two PLS-DA models were obtained (to 

discriminate HC vs. AD, and MCI vs. AD, respectively). Cross validation (using venetian 

blinds) was used to determine the optimum number of latent variables for the model. 

After applying the models to the validation sets, sensitivity, specificity and the area 

under the ROC curve (AUC) were calculated to determine the goodness of the models 

to discriminate between each set of samples. Once validated, to determine the 

robustness of the model and to test for over-fitting, permutation tests (200 iterations) 

were performed and pairwise Wilcoxon signed rank text (Wilcoxon test), pairwise 

signed rank test (Rank test) and randomization t-test (Rand t-test) probabilities were 

obtained in the self-prediction and in the cross-validated residuals. 

  

3.6 Univariate statistical analysis 

Mean comparison of the identified metabolites in HC vs. AD and MCI vs. AD was 

performed. For comparison of pairs t-test and Mann Whitney U test were used, 

depending on the results obtained in the normality test (Kolmogorov-Smirnov 

(Dementia) or Shapiro Wilks (HC and MCI)).  IBM SPSS Statistics 25 version was used for 

univariate statistics. MCI-to-dementia, stable MCI and incipient D as defined previously 

were considered in the study of MCI set. ANOVA test and the post hoc Scheffé test were 

used for comparison between the different MCI subsets, and AD and HC groups.  

Boxplots of the above-mentioned groups of metabolites showing sequential changes 

according to the progression in the disease were performed using R (RStudio 1.2.5001).   

3.7 Analysis of altered metabolic pathways in AD and MCI 

To determine the potential metabolic pathways involved in the pathological processes, 

Metaboanalyst 39 was used. A concentration table made with the relative concentration 

of each metabolite as columns and samples as rows as used. The HMDB ID of each 
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metabolite was used to include them in the pathway analysis, so those metabolites 

whose HMDB ID was not available were not included, such as fatty acids or unknown 

metabolites. The global test enrichment analysis selected for the topological analysis 

was Relative-betweenness centrality and the Homo sapiens library provided by 

metaboanalyst was used as reference metabolome. The enrichment method selected 

was global test. Once the analysis was obtained, the pathways with p value < 0.05 and 

impact factor > 0 were chosen as representative pathways.  

 

4. Results and Discussion 

4.1 Metabolic profile of serum samples 

The main signals in the spectra were assigned to enable the identification of potential 

biomarkers of AD-type dementia and progression in the discriminant models. Figure 2 

shows the serum spectrum of one of the samples with the assignment of the main 

peaks. For a better observation of the signals in the figure, spectrum has been split in 

two parts, aliphatic (Figure 2.a) and aromatic part (Figure 2.b). Reference spectra of 

MCI (Figure 2.c) and HC (Figure 2.d) are also shown for comparison.  

The trimethylsilyl peak of DSS can be observed at 0.00 ppm as a singlet. All the assigned 

resonances are shown in table S1 with the detail in the compound and in the functional 

group, and for each of them, the chemical shift, the multiplicity and J coupling. With 

this information, 27 compounds were assigned. Within the assigned compounds, there 

were 11 amino acids identified, 5 organic acids and 2 sugars, among other molecules, 

such as fatty acids or alcohols. 
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Figure 2. Serum 1H-NMR spectrum of an AD patient a) Aliphatic region of the spectrum 
(δH 0-4.4 ppm). b) Aromatic region of the spectrum (δH 5.3-8.2 ppm). Due to a lower 
signal intensity in the aromatic region, the intensity was amplified 10 times in regard to 
the aliphatic region. The spectrum area corresponding the water suppression signal is 
not shown. c) Serum 1H-NMR spectrum of an MCI patient d) Serum 1H-NMR spectrum 
of a HC. 

a) 

b) 

c) 

d) 
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4.2 Multivariate analysis of the serum metabolomic profiles 

A PLS-DA analysis was performed to generate a predictive model able to classify and 

differentiate between HC and AD serum samples. Three principal components were 

selected. From the first model generated with the calibration subset, variables with VIP 

> 0.8 were selected, resulting in a total of 21 variables. The R2 value was 0.7 and the 

Q2 was 0.59. This model was then applied to the validation set and 93.75 % of 

sensitivity and 94.18% of specificity were obtained, with an AUC value of 0.9816 (Figure 

3.a).  All the permutation tests performed proved the robustness of the model (p < 

0.05). The variables participating in this model (and potential biomarkers of the 

disease) are shown in the table 2, having a greater impact in the model n-

acetylglucosamine, CH3- mixed lipoproteins, and n-acetylated compounds, pyruvate, 

lysine, threonine and glycine. 

 

Following the same procedure, a PLS-DA was performed to generate a predictive model 

to discriminate between dementia of the AD type against MCI. The discrimination of 

these two sets of patients is of the most importance in this clinical context for early 

diagnosis. The model was generated as described before. In this case the model had a 

total of 18 variables and was made with 2 principal components with an R2 value of 0.7 

and a Q2 value of 0.61 and was able to determine with a 100% of sensitivity and 82.35 

% of specificity (for the validation set) between AD and MCI with an AUC value of 0.9281 

(Figure 3.b). All the permutation tests performed proved the robustness of the model 

(p < 0.05). The variables participating in this model are shown in table 2. The 

metabolites with a greater impact in the model are CH3- mixed lipoproteins, n-

acetylglucosamine, n-acetylated compound, lysine, pyruvate and CH2- mixed 

lipoproteins. Finally, a third model for the discrimination of HC and MCI was performed. 

The model was made with 2 principal components. The classification and prediction 

results obtained by PLS-DA did not offer a good performance, yielding a specificity of 

the 50% and 67% of sensitivity (Figure 3.c.). The AUC value was 0.556. The Q2 value 
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was -0.1 and the R2 0.17. As reflected by the AUC and Q2 and R2 values, this model 

does not have capability for prediction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. PLS-DA scores and ROC curve for the classification of (a) HC vs. AD, (b) AD vs. 
MCI and (c) HC vs MCI. In the left side of the panel the prediction plot is shown, divided 
in the scores obtained in the calibration and validation subsets. In the right side of the 
panel, ROC curve is shown for each model, with an AUC value of (a) 0.9816, (b) 0.9281 
and (c) 0.5694 for discrimination of HC vs. AD, AD vs. MCI and HC vs MCI 
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The metabolites participating in this model are shown in table 2. Given the clinical 

relevance of finding differences between these two groups, further analysis will be 

performed seeking for potential metabolic biomarkers of the differences between HC 

and MCI. 

 

Table 2. Variables participating in the models sorted by VIP value. 

* m.l. means mixed lipoproteins 

 

AD vs HC AD vs MCI HC vs MCI 

Variable VIP S. Variable VIP S. Variable VIP S. 

N-acetylglucosamine 1.54 CH2 m.l. *(1.20 ppm) 1.67 Leucine 1.57 

CH2 m.l. (1.20 ppm) 1.52 N-acetylglucosamine 1.56 Choline 1.39 

N-acetyled comp. 1.34 N-acetyled comp. 1.31 Valine 1.27 

Pyruvate 1.30 Lysine 1.27 Pyruvate 1.25 

Lysine 1.10 Pyruvate 1.15 Creatinine 1.22 

Threonine 1.09 CH3 m.l. (0.83 ppm) 1.13 N-acetyled comp. 1.02 

Glycine 1.08 Phenylalanine 0.99 Lysine 1.02 

Ethanol 0.93 Ethanol 0.99 Arginine 1.01 

CH3 m.l. (0.85 ppm) 0.91 Tyrosine 0.87 Glutamine 1.00 

Choline 0.90 Unk (3.86) 0.87 Glycerol 0.94 

CH3 m.l. (0.83 ppm) 0.90 Citrate 0.82 Alanine 0.84 

Valine 0.90 Choline 0.79 Acetyl Choline 0.83 

CH3 m.l. (0.87 ppm) 0.89 Glycine 0.68 Isoleucine 0.83 

Creatine 0.87 Lactate 0.66 Threonine 0.77 

Phenylalanine 0.84 Creatine 0.65 CH3 m.l. (0.81 ppm) 0.71 

Glycerol 0.81 Unk (7.01 ppm) 0.63 CH3 m.l. (0.83ppm) 0.70 

Unk (7.01ppm) 0.73 Acetone 0.44 Ethanol 0.66 

Acetylcholine 0.68 Glycerol 0.41 Lactate 0.66 

Methanol 0.67     

CH3 m.l. (0.88 ppm) 0.61     

Acetone 0.55     
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Previous NMR metabolomic studies in serum have been performed to obtain 

discriminative models for the identification of potential biomarkers of AD and MCI. 

Figuera et al., 2019, generated models able to classify MCI and HC samples with an AUC 

value of 0.6, similar to the results we obtained. They found that threonine, 2-

hydroxybutyrate, glutamine, L-tyrosine, trimethylamine, isobutyrate and propylene 

glycol were important in the discriminative model. They as well generated models able 

to classify HC and AD samples with an AUC of 0.71. The metabolites that they found 

important for the discrimination of samples were threonine, aspartate, creatine, N,N-

Dimethylglycine, L-alanine, acetic acid and acetoacetic acid.24 Yilmaz et al., 2020, 

generated discriminative models for the identification of potential biomarkers of MCI 

and AD by NMR and LC-MS in plasma samples. They found that acetic acid and lyso-

phosphatidilcholine (C16:1), ceramide (C18:2), sphingomiosine (C24:1) and 

sphingomiosine (C24:0) were the most important metabolites for the discrimination 

between HC and MCI.25 Among the set of metabolites found in the work here 

presented, glutamine was also found important in the discrimination between MCI and 

HC, and threonine and creatine were found important in the discrimination between 

AD and HC, as had been previously reported in the bibliography. Regarding to the 

discrimination between MCI and AD, the metabolites reported were obtained by LC-

MS in the model found in Yilmaz et al., 2020. It seems controversial the scarce 

coincidence of biomarkers found in the diverse studies. Nevertheless, even though 

NMR is a highly reproducible technique, there are several issues to address when 

comparing the results obtained from different metabolomic studies, including the way 

the samples have been collected and prepared, the patient inclusion and classification 

criteria, or the different ways for data processing as the integration, scaling and 

normalizing methods for NMR data. 
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4.3 Mean comparison of metabolites 

The relative concentration of metabolites in HC, AD and MCI was compared. The 48 

signals, used for the multivariate statistics were here analysed, including identified 

metabolites, unknown peaks, and different peaks from fatty acids and lipoproteins. 

Significant differences were identified in most of the metabolites analysed in both 

comparison HC vs. AD and AD vs. MCI, highlighting the wide impact that the disease 

has in the cellular metabolism (Table 3).  

 

Creatine, ethanol, threonine, glycine, methanol, lysine, n-acetylglucosamine, alanine, 

CH2 mixed lipoproteins, valine, CH3 mixed lipoproteins, phenylalanine, acetylcholine, 

choline, pyruvate, acetone, glycerol, isoleucine, N-acetyled compounds and two 

unassigned signals (7.01 ppm and 3.86 ppm) showed statistical differences in its 

relative mean concentrations between AD and HC. In the comparison of AD vs. MCI, 

statistical differences (p < 0.05) were found in lactate, creatine, ethanol, glycine, lysine, 

n-acetylglucosamine, CH3 mixed lipoproteins, CH2 mixed lipoproteins, phenylalanine, 

pyruvate and choline. At this point, it deserves to be noted that most of the variables 

in the PLS-DA models showed significant differences in their means for both 

comparisons, HC vs. AD and MCI vs. AD (with exception of valine in both comparisons, 

as well as the unknown compound at 7.01 ppm in MCI vs. HC) 

 

For the comparison between HC and MCI we found significant differences in the 

relative concentration of lactate and threonine. The levels of lactate in cerebrospinal 

fluid have been associated to disease severity in other neurological diseases.40 

However, other studies, also performed in CSF observed the same behaviour as here is 

presented in serum, showing an increase in the concentration of lactate between HC 

and AD that is not significant, whereas a higher and statistically significant increase is 

observed in the serum samples of MCI patients when compared to HC and AD.41  It is 

interesting to observe that this association between higher lactate levels and earlier 

stages of dementia is also found in serum, which can be obtained following minimally 
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invasive procedures compared to those needed to obtain CSF. Zebhauser et al. 

suggested that the increase of lactate levels in CSF in MCI could be produced by the 

activation of microglia.41 

 

Table 3. Mean comparison of relative concentration of metabolites with significant  
differences between HC and AD and/or MCI and AD. 

 

* m.l. means mixed lipoproteins 

Metabolites 
[Metab]rel x 103 p value 

HC MCI AD HC vs AD MCI vs AD HC vs MCI 

Unk (7.01) 1.030 0.959 0.763 0.007 0.069 0.578 

Lactate 1.181 1.460 1.249 0.740 0.038 0.025 

Creatine 3.221 3.350 4.256 0.000 0.008 0.669 

Unk (3.86) 11.850 13.511 7.235 0.002 0.000 0.370 

Threonine 1.838 2.031 2.108 0.002 0.797 0.023 

Glycine 3.524 3.625 4.221 0.001 0.025 0.685 

Methanol 1.483 1.505 2.003 0.011 0.079 0.468 

Lysine 4.856 4.499 6.101 0.000 0.000 0.211 

N-acetylglucosamine 35.144 34.781 45.484 0.000 0.000 0.741 

Alanine 4.860 5.169 5.767 0.012 0.224 0.179 

CH2 m.l. (0.852) 44.679 41.141 52.991 0.000 0.000 0.795 

Phenylalanine 0.487 0.476 0.744 0.000 0.001 0.866 

Acetylcholine 26.860 22.151 21.353 0.006 0.805 0.660 

Choline 33.989 32.328 28.069 0.000 0.000 0.146 

Pyruvate 2.429 2.521 3.360 0.000 0.000 0.551 

Acetone 7.827 7.803 8.973 0.038 0.098 0.940 

Isoleucine 4.577 4.560 4.261 0.048 0.655 0.781 

Ethanol 3.527 3.680 3.429 0.000 0.000 0.423 

Glycerol 4.631 4.883 2.594 0.000 0.000 0.417 

N-acetyled compound 12.271 12.608 15.963 0.000 0.000 0.527 

CH3 m.l. (1.204) 45.991 46.874 25.969 0.000 0.000 0.814 

CH2 m.l. (0.865) 16.242 14.679 23.375 0.004 0.000 0.240 

CH2 m.l. (0.832) 60.757 53.507 65.815 0.248 0.031 0.130 

CH2 m.l. (0.813) 37.802 33.615 35.517 0.034 0.152 0.823 
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4.4 Metabolic changes between MCI patients with different 

progression rates 

Attention should be drawn to MCI that is a diverse group, and a clinically relevant issue 

would be to be able to discriminate, previous to the manifestation of overt clinical 

symptoms, whether a patient with MCI in the near future will progress to dementia or, 

on the contrary, if this patient will remain in MCI condition. For that purpose, the MCI 

patient’s progression along the follow up period (between 1 and 3 years) was 

considered. According to their clinical progression, the MCI patients were classified in 

MCI-to-dementia (MCI-D), stable MCI (S-MCI) and incipient dementia (Incp-D). 

 

When the MCI patients were projected onto the HC vs AD model, they were not 

classified according to the progression of cognitive impairment (Figure S2), that is why 

a different strategy was followed seeking for differences that could be found within the 

MCI group and could be related to the progression of the disease. 

 

With that purpose of identifying metabolic changes between the different clinical 

evolution in MCI subgroups in comparison to HC and AD patients, boxplots of the 

different metabolites were represented, ordered according to the clinical severity of 

each subset of patients, HC, S-MCI, MCI-D, Incp-D and AD-type dementia (Figure 1). 

A progressive increase in the concentration of phenylalanine, lysine, pyruvate, and CH2 

mixed lipoproteins, and a progressive decrease in the concentration of choline, was 

observed (Figure 4).  
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Figure 4. Relative concentration of metabolites with a progressive trend between the 
groups of study. The median (horizontal bar) of lysine, phenylalanine, pyruvate, CH2 

mixed lipoproteins and choline relative concentration for the different groups (HC, S-
MCI, MCI-D, Incp-D and AD) is depicted.  The p value of groups with means significantly 
different is shown. 
 

Statistical value of these differences was assessed by ANOVA test, and afterwards by 

Scheffé test to determine the difference between each group. The Scheffé test is 

appropriated to be used when the size of the groups is small or the samples size 

between groups is unbalanced as it is in our case. Differences between S-MCI and AD 

patients were found (p < 0.05), but these differences were not significant between MCI-
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D and AD patients. These results show that at the time of sample collection the 

concentration of these metabolites in MCI patients that later evolved to dementia 

(MCI-D) had already values closer to AD than those from MCI patients who did not 

evolve (S-MCI). In that way, these metabolites could be postulated as potential 

predictive biomarkers. An interval value of these metabolites could be determined to 

discriminate whether MCI samples would evolve to AD or other advanced states of 

dementia before the clinical symptoms were developed.  

 

In a parallel analysis, the metabolic pathways that could be altered in the development 

of dementia were explored. The different groups of patients, including the MCI 

subgroups, were compared to find metabolic pathways affected in the different 

conditions of the disease in the MCI and dementia context.  

 

There were 14 metabolic pathways altered between dementia and HC (not shown), 8 

of them were as well altered between AD and MCI-D / Incp-D, whereas 9 pathways 

were altered between AD and S-MCI (Figure 5). Following a logic similar to the one 

presented before, a higher number of metabolic pathways were altered in the 

comparison between AD and S-MCI than when AD samples were compared with those 

samples that were closer, or later evolve, to dementia (MCI-D / Incp-D) (Figure 5). 

Remarkably, four pathways did not show significant differences between AD and MCI-

D / Incp-D but showed significant differences between AD and S-MCI: phenylalanine, 

tyrosine and tryptophan biosynthesis, phenylalanine metabolism, tyrosine metabolism, 

and TCA cycle.  
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Figure 5. Metabolic pathways altered in AD and MCI subsets. Only the significant 
metabolic pathways are labelled (p-value < 0.05, impact > 0). Colour and size of the 
circles indicate the p-value and impact index, respectively: -log10(p) is represented from 
higher values (red) to lower values (yellow) and the pathway impact is reflected in the 
size of the circles from smaller circles (lower impact) to bigger circles (higher impact).  
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These results suggest that these four pathways and the involved metabolites should be 

further studied in an attempt to determine which MCI patients are at higher risk of 

developing AD. Phenylalanine, tyrosine, acetoacetate, citrate and pyruvate are 

metabolites involved in the routes above mentioned. Phenylalanine and pyruvate, as 

described before, have shown a progressive increase in its concentration from HC to 

AD passing though the different MCI subgroups (Figure 4), and both metabolites have 

been demonstrated to be important in the discrimination between dementia and HC 

and between dementia and MCI according to the PLS-DA models (Table 2). The 

disturbance of some of these pathways and metabolites, and its related biological 

processes has been previously reported.  

 

Current knowledge about Alzheimer’s disease points out the alterations in the 

metabolism glucose,42 highlighting the dysfunction of glycolysis,43 as well as successive 

processes involved in the energetic metabolism, such as the decreased functioning of 

the pyruvate dehydrogenase complex.44 In this work, an increment in the concentration 

of pyruvate already in MCI patients has been observed, being higher the increment in 

MCI-D patients than in S-MCI. In this context, it is also remarkable the differences found 

in the TCA cycle between dementia patients and HC and dementia patients and stable 

MCI, but not between AD and MCI-D / Incp-D. The TCA cycle is the main pathway of 

glucose oxidation in the brain, and a diminution in isocitrate dehydrogenase and α-

ketoglutarate dehydrogenase complex has been previously described.45 Phenylalanine 

metabolism has also been previously reported to be modified in dementia serum 

samples,46 and brain tissue.47 

 

On the other hand, the comparison of HC and stable MCI pathways did not show any 

relevant difference, whereas the alanine, aspartate and glutamate metabolism, was 

altered in the comparison of HC group and MCI-to-dementia/incipient dementia (Figure 

5). Glutamine, citrate, pyruvate, and alanine are the metabolites involved in this 

pathway. The implications of pyruvate and associated pathways has already been 
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addressed in this work. However, other studies have involved some of these 

metabolites with dementia. For example, alterations in the levels of circulating 

glutamine 48 and impairments in the glutamate/glutamine cycle 49 has been previously 

related to the development of dementia. This impairment of the glutamate/glutamine 

cycle are related with changes in mood, behaviour and memory loss among others, all 

of them are alterations observed in AD patients.49 All together these results show that 

there are changes in the MCI group that could be further analysed in order to have an 

earlier predictive diagnosis of those patients that would evolve to more advanced 

stages of dementia. To confer clinical applicability potential to the analysis performed 

by NMR spectroscopy, threshold values and metabolic signatures should be defined 

and stablished for a molecular diagnosis and prognosis of AD. To do that, a study with 

a big enough cohort should be developed ensuring that the clinical criteria and analysis 

process are standardized. 

 

5. Conclusions 
 

In this study the differences between serum samples from HC, AD patients and MCI 

patients with different levels and progressions have been analyzed by 1H-NMR 

spectroscopy. Two predictive models have been generated to discriminate between AD 

and HC samples and AD and MCI samples, with high levels of sensitivity and specificity 

(93.75% and 94.75% for discrimination of AD and HC, and 100 and 82.35% for AD and 

MCI), according to the metabolic information in the NMR spectra. These models could 

be of use as a non-invasive tool to support dementia diagnosis. Furthermore, significant 

differences between AD and HC have been found in the relative concentration of most 

of the analyzed metabolites, highlighting the impact that the cellular metabolism has 

in dementia. Moreover, significant differences were also found in 12 metabolites when 

comparing MCI and dementia serum samples. Furthermore, differences within the MCI 

group in agreement with the clinical evolution have been found, which would allow to 

find biomarkers that could help to determine which MCI patients would progress to 
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dementia. An increase in phenylalanine, lysine and pyruvate and a progressive decrease 

in the concentration of choline, can be observed in the progression to dementia. On 

the other hand, alanine, aspartate and glutamate metabolism; pantothenate and CoA 

biosynthesis; and beta-alanine metabolism have been found altered when comparing 

HC and MCI-D whereas no pathway was altered between HC and S-MCI, which has 

allowed us to determine some differences in the metabolism of the different kind of 

patients inside the MCI group. What is described here could be a starting point to 

explore how the development of MCI to dementia could be effectively predicted by the 

study of serum using NMR spectroscopy. Future projects include the follow-up of the 

patients here studied and the increment of the number of patients to confirm the 

results.  
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7. Supporting Information 
 
Table S1. 1H Chemical shifts on 1D human serum spectra. Assignation of metabolites. 

 

 
 

 
  

Number 
assignment Metabolite Group Chemical Shift 

(ppm) 

Multiplicit
y and  

J coupling 
(Hz) 

1 Mixed lipoproteins CH3 0.83  

2 Isoleucine dCH3 0.92 t, J = 7.41 
3 Leucine dCH3 0.93 t, J = 5.89   

4 Valine gCH3 0.98 d, J = 7.2 
3 Isoleucine gCH3 1.00 d, J = 7.00 
5 Ethanol CH2 1.16 t, J = 7.08  
6 Mixed lipoproteins CH2 1.26  
7 Lactate CH3 1.32 d, J = 7.00 
8 Alanine bCH3 1.48 d, J = 7.40 
9 Lysine gCH2 1.70 m 
9 Lysine 3CH2 1.91 m 

10 N-acetylglucosamine CH3 2.03 s 
11 Glutamine bCH2 2.13 m 
12 Acetone CH3 2.22 s 
13 Acetoacetate CH3 2.27 s 
14 Pyruvate CH3 2.36 s 
11 Glutamine bCH2 u 2.44 m 

15 Citrate CH2 2.52 
d, J = 
15.80  

15 Citrate CH2 2.65 
d, J = 
15.80  

9 Lysine eCH2 3.05 m 

16 
Choline/ 

glycerophosphocholine 
-N+-

(CH3)3 
3.19 s 

17 Acetylcholine 
-N+-

(CH3)3 
3.21 s 

18 Glucose 2CH 3.25 
dd, J = 

9.22, 8.06 
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Number assignment Metabolite Group Chemical Shift (ppm) 

Multiplicity 
and  

J coupling 
(Hz) 

19 Methanol CH 3.35 s 
18 Glucose C4H 3.42 m 
18 Glucose C3H 3.49 m 
20 Glycine aCH 3.55 s 
21 Threonine aCH 3.59 d, J = 4.88 
4 Valine aCH 3.60 d, J = 4.33 

22 Glycerol 1,3 CH2OH 3.64 
dd, J = 11.70, 

4.30  
5 Ethanol CH2OH 3.67 q, J = 7.07  

18 Glucose C6H u 3.73 m 

9 Lysine aCH 3.74 m 
18 Glucose C6H u 3.77 m 
8 Alanine aCH 3.78 m 

18 Glucose C6H d 3.83 m 

18 Glucose C6H d 3.90 
dd, J = 12.29, 

2.11 
23 Creatine CH2 4.04 s 
7 Lactate CH 4.11 c, J = 7.00  

18 Glucose C1H 5.22 d, J = 3.88 
24 Unsaturated Fatty Acids CH 5.28  
25 Tyrosine CH 3,5 6.88 m 
26 Phenylalanine CH 3,5 7.41 m 
27 Histidine 2CH 7.79 s 
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Figure S1. Deconvolution of the aliphatic region of the spectra preformed using AMIX 
4.0.2 software. Three regions are shown in detail (0.95-1.05 ppm, 2.43-2.60 ppm, 3.68 
-3.78 ppm) 
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Figure S2. Projection of the MCI subgroups into the HC vs AD model 
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1.Abstract 

  
Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common cause 

of dementia. It is characterized by the accumulation of beta-amyloid plaques and tau 

tangles. Clinical diagnosis is based on the evaluation of cognitive impairment, 

neuroimaging techniques and cerebrospinal fluid-specific analysis. Unequivocal 

diagnosis of AD is often complex and requires the use of invasive techniques. Preclinical 

and early stages of AD (Mild Cognitive Impairment (MCI-AD)) already show functional 

and structural changes. This work aimed to identify metabolites by minimally invasive 

techniques that discriminate between patients with early stages of the disease (MCI-

AD) and healthy controls to establish a simple method for the identification and 

monitoring of early AD patients.  

Forty-eight participants (29 MCI-AD patients and 19 healthy controls) from the 

Neurology Unit of the University and Polytechnic Hospital La Fe (Valencia, Spain) are 

included in this study. Plasma samples were collected. From them, lipid peroxidation 

metabolites were determined using Ultra-Performance Liquid Chromatography 

coupled to tandem Mass Spectrometry (UPLC-MS/MS), and plasma metabolomic 

profiles were obtained by proton Nuclear Magnetic Resonance (1H-NMR). A Partial 

Least Square Discriminant Analysis (PLS-DA) was performed to identify metabolite 

differences between participant groups.  

A predictive model including both metabolites determined by 1H-NMR and lipid 

peroxidation metabolites was obtained. This model shows high specificity and 

sensitivity, discriminating between MCI-AD patients and healthy controls. Pathways 

analysis reveals that taurine and hypotaurine metabolism, bile acid biosynthesis, and 

arginine and proline metabolism are altered in early AD.  

Altogether, these results demonstrate that 1H-NMR and UPLC-MS/MS techniques could 

represent a useful approach for detecting the early stages of AD with clinical potential.  
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2.Introduction 

 
Alzheimer’s disease (AD) is the most common type of dementia. Dementia affects more 

than 55 million people worldwide, and in 70% of the cases AD is the underlying cause.1 

AD is a neurodegenerative disorder characterized by cognitive decline and progressive 

loss of functional capacities. Mild cognitive impairment (MCI-AD) can be defined as a 

premature cognitive decline.2 MCI patients can stay with this degree of cognitive loss 

through life, or progress to more advanced stages of dementia. The annual progression 

rate of MCI to AD is in the range of 8% to 15%.3 The early identification of subjects with 

MCI is of great interest as it would allow the application of some therapies in the future 

that may be effective, slowing down the progress of dementia. To date, there are no 

effective treatments to restore the cognitive decline in dementia patients and recently 

the FDA approved anti-amyloid immunotherapies, have revealed a somewhat limited 

clinical advantage as they marginally impede the progression of the disease in its early 

stages, despite certain safety considerations.4–6   

 

Currently, the diagnosis of AD is based on neuroimaging studies, neuropsychological 

evaluation (e.g.  Mini-Mental State Examination (MMSE) 7 or clinical dementia rating 

(CDR) 8), and levels of certain biomarkers (ß-amyloid, Tau, and phosphorylated Tau (p-

Tau) in the cerebrospinal fluid (CSF)). Some of these pathophysiological alterations may 

start between 10 and 15 years before the clinical onset.9 In this context, the 

identification of new and early AD biomarkers, which could be determined in a less 

invasive procedure than CSF extraction, would be of great value for both treatment and 

diagnosis. 

 

In some cases, the alteration of the metabolism in the brain could be associated to 

AD,10 and the use of metabolomics to investigate AD potential biomarkers has already 

been assessed.11–14 In a previous work performed by our group with serum samples 

from MCI, AD patients, and healthy controls, we found that phenylalanine, lysine, and 
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pyruvate concentrations increased along the dementia progression, whereas choline 

concentration decreased.15 

 

On the other hand, oxidative stress plays an important role in the development of AD, 

being involved in inflammation, neurotoxicity and cell death, and the presence of some 

oxidation products has been studied as early biomarkers of the disease.16,17 Specifically, 

lipid peroxidation products showed promising results as diagnostic biomarkers of AD in 

different stages,18–20 reflecting brain structural alterations.21 

 

According to these previous results, the combination of lipid peroxidation and 

metabolic disturbances might improve the discovery of new biomarkers for AD. In this 

work, we aimed to identify potential biomarkers of early AD from circulating 

metabolites in plasma. For this, a combined strategy applying the two most extended 

techniques for metabolomics analysis (nuclear magnetic resonance spectroscopy (NMR 

spectroscopy), and ultra-performance liquid chromatography coupled to tandem mass 

spectrometry (UPLC-MS)) is carried out in MCI-AD patients and healthy controls.  

 

3. Materials and Methods 

3.1 Participant selection and sample collection 

Participants (n=48) from the Neurology Unit of the University and Polytechnic Hospital 

La Fe (Valencia, Spain), aged between 50-75 years, were included in this study. They 

were classified as MCI-AD (n=29) and control (n=19) groups according to cerebrospinal 

fluid (CSF) and imaging biomarkers and neuropsychological assessment following the 

National Institute on Aging-Alzheimer’s Association (NIA-AA) recommendations.22–24 

MCI-AD patients were positive for CSF biomarkers (ß-amyloid, Tau, and p-Tau) or 

neuroimaging (amyloid PET), while controls were negative. According to the 

neuropsychological evaluation (clinical dementia rating (CDR), and Repeatable Battery 
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for the Assessment of Neuropsychological Status-Delayed Memory (RBANS.DM)), 

control group showed standard score, whereas MCI-AD patients showed cognitive 

complaints without or with minor daily living activities impairment. Informed consent 

was obtained from all participants, and the study protocol (project reference number 

2020-462-1) was approved by the Ethics Committee (CEIC) from Health Research 

Institute La Fe (Valencia, Spain).  

 

Blood samples were collected from all participants in tubes containing 

ethylenediaminetetraacetic acid (EDTA), and centrifuged for 15 min at 1160 g. 

Butylated hydroxytoluene (BHT) (0.25% (w/v) in ethanol) was added to the plasma 

samples to avoid further oxidation and samples were stored at −80 °C until the analysis.  

 

3.2 Lipid peroxidation metabolites determination by means of UPLC-

MS/MS 

A panel of 18 lipid peroxidation metabolites (15(R)-15-F2t-IsoP; PGE2; 2,3-dinor-15-epi-

15-F2t-IsoP; 15-keto-15-E2t-IsoP; 15-keto-15-F2t-IsoP; 15-E2t-IsoP; 5-F2t-IsoP; 15-F2t-

IsoP; PGF2α; 4(RS)-4-F4t-NeuroP; 1a,1b-dihomo-PGF2α; 10-epi-10-F4t-NeuroP; 14(RS)-

14-F4t-NeuroP; Ent-7(RS)-7-F2t-dihomo-IsoP; 17-F2t-dihomo-IsoP; 17-epi-17-F2t-

dihomo-IsoP; 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF; 7(RS)-ST-Δ8-11-dihomo-IsoF) and 

four total parameters (isoprostanes, neuroprostanes, isofurans and neurofurans) were 

analysed by UPLC-MS/MS after sample treatment as described by Peña Bautista et al.18 

Briefly, 400 µL of plasma with internal standard (IS) (PGF2α-D4 and D4-10-epi-10-F4t-

NeuroP) were subjected to basic hydrolysis with potassium hydroxide solution (15% 

w/v), protein precipitation with hydrochloric acid and purification by solid phase 

extraction after adjusting the pH to 7.  
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3.3 Metabolites identification by means of NMR  

Plasma samples (200 µl) were lyophilized using a speed vacuum concentrator (mi Vac) 

from Genevac LTD (Ipswich, United Kingdom). The samples were then stored at -80ºC 

until their analysis. Finally, the 81 lyophilized samples were resuspended in 200 µl of 

D2O. 110 µl of this solution were mixed with 55 µl of phosphate buffer (pH 7.4) in 

deuterated water and sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) 1 mM as 

internal standard for chemical shift referencing. The total volume (165 µl) of the 

solution was introduced into a 3 mm NMR tube. 

After sample preparation, NMR spectra were acquired using a Bruker Avance DRX 600 

MHz spectrometer (Bruker GmbH, Rheinstetten, Germany) equipped with a 5 mm TCI 

(1H, 15N 13C) cryoprobe, a BCU05 temperature unit, and a cooled SampleJet for 

automated sample analysis at the NMR facility of the Príncipe Felipe Research Center 

Foundation (CIPF). Samples were measured at 300 ºK (27 ºC). For each sample, a 1D 
1H-NMR spectrum was acquired using the Carr-Purcell-Meiboom-Gill (cpmg) pulse 

sequence (cpmgpr1d from the Bruker pulse sequence library). This pulse sequence 

effectively minimizes contributions from high molecular weight molecules, such as 

proteins or other macromolecules, due to their short transverse relaxation times (T2). 

The relaxation delay was 0.5 ms applied 160 times resulting in an echo time of 160 ms. 

The acquired 1D spectra were then processed using TopSpin 4.0.0 (Bruker BioSpin 

Corporation). Processing included the application of an exponential line-broadening 

function of 0.5 Hz followed by a Fourier transform. In addition, phasing, baseline 

correction, and chemical shift referencing to the trimethylsilyl signal of DSS at 0.0 ppm 

were performed. Spectral assignments were made using the Human Metabolome Data 

Base (HMDB),25 and relevant data from the literature.26,27 After processing, meaningful 

signals within the cpmg spectra underwent deconvolution using AMIX 4.0.2 software 

(Bruker BioSpin Corporation). Signals in the region between 4.5 and 5.0 ppm, as well as 

those with chemical shifts lower than 0.5 ppm or higher than 8.5 ppm, were excluded 

from the analysis. A total of 292 signals from the 1D spectra were selected and included 
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for deconvolution. A mixed Gaussian/Lorentzian variable function was applied for the 

deconvolution process, followed by obtaining integrals for all cpmg spectra. Each 

integral was normalized by the sum of integrals in each spectrum. 

 

3.4 Multivariate statistical analysis 

Differences between MCI-AD and control patients were determined by multivariate 

statistical analysis. Solo 9.2 software (2023, Eigenvector Research, Inc., Manson, WA 

USA 98831; available at http://www.eigenvector.com) was used for statistical analysis 

of normalized data. Partial Least Squares Discriminant Analysis (PLS-DA) was used to 

generate predictive models that discriminated within MCI-AD and control groups. Data 

from metabolomic profiles and/or lipid peroxidation metabolites were included in 

several analyses. For these analyses, the data were randomly divided into two groups: 

training (2/3 of the data were included to calculate the model) and validation (1/3 of 

the data was used to validate the calculated model).28 In addition, the number of 

Principal Components (PCs) was determined using cross-validation (using venetian 

blinds). Taking into account that reducing the number of variables could improve 

classification accuracy,29,30 only one signal was selected from NMR data for those 

metabolites with more than one signal assigned, reducing finally the number of 

variables to 158 NMR signals. Furthermore, variables with a Variable Importance in 

Projection (VIP) value > 0.65 were selected for lipid peroxidation metabolites and for 

metabolomic profiles along with lipid peroxidation metabolites analysis, and variables 

with a VIP>1 were selected for metabolomic profiles analysis. Once selected, PLS-DA 

analyses were performed using NMR, UPLC-MS/MS, or both data sets, and the optimal 

number of PCs was calculated by cross-validation. Sensitivity, specificity, and Area 

Under the ROC Curve (AUC) were then calculated in validation sets to determine the 

goodness of the model to discriminate between the data sets.  
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3.5 Univariate statistical analysis 

Differences between metabolites included in the best-fit models that discriminate 

between MCI-AD and control groups (obtained in PLS-DA analyses) were assessed for 

statistical significance. Before performing the comparison, normality distribution was 

tested using Saphiro Wilk tests. Student’s two tailed t-tests were performed for 

variables with a normal distribution and Mann Whitney U tests for non-normal 

distribution. Different analyses and boxplots were obtained using jamovi for Mac 

version 2.2.5. The jamovi project (2021). Retrieved from https://www.jamovi.org. 

Statistical significance was concluded for values of p≤0.05 (**p < 0.01, *p < 0.05).   

 

3.6 Metabolite set enrichment analysis 

Potential metabolic pathways that could be involved in the pathological processes were 

analyzed using Metaboanalyst.31 For the Metabolite Set Enrichment Analysis (MSEA), a 

table with the relative concentration of each metabolite (column) in each patient (row) 

was constructed. The HMDB ID of each metabolite was provided to perform the 

analysis. Metabolites without this ID were not included. During MSEA, relative-

betweenness centrality was selected for topology analysis and Homo sapiens (KEGG) 

was selected as the reference metabolome. Pathways with p-values ≤0.05 and impact 

factors >0 were selected as representative pathways. Then, a pathway analysis 

(targeted) module integrating enrichment analysis and pathway topology analysis of 

metabolic pathways was also performed using the same table as in the previous study. 

https://www.jamovi.org/
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4. Results 

4.1 Demographic and clinical characteristics of the participants 

A total of 48 plasma samples from two groups of participants (29 MCI-AD patients and 

19 controls) were studied. Table 1 describes the clinical and demographic 

characteristics of the participants. As expected, neuropsychological tests (CDR, 

RBANS.DM) and CSF biomarker levels (ß-amyloid, Tau, p-Tau) showed statistically 

significant differences between groups. No differences were found for variables other 

than age and education level. Control participants tended to be younger and with 

higher education level.  

 

Table 1. Demographic and clinical characteristics of the two groups of participants 
(MCI-AD or controls). 
  

MCI-AD controls p-value 
Number (n, %) 29 (35.8) 19 (23.46)  
Age (years, median, IQR) 70 (65,73) 63 (61,66) 0.000 
Sex (female (n, %)) 22 (76%) 9 (47%) 0.127 

Educational level 
Primary 18 (62%) 2 (11%) 

0.000 Secondary 9 (31%) 7 (37%) 
Universitary 2 (7%) 10 (53%) 

Drugs 
(n, %) 

Statins 16 (67%) 9 (47%) 0.440 
Fibrates 4 (20%) 2 (12%) 0.362 
Benzodiazepines 4 (16%) 1 (5%) 0.191 
Antidepressants 1 (4%) 0 (0%) 0.541 
Antiepileptics 0 (0%) 0 (0%) 0.498 
Anticoagulants 0 (0%) 0 (0%) 0.999 
Antihypertensives 12 (48%) 4 (21%) 0.157 
Corticoids 0 (0%) 0 (0%) 0.498 
Anti-inflammatories 0 (0%) 0 (0%) 0.999 

Comorbidities  
(n, %) 

Dyslipidemia 16 (64%) 8 (42%) 0.347 
Diabetes 2 (8%) 1 (5%) 0.870 
Hypertension 12 (48%) 6 (32%) 0.547 
Heart Disease 0 (0%) 1 (5%) 0.543 
Cerebrovascular 0 (0%) 0 (0%) 0.999 

Smoke (n, %) Yes, or ex-smoker 3 (12%) 7 (39%) 0.118 
Alcohol consumption (n, %) 2 (8%) 2 (11%) 0.941 
Depression (n, %) 7 (29%) 2 (11%) 0.111 
Anxiety (n, %) 4 (17%) 1 (5%) 0.337 
Amyloid β42 
(pg ml-1 (median, IQR)) 

593  
(472,694) 1197 (1074,1458) 0.000 
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t-Tau (pg ml-1 (median, IQR)) 679  
(435,1142) 

196  
(130,306) 0.000 

p-Tau181 (pg ml-1 (median, IQR)) 96 (65,120) 48 (36,69) 0.000 
CDR (median, IQR) 0.5 (0.5,0.5) 0 (0,0) 0.000 
MMSE (median, IQR) 24 (21,26) 29 (28,30) 0.000 
RBANS.DM (median, IQR) 44 (40,55) 100 (95,102) 0.000 
 

 

4.2 Plasma metabolomic profiles   

From the NMR data, a PLS-DA analysis was carried out. An initial one principal 

component model was constructed using the calibrated subset, and variables with 

VIP>1 were selected for the next analysis. Finally, a three principal components model 

including 21 metabolites was constructed (Table 2). This model was then applied to the 

validation subset, yielding 77.8% sensitivity, and 57.1% specificity, with an AUC value 

of 0.7937 (Figure 1a). The variables included in this model are listed in table 2 according 

to their VIP score. The variables that showed a higher influence were valine, threonine, 

tryptophan, isoleucine, proline, malonate, kynurenine, 2-hydroxy-3-methylvalerate, 

and taurine. Subsequently, the relative levels of metabolites included in this model 

were compared (Figure 1b, Table 3). Statistically significant differences were observed 

for isoleucine, valine, 3-hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, 

glutathione, cysteine, malonate, N-nitrosodimethylamine, and taurine (Figure 1b, Table 

3). Patients with MCI-AD had lower levels of isoleucine, valine, 3-hydroxyisobutyrate, 

2-hydroxy-3-methylvalerate, glutamate, and taurine, and higher levels of glutathione, 

cysteine, malonate, and N-nitrosodimethylamine in plasma than control group (Figure 

1b, Table 3). Analysis of plasma levels of these metabolites may be useful for early 

detection of the disease and the identification of essential pathways with clinical 

potential.  
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Table 2. Variables participating in the model calculated from the data by 1H-NMR 
spectroscopy and sorted by VIP value. Variables with VIP>1 are shown in italic. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable VIP Score 
Valine 1.31 

Threonine 1.19 
Tryptophan 1.17 
Isoleucine 1.11 

Proline 1.10 
Malonate 1.08 

Kynurenine 1.07 
2-Hydroxy-3-methylvalerate 1.03 

Taurine 1.00 
Glutathione 0.98 

Mannose 0.97 
Glutamate 0.97 
Cysteine 0.96 

N-Nitrosodimethylamine 0.94 
Acetate 0.92 

3-Hydroxyisobutyrate 0.91 
4-Hydroxybenzoate 0.90 

Arginine 0.82 
Ribose 0.81 
Citrate 0.80 

τ-Methylhistidine 0.77 
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Figure 1. Analyses of plasma metabolomic profiles. (A) Multivariate analysis. PLS-DA 
scores and ROC curve for the classification of MCI-AD patients and controls. The 
prediction plot divided into the scores obtained in the calibration and validation subsets 
is shown in the left panel. The ROC curve for the model with an AUC value of 0.7937 for 
discriminating MCI-AD from controls is shown in the right panel, (B) Univariate analysis. 
Relative concentration of metabolites with a significant difference between MCI-AD 
and control groups. The median (horizontal bar) of the relative concentration of 
isoleucine, valine, 3-hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, 
glutathione, cysteine, malonate, N-nitrosodimethylamine, and taurine for MCI-AD and 
control groups is shown (**p < 0.01, *p < 0.05).   
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Table 3. Comparison of relative metabolite concentrations determined by 1H-NMR 
spectroscopy with significant differences between MCI-AD and control groups. 
 

Metabolite 
Relative metabolite concentration 

p-value 
MCI-AD control 

Isoleucine 3.22·10-4 4.99·10-4 0.022 
Valine 1.45·10-3 1.90·10-3 0.013 

3-hydroxyisobutyrate 2.25·10-5 5.36·10-5 0.007 
2-hydroxy-3-methylvalerate 7.54·10-6 1.03·10-5 0.021 

Glutamate 2.44·10-3 3.00·10-3 0.021 
Glutathione 3.00·10-2 2.61·10-2 0.015 

Cysteine 3.08·10-2 2.77·10-2 0.015 
Malonate 2.44·10-2 2.13·10-2 0.026 

N-nitrosodimethylamine 1.17·10-2 5.38·10-3 0.005 
Taurine 6.59·10-4 1.22·10-3 0.017 

 

4.3 Plasma lipid peroxidation metabolites 

From the UPLC-MS/MS data, a PLS-DA analysis was performed (29 MCI-AD patients and 

19 controls). From the first model built on the calibration subset with two principal 

components, variables with VIP>0.65 were selected, resulting in a total of 17 variables 

(Table 4). This model was then applied to the validation subset and 55.6% of sensitivity 

and 71.4% of specificity were obtained with an AUC value of 0.6667 (Figure 2a). The 

variables involved in this model are shown in table 4 and those with a higher impact 

are: total isoprostanes, 8-iso-PGE2, 10-epi-10-F4t-NeuroP, 8-iso-15R-PGF2a, total 

neurofurans, 1a,1b-dihomo-PGF2α, and total neuroprostanes. The relative levels of the 

lipid peroxidation metabolites involved in this model were then compared (Figure 2b, 

Table 5). Significant differences were observed for isoprostanes and neurofurans, with 

higher levels in MCI-AD patients (Figure 2b, Table 5), highlighting the importance of 

lipid peroxidation in the pathobiology of AD. Isoprostanes and neurofurans may 

represent potential biomarkers of early stages of this disease.  
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Table 4. Variables participating in the model calculated with the lipid peroxidation 
metabolites from UPLC-MS/MS sorted by VIP value. Data with VIP>1 is shown in italics. 
 

Variable VIP 
Isoprostanes 1.63 
8-iso-PGE2 1.38 

10-epi-10-F4t-NeuroP 1.28 
8-iso-15R-PGF2a 1.15 

Neurofurans 1.09 
1a,1b-dihomo-PGF2α 1.09 

Neuroprostanes 1.04 
8-iso-PGF2a 0.97 

Ent-7(RS)-7-F2t-dihomo-IsoP 0.95 
PGF2a 0.84 

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.76 
17-F2t-dihomo-IsoP 0.76 
8-iso-15-keto-PGE2 0.74 

PGE2 0.71 
8-iso-15-keto-PGF2a 0.67 

7(RS)-ST-Δ8-11-dihomo-IsoF 0.65 
14(RS)-14-F4t-NeuroP 0.64 

 

 
Table 5. Comparison of relative lipid peroxidation metabolite concentrations 
determined by UPLC-MS/MS with significant differences between MCI-AD and control 
groups. 
 

Metabolite 
Relative metabolite concentration 

p-value (test) 
MCI-AD patients controls 

Isoprostanes 3.94·10-1 2.75·10-1 0.005 
Neurofurans 1.73·10-1 7.41·10-2 0.019 
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Figure 2. Analyses of lipid peroxidation metabolites: (A) Multivariate analysis. PLS-DA 
scores and ROC curve for the classification of MCI-AD patients and controls. The 
prediction plot divided into the scores obtained in the calibration and validation subsets 
is shown in the left panel. The ROC curve for the model with an AUC value of 0.6667 for 
discriminating MCI-AD from controls is shown in the right panel, (B) Univariate analysis. 
Relative concentration of metabolites with a significant difference between MCI-AD 
and control groups. The median (horizontal bar) of the relative concentration of total 
isoprostanes and neurofurans for MCI-AD and control groups is shown (**p < 0.01, 
*p < 0.05).   
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4.4 Integration of plasma metabolomic profiles and lipid 

peroxidation metabolites  

From the combination of both datasets (lipid peroxidation metabolites and plasma 

metabolomic profiles), all MCI-AD patients (n=29) and controls (n=19) were included in 

the analysis. An initial single principal component model was constructed using the 

calibrated subset, and variables with VIP>0.65 were selected for further analysis. 

Finally, a five principal component model including 20 metabolites was constructed 

(Table 6). This model was then applied to the validation subset and 77.8% sensitivity, 

and 85.7% specificity were obtained with an AUC value of 0.8730 (Figure 3a). The 

addition of lipid peroxidation metabolites appears to improve the ability of the model 

to discriminate between MCI-AD and control groups. The variables included in this 

model are listed in table 6 according to their VIP score. Variables that showed a higher 

influence were 8-iso-PGE2, valine, tryptophan, kynurenine, citrate, and glutathione. 

Subsequently, the relative levels of metabolites included in this model were compared 

(Figure 3b, Table 7). Significant differences were observed for isoleucine, valine, 3-

hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, glutathione, cysteine, 

malonate, N-nitrosodimethylamine, taurine, proline, and isoprostanes (Figure 3b, Table 

7). Patients with MCI-AD had lower levels of isoleucine, valine, 3-hydroxyisobutyrate, 

2-hydroxy-3-methylvalerate, glutamate, taurine, and proline, and higher levels of 

glutathione, cysteine, malonate, N-nitrosodimethylamine, and isoprostanes than 

healthy controls (Figure 3b, Table 7).  
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Figure 3. Analyses of plasma metabolomic profiles together with lipid peroxidation 
metabolites: (A) Multivariate analysis. PLS-DA scores and ROC curve for the 
classification of MCI-AD patients and controls. The prediction plot divided into the 
scores obtained in the calibration and validation subsets is shown in the left panel. The 
ROC curve for the model with an AUC value of 0.8730 for discriminating MCI-AD from 
controls is shown in the right panel, (B) Univariate analysis. Relative concentration of 
metabolites with a significant difference between MCI-AD and control groups. The 
median (horizontal bar) of the relative concentration of total isoleucine, valine, 3-
hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, glutathione, cysteine, 
malonate, N-nitrosodimethylamine, taurine, proline, and isoprostanes for MCI-AD and 
control groups is shown (**p < 0.01, *p < 0.05).   
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Table 6. Variables participating in the model calculated with metabolites from 1H-NMR 
spectroscopy and lipids peroxidation determined by UPLC-MS/MS and sorted by VIP 
value. Variables in italic show VIP>1. 
 

Variable VIP  
8-iso-PGE2 1.46 

Valine 1.20 
Tryptophan 1.16 
Kynurenine 1.10 

Citrate 1.05 
Glutathione 1.03 

2-hydroxy-3-methylvalerate 0.98 
Isoleucine 0.98 
Cysteine 0.97 

Isoprostanes 0.96 
Malonate 0.96 
Arginine 0.96 

3-hydroxyisobutyrate 0.96 
Taurine 0.92 

Glutamate 0.91 
Proline 0.91 

N-nitrosodimethylamine 0.88 
Glutamine 0.83 
Threonine 0.79 

Ribose 0.76 
 
 
Table 7. Comparison of relative metabolite concentrations with significant differences 
between MCI-AD and control groups. 
 

Metabolite 
Relative metabolite concentration 

p-value MCI-AD patients controls 
Isoleucine 3.22·10-4 4.99·10-4 0.022 

Valine 1.45·10-3 1.90·10-3 0.013 
3-hydroxyisobutyrate 2.25·10-5 5.36·10-5 0.007 

2-hydroxy-3-
methylvalerate 7.54·10-6 1.03·10-5 0.021 

Glutamate 2.44·10-3 3.00·10-3 0.021 
Glutathione 3.00·10-2 2.61·10-2 0.015 

Cysteine 3.08·10-2 2.77·10-2 0.019 
Malonate 2.44·10-2 2.13·10-2 0.026 

N-Nitrosodimethylamine 1.17·10-2 5.38·10-3 0.005 
Taurine 6.94·10-4 1.22·10-3 0.017 
Proline 1.13·10-4 1.52·10-4 0.013 

Isoprostanes 3.94·10-1 2.75·10-1 0.005 
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4.5 Impaired pathways in early AD 

From the different metabolites’ levels found between MCI-AD and control groups. 

(isoleucine, valine, 3-hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, 

glutathione, cysteine, malonate, taurine, isoprostanes) (Table 3-5), the corresponding 

metabolic pathways were evaluated. For this purpose, metabolite set enrichment 

analyses were performed. In the case of the predictive model obtained from plasma 

metabolomic profiles, 22 metabolic pathways were altered; however, only four 

pathways showed significant differences between MCI-AD and control groups (Figure 

4A). On the other hand, the predictive model analysis integrating plasma metabolomic 

profiles and lipid peroxidation metabolites revealed an alteration of 18 metabolic 

pathways, 3 of which showed statistically significant differences between MCI-AD and 

control groups. In both cases, primary bile acid biosynthesis, taurine and hypotaurine 

metabolism, and D-amino acid metabolism appear to be involved in the early 

pathogenesis of AD.  

 

Figure 4. Metabolic pathways altered in MCI-AD and control groups. Pathways altered 
in the predictive model derived from plasma metabolomic profiles (A) and from plasma 
metabolomic profiles together with lipid peroxidation metabolites (B). Significant 
metabolic pathways are labelled (p<0.05, impact >0). The colour and the size of the 
circles indicate the p-value and impact index, respectively: -log10(p) is represented from 
higher values (red) to lower values (yellow) and the pathway impact is reflected in the 
size of the circles from smaller circles (lower impact) to larger circles (higher impact). 
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5. Discussion 
 

AD is the most prominent form of dementia, and it has a great impact on society. The 

identification of biomarkers using minimally invasive procedures for early diagnosis of 

the disease would be of great value for clinical practice. In this work, three different 

classification models for the diagnosis of MCI-AD have been elaborated based on the 

presence of metabolomic and lipid peroxidation biomarkers in plasma. The first model 

generated based on metabolomic biomarkers obtained by NMR was able to 

discriminate with a 77.8% of sensitivity and a 57.1% of specificity between control and 

MCI-AD patients. The metabolites isoleucine, valine, 3-hydroxyisobutyrate, 2-hydroxy-

3-methylvalerate, glutamate, and taurine showed lower levels in MCI-AD while 

glutathione, cysteine, malonate, and N-nitrosodimethylamine were higher in 

comparison with the control group. In a second model, the concentration of lipid 

peroxidation metabolites obtained by UPLC-MS/MS was used, with the model showing 

55.6% of sensitivity and 71.4% of specificity. In this case, significant differences were 

observed for isoprostanes and neurofurans, with higher levels in MCI-AD patients.  

Finally, a combined model using both data sets improved the classification capacity of 

the previous models, with 77.8% sensitivity, and 85.7% specificity. The metabolites 

included in this combined model, showing significative different levels between groups 

were isoleucine, valine, 3-hydroxyisobutyrate, 2-hydroxy-3-methylvalerate, glutamate, 

glutathione, cysteine, malonate, N-nitrosodimethylamine, taurine, proline, and 

isoprostanes.  It was also observed that combining UPLC-MS/MS and NMR improves 

the classification potential, indicating that NMR and UPLC-MS/MS are two 

complementary, not mutually exclusive, techniques for the study of metabolites as 

potential biomarkers of disease.  

Alzheimer’s disease could be defined as a complex metabolic disorder,32 and in fact 

various observations substantiate the theory that AD is a systemic disorder 

characterized by disruptions in glucose metabolism, mitochondrial dysfunction, and 

aberrant metabolism of branched-chain amino acids (BCAAs).33 BCAAs are involved in 
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a variety of processes in the brain, from neurotransmitters metabolism to protein 

synthesis and energy production.34 A decrease in the relative concentration of BCAAs 

has been described in AD patients.33,35, and lower valine plasma levels have been 

related to cognitive decline.36 In our work, a decrease in the relative plasma 

concentration of valine and isoleucine was found in MCI-AD patients, suggesting that 

BCAA metabolism may be altered in the early stages of AD.  

Glutamate is the major neurotransmitter in the brain, and it does not cross the blood-

brain barrier, so it must be produced in the brain from BCAA33. Alterations in circulating 

glutamine levels37 and impairments in the glutamate/glutamine cycle38 have previously 

been associated with the development of dementia. This impairment of the 

glutamate/glutamine cycle is related to changes in mood, behavior, and memory loss, 

among other symptoms, all of which are observed in AD patients.38 However, whether 

these metabolic changes are a cause, or a consequence of AD remains to be elucidated. 

Moreover, recent studies have suggested that changes in the gastrointestinal function 

in AD may lead to reduced absorption of dietary BCAAs.35 A decrease in the relative 

plasma concentration of glutamate was observed in MCI-AD patients. Other authors 

have previously described changes in glutamine levels in AD.15 

We have observed that several amino acids, such as taurine, proline, and cysteine, also 

suffer alterations in their concentration in MCI-AD; a decrease in taurine and proline 

and an increase in cysteine for MCI-AD patients. Taurine is involved in several functions 

in the central nervous system (CNS) and has a neuroprotective effect.39 A decrease in 

circulating taurine levels has been associated with aging and age-related diseases.40 In 

fact, taurine supplementation has been shown to have a potential therapeutic effect 

against AD in mice by restoring the glutamate system.41 However, the mechanism 

involved in the decrease of taurine levels in AD is still unknown. Taurine can be 

produced from the metabolism of cysteine: L-cysteine is oxidized by cysteine 

dioxygenase (CDO), which generates cysteine sulfinate which is decarboxylated by 

cysteine sulfinic acid decarboxylase (CSD), which converts cysteine sulfinate to 

hypotaurine, which is converted to taurine by hypotaurine dehydrogenase.42 In this 
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work, we observed an increase in cysteine levels. Impairment of an enzyme on the 

taurine and hypotaurine metabolism pathway could explain the differences observed 

in the concentrations of these metabolites; however, further studies would be needed 

to confirm this hypothesis.  

Oxidative stress also plays an important role in neurodegenerative diseases including 

AD.18,43 In fact, reactive oxygen and nitrogen species can induce lipid peroxidation of 

cell membrane lipids, thereby disrupting normal cell physiology.18,43 Lipid peroxidation 

has been suggested to be implicated in AD since the brain has a high lipid composition 

and a high oxygen consumption.18,43 In this work we have found an increase in the 

concentration of isoprostanes and neurofurans in MCI-AD patients. The association 

between isoprostanes and AD has been described previously.21,44 Isoprostanes and 

neuroprostanes are the product of araquidonic acid and docosahexaenoic acid (DHA) 

oxidation, and they are known as biomarkers of oxidative stress and inflammation.43,45 

In fact, DHA is highly present in the grey matter of the brain and neuroprostanes and 

isoprostanes may reflect brain atrophy and pathophysiological mechanisms of AD.43,45  

Taken together, these results suggest that metabolomics could be a useful technique 

for the early diagnosis of AD-MCI and a reliable source for the search for therapeutic 

targets, as well as for a better understanding of the molecular mechanism underlying 

the disease. 
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1. Abstract 
 
Primary Open-Angle Glaucoma (POAG) is the most prevalent glaucoma type, and the 

leading cause of irreversible visual impairment and blindness worldwide. Identification 

of early POAG biomarkers is of enormous value, as there is not an effective treatment 

for the glaucomatous optic nerve degeneration (OND). In this pilot study, a 

metabolomic analysis, by using proton (1H) nuclear magnetic resonance (NMR) 

spectroscopy was conducted in tears, in order to determine the changes of specific 

metabolites in the initial glaucoma eyes and to discover potential diagnostic 

biomarkers. A classification model, based on the metabolomic fingerprint in tears was 

generated as a non-invasive tool to support the preclinical and clinical POAG diagnosis. 
1H-NMR spectra were acquired from 30 tear samples corresponding to the POAG group 

(n=11) and the control group (n=19). Data were analysed by multivariate statistics 

(partial least squares-discriminant analysis: PLS-DA) to determine a model capable of 

differentiating between groups. The whole data set was split into calibration (65%) / 

validation (35%), to test the performance and the ability for glaucoma discrimination. 

The calculated PLS-DA model showed an area under the curve (AUC) of 1, as well as a 

sensitivity of 100% and a specificity of 83.3% to distinguish POAG group versus control 

group tear data. This model included 11 metabolites, potential biomarkers of the 

disease. When comparing the study groups, a decrease in the tear concentration of 

phenylalanine, phenylacetate, leucine, n-acetylated compounds, formic acid, and 

uridine, was found. Moreover, an increase in the tear concentration of taurine, glycine, 

urea, glucose, and unsaturated fatty acids was observed in the POAG group. These 

results highlight the potential of tear metabolomics by 1H-NMR spectroscopy as a non-

invasive approach to support early POAG diagnosis and in order to prevent visual loss. 
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2. Introduction 
 
Glaucoma is the second leading cause of blindness worldwide after cataracts, with the 

differential characteristic of becoming irreversible due to the progressive damage to 

the retinal ganglion cells (RGCs) and optic nerve fibres (ONFs). This injury leads to optic 

atrophy, peripheral vision decline, and loss of vision-related quality-of-life, also 

constituting an important matter of global socio-economic burden.1,2 Glaucoma affects 

more than 70 million people worldwide and it is estimated that 111.8 million by 2040 

will develop the disease.3,4 

 

The most common glaucoma type is primary open angle glaucoma (POAG), which is 

characterized by mechanical insult due to the elevated intraocular pressure (IOP), 

morphological alteration of the optic nerve head, and functional landmarks, as the 

progressive visual field loss, constituting a neurodegenerative process, globally known 

as the glaucomatous OND.2,5 Unfortunately, POAG is asymptomatic in the early stages. 

The only therapeutic action is the prompt initiation of elevated IOP treatment, and no 

neuroprotective treatments are currently available in clinical practice.5 However, the 

medical-laser-surgical hypotensive glaucoma therapy does not prevent disease 

progression or visual impairment.6 In spite of the advances in epidemiological and 

experimental studies, more research is needed on the molecular mechanisms 

responsible for the glaucoma development and progression.7 Reliable biomarkers for 

early glaucoma diagnosis are yet to be discovered.8 

 

A singular set of metabolites, named metabolome, is the result of the combination of 

genetic and environmental factors, among others, that is found in a biological sample. 

Genomics, transcriptomics, proteomics and metabolomics constitute the biological 

omics cascade.9,10 The metabolome gives information more directly related to the 

phenotype than any other omics science.9,10 Mainly, two sophisticated techniques, 

mass spectrometry (MS),11,12 and nuclear magnetic resonance (NMR) spectroscopy, 12,13 
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lead the determination of metabolomic profiles. NMR spectroscopy is a robust and 

reproducible method that allows to determine the metabolic composition of biofluids 

(blood derivatives, cerebrospinal, urine, tears, saliva, sweat, synovial, etc.) usually 

through very simple preparation procedures and using small amount of sample, being 

these two features the most relevant in the clinical context.14,15Both techniques need 

computationally intensive statistical tools to refine interpretation.11–15 

 

When POAG diagnosis and prognosis is approached, a key issue to address is the 

selection of a suitable biologic sample to provide information on the pathology.16–18 

Most studies agree in the use of blood for biomedical glaucoma research, but also 

aqueous humor, vitreous body, and tear samples have been used, as recently reviewed 

by Tezel.19 Our research group has conducted extensive research on the 

pathophysiology of ocular diseases, mainly ocular surface disorders, glaucoma, and 

diabetic retinopathy, by using tear samples.20–24 Another key point in glaucoma 

research is to select the most suitable participants for the study, according to an 

accurate diagnosis, and to make an appropriate classification of the disease stage.2,5,7,8  

 

Some metabolites and metabolic pathways associated to pathological processes have 

been reported to be altered in glaucoma, mainly regarding carbohydrates,25 amino 

acids,25,26  and fatty acids,27  along with inflammation and neurodegeneration pathways. 

However, it has not yet been possible to identify a panel of reliable biomarkers that can 

be obtained non-invasively for translation as a diagnostic and prognostic tool to the 

clinical practice. 

 

Aimed for this context, in this work we intended to develop a non-invasive method to 

support the diagnosis and prognosis of POAG patients at the initial stage of the disease, 

based on the tear metabolomic fingerprinting obtained by 1H-NMR spectroscopy. The 

secondary objective is to search for potential biomarkers of the disease, to help 
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increase knowledge about the molecular processes underlying the clinically 

asymptomatic initial steps of the glaucomatous OND.  

3. Materials and Methods 

3.1 Focused topic and study characteristics 

There is no cure for glaucoma. There is growing interest in identifying and validating 

clinical, imaging, biochemical, and molecular-genetic biomarkers that may help early 

detection of POAG. To progress in knowledge on the clinical and molecular basis of 

POAG, a collaborative multicenter analytical case-control pilot study was planned for 

50 male and female participants aged 40-80. This work was conducted in accordance 

with the tenets of the Declaration of Helsinki (Edimburgh 2000), reviewed and 

approved by the Institutional Boards (code: 131/18; code P14_23_01_19). All clinical 

requirements to maintain the data privacy from the study participants were specifically 

met. All volunteers were informed and signed the consent to participate. 

   

3.2 Eligibility requirements for the study participants 

Ophthalmic specialists caring for glaucoma patients carried out a pre-selection by 

personal interview, according to the inclusion/exclusion criteria listed in table 1. Socio-

demographics, personal and family characteristics, lifestyle, and treatments were 

recorded in a Microsoft Excel spreadsheet, as DEMO. A systematized ocular 

examination was done in the potential participants that got an appointment for the eye 

clinic. Best-corrected visual acuity (BCVA) was obtained from each eye calculating the 

logarithm of the minimum angle of resolution (LogMAR). The IOP was measured by 

Goldman applanation tonometry (Haag-Streit AT 900; Haag-Streit Köniz, Switzerland). 

Morphological determination (indirect gonioscopy) through a slit-lamp (IMAGEnet, 

Topcon, Barcelona, Spain) with the Goldmann 3-mirror lens was carried out to identify 
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an open anterior chamber angle; ocular fundus exploration with a 78D lens was 

performed through a slit-lamp; examination by optical coherence tomography (OCT) 

(Cirrus spectral-domain OCT, Carl Zeiss Meditec, Inc., Madrid, Spain) of the anterior and 

posterior eye segments, and functional probes by means of the visual field (VF) 

performance, using the 24-2 Swedish interactive threshold algorithm (Humphrey field 

analyzer, Carl Zeiss Meditec, Inc., Madrid, Spain), were also carried out. For the 

evaluation of participants, standard definitions of IOP, central corneal thickness (CCT), 

cup-to-disc (C/D) ratio, retinal nerve fiber layer (RNFL) thickness, RGCs density and VF 

median deviation (MD) were applied. In this context, normal IOP was considered as ˂ 21 

mmHg, and any IOP above this threshold was defined as ocular hypertension (OHT). 

The CCT was determined by OCT and the normal values were estimated at 533 µm.  

 

 

Table 1. Inclusion and exclusion criteria for the study participants 
 

POAG group Control group 
INCLUSION 

Diagnosis of POAG Healthy non-glaucomatous individuals 
Aged >40 and < 80 years Aged <40 and < 80 years 
Initial glaucoma stage - 
Precise data at the clinical records Precise data at the clinical records 
Psychic and physical status that permits the 
participation in the study 

Psychic and physical status that permits the 
participation in the study 

EXCLUSION 
Other Glaucoma type - 
Aged <40 and > 80 years Aged <40 and > 80 years 
Other glaucoma stage - 
Other eye diseases or recent ophthalmic 
laser/surgery. 

Other eye diseases or recent ophthalmic 
laser/surgery 

Other systemic diseases/treatments/surgery Other systemic diseases/treatments/surgery 
Missing data or incomplete clinical history Missing data or incomplete clinical history 
No able to participate No able to participate 

 

 

Participants were classified as POAG group if they met one of these criteria: 1) patients 

previously diagnosed and confirmed in the clinical history as initial glaucomatous OND, 

under hypotensive eye drop therapy (Latanoprost, Timolol, and/or Brinzolamide); 2) 
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naïve POAG cases with corrected IOP/CCT higher than 21 mmHg, with an initial 

glaucomatous OND including specific optic nerve head alterations such as neuroretinal 

rim thinning, peripapillary nerve fiber loss, asymmetry of cupping between the patient 

eyes, and parapapillary atrophy, etc. Glaucoma damage was staged into the adequate 

category for better managing the disease. In this concern, automated VF is the hallmark 

for testing the visual function in glaucoma patients. We have used static automated 

perimetry (SAP) for the POAG diagnosis by the Humphrey Swedish Interactive 

Thresholding Algorithm (SITA) 24-2 Fast, with fixation monitoring and gaze-tracking 

(Humphrey visual field analyzer; Carl Zeiss Meditec, Madrid, Spain). In this study 

population, glaucomatous defects have been detected using the above techniques, 

with the reliability indices of the European Glaucoma Society (EGS), mean deviation 

(MD) and pattern standard deviation (PSD). The MD corresponds to the mean elevation 

or depression in the VF, as compared to the reference normal VF. According to the MD 

values, it was classified as mild, moderate, or severe VF damage (>6.00dB, -6.01 a 12.00 

dB, and <12.01 dB, respectively).28 The PSD corresponds to the irregularity 

measurements, in each of 6 regions of the VF, by adding the absolute value of the 

difference between the threshold value for each point, and the average VF sensitivity 

at each point. Therefore, according to the Hodapp et al.28 approach, minimum criteria 

for considering the initial glaucoma stage is: 1) a glaucoma hemifield test outside 

normal limits (in at least two VF); 2) a cluster of three or more non-edge points in a 

location typical for glaucoma, all of which are depressed on the pattern deviation plot 

at a p < 5% level, and one of which is depressed at a p < 1% level (on two consecutive 

VF); 3) a corrected pattern standard deviation that occurs in less than 5% of normal VF 

(on two consecutive VF performances). Within the VF indexes, it has to be 

contemplated that the MD is the average elevation/depression of visual sensitivity in 

the overall VF, compared with that of the normal age-corrected reference VF. 

Therefore, the classification of VF defects for early glaucoma includes: 1) VF mean 

deviation less than -6 dB; 2) Less than 25% of the points are depressed below the 5% 
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level and less than 10 points are depressed below the 1% level on the pattern deviation 

plot; and 3) All point in the central 5º must have a sensitivity of at least 15 dB.  

Participants were classified as control group when the IOP was lower than 21 mm Hg 

with normal visual fields, optic disc, and RNFL in absence of other ocular or systemic 

disease (as in the inclusion/exclusion criteria).  

 

All data were recorded into a Microsoft Excel spreadsheet, as OPHTHAL, which was 

reviewed by the glaucoma specialist. At baseline, a total of 50 individuals were selected 

by a nonrandom consecutive sampling procedure, to better confirm the health and 

ocular condition of the suitable participants and were distributed into two groups: 

patients with POAG diagnosis (n = 23) and individuals without glaucoma, as a control 

group (n = 27). The final sample size of our pilot study participants was 30 (11 POAG 

patients and 19 control individuals). Changes in the potential number of participants 

were due to the volunteer decision, clinical issues, and/or sampling contingences. 

Recruitment characteristics and operative procedures are depicted in Figure S1. 

 
 
 

3.3. Sample collection. 

Reflex tears were collected through capillarity by using a microhematocrit tube from 

each eye of the study participants, by a gentle rubbing of the inferior meniscus and 

external canthus of each eye, without instilling anaesthetics as described elsewhere.20–

24 A tear volume ranging from 6 to 25 µL was collected from each participant. Each 

sample was transferred into micro Eppendorf tubes, appropriately labelled and stored 

at −80 °C until processing. A total of 30 samples were collected from POAG patients 

(n=11), and the control group (n=19), as previously described.20-24 The figure 1 shows 

the sampling technique for collecting reflex tears from the study participants. 
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Figure 1. Reflex tear collection from the inferior lacrimal meniscus by capillarity. 
 
 

3.4 Sample preparation for 1H-NMR spectroscopy study 

Before sample preparation, tears were thawed. To prepare each sample, 20 µL of tear 

fluid were introduced in NMR tubes with a diameter of 1,7 mm. The remaining volume 

was completed up to 60 µl with phosphate buffer (which additionally contained 

deuterated water, and the internal standard sodium 2,2-dimethyl-2-silapentane-5-

sulphonate (DSS) 1 mM), following previously published procedures.29 In three cases 

the volume of tear available was less than 20 µl (6, 15 and 16 µL respectively). In those 

cases, extra quantity of phosphate buffer was added to complete the volume of 60 µL. 

Following the same procedure, three of the pharmacological active principles of the 

topical glaucoma therapy were considered for better classifying our participants, as 

those administered in monotherapeutic regimen or in association [Lumigan® 

(Bimatoprost), Azopt® (Brinzolamide) and Azarga® (Timolol/Brinzolamide)] and were 

prepared for NMR spectroscopy acquisition, to rule out that any of the signals included 

in the analyses were directly produced by the presence of the drugs.  
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3.5 NMR spectra acquisition and processing 

The samples underwent NMR spectroscopy study (Príncipe Felipe Research Center 

Foundation (CIPF) NMR facility). NMR spectra were acquired using a 600 MHz 

spectrometer (Bruker AVII-600, Bruker Biospin, Germany) equipped with a 5 mm TCI 

cryoprobe (1H, 15N 13C), a temperature unit BCU05 and a refrigerated SampleJet. The 

temperature of the probe was set at 300 ºK (27 ºC). 1H-NMR monodimensional spectra 

were acquired for each sample with noesy pulse sequence and presaturation of the 

water signal during the relaxation time and mixing time. 200 scans were programmed 

with a spectral width of 30 ppm. Following the same procedures 1H-NMR noesy spectra 

were as well acquired from the topical drugs used for ocular hypertension treatment. 

The chemical shift of the signals from the drugs spectra were taken into consideration 

in later analyses. Once acquired, the spectra were transformed and pre-processed. For 

the pre-processing of the spectra an exponential line-broadening function of 0.5 Hz was 

applied followed by Fourier transformation with TopSpin 3.6.2. Phasing, baseline 

correction and chemical shift calibration to DSS resonance at 0.0 ppm was done with 

the program MestReNova version 6.0.2 (Mestrelab Research SL, Santiago de 

Compostela, Spain). Areas from the different peaks in the 1D 1H spectra were 

integrated. The integrated areas were used to determine the differences in metabolite 

concentration between tears from CG and POAGG. The peaks were assigned according 

to their chemical shift and the information in different databases, such as the human 

metabolome database (HMDB) 30 and the biological magnetic resonance data bank 

(BMRB).31  
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3.6 Statistical Analysis 

3.6.1. General Statistical Proceedings 

Statistics for the clinical data were performed by the IBM SPSS 28.0 program (IBM SPSS 

Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp). The Shapiro-Wilk test 

(subgroups) and the Kolmogorov-Smirnov test (main groups) were used to verify the 

normal distribution of the quantitative variables, whereas the qualitative variables 

were described by absolute and relative frequencies. Quantitative variables were 

described using the mean and standard deviation (normal distribution) or median and 

interquartile range (non-normal distribution). Differences between quantitative 

variables were analysed using the student's t test for independent samples and ANOVA 

(normal variable) or the Mann-Whitney and Kruskal Wallis U test (non-normal variable). 

Differences between groups were considered statistically significant when the p-value 

was less than or equal to 0.05. 

 

To determine the metabolomic differences between tears from the POAG and the 

control groups, statistical analysis was performed. The integration data from each peak 

was normalized to the sum of all signals and auto scaled. These data were fed into the 

software PLS_Toolbox Solo 8.9 (Eigenvector Research, Inc., Manson, WA, USA) to 

perform multivariate statistical analysis. A Principal Component Analysis (PCA) was 

employed to determine the presence of outsiders, to remove them from further 

analysis. 

 

Partial Least Squares-Discriminant Analysis (PLS-DA) was used to generate a predictive 

model, able to classify the samples based on the relative concentration of metabolites 

in each group. The data were split into calibration (2/3 of the samples were used for 

the generation of the model) and validation (1/3 of the samples was used to prove the 

discriminative capacity of the generated model in an independent data set) subsets. 
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The variables included in the model were iteratively selected based on its Variable 

Importance in Projection (VIP) value until reaching the optimization of the model. Cross 

Validation (venetian blinds) was used to select the optimal number of latent variables 

for the model. In order to determine the goodness of the model to discriminate 

between different sets of samples, the area under the ROC curve value (AUC), the 

sensitivity and the specificity were calculated. After validation, the robustness and 

over-fitting of the model were tested through permutation test (100 iterations, Rand-

t-test, Wilcoxon and Sign test). p-value < 0.05 was considered significant. 

 

Univariate analysis of the metabolites participating in the model was performed by 

using Metaboanalyst.32 The mean of normalized intensity for each metabolite was 

calculated for the two groups, POAG and control groups. The t-test was used to 

determine significant differences between metabolites in POAG and control tear 

samples after testing the normality of the variables. False Discovery Rates (FDR) 

adjusted p-values were as well obtained and considered for statistical significance.   

3.6.2 Analysis of altered metabolic pathways  

Metaboanalyst 32 was used to explore the potential metabolic pathways involved in the 

pathological processes. HMDB ID of each metabolite was used to include them in the 

pathway analysis. The global test enrichment analysis selected for the topological 

analysis was relative-betweenness centrality. The pathways with p-value < 0.05 and 

impact factor > 0 were selected as representative pathways.  
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4. Results  
 

4.1 Patient characteristics 

The final number of participants in this pilot study was 30 (11 POAG patients and 19 

control individuals), as depicted in figure S1. The breakdown of participants was 20 

(40%), that failed to complete the study for a variety of reasons, including loss of 

interest and volunteer drop out, experimenter error, clinical findings, and alterations 

in sampling, transportation, or laboratory processing of the biological samples. 

 

Mean age was 69 + 8 years (71 ± 9 years in the POAG group and 68 ± 7 years in the 

control group). Gender distribution was 64% women / 36% men in the POAG group and 

55% women / 45% men in the control group. The mean age and gender distribution 

were not significantly different between POAG and control groups. All participants 

were Caucasian. 

4.2 Systemic and ophthalmologic clinical characteristics 

Comorbidities were recognized non-IOP risk factors for the POAG course, and the 

following were taken into consideration in the study participants: hypertension blood 

pressure, cardiovascular disease, diabetes mellitus, myopia, and/or obesity (increased 

body mass index). The participants with the above disorders were excluded from the 

study, according to the criteria established in table 1 (Figure S1). 

 

The POAG patients had IOP elevation, verified through the augmented optic disc 

excavation, optic nerve damage, and altered VF. The participants in POAG group were 

under glaucoma treatment (hypotensive eye drops as monotherapy: 52% Bimatoprost 

(Lumigan ®), and 8% Brinzolamide (Azopt ®), as well as fixed combination: 40% 
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Timolol/Brinzolamide (Azarga ®)). The CG was constituted by those healthy individuals 

without any of the above glaucoma milestones. 

 

Ophthalmological examination showed that mean BCVA LogMAR was 0.00 for the RE 

(right eye) and 0.10 for the LE (left eye) in the CG, versus 0.20 (RE) and 0.20 (LE) in the 

POAG group. Moreover, the mean IOP, and the mean CCT were significantly lower in 

the control group respect to the POAG group (p<0.001; p<0.001). The most important 

OCT and VF parameters were the mean cup-to-disc ratio, RNFL thickness, and RGCs 

density, as well as the VF MD and PSD. Overall, the SAP data analyses showed a 

significant decrease in MD values (p<0.001), and a significant increase in the PSD values 

(p<0.001) in the POAG patients respect to the controls. In fact, the POAG patients 

displayed mild VF damage. No moderate or severe VF damage was detected in our 

glaucomatous population. All the above parameters were significantly different 

between both study groups. The ophthalmological parameters of the study for both 

groups and the p-values are shown in table 2. 

 

Table 2. Ophthalmic characteristics of the study participants. 
 

Parameters POAG group Control group p value 
BCVA RE 0.2 0.0 <0.05 
BCVA LE 0.2 0.1 <0.05 
IOP RE (mm Hg) 20+2 14+1 <0.001 
IOP LE (mm Hg) 19+2 15+1 <0.001 
CCT RE (�m) 527+ 13 575+12 <0.01 
CCT LE (�m) 532 + 12 568 + 14 <0.01 
Average C/D ratio RE 0.6 + 0.2 0.1 + 0.01 <0.001 
Average C/D ratio LE 0.5 + 0.3 0.1 + 0.01 <0.001 
Average RNFL thickness RE (�m) 70 + 10 94 + 11 <0.05 
Average RNFL thickness LE (�m)  72 + 8 89 + 10 <0.05 
RCCs density RE 65 + 8 94 + 12 <0.001 
RGCs density LE 68 + 9 90 + 12 <0.001 
VF MD RE -3.2 + 1.6  -1dB + 1 <0.001 
VF MD LE -2.5 + 1.2 -1dB + 1 <0.001 

BCVA: best corrected visual acuity; logMAR: logarithm of the minimum angle of 
resolution; VF MD: visual field mean deviation; RE: right eye, LE: left eye   
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4.3 1H-NMR spectroscopy study 

Finally, 30 tear samples corresponding to both eyes of the study participants (POAGG 

n=11; CG n=19) were analysed by 1H-NMR metabolomics. 

4.3.1. 1H NMR profile of tears obtained from the study participants. 

1H-NMR noesy spectra were acquired for all tear samples and drugs (Lumigan ®, Azopt 

® and Azarga ®). The spectra showed an acceptable signal to noise ratio, despite the 

low concentration of the metabolites in the samples, enough to enable the assignment 

and the relative quantification of the signals. The main signals in tears were assigned 

and are shown in the figure 2. The spectrum is shown divided into two parts, aliphatic 

(Figure 2a) and aromatic (Figure 2b), to enable a better observation of the signals. A 

total of 40 metabolites were assigned according to their chemical shifts, multiplicity 

and J coupling (Table 3). The spectra of the drugs were also obtained and are shown in 

the figure S2, to assess that the signals in the discriminant models between POAG and 

control groups are not due to the treatments.  
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Figure 2. 1H-NMR spectrum of one tear sample. The residual water signal (4.7-5.1 ppm) 
is not shown a) Aliphatic region of the spectrum (0.8-4.6 ppm) b) Aromatic region of 
the spectrum (5.2-8.5 ppm). The intensity of peaks in the aromatic region (5.0-8.7 ppm) 
has been scaled (5x) respect to the aliphatic region for a more appropiated display. 1. 
Fatty Acids (–CH3), 2. Isoleucine, 3. Leucine, 4. Valine, 5. Ethanol, 6. Lactate, 7. Alanine,  
8. DSS, 9. Acetate, 10. N-acetyled compounds, 11. Glutamate, 12. Acetone,  13. 
Pyruvate, 14. Pyroglutamic Acid, 15. Glutamine, 16. Citrate, 17.Creatine, 18. Creatinine, 
19. Lysine, 20. Dimethyl Sulfone, 21. Choline, 22. Carnitine, 23. Arginine, 24. Taurine, 
25. Methanol, 26. Glucose, 27. Glycine, 28. Glucose 6-phosphate, 29. Glycerol, 30. 
Unsaturated Fatty Acids, UFA (-CH=CH-), 31. Sucrose, 32. Urea, 33. Uridine, 34. 
Tyrosine, 35. Histidine, 36. Histamine, 37. Phenylacetate, 38. Phenylalanine, 39. 
Hypoxanthine, 40. Formic acid. 
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Table 3. Chemical shift, multiplicity and J coupling of the signals from metabolites 
identified in the tear samples. 

* multiplicity is indicated as s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet) 

    Metabolite Chemical Shift (ppm) and J coupling (Hz) * 
1 Fatty Acids (–CH3), 0.8-0.9 
2 Isoleucine 0. 93 (t, J = 7.0), 1 (d, J = 6.5), 1.31 (m) 
3 Leucine 0.97 (d), 0.98 (d), 1.72 (m) 
4 Valine 1.01 (d, J = 7.2), 1.06 (d, J = 7.2) 
5 Ethanol 1.16 (t, J = 7.08), 3.67 (q, J = 7.07) 
6 Lactate 1.35 (d, J = 7.0), 4.14 (c, J = 7.0) 
7 Alanine 1.47(d, J = 7.2), 3,77 (q, J = 7.2) 
8 DSS 0.00 (s), 1.75 (m), 2.92 (t)  
9 Acetate 1.91 (s) 

10 N-acetyled compounds 2.0-2.1 
11 Glutamate 2.11 (td, J = 6.8, 6.2), 2.15 (dt, J = 15.4, 6.8), 3.75 (t, J = 6.2)  
12 Acetone 2.22 (s) 
13 Pyruvate 2.36 (s) 
14 Pyroglutamic acid 2.39 (m), 2.50 (m), 4.17 (dd, J = 9.02, 5.83) 
15 Glutamine 2.42 (dt, J = 14.4, 6.8), 3.76 (t, J = 6.2) 
16 Citrate 2.52 (d, J = 15.4), 2.66 (d, J = 15.4) 
17 Creatine 3.02 (s), 3.92 (s) 
18 Creatinine 3.03 (s), 4.05 (s) 
19 Lysine 1.46 (m), 1.71 (m), 1.89 (m), 3.02 (t), 3.74 (t, J = 6.09) 
20 Dimethyl sulfone 3.14 (s) 
21 Choline 3.19 (s), 3.51 (dd, J = 5.81, 4.16), 4.05 (ddd) 

22 Carnitine 2.13 (s), 2.48 (dd, J = ND ), 2.61 (dd, J = ND ), 3.18 (s), 3.61 (d, J = ND ), 
3.82 (dd, J = ND ), 5.57 (q) 

23 Arginine 1.68 (m), 1.90 (m), 3.23 (t, J = 6.93), 3.76 (t, J = 6.11) 
24 Taurine 3.25 (t, J = 6.57), 3.42 (t, J = 6.62) 
25 Methanol 3.34 (s) 
26 Glucose 3.74 (d, J = 5.4), 3.81 (dt, J = 8.4,5.4), 5.22 (d, J = 1.6) 
27 Glycine 3.55 (s) 

28 Glucose 6-phosphate 3.27 (dd, J = 9.21, 7.99), 3.71 (t, J = 9.54), 4.64 (d, J = 7.99), 5.22 (d, J = 
3.75) 

29 Glycerol 3.58 (dd), 3.67 (dd, J = 11.7, 4.3) y 3.90 (m) 
30 UFA  5.25-5.35 
31 Sucrose 3.46 (t, J = 9.30), 3.55 (dd, J = 3.98, 3.89), t (3.75),  
32 Urea 5.78 (s) 
33 Uridine 3.801 (dd, J = 12.77, 4.4), 4.21 (m), 4.22 (dd),  
34 Tyrosine 6.91 (m), 7.21 (m) 

35 Histidine 3.16 (dd, J = 15.55, 7.7), 3.23 (dd, J = 16.10, 4.9), 3.98 (dd, J =7.73, 4.98), 
7.09 (d, 0.58), 7.90 (d, J = 1.13) 

36 Histamine 3.03 (m), 3.29 (t, J = 7.11), 7.14 (s), 7.99 (s)  
37 Phenylacetate 3.53 (s), 7.29 (m), 7.36 (m) 
38 Phenylalanine 7.35 (m), 7.39 (m), 7.44 (m) 
39 Hypoxanthine 8.17 (s), 8.20 (s) 
40 Formic acid 8.44 (s) 
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4.3.2 Multivariate data analysis of the tear metabolomic profiles 

In order to identify the presence of outliers or significant clustering of POAG and control 

tear samples, an unsupervised PCA analysis was performed with the relative 

concentrations of the different metabolites. Some clustering related to the presence or 

absence of the disease could already be appreciated in the undirected classification 

analysis, based on the scores of the samples in the principal components one and two 

(Figure 3a). Two samples, one POAG and one control, were located outside the 95% 

confidence level at the PCA diagram and were removed from further studies.  

 

The remaining samples (from 18 controls and 10 POAG patients) were randomly 

divided into two groups (calibration and validation), to perform a PLS-DA analysis. The 

model was generated with the calibration subset, through the iterative selection of the 

most representative variants (VIP > 1). When applied to the validation subset, the ROC 

curve of the model showed excellent classification capacity with an AUC value of 1 

(Figure 3b). This model predicted with high sensibility (100%) and specificity (83.3%) if 

the tear samples were from control or POAG (Figure 3c). Wilcoxon permutation test 

provided a p < 0.05, which confirmed the robustness of the model to discriminate 

between both groups. From the 40 identified metabolites, the multivariate model 

included 11 of them to discriminate POAG group from control group: phenylalanine, 

phenylacetate, leucine, taurine, glycine, urea, glucose, n-acetyled compounds, UFA, 

formic acid and uridine, as well as an unassigned species at 8.35 ppm (unk 8.35 ppm). 

For this final model, the most relevant metabolites with a VIP > 1 were phenylalanine, 

phenylacetate, leucine, taurine, glycine, urea and glucose (Figure 3d).       
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Figure 3. Multivariate statistical analysis. Data from control group are presented in red 
diamonds and data from POAG group  are presented in green squares in a) and c). a) 
Principal component analysis (PCA) for the whole set of samples to determine outliers 
b) ROC curve of the model c) Partial least squares-discriminant analysis. (PLS-DA) score 
plot. The classification of calibration (left) and validation (right) samples is shown d) 
Variables participating in the prediction model. The VIP values of the metabolites and 
its relative changes in control and POAG group is displayed. (red = increaed in POAG 
group vs. control group, blue = decreased in POAG group vs. control group). 
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4.3.3 Mean comparison of metabolites included in the discriminative model  

Afterwards, the relative concentration of the metabolites with discriminative capacity, 

as shown in the multivariate classification model was studied (Figure 4, Table 4). All 

metabolites, with the exception of formic acid and uridine, showed significant 

difference with an FDR < 0.05. The analysis showed a decrease in the relative 

concentration of phenylalanine, phenylacetate, leucine, n-acetyled compounds, formic 

acid, uridine and unk (8.35 ppm) in POAG tear samples compared to the tears from 

control group. On the other hand, an increase in the concentration of taurine, glycine, 

urea, glucose and UFA in tears of POAG group was observed. 

 

Table 4. Relative mean concentrations of discriminative metabolites between control 
and POAG groups, and statistical significance of normalized data. 
 
 [Metab]* 

p-value FDR**  control group POAG group 

Phenylacetate 50.6 19.6 9.12E-06 7.26E-05 

Phenylalanine 51.9 20.9 1.21E-05 7.26E-05 

Unknown (8.35 ppm) 0.8 0.2 2.05E-05 7.43E-05 

Taurine 8.5 10.9 2.48E-05 7.43E-05 

Leucine 48 25.4 3.68E-05 8.83E-05 

Glycine 13 13.5 5.82E-05  1.16E-04 

Glucose 0.3 0.9 5.52E-04  9.46E-04 

Urea 26.6 41.4 1.69E-03  2.29E-03 

N-acetyled compounds 114.2 67.6 1.72E-03 2.29E-03 

UFA (-CH=CH-) 0.3 0.5 0.024 0.028 

Formic acid 0.3 0.1 0.049 0.054 

Uridine 14.8 7.9 0.22 0.22 

* Relative mean concentration in control group and POAG group are shown x103 
**FDR: False discovery Rate 
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Figure 4.  Comparison of the mean concentration of the metabolites participating in 
the discriminative model. Box plots representing the mean concentration of 
normalized metabolites in control and POAG tears samples are shown. The yellow 
diamonds represent the mean and the horizontal line the median of each group for a 
determined feature. The normalized concentrations of each sample are shown as black 
dots. 
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Figure 5. Heat map with the concentration of the metabolites participating in the 
discriminative model. Metabolites are clustered according to its relative increase (red) 
/decrease (blue).   

4.3.4 Metabolic Pathways Analysis 

Quantitative pathway topological analysis of the metabolites included in the 

discriminative model, revealed significant alterations in phenylalanine metabolism, 

taurine and hypo-taurine metabolism, glyoxylate and dicarboxylate metabolism, 

glycine, serine and threonine metabolism, glutathione metabolism, phenylalanine, 

tyrosine and tryptophan biosynthesis, primary bile acid biosynthesis and 

glycolysis/gluconeogenesis (Figure 6, Table 5).   
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Figure 6. Significant metabolic pathways altered in POAG group compared to control 
group. Each circle represents an identified metabolic pathway. The size of the circle is 
proportional to the pathway impact value (PIV), and the color is proportional to the 
statistical significance [-log10(p)] from highest (red) to lowest (white). 
 
Table 5. Significant metabolic pathways and pathway impact values obtained from 
integrating enrichment analysis and pathway topology analysis. 

*Cmp: Compounds 
** FDR: False Discovery Rate 

Metabolic Pathway Total 
Cmp* Hits p - value FDR** Impact 

Phenylalanine metabolism 10 2 2.20E-06 3.04E-05 0.36 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 4 1 6.07E-06 3.04E-05 0.50 

Primary bile acid biosynthesis 46 2 1.50E-05 3.94E-05 0.02 
Taurine and hypotaurine metabolism 8 1 2.70E-05 5.78E-05 0.43 
Glyoxylate and dicarboxylate 
metabolism 32 2 2.24E-04 3.95E-04 0.11 

Glycine, serine and threonine 
metabolism 33 1 2.89E-04 3.95E-04 0.25 

Glutathione metabolism 28 1 2.89E-04 3.95E-04 0.09 
Glycolysis / Gluconeogenesis 26 1 4.23E-04 5.28E-04 0.00021 
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5. Discussion 
 
In this pilot study, we investigated the metabolites present in tear samples from POAG 

patients and controls by 1H-NMR spectroscopy to generate, through multivariate 

statistics, a predictive model able to identify patients at initial glaucoma stage, at risk 

of OND and vision loss. We found that the generated model showed excellent 

discriminant ability with an AUC of 1, and 100% of sensibility and 83.3% of specificity in 

the classification of POAG group and control group. From the statistical model 

generated, a list of potential biomarkers of the disease, and associated metabolic 

pathways were obtained. Moreover, changes in the concentration of biomarkers 

involved in the discriminant model were confirmed by the significant differences shown 

in the univariate analysis. A descent in the relative concentration of phenylalanine, 

phenylacetate, leucine, n-acetyled compounds, formic acid, uridine and unk (8.35 

ppm), and an increment in the concentration of taurine, glycine, urea, glucose and UFA 

in tears was found in the POAG group as compared to the control group. 

 

The discovery of molecular biomarkers in tears could reveal essential information 

regarding POAG pathophysiology, as well as help to manage medical-laser-surgical 

hypotensive therapy.2–4,7,8,21,23,28 In this context, early diagnosis and treatment are 

pivotal to avoid glaucoma progression, optic atrophy, and blindness.28,33 It is essential 

to consider that: i) a significant number of patients present at first medical appointment 

with elevated IOP and moderate-to-severe VF loss, due to the silent period of 

undetected OHT, and ii) some glaucoma patients suffer higher rates of progression than 

others. Therefore, some findings have been reached in the present work that could be 

transferred to ophthalmic practice, which are discussed below. 

 

First, tear samples were used for the metabolomic study in glaucoma, in agreement 

with Agnifili et al.34 and Wu et al.35 and in contrast with other authors usually using 

aqueous humor or plasma samples for this purpose.25,26,36–38 As widely known, the tear 
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film is located on the outermost part of the ocular surface, in direct contact with the 

environment. Under normal conditions, tear volumes range from 4 to 12 μL per eye.39 

The tear film is a complex and interesting biological fluid that contains water and a wide 

variety of electrolytes, lipids, proteins, glycoproteins and small molecules from 

different sources.39–41 After a period of controversy, it has been established that 

metabolites associated with glaucoma present in the tear film mainly come from the 

aqueous humor, through the uveoscleral outflow pathway, after precise scleral 

percolation.39–41 Trying to counteract the small tear volumes that can be collected for 

analytical issues, a technique for obtaining reflex tears by gentle rubbing of the inferior 

lacrimal meniscus and palpebral lateral canthus, has been used here, to relatively easy 

obtaining 20-30 �L of tears from both eyes by capillarity, as described elsewhere.20–24 

 

Next, we analysed the metabolites in tears from POAG patients at initial stage of 

disease, according to Hodapp et al.28 but at risk of glaucoma OND and blindness. 

Epidemiological and experimental studies have established that the early detection of 

OHT, and the prompt IOP reduction significantly diminish the risk of glaucoma 

progression.2–5,33 This stage is very important, because the elevated IOP leads to 

progressive damage and death of the RGCs and optic fibre loss, glaucoma hallmarks 

that manifests themselves in the structural/functional ophthalmological examination 

of these patients. However, there are no specific and complete standard references for 

accurately establishing the early glaucoma diagnosis.2–5,28,33 Bearing this in mind, the 

POAG group was accurately selected for the main purpose of this study, that was to 

characterize the metabolomic fingerprint in tears of POAG patients at initial stage of 

disease in order to identify potential biomarkers for better eye and vision care.   

Furthermore, 1H-NMR spectroscopy was used to generate, through multivariate 

statistics, a predictive model able to identify POAG patients at initial glaucoma stage. 

Biomedical and biotechnological advances in metabolomics have provided information 

on a considerable number of metabolites to better understand the metabolic changes 

that occur in glaucoma. Previous reports on the identification of metabolomic 
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biomarkers of glaucoma by MS have been performed using blood and aqueous humor 

samples.26,4 
1–46 However, other researchers used 1H-NMR spectroscopy, as in this study, to perform 

glaucoma metabolomics, either using blood or aqueous humor samples, with optimum 

results.33,47 

Data are quite different among the studies. In spite of describing the biological sample 

and the analytical platform, the statistical processing as well as the changes of the 

statistically significant metabolites identified in a differential profile, important 

variations arise that make it difficult to identify potential biomarkers of glaucoma. 

Leruez et al.37 described amino acids, carbohydrates and polyamine families, among 

others, altered in POAG samples and associated to mitochondrial dysfunction, 

senescence and polyamines deficiency. However, they did not explore the diagnosis 

potential of the metabolites identified. Myer et al.36 pointed out disturbances in the 

concentration of several amino acids, such as arginine, cysteine, threonine and lysine, 

and carbohydrates in the aqueous humor of POAG patients compared to the CG, and 

generated cross-validated PLS-DA models with Q2 values of 0.15. Better significance 

for the classification was reached by Buisset et al.37 who obtained a model able to 

classify samples from the POAG patients with an AUC of 0.89.- Moreover they pointed 

out to taurine and spermine deficiency in aqueous humor from POAG patients.  

 

From the statistical model generated in the present work, a list of potential biomarkers 

of the disease, and associated metabolic pathways were obtained. An increase in the 

concentration of taurine, glycine, urea, glucose and UFA and a decrease in the 

concentration of phenylalanine, phenylacetate, leucine, n-acetyled compounds, formic 

acid, uridine and unk (8.35 ppm) was observed in tears from the POAG group as 

compared to the control group. Moreover, according to these results, the 

phenylalanine metabolism and phenylaniline, tyrosine and tryptophan biosynthesis 

pathways were altered in POAG tears with a significant decrease in the concentration 

of phenylalanine and phenylacetate. Phenylalanine had already been pointed as a 
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potential biomarker of glaucoma in previous metabolomic studies, both in aqueous 

humor, and in tears,41,43 in which the authors observed a decrease in the concentration 

of phenylalanine in POAG patients in a similar manner to us. Previous studies have as 

well reported mutations in the synthesis pathway of phenylalanine related to POAG 

development.48 The significant change in the glycine, leucine and serine pathway, with 

the decrease in the relative concentration of leucine 49 and the relative increase in the 

concentration of the amino acid glycine 41,43 were also previously reported in aqueous 

humor. Furthermore, the increase in glucose levels observed in tears from the POAG 

patients presented herein is consistent with the pathological processes associated to 

glaucoma, as it has been reported that patients with POAG present glucose 

hypometabolism. 50 Also, the increase in serum glucose levels has been associated with 

elevated IOP,51 which is strongly associated with glaucoma. An increase in the relative 

concentration of taurine has been detected in the present work, while previous reports 

noticed a decreased concentration in aqueous humor 37 and tears.41 Taurine has a 

neuroprotective effect against inflammation, oxidative stress, and osmotic stress. 

Nevertheless, taurine could as well be produced as a counteracting mechanism against 

oxidative stress. In fact, in agreement with our current results, taurine was observed to 

increase in other previous studies conducted with aqueous humor of POAG patients,47 

and in a canine glaucoma model.52 

 

Tear metabolomic signature of POAG patients by 1H-NMR spectroscopy, has been 

described in this work. The small quantity of sample available (in the order of 20 µL) 

and the inherent low concentration of metabolites in tear samples have been 

overcomed by using a high field NMR spectrometer equipped with a cryoprobe. This 

experimental setting has provided a non-invasive way to provide samples and data 

related to ocular disease. A statistical model for the diagnosis of POAG has been 

developed using samples obtained in a non-invasive way. Moreover, a group of 

potential biomarkers of the disease has been obtained from the statistic model. Future 

improving of this study includes the consideration of a higher number of samples, and 
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the use of samples from patients naïve to treatment. Despite the analysis of the topical 

drugs assessed that the classification of the samples and the potential biomarkers 

obtained in this study were not directly derived from the treatment, the changes 

observed in the POAG samples spectra might be produced by the metabolism of the 

therapy. Furthermore, unlike blood derivatives that circulate through the general 

bloodstream, tears that come into contact with the eye can serve as a valuable source 

of biomarkers for glaucoma and can be collected in a non-invasive manner in contrast 

to aqueous humor. Previous works have studied the metabolic profile of POAG in tears 

by different methods of MS.35,41 However, unlike NMR,12–14,32 MS platform requires 

more elaborated preparation procedures for the analysis of each sample.11,12,15,32 

 

Overall, data presented herein provided a model with a very good performance for 

disease prediction, from samples that have been obtained both by a non-invasive 

collecting technique (tears) and through an analytical method that requires a simplest 

sample preparation procedure (NMR) in contrast with previous reports that use 

aqueous humor and MS. Moreover, these data were also used to generate and validate 

the model with a spare group of samples. In conclusion, a model able to classify with 

great values of specificity and sensitivity POAG and control groups in an independent 

set of samples has been here obtained. Phenylalanine, phenylacetate, leucine, formic 

acid, n-acetyl compounds, uridine, taurine, glycine, urea, glucose, UFA and an unknown 

metabolite (8.35 ppm) could be considered potential biomarkers of patients at the 

initial glaucoma stage, that can be obtained in a non-invasive, relatively affordable way 

to improve eye and vision care. In this sense, it seems to us that pathological changes 

occurring in the eyes can be reflected in the whole ocular constituents, including the 

ocular surface, either via local and systemic circulation, and/or via simple diffusion 

through the cornea and sclera. Nonetheless, by analysing tear film samples for target 

metabolites, we can design a promising window for optimizing POAG diagnosis and 

preventing blindness. This research could be a starting point for developing a non-

invasive diagnostic system for POAG. In fact, we manage for the first time a new 
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approach on the identification of POAG-related metabolites in tears, to improve the 

personalized diagnosis of the disease, that allows to early identify patients at highest 

risk of POAG or POAG progression. Future directions necessarily include the increment 

of the number of samples to confirm the results here shown. 
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Figure S1. Flowchart of the participants recruitment and the final sample size of the 
pilot study. 
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Figure S2. Aliphatic region of the spectra from bimatoprost and two brinzolamide 
comertial drugs, one POAG and one control sample. NMR of the topical drugs 
commonly used for the treatment of ocular hypertension in POAG patients (yellow, 
purple and green) compared to a POAG (red) and a control (blue) tears samples. The 
spectra where acquiered to ensure that the statistical differences observed between 
control and POAG where not directly produced by the clinical treatment.
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1. Abstract 
 
Carotid artery stenosis is mainly produced due to the progressive accumulation of 

atherosclerotic plaque in the vascular wall. The atherosclerotic plaque is characterized 

by the accumulation of lipids, low density proteins, expression of chemokines and 

adhesion molecules, and migration of monocytes and lymphocytes into the plaque. Its 

rupture can produce stroke, but embolic propensity depends principally on the 

composition and vulnerability of plaque rather than the severity of stenosis. It is 

important, then, to ascertain which patients with carotid arterial stenosis have a 

greater risk of developing neurological symptomatology. Here, we present a 

metabolomic study by using nuclear magnetic resonance (NMR) spectroscopy in 

atheroma plaque and serum samples from patients with recently symptomatic and 

asymptomatic carotid stenosis to search for metabolites that could be used as 

biomarkers associated with plaque vulnerability and subsequent risk of rupture. Thirty-

eight atheromatous plaque samples (24 asymptomatic patients and 14 symptomatic) 

and 70 serum samples (43 asymptomatic and 27 symptomatic) were studied by NMR 

spectroscopy. The data were analysed using multivariate statistics (PLS-DA) to 

determine a model to discriminate between symptomatic and asymptomatic samples 

(atheroma plaques and sera). The calculated PLS-DA models showed a 100% sensitivity 

and a 96.6% specificity for the cross validation to discriminate between symptomatic 

and asymptomatic plaques, and 88,37% sensitivity and 77,78% specificity when serum 

samples were analysed. According to the results of univariate and multivariate analysis, 

histamine, phenylalanine, and tyrosine are postulated as potential biomarkers of 

plaque rupture in serum, as well as glutamate, which is found in higher concentrations 

in symptomatic plaques. 
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2. Introduction  
 
Stroke and myocardial infarction are still among the leading causes of death 

worldwide,1 being the development of atherosclerosis (AE) the underlying cause in 

most cases.2 Based on its histological appearance and physiopathology, AE can be 

considered a chronic inflammatory disease of the circulatory system.3 It usually begins 

with impairment of the molecular activity of the intima layer or endothelial 

dysfunction, allowing the entry of macromolecules such as low-density lipoproteins 

(LDL) into the subendothelial layer, particularly in turbulent blood flow areas. This leads 

to an inflammatory reaction, with LDL becoming oxidized (ox-LDL). These particles 

develop chemoattraction and recruitment of monocytes and lymphocytes from the 

bloodstream coming inside the vessel wall. Ox-LDL particles are subsequently 

phagocyted and internalized by macrophages and transformed into foam cells, which 

are highly stimulated to produce inflammatory cytokines. Ultimately, this inflammatory 

environment, expression of cytokines, and growth factors result in vascular smooth 

muscle cell (VSMC) migration from the media towards the intima, changing their 

phenotype and producing extracellular matrix proteins, including collagen, as well as 

new waves of cytokines and growing factors. This process leads to the formation of a 

fibrous cap surrounding a lipid core of merging LDL particles released from apoptotic 

foam cells and the constitution of the atheroma plaque. The evolution of these plaques 

can lead to either a stable or unstable situation, primarily depending on the integrity 

and thickness of the fibrous cap.4 

The most clinically significant consequence of atherosclerosis plaques is the 

impairment of blood flow to the downstream tissues and organs, mainly due to the 

diameter reduction or stenosis of the vessel. Clot formation at this point may block 

blood flow, leading to a stroke if the occlusion is produced in the carotid artery or to 

myocardial infarction if it is produced in the coronary artery. The formation of 

thrombus is produced by the rupture or erosion of the plaque and the release of pro-

thrombotic factors into the bloodstream. Previous to the rupture of the plaque, the 
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fibrous cap may become thin and unstable, which is known as vulnerable plaque.5 The 

reasons why the plaque can become vulnerable, and rupture remain unclear. 

In this context, the identification of biomarkers of plaque vulnerability would be of 

utmost clinical value as it could help to determine for which patients an intervention 

would be required to prevent clinical symptomatology.  

Metabolomics has been explored as a tool for the search of biomarkers in different 

clinical scenarios such as cancer, inborn errors of metabolism, diabetes, infection, 

glaucoma, or Alzheimer's disease, among many others.6–12 Actually, metabolomics is 

the omic that encloses more information to determine the cause of the pathologic 

problem. That is because a concrete metabolome is produced due to the combination 

of genetic and environmental factors, among others, so it provides broader information 

about the molecular features of the phenotype than any other omics science.13 There 

are two main techniques to ascertain the metabolome: mass spectrometry (MS) and 

nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy is a robust and 

reproducible technique that allows the determination of the metabolic composition of 

any sample (blood derivatives, cerebrospinal fluid, culture cells and media, urine, tears, 

tissue, etc.) without destroying it. In addition, the acquisition of NMR spectra requires 

simple preparation procedures and only a small number of samples.14 Furthermore, 

NMR spectroscopy allows the study of intact tissue samples through high-resolution 

magic angle spinning (HRMAS) without the need for extracts.15 This opens the 

possibility to study samples of lower size/weight15,16 and also enables the performance 

of quantitative studies.17  

In the context of atherosclerosis diagnosis and research, previous metabolomic studies 

for the identification of biomarkers have been performed using NMR spectroscopy. For 

instance, MS. P. Wurtz et al.18 performed an NMR spectroscopy study for the 

identification of subclinical biomarkers of atherosclerosis in plasma and found 

docosahexaenoic acid, glutamine, and tyrosine as potential biomarkers of 

atherosclerosis progression. P.A. Vorkas et al.19 studied the metabolome composition 
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of atheroma plaque by ultra-high performance liquid chromatography mass 

spectrometry (UHPLC–MS), and they found changes in the levels of acylcarnitine and 

phosphatidylethanolamine-ceramides. L. Tomas et al.20  studied by MS the presence of 

biomarkers of vulnerability in carotid plaque samples. These authors found that the 

metabolite profile of the carotid plaques correlated with the histological analysis of the 

plaques in the assessment of their stability. In high-risk plaques, there was increased 

glycolysis and amino acid metabolism and decreased fatty acid oxidation. However, 

previous studies do not offer a leap in the understanding of the causes leading to the 

development of a high-risk plaque, and a set of biomarkers that could be explored as a 

prognostic tool for plaque instability associated with neurological symptomatology has 

not yet been identified. 

Aimed for this context, we have performed a metabolomic analysis of atheroma plaque 

and serum from patients with symptomatic and asymptomatic carotid stenosis, using 

NMR spectroscopy for the search of new molecules and circulating markers related to 

plaque vulnerability and risk of stroke in patients with carotid stenosis. These 

metabolites could be used as biomarkers to determine plaque vulnerability and risk of 

rupture. 

 

3. Materials and Methods 

3.1 Patients selection  

This is a case-control study, where subjects were classified as recently symptomatic 

patients (case) and asymptomatic patients (control). Symptomatic patients were 

considered when transient ischaemic attack, amaurosis fugax, or stroke with ischaemic 

origin occurred at most 3 weeks before surgery. Asymptomatic patients were subjects 

with severe carotid stenosis (>70%) without neurological symptomatology submitted 

for carotid endarterectomy on the basis of international guidelines. Inclusion criteria 
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were age between 18-90 and absence of malignancies in an advanced state, and human 

immunodeficient virus. Patients were recruited by the Angiology and Vascular Surgery 

Service from the Hospital Universitario y Politécnico La Fe. The present study was 

performed according to the declaration of Helsinki and was approved by the ethical 

committee of the Medical Research Institute Hospital La Fe (references 2019-094-1 and 

2020-189-1_PI20/01171). Samples and data from subjects included in this study were 

managed and provided by Biobank La Fe (PT17/0015/0043) after approval by the 

scientific and ethical committees. All participants agreed to donate samples to biobank 

and gave written informed consent.   

 

3.2 Sample collection  

Blood samples were obtained during surgery in a clot activator tube, centrifuged at 

1811 g for 30 min at 4 oC within 3h after collection to separate the serum fraction, which 

was distributed in 300-500µl aliquots and stored at -80 oC until used. 

Atheromatous plaque samples were obtained during endarterectomy procedure 

according to standardized surgical protocols in the Angiology and Vascular surgery 

service from Hospital Universitario y Politécnico La Fe. Samples were rinsed with 

phosphate buffered saline (PBS), snap frozen in liquid nitrogen, and stored at -80 oC 

until use. A fragment of 0.3 cm from the most occluded zone was used for RMN 

analysis.  

 

3.3 Sample preparation 

The 38 collected atherosclerotic plaques (14 from symptomatic patients and 24 from 

asymptomatic ones) were analysed by HRMAS spectroscopy. For this purpose, tissue 

samples (10 ± 5 mg) were introduced in a 4 mm disposable micro-rotor with 10 �l of 
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D2O, with sodium 3-(trimethylsilyl)-1-propanesulfonic acid d6 sodium salt (DSS-d6) 5 

mM as an internal standard for chemical shift referencing. 

In a parallel substudy, 70 serum samples (35 of them paired with the atheroma plaque 

samples studied by HRMAS) were analysed by NMR spectroscopy. The samples were 

prepared following the protocol described by Beckonert et al.21 Briefly, 250 µL of the 

serum sample were introduced in 5 mm NMR tubes and 250 µL of phosphate buffer 

was added. Phosphate buffer contained deuterated water (20% v/v) and DSS 1 mM as 

an internal standard for chemical shift referencing.   

 

3.4 NMR spectra acquisition and processing 

The atheroma plaque experiments were carried out in a Bruker Avance II 500 MHz 

equipped with an HRMAS probe (Bruker BioSpin). Noesy sequence was used for the 

acquisition of the 1D 1H-NMR spectra of the plaques. 256 scans and a spectral width of 

14 ppm were acquired. NMR spectra from the serum samples were acquired in the 

same 500 MHz spectrometer equipped with a TXI probe. Noesy experiments were 

acquired, with 128 repetitions and a spectral width of 30 ppm. In both types of samples, 

2D homo (1H-1H) and heteronuclear (1H-13C) spectra were acquired to guarantee the 

assignment of the metabolites in the spectra. The temperature of the probes for both 

tissues and sera was set to 278 K (5 oC). 

Once obtained, the 1D spectra were transformed and post-processed with the TopSpin 

4.0.7 software (Bruker BioSpin Corporation). The phase and baseline of the spectra 

were corrected, and the chemical shift was calibrated according to the DSS CH3 signal 

at 0.0 ppm. The Human Metabolome Database (HMDB),22 Chenomx NMR Profiler,23 and 

previously published bibliography15 were used for metabolite identification. 

Meaningful signals underwent deconvolution using AMIX 4.0.2 software (Bruker 

BioSpin Corporation), excluding the water suppression signal (4.5-5.0 ppm) and the 



Metabolomic Study for the Identification of Symptomatic Carotid Plaque Biomarkers 
 

185 
 

signals at ppm lower than 0.5 ppm and higher than 8.5 ppm. Then, a mixed 

Gaussian/Lorentzian variable function was applied for the deconvolution of these 

signals. Later on, integrals were obtained for all spectra in atheroma plaque tissue and 

serum samples. For serum samples, relative quantification was based on the 

integration of the signal divided by the sum of the integrals of all the signals in the 

spectrum. Normalization was done for the atheroma plaque samples according to their 

weight. 

 

3.5 Multivariate statistical analysis 

Multivariate statistical analysis was performed using the PLS_Toolbox Solo 8.9 software 

(Eigenvector Research, Inc., Manson, WA, USA). The same procedures were followed 

with the data from the tissue and from the serum samples.  

Before the model calculation, a variable reduction was performed in order to simplify 

the data set. The variables included in the model were selected using Genetic 

Algorithms (GA). GA is a common machine learning technique based on the process of 

natural selection that has been proven to be helpful in feature selection processes.24 

Fifty maximum generations, PLS regression with 10 latent variables, and random cross-

validation (CV) with autoscaling and normalization by sum of the data were applied for 

variable selection.    

After variable selection, partial least squares-discriminant analysis (PLS-DA) was used 

to generate a predictive model with the obtained variables. CV (Venetian blinds) was 

used to select the finest number of latent variables for the model. In order to determine 

the goodness of the model to discriminate between different sets of samples, a receiver 

operating characteristic (ROC) was generated, and the area under the curve (AUC), 

sensitivity and specificity were calculated. The robustness and over-fitting of the model 

were tested through permutation tests (100 iterations). 
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3.6 Univariate statistical analysis 

Univariate statistical analysis was performed on the data from atheroma plaque and 

serum. The Shapiro-Wilks test was applied to check the normality of the variables 

included in the study. Subsequently, t-test or U de Mann Whitney test were used, when 

appropriate, for the comparison of the means of the relative concentrations of the 

analysed metabolites. IBM SPSS Statistics 25 version was used for univariate statistics. 

 

3.7 Metabolite set enrichment analysis 

To investigate which metabolic pathways could be involved in plaque vulnerability, 

Metaboanalyst25 was used. HMDB ID of each metabolite was used to include them in 

the enrichment analysis. The lipid motifs and unknown metabolites were excluded 

from the analysis. The metabolite set library chosen for the analysis was the one based 

on the KEGG human metabolic pathways. Pathways with a p.value < 0.1 and impact > 

0 were considered to be significant. 

 

4. Results and Discussion 

 
Plaques from symptomatic and asymptomatic patients, as previously defined, have 

been analysed by NMR spectroscopy to identify differences in the metabolome that 

might be associated with plaque vulnerability. Serum samples obtained from patients 

with and without clinical symptomatology were also analysed. A total of 70 serum 

samples and 38 atheroma plaque samples were included, 35 of which were paired 
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plaque and serum samples from the same patient. Both groups were balanced in terms 

of age, sex, and main cardiovascular risk factors (Table 1). 

 

 

Table 1. Clinical data of patients participating in the study. 

 Plaque Serum 

 Symptomatic 
(n=14) 

Asymptomatic 
(n=24) 

Symptomatic 
(n=27) 

Asymptomatic 
(n=43) 

Age, Mean (range) 70.4 (60-83) 69.4 (50-81) 68.6 (44-83) 68.8 (50-81) 
Sex, male/female 13/1 21/3 24/3 38/5 
Hypertension (%) 92.85% 70.83% 80.76% 76.74% 
Diabetes Mellitus (%) 50% 50% 50% 39.53% 
Dyslipidemia (%) 64.28% 62.5% 61.54% 69.76% 

 

4.1 Metabolic profiling of atherosclerotic plaque tissues and serum 

samples 

The signals in the spectra were assigned to the corresponding metabolites for atheroma 

plaques (Figure 1a) and serum samples (Figure 1b). In the tissue spectra, due to the 

importance of the broad and intense signals coming from molecules such as lipids or 

lipoproteins, the identification of smaller signals produced by metabolites was 

challenging. Nevertheless, we were able to identify a total of 25 metabolites; 6 of them 

were amino acids, and 5 were fatty acids, among others (Table 2). In serum samples, a 

total of 26 metabolites were identified (Table 2), 10 of them were amino acids, and 6 

were fatty acids. Remarkably, 17 of the 34 metabolites identified were found both in 

tissue and serum samples.   
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Figure 1. Annotations of the metabolites present in the samples. a) Representative 
spectrum of tissue samples from atherosclerotic plaques. b) Representative spectrum 
of serum samples from patients with atherosclerosis. 1. Fatty Acids (-CH2-CH3), 2. 
Isoleucine, 3. Leucine, 4. Valine, 5. Ethanol, 6. -(CH2)n-, 7.Lactate, 8. Threonine, 9. 
Alanine, 10. Acetate, 11. N-acetylglucosamine, 12. Glutamate, 13. Acetoacetate, 14. 
Pyruvate, 15. Glutamine, 16. Citrate, 17. -CH=CH-CH2-CH=CH-, 18. Lysine, 19. Creatine, 
20. Choline, 21. Acetylcholine, 22. Glucose-6-phosphate, 23. Proline, 24. Myo-inositol, 
25. Glucose, 26. Glycerol, 27. Creatinine, 28. Triacylglycerol (-CH2-OCO-), 29. -CH=CH-, 
30. Glucose-1-phosphate, 31. Uracil, 32. Tyrosine, 33. Phenylalanine, 34. Histamine, 35. 
Hypoxanthine, 36. Inosine. 

a) 

b) 
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4.2 Identification of potential biomarkers of vulnerability in plaque 

and serum  

Partial Least Square discriminant analysis (PLS-DA) was performed in both serum and 

tissue data. Cross-validated models were generated to discriminate between plaques 

from symptomatic and asymptomatic patients. 

For the atheromatous plaque tissue analysis, a total of 120 signals (variables) were 

integrated from the NMR spectra. GA was applied to the data matrix, and the best 

model was obtained with a total of 23 variables. The resultant PLS-DA, using 3 principal 

components, was able to correctly classify stable and vulnerable plaques with 100% 

sensitivity and 91.6% specificity. The ROC curve rendered an AUC value of 0.985, 

showing the excellent classification capacity of the model (Figure 2a). The model was 

statistically significant (p < 0.05) for all the permutation tests. The metabolites included 

in the model were threonine, alanine, glutamate, citrate, myo-inositol, glucose, 

creatine, lactate, uracil, hypoxanthine, inosine, lipid fragments –(CH2)n-, -CH=CH- and -

CH=CH-CH2-CH=CH-, and two unknown compounds (Table 3). All the metabolites in 

vulnerable plaques were increased. Moreover, myo-inositol, glutamate, and the -

CH=CH- lipid motif showed significant differences between plaques from symptomatic 

and asymptomatic patients according to the univariate analysis (Table 3).  
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Table 2. Annotation of the metabolites present in serum and plaque samples. The 
sample type, the group responsible for the NMR signal, chemical shift, multiplicity, and 
J coupling are displayed. To simplify, only one signal per metabolite is shown in the 
table.  

* The multiplicity of the signals is indicated as s: singlet; d: doublet, t: triplet, m: 
multiplet, dd: doublet of doublets 

 

Number 

assignment 
Metabolite Sample type Group 

Chemical 

Shift 

(ppm) 

Multiplicity and 

J coupling (Hz) * 

1 Fatty Acids (-CH2-CH3) Plaque/Serum CH3 0.83 - 
2 Isoleucine Serum �CH3 0.93 t, J = 7.41 
3 Leucine Serum � CH3 0.95 t, J = 5.89 
4 Valine Plaque/Serum gCH3 0.98 d, J = 7.2 
5 Ethanol Plaque/Serum CH2 1.16 t, J = 7.08 
6 -(CH2)n- Plaque/Serum CH2 1.26 - 
7 Lactate Plaque/Serum CH3 1.32 d, J = 7.00 
8 Threonine Serum gCH3 1.33 d, J =6.58 
9 Alanine Plaque/Serum bCH3 1.48 d, J = 7.40 
10 Acetate Serum CH3 1.91 s 
11 N-acetylglucosamine Plaque/Serum CH3 2.03 s 
12 Glutamate Plaque bCH2 2.13 m 
13 Acetoacetate Serum CH3 2.27 s 
14 Pyruvate Plaque/Serum CH3 2.36 s 
15 Glutamine Serum gCH2 2.46 dt, J = 14.4, 6.8 
16 Citrate Plaque/Serum CH2 2.52 d, J = 15.80 
17 -CH=CH-CH2-CH=CH- Plaque/Serum CH2 2.79 - 
18 Lysine Plaque/Serum CH2 3.09 t, J = 6.50 
19 Creatine Plaque/Serum CH3 3.021 s 
20 Choline Plaque/Serum -N+-(CH3)3 3.19 s 
21 Acetylcholine Plaque/Serum -N+-(CH3)3 3.21 s 
22 Glucose-6-phosphate Plaque CH2 3.25 dd, J = 9.21, 7.99 
23 Proline Plaque/Serum  CH2 3.33 m 
24 Myo-inositol Plaque/Serum C1HC3H 3.59 dd, J = 3.4, 2.5 
25 Glucose Plaque/Serum C6H u 3.60 m 
26 Glycerol Serum 1,3 CH2OH 3.65 m 
27 Creatinine Serum CH2 4.09 s 
28 Tryacilglicerols Plaque -CH2-OCO- 4.30 - 
29 -CH=CH- Plaque/Serum CH 5.28 - 
30 Glucose-1-phosphate Plaque C1H 5.42 s 
31 Uracil Plaque C6H 5.84 - 
32 Tyrosine Serum CH 2,6 7.19 m 
33 Phenylalanine Serum CH 2,6 7.27 m 
34 Histamine Serum CH 7.79 s 
35 Hypoxanthine Plaque CH 8.17 s 
36 Inosine Plaque CH 8.22 s 
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Table 3. Metabolites participating in the discriminative models of asymptomatic vs. 
symptomatic plaques and sera.  
 

 Metabolites VIPS* p-value Trend 
Plaque Myo-inositol 1.989 0.011 ↑** 

Glutamate 1.768 0.006 ↑ 
-CH=CH-           1.511 0.055 ↑ 
Glucose 1.063 0.224 ↑ 
Threonine 0.988 0.341 ↑ 
Hypoxanthine 0.947 0.715 ↑ 
-(CH2)n- 0.861 0.286 ↑ 
-CH=CH-CH2-CH=CH- 0.828 0.686 ↑ 
Lactate 0.747 0.274 ↑ 

 Uracil 0.737 0.304 ↑ 
 Citrate 0.675 0.171 ↑ 
 2-aminobutyrate 0.558 0.107 ↑ 
 Glucose-1-phosphate 0.533 0.135 ↑ 
 Inosine 0.526 0.421 ↑ 
 Creatine 0.517 0.201 ↑ 
Serum Threonine 1.887 0.000 ↑ 
 -CH=CH- 1.431 0.015 ↑ 
 Histamine 1.179 0.056 ↑ 
 Acetoacetate 0.973 0.606 ↓ 
 -CH2-CH3- 0.868 0.277 ↓ 
 Methanol 0.829 0.540 ↓ 
 Isoleucine 0.701 0.198 ↓ 
 Valine 0.700 0.672 ↑ 
 Lysine 0.642 0.876 ↓ 
 Alanine 0.511 0.258 ↑ 
 Lactate 0.493 0.613 ↓ 

*VIP = Variable importance in projection, represents the importance of the metabolite 
in the discriminative capacity of the model 
** The arrow direction indicates the change in concentration of symptomatic 
compared to asymptomatic patients. Metabolites with significant differences are 
shown in bold 
 

Previous studies have shown that an increase in plasma glutamate is related to a higher 

risk of cardiovascular diseases (CVD). Plasma glutamate levels were associated with an 

increased risk of stroke in a study performed in 980 participants under follow up and 

found that baseline glutamate was associated with 43% and 81% increased risk of CVD 

and stroke, respectively.26 These results were validated by a different study where type 

2 diabetes mellitus patients showed a positive correlation between glutamate plasma 

levels and the risk of stroke.27 
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In the analysis of serum samples, a total of 130 signals from the spectra were 

integrated. Representative signals from each metabolite were included as variables for 

the PLS-DA model, with a total of 32 variables. After applying GA, 12 variables were 

selected for the discriminative model. The final model was able to classify the serum of 

asymptomatic from symptomatic patients with an 88.37% sensitivity and a 77.78% 

specificity. The AUC value was 0.89 (Figure 2b). The discriminant metabolites were 

threonine, histamine, acetoacetate, methanol, isoleucine, valine, lysine, alanine, 

lactate, and the lipid motifs -CH2-CH3- and -CH=CH-. The model was also significant for 

all the permutation tests. Moreover, according to the univariate analysis, threonine, -

CH=CH- and histamine showed a notable difference, with an increase in the serum of 

symptomatic patients for the three metabolites (Table 3).   

As it has been observed in this study, an increase in the concentration of histamine has 

previously been related to the occurrence of cardiovascular events.28 Blood histamine 

levels are increased in the inflammatory process produced in unstable plaques.29 

Histamine is an inflammatory mediator produced from L-histidine released from mast 

cells. The accumulation of activated mast cells and histamine in the atherosclerotic 

lesion has been associated with the vulnerability of the plaque.30 Blood vessels 

dilatation increased vascular permeability, and the migration of leukocytes into the 

atheroma plaque are among the effects of high levels of histamine in blood. 

Furthermore, histamine can trigger the production of the glycoprotein tissue factor (TF) 

by endothelial cells and smooth muscle cells.31 TF, usually encrypted in the endothelial 

cells, is a key protein that triggers coagulation through the extrinsic pathway once 

exposed to the blood flow, leading to thrombin formation,32 and contributes to the 

development of thrombosis within the atherosclerotic arteries.31  

 

 

 



Metabolomic Study for the Identification of Symptomatic Carotid Plaque Biomarkers 
 

193 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. PLS-DA model and ROC curve with AUC values obtained based on the 
variables selected by the application of genetic algorithms. a) PLS-DA samples 
classification of the plaque samples. b) ROC curve for the discriminative model of 
plaque samples. Calibration and CV results are shown. An AUC value of 0.98 for the CV 
is reached. c) PLS-DA samples classification of the serum samples. d) ROC curve of the 
classification of the estimated (blue) and calibrated (green) of the serum samples. An 
AUC value of 0.89 is obtained. Asymptomatic samples are represented by red diamonds 
and symptomatic samples by green squares.  
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4.3 Metabolic pathways involved in plaque vulnerability  

Metaboanalyst 4.0 was used to generate a metabolite set enrichment analysis for the 

identification of biological patterns associated with the metabolomic data obtained 

from the serum and plaque samples. First, the metabolites are individually analyzed to 

determine if they are significant, and later, the existence of meaningful patterns is 

determined. It can detect subtle but consistent differences among related compounds 

that conventional methods may not detect. We defined as notable differences those 

with a p.value < 0.1 and an impact > 0.  

In atheroma plaque samples, nine metabolic pathways were potentially altered 

between symptomatic and asymptomatic patients. Six pathways were statistically 

significant with a p.value < 0.05: glyoxylate and dicarboxylate metabolism, D-glutamine 

and D-glutamate metabolism, arginine biosynthesis, arginine, and proline metabolism, 

alanine, aspartate and glutamate metabolism, starch and sucrose metabolism, and 

three pathways notably altered (p. value < 0.1: citrate cycle (TCA cycle), valine, leucine, 

and isoleucine biosynthesis, and inositol phosphate metabolism (Figure 3a).  

Our results are consistent with the fact that both groups are composed of individuals 

with atherosclerosis, which may lead to discrete changes in the metabolic profiles. The 

p.value was set to 0.1 due to the limited number of samples but also because subtle 

differences were expected to be observed as it is not anticipated that the metabolism 

of cells in vulnerable and stable plaques will produce substantial changes, and even 

smaller changes are expected to be reflected in the bloodstream. 

As detailed in table 4, glutamate is a common metabolite in the pathways. As it has 

been previously referred, increased glutamate levels are positively correlated with 

cardiovascular risk. Also, circulating glutamate has been associated with subclinical 

atherosclerosis independently of other risk factors.33 In fact, glutamate-mediated 

excitotoxicity has been previously proposed as a potential therapeutic target for 
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ischemic stroke.34 Besides, citrate and citric acid metabolism has also previously been 

related to increased risk in different CVD.35,36  

 

Figure 3. Metabolic Pathways related to plaque vulnerability based on a) the 
metabolites found in the plaque. b) the metabolites found in the serum. 

 

In serum samples, there were four pathways notably altered between symptomatic and 

asymptomatic patients: histidine metabolism, glycerolipids metabolism, phenylalanine 

metabolism, and phenylalanine, tyrosine, and tryptophan metabolism (Figure 3b). The 

alteration in the metabolism of amino acids has previously been reported to be 

involved in the development of atherosclerosis.37 More specifically, the levels of 

phenylalanine and tyrosine have been associated with an increased risk of coronary 

artery disease and stroke.38 Accordingly, differences in metabolic pathways where 

phenylalanine and tyrosine are participating occur between symptomatic and 

asymptomatic patients (Table 5). The relevance of histamine and histidine metabolism 

has already been discussed.   

 

a) b) 
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Table 4. Metabolic pathways involved in plaque vulnerability, based on the differences 
in the metabolites found in the plaques. 
 

Metabolic pathway Metabolites P-value Impact* 
Glyoxylate and dicarboxylate 

metabolism L-Glutamate, Citrate 0.0014 0.03 

D-Glutamine and D-glutamate 
metabolism L-Glutamate 0.0015 0.50 

Arginine biosynthesis L-Glutamate 0.0015 0.12 
Glutathione metabolism L-Glutamate 0.0015 0.02 

Arginine and proline metabolism Creatine, L-Glutamate 0.002 0.10 
Alanine, aspartate and glutamate 

metabolism L-Alanine, L-Glutamate, Citrate 0.004 0.20 

Starch and sucrose metabolism Glucose-1-P, Glucose-6-P 0.036 0.27 
Citrate cycle (TCA** cycle) Citrate 0.05 0.09 

Inositol phosphate metabolism Glucose-6-P, Myo-inositol 0.078 0.13 
*Impact: Pathway impact value calculated from pathway topology analysis 
**Tricarboxylic Acid Cycle 
 

Table 5. Metabolic pathways involved in plaque vulnerability, based on the differences 
in the metabolites found in serum. 
 

Metabolic pathway Metabolites P-value *Impact 
Glycerolipid metabolism Glycerol 0.051 0.24 

Histidine metabolism Histamine 0.052 0.19 
Phenylalanine, tyrosine, and 

tryptophan biosynthesis Phenylalanine, Tyrosine 0.063 1.0 

Phenylalanine metabolism Phenylalanine, Tyrosine 0.063 0.036 
*Impact: Pathway impact value calculated from pathway topology analysis 

 

5. Conclusions 

 
We have performed a preliminary study in plaques and serum samples from patients 

with carotid stenosis by NMR. We have sought biomarkers of plaque vulnerability 

through the generation of statistical models able to discriminate symptomatic and 

asymptomatic patients with high sensitivity (100% and 88.37%) and specificity (91.6% 

and 77.78%) in plaque and serum, respectively. Increased concentration of myo-

inositol, glutamate, and fatty acids was found in vulnerable plaques, whereas an 
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increase in histamine, threonine, and fatty acids was observed in serum samples. 

Overall, the data presented herein provided valuable information on potential 

biomarkers of plaque vulnerability, both in plaque and serum samples. Although the 

presence of biomarkers in plaque is not of high value from a diagnosis perspective (as 

it implies the extraction of the plaque), the molecular mechanism involved in plaque 

vulnerability is still unknown, and the metabolites and metabolic pathways described 

in this work could be a starting point to understand better the reasons why some 

plaques become vulnerable and other remain stable. Also, locally dysregulated 

metabolites could highlight new therapeutic targets. On the other hand, the analysis of 

metabolites present in serum of symptomatic and asymptomatic patients could be 

studied as biomarkers of risk of plaque rupture. As previously mentioned, histamine, 

phenylalanine, and tyrosine, which are described in this work as potential biomarkers 

of plaque rupture, have already been associated with plaque vulnerability. A limitation 

of the study is the limited number of samples; thus, further studies with an increased 

number of patients would be necessary to validate our results. Moreover, our samples 

were obtained when the ischemic event had already occurred; thus, causality cannot 

be established with complete confidence. A longitudinal and a follow-up study should 

be performed to understand the applicability of our results better. 
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1. Abstract 

 
COVID-19 global pandemic has affected more than 600 million people up to date. The 

symptomatology and severity of COVID-19 are very broad, and there are still concerns 

about the long-term sequelae that it can have on discharged patients. The 

development of pulmonary fibrotic sequelae after SARS-CoV-2 infection is especially 

worrying. Metabolomic studies performed in serum of COVID-19 patients have shown 

that there is a multisystemic effect of the infection. In this work, we have performed a 

metabolomic study in the serum samples of 109 COVID-19 patients 2 months after 

hospital discharge to determine if there is a metabolomic signature that could predict 

the development of pulmonary fibrotic sequelae. We have observed that based on the 

nuclear magnetic resonance (NMR) analysis of the serum samples, it is possible to 

distinguish with 80.82% of sensitivity, 72.22 % of specificity and an AUC value of 0.83 

which patients would have radiological signs of pulmonary fibrotic pattern one year 

after sample collection. According to the metabolites participating in the discriminative 

model and the univariate statistics, glucose, valine, and fatty acids (=CH-CH2-CH=) are 

suggested as potential biomarkers of the development of pulmonary fibrotic sequalae 

after COVID-19.  

 

2. Introduction 

The global pandemic caused by SARS-CoV-2 has affected more than 600 million people 

up to date, and 10-20% of COVID-19 patients developed pneumonia.1 SARS-CoV-2 

produced a broad variety of symptomatology and severity depending on several 

factors, many of which remain to be clarified.2 Risk factors and comorbidities such as 

advanced age coupled with reduced lung function, hypertension, pre-existing diabetes, 
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cardiovascular diseases, and obesity have heightened the susceptibility to severe 

COVID-19 infection.3 

Furthermore, concerns arise about long term effects of COVID-19 survivors, 

independently of their initial severity.1 Several studies have shown that 6 to 12 months 

after recovery from COVID-19 a substantial number of survivors had pulmonary 

sequelae, with a mean of 32% of survivors showing pulmonary fibrotic patterns in chest 

computed tomography (CT) studies.4 Pulmonary fibrosis is produced from recurrent 

epithelial mild injuries and inadequate healing processes, leading to the over activation 

of fibroblasts and the excessive accumulation of extracellular matrix. This results in a 

mechanically stretched environment, producing an alteration in the respiratory 

function which can lead to dyspnea.5  

Pulmonary fibrosis sequelae are not only produced in COVID-19 patients affected with 

acute respiratory distress syndrome, but also in patients with mild disease. This means 

that SARS-CoV-2 could have pro-fibrotic effects itself.6 There is a need to find potential 

biomarkers of the development of pulmonary fibrosis to determine which COVID-19 

patients are more susceptible to have sequelae.  

Metabolomics has been proved to be a good source of biomarkers of different 

conditions and diseases, such as Alzheimer’s disease,7 cancer,8 glaucoma,9 or infectious 

diseases10 among others. Metabolomics can be defined as the analysis of the product 

of all the metabolic processes occurring in a living system, and implies the study of small 

molecules called metabolites. It reflects the interplay between the expression of genes 

in an individual and the effect of environmental changes, being the omic discipline that 

can be more directly related to phenotype.11  

Different metabolomic studies have been performed up to date to identify biomarkers 

of COVID-19 infection and progression,12 and some articles have been published where 

metabolomic biomarkers of COVID-19 complications have been found. Yang et al. 
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performed a metabolomic and proteomic study by mass spectrometry to identify 

biomarkers of pulmonary fibrosis and fibrosis progression. They found an association 

of cγR-mediated phagocytosis, PPAR signaling, TRP-inflammatory pathways, and the 

urea cycle with the progression of pulmonary fibrosis.13  However, they did not identify 

a clear panel of metabolites that would allow to determine in advance which patients 

would be more prompt to develop pulmonary fibrosis. 

 

Encouraged by this context, in this work we aimed to identify metabolomic biomarkers 

in acute COVID-19 patients after discharge by NMR spectroscopy, able to predict long 

term fibrotic sequelae, as would be assessed by CT routine studies, one year later after 

discharge. The early identification of patients prone to fibrotic sequelae after acute 

COVID-19 would be of a valuable information for the management of these patients in 

the follow-up. 

 

3. Material and methods 

3.1 Study Design 

This is a prospective observational study in which an NMR metabolomic study was 

performed on serum samples from 109 COVID-19 pneumonia patients taken 2 months 

after hospital discharge (between March and June 2020). In order to find potential 

biomarkers of pulmonary fibrosis, the metabolite composition was associated with the 

presence of CT fibrotic lesions after one year (Figure 1). 
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Figure 1. Schematic representation of sample collection and diagnosis of fibrosis after 
12 months. Serum samples were collected form COVID-19 patients two months after 
being discharged. 12 months after discharge, CT scan was performed and the presence 
pulmonary fibrosis was determined. Discharged patients were then classified in fibrotic 
CT patients (F-CT) and non-fibrotic CT patients (NF-CT) for the identification of potential 
biomarkers of future fibrosis development in the serum samples. 
 

3.2 Patient selection 

This study is based on a subcohort of the COVID-FIBROTIC14,15 study (Study of the 

Appearance of Lung Fibrotic Changes Associated with SARS-CoV-2 Infection; 

www.clinicaltrials.gov identifier: NCT04409275; June 1, 2020). The COVID-FIBROTIC 

study is a prospective, observational, multicenter study of patients admitted for 

bilateral COVID-19 pneumonia in 12 hospitals in Spain. All patients aged over 18 with a 

life expectancy > 1 year discharged from respiratory services between May 1 and July 

31 (2020) were invited to participate. Diagnosis of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) was based on centers of disease control (CDC) criteria, with 

http://www.clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT04409275
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all patients confirmed by reverse transcription polymerase chain reaction (PCR). 

Diagnosis of COVID-19 pneumonia was established in accordance with World Health 

Organization (WHO).16 All patients were informed of the study procedures and gave 

their consent The study (version 3·0; May 12, 2020) was approved by the Ethics 

Research Committee from Hospital Clinico, INCLIVA (Valencia, Spain) (2020/149) and 

by local committees wherever needed. Patients with unilateral COVID-19 pneumonia, 

a previous diagnosis of interstitial lung disease (ILD) or chronic obstructive pulmonary 

disease (COPD) and/or difficulties in attending the centers1 for follow-up visits were 

excluded. Our substudy cohort consisted of patients from five of these centers1*. 

Center selection was based on the availability and logistics required to send biobank 

samples. 

 

3.3 Hospital Procedures 

All participants were scheduled for the first visit 2 months after hospital discharge 

(between May 1 and July 31; 2020). Baseline data (demographic, comorbidities, clinical 

course) were retrieved from electronic medical records. At first visit, we performed 

blood sampling, pulmonary function tests (PFR) and simple chest radiography (X-ray). 

Computed tomography (CT) was indicated in those patients who presented respiratory 

functional alterations and/or persistent images in the control X-ray. After one year, all 

patients underwent PFR and only patients with unresolved CT at 2 months underwent 

repeat CT scans.  

PFR were performed in the respiratory function testing laboratory in all participating 

centers and included plethysmography’ lung volumes determination (Total Lung 

Capacity [TLC] and Residual Volume [VR]), spirometry (Forced Vital Capacity [FVC] and 

 
1 *Hospital Clínico de Valencia, H. General de Valencia, H. Virgen del Rocío (Sevilla), H. Virgen de la 
Arrixaca (Murcia), H. Arcos del Mar Menor (Murcia). 
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Forced Expiratory Volume in the first second [FEV1]) and diffusion capacity [DLCO] 

(Masterscreen, Jaeger, Germany). All procedures were performed according to 

American Thoracic Society (ATS) and European Respiratory Society (ERS) guidelines.17–

20  The functional alterations were defined as DLCO <80% and/or FVC <80%. Chest X-

rays (CXRs) were performed using standardized techniques. CT scans (SOMATOM, 

Siemens, Germany; AQUILION, Toshiba, Japan; OPTIMA, General Electric, USA) were 

obtained with subjects in the supine position during breath holding (slices 1mm). CT 

images were evaluated following the Fleischner society glossary of terms.21 Fibrotic 

pattern on CT was defined by the presence of at least one of the following findings: 

traction bronchiectasis, reticular pattern and parenchymal bands (Figure 2).22,23   

Two peripheral blood aliquots were obtained under fasting conditions by venipuncture 

in all patients. The serum was obtained after blood centrifugation at 4000 rpm at 4ºC 

for 20 minutes and 500 µL aliquots were stored at -80ºC in a INCLIVA biobank until 

analysis. 

 

  

 
Figure 2. Lung CT images. a) CT findings of discharged COVID-19 patients after 12 
months. The image shows the persistence of areas of ground glass (blue arrowheads). 
However, the most striking finding is the appearance of subpleural parenchymal bands, 
predominantly in the left hemithorax (red arrowheads), as well as some traction 
bronchiectasis (yellow arrowhead). 
b) Normal CT. 

b) 

a) b) 
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3.4  Sample preparation  

Following the protocol outlined by Beckonert et al., 2007.24 Firstly, samples were 

thawed. Subsequently, 400 µL of serum and 200 µL of phosphate buffer (pH 7.4) were 

introduced into 5 mm NMR tubes. The phosphate buffer was prepared with deuterated 

water (20% v/v) and the internal standard sodium 2,2-dimethyl-2-silapentane-5-

sulphonate (DSS) at 1 mM concentration.  

 

3.5 NMR spectra acquisition and processing  

Once the samples were prepared, NMR spectra were acquired in a Bruker 600 MHz 

spectrometer equipped with a cryo-probe (NMR service, Principe Felipe Research 

Center (CIPF), Valencia. Spain). For each sample, 1D 1H-NMR spectra were acquired 

using the Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence, incorporating water signal 

suppression and a total spin echo of 32 ms (interpulse delay between 180º pulses was 

0.001 s, and the number of loops was 16). This pulse sequence minimizes the 

contribution of signals from high molecular weighted molecules, such as proteins or 

other macromolecules, due to their short times of transverse relaxation (T2). The probe 

temperature was set at 300 K (27 ºC). 

Following the acquisition, the spectra underwent Fourier transformation and 

processing using TopSpin 4.0.0 (Bruker BioSpin Corporation). For processing the 1D 

spectra, a 0.5 Hz exponential line-broadening function was applied, followed by Fourier 

transformation. Phasing, baseline correction, and chemical shift referencing the 

trimethylsilyl signal of DSS at 0.0 ppm were also performed. Signals in the spectra were 

assigned based on literature data,25,26 the Human Metabolome Database (HMDB)27 and 

Chenomx NMR Profiler.28 



Chapter 5 
 

216 
 

After processing, significant signals in the cpmg spectra underwent deconvolution using 

AMIX 4.0.2 software (Bruker BioSpin Corporation). Residual signals after water 

suppression in the 4.5 to 5.0 ppm range, and regions with chemical shifts below 0.5 

ppm and above 8.5 ppm, were excluded from the analysis. A total of 196 signals were 

selected in the 1D spectra and included for deconvolution. Subsequently, a mixed 

Gaussian/Lorentzian variable function was applied for the deconvolution of these 

signals. After deconvolution, integrals were obtained for all cpmg spectra and the data 

were normalized to the sum of all integrals in each sample. 

 

3.6 Multivariate statistical analysis 

Multivariate statistical analysis was performed using the software PLS_Toolbox Solo 9.2 

(Eigenvector Research, Inc., Manson, WA, USA). The variables included in the model 

were selected using the genetic algorithms (GA) module. The initial population size 

selected was 256, and 100 maximum generations were set. PLS regression with a 

maximum of 10 latent variables and random cross-validation with 10 splits and 5 

iterations were set for the variable selection. After applying GA, a total of 23 variables 

were selected to generate the PLS-DA model. 

Partial least squares-discriminant analysis (PLS-DA) was employed to construct a 

predictive model using the selected variables. Cross-validation, specifically Venetian 

blinds, was applied to identify the optimal number of latent variables for the model. To 

assess the model's ability to differentiate between distinct sample sets, the area under 

the receiver operating characteristic (ROC) curve (AUC), sensitivity, and specificity were 

obtained. The model's robustness and susceptibility to overfitting were evaluated using 

permutation tests conducted through 100 iterations. 
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3.7 Univariate statistical analysis 

Qualitative variables were described using frequencies and percentages while 

quantitative variables by means and their standard deviation. A t-test was employed 

for comparison in quantitative variables and Fisher’s exact test for the comparison 

between groups of categorical variables. Normality test (Kolmogorov-Smirnov) was 

applied to check the normality of the metabolomic variables included in the study. 

Subsequently, based on the normality results, either a t-test or Mann-Whitney U test 

was employed to compare the means of the relative concentrations of the analyzed 

metabolites. Univariate statistics were conducted using GraphPad, and R (RStudio 

1.2.5001). The ggplot2 package as used for the generation of plots. 

 

3.8  Metabolic pathways analysis 

To identify potential metabolic pathways involved in pathological processes, 

Metaboanalyst29 was used. A concentration table was generated with data from 

metabolites as columns and samples as rows, one signal from each metabolite was 

chosen for the generation of the table. Metabolites were included in the pathway 

analysis using their corresponding HMDB ID. Metabolites lacking an HMDB ID, such as 

fatty acids or unknown metabolites, were excluded. For the topological analysis, 

Relative-betweenness centrality was employed, and the Homo sapiens library from 

Metaboanalyst served as the reference metabolome. The enrichment method chosen 

was the global test. Subsequently, pathways with a p-value < 0.05 and an impact 

factor > 0 were selected as representative pathways. 
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4. Results 

4.1 Demographic and clinical characteristics of the participants 

Between 1 May, and 31 July 2020, 109 serum samples were collected. Mean age was 

57.68 (14.03) years and 65.13% were male. For further analysis, patients were classified 

in two groups according to the presence of fibrotic findings on CT one year after 

infection: Group 1, absence of fibrotic sequelae (73/109; 66.9%); Group 2, presence of 

fibrotic sequelae (36/109; 33%). There were significant between-group differences in 

age (p=0.0005) and severity of disease (p<0.0001) but not in comorbidities 

(hypertension, diabetes, cardiopathy, previous respiratory diseases) smoking status or 

body mass index (BMI) (Table 1).  

At 12 months, 85 patients had completed the entire study protocol and up to 32.94% 

had diffusion impairment. There were no functional differences between-group in 

spirometry or diffusion. There were several losses in plethysmography volume 

determination, so this variable was not considered for the analysis. According to the 

study protocol, chest CT at 12 months was performed only in patients with unresolved 

CT scans at 2 months (41/109; 37.61%). The non-resolved CT was more frequent in 

Group 2 (p<0.0001). The fibrotic pattern (traction bronchiectasis and/or parenchymal 

bands and/or reticular pattern) was present in 33.02% of the total cohort (Table 1). 
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Table 1. Clinical Characteristics of enrolled patients. 

 
Total 
n = 109 

Group 1 
n = 73 

Group 2 
n = 36 

p Value 

Age, years 57.68 (14.03) 54.45 (14.52) 64.25 (10.38) 0.0005 

Male sex 71 (65.13%) 46 (63.01%) 25 (69.44%) 0.53 
BMI, kg/m2 27.43 (4.00) 27.10 (4.15) 28.10 (3.66) 0.26 
Never-smoker 74 (67.89%) 52 (71.23%) 22 (61.11%) 0.38 
Comorbidities      

Pulmonary disease*  21 (19.27%) 16 (21.92%) 5 (13.89%) 0.44 
Hypertension  38 (34.86%) 25 (34.25%) 13 (36.11%) 0.99 
Diabetes 22 (20.18%) 15 (20.55%) 7 (19.44%) 0.99 
Cardiovascular disease 10 (9.17%) 7 (9.59 %) 3 (8.33%) 0.99 

Clinical severe disease 36 (33%) 14 (19.17%) 22 (61%) <0.0001 
 

12 months Pulmonary 
function** 

    

FVC, % pred 105.11 (15.93) 106.25 (17.72) 102.66 (11.04) 0.34 
FEV1, % pred 104.68 (14.17) 103.84 (15.63) 106.43 (10.41) 0.43 
DLCO, % pred  86.34 (15.98) 88.24 (16.70) 82.46 (13.90) 0.12 
DLCO <80%, pred 28 (32.94%) 16 (27.58%) 12 (44.44%) 0.14 

12 months CT findings     
CT non - resolved 41 (37.61%) 5 (6.84%) 36 (100%) <0.0001 
GGO 27 (24.77%) 5 (6.84%) 22 (61.11%) <0.0001 
Reticular pattern  14 (12.84%) 0 (0%) 14 (38.89%) <0.0001 
Traction Bronchiectasis 17 (15.59%) 0 (0%) 17 (47.22%) <0.0001 
Parenchymal bands  22 (20.18%) 0 (0%) 22 (61.11%) <0.0001 
Fibrotic pattern*** 36 (33.02%) 0 (0%) 36 (100 %) <0.0001 

Data are n (%) or mean (SD). BMI = Body Mass Index. FVC = forced vital capacity. FEV1 = 
forced expiratory volume in one second. DLCO = diffusing capacity for carbon monoxide. TLC 
= total lung capacity. CT= Computed Tomography. GGO= ground glass opacity 
*Pulmonary disease: asthma, obstructive sleep apnea 
** Pulmonary function:  the values were obtained for 85 samples, distribuided in 58 for 
group 1 and 27 for group 2 
***Fibrotic pattern: defined as the presence of traction bronchiectasis, reticular pattern 
and/or parenchymal bands 

4.2 Metabolic profiling of serum samples 

1H-NMR cpmg spectra were acquired for all the sera samples. The main signals in the 

spectra were assigned for the later identification of potential biomarkers of fibrosis 

sequela in COVID-19 discharged patients. Figure 3 shows 1H-NMR spectrum of one 
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serum sample. Spectrum has been split in two parts, the aliphatic region (Figure 3.a) 

and the aromatic region (Figure 3.b), for a better visualization of the signals. The 

assigned metabolites are shown in table 2 with details about chemical shift, as well as 

the multiplicity and J coupling. A total of 31 compounds were assigned, with 4 signals 

from fatty acids and 13 amino acids, among others. 

 

 

 

Figure 3. 1H-NMR spectrum of one serum sample. The region with remaining water 
signal after water suppression (4.7-5.1 ppm) is not shown a) Aliphatic region of the 
spectrum (0.8-4.6 ppm) b) Aromatic region of the spectrum (5.2-8.5 ppm). The intensity 
of peaks in the aromatic region (5.0-8.7 ppm) has been scaled (10x) respect to the 
aliphatic region for a more appropriated display. 1. Fatty Acids (–CH3), 2. Leucine, 3. 
Valine, 4. Isoleucine, 5. Ethanol, 6. Fatty Acids (–CH2–), 7. Lactate,  8. Alanine, 9.4-
Aminobutyrate, 10. Acetate, 11. Proline, 12. N-acetyled compounds,  13. Glutamine, 
14. Acetone, 15. Glutamate, 16. Pyruvate, 17. Citrate, 18. Methionine, 19. Fatty Acids 
(=CH-CH2-CH=), 20. Trimethylamine, 21. Dimethylglycine, 22. Creatinine, 23. Carnitine, 
24. Glucose, 25. Methanol, 26. Tyrosine, 27. Phenylalanine, 28. Threonine, 29. Fatty 
Acids (-CH=CH-), 30. Urea, 31. Histidine. 
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Table 2. Chemical shift, multiplicity and J coupling of the signals from metabolites 

identified in the sera samples. 

* the multiplicity of the signals is indicated as s: singlet; d: doublet, t: triplet, m: multiplet, 

dd: doublet of doublets 

Number Metabolite Chemical Shift (ppm) and J coupling (Hz) * 
1 Fatty Acids (–CH3) 0.8-0.9 
2 Leucine 0.97 (d), 0.98 (d), 1.72 (m) 
3 Valine 1.01 (d, J = 7.2), 1.06 (d, J = 7.2) 
4 Isoleucine 0. 93 (t, J = 7.0), 1 (d, J = 6.5), 1.31 (m) 
5 Ethanol 1.16 (t, J = 7.08), 3.67 (q, J = 7.07) 
6 Fatty Acids (–CH2) 1.21-1.31 
7 Lactate 1.35 (d, J = 7.0), 4.14 (c, J = 7.0) 
8 Alanine 1.47 (d, J = 7.2), 3,77 (q, J = 7.2) 
9 4-Aminobutyrate 1.90 (m), 2.28 (t, J = 7.36), 3.0 (t, J = 7.58)  
10 Acetate 1.91 (s) 

11 Proline 
1.98 (m), 2.2(m), 3.4 (ddd, J = 12.6,9.4,3.2), 3.4 (ddd, J 
= 9.4,4.3,1.0), 3.74 (t, J = 9.3) 
 

12 N-acetyled compounds 2.0-2.1 
13 Glutamine 2.14 (m), 2.42 (m), 3.76 (t, J = 6.2) 
14 Acetone 2.22 (s) 

15 Glutamate 2.11 (td, J = 6.8, 6.2), 2.15 (dt, J = 15.4, 6.8), 3.75 (t, J = 
6.2)  

16 Pyruvate 2.36 (s) 
17 Citrate 2.52 (d, J = 15.4), 2.66 (d, J = 15.4) 

18 Methionine 2.11 (dtd, J = 14.4, 6.6, 6.2), 2.12 (s), 2.19 (dtd, J = 14.4, 
6.6, 6.2), 2.64 (t, J = 6.6), 3.85 (t, J = 6.2)  

19 Fatty Acids (=CH-CH2-CH=) 2.76 
20 Trimethylamine 2.88 (s) 
21 Dimethylglycine 2.89 (s), 3.71 (s) 
22 Creatinine 3.03 (s), 4.05 (s) 

23 Carnitine 2.13 (s), 2.48 (dd, J = ND ), 2.61 (dd, J = ND ), 3.18 (s), 
3.61 (d, J = ND ), 3.82 (dd, J = ND ), 5.57 (q) 

24 Glucose 3.74 (d, J = 5.4), 3.81 (dt, J = 8.4,5.4), 5.22 (d,    J = 1.6) 
25 Methanol 3.38 (s) 
26 Tyrosine 6.91 (m), 7.21 (m) 
27 Phenylalanine 7.35 (m), 7.39 (m), 7.44 (m) 
28 Threonine 1.31 (d, J = 6.58), 3.57 (d, J = 4.86), 4.24 (m) 
29 Fatty Acids (-CH=CH-) 5.26 
30 Urea 5.82 (s) 

31 Histidine 3.16 (dd, J = 15.55, 7.7), 3.23 (dd, J = 16.10, 4.9), 3.98 
(dd, J =7.73, 4.98), 7.09 (d, 0.58), 7.90 (d, J = 1.13) 
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4.3 Statistical analysis of serum samples 

Aiming to identify potential biomarkers, partial least square discriminant analysis (PLS-

DA) were performed with the data obtained from the integration of the spectrum 

signals. The generated models were able to classify the serum samples according to the 

future development of pulmonary fibrotic sequelae with an 80.82% of sensitivity and 

72.22% of specificity (Figure 4.a). The AUC value for the cross validation (CV) was 0.83 

(Figure 4.b). Five latent variables were used for model generation. The results were 

significant (p < 0.05) for all test permutations.  

 

 

 

 

 

 

 

 

 

Figure 4. PLS-DA model and ROC curve with AUC values. a) samples distribution based 
on latent variable (LV) 1 and LV 5. Red diamonds show samples from NF-CT and green 
squares show samples from F-CT patients. b) ROC curve for the CV of the model 
generated. 

The metabolites involved in the classification models were fatty acids (-CH3 moiety), 

valine, proline, glutamine, glutamate, citrate, glucose, n-acetyled compound, fatty 

acids (=CH-CH2-CH= moiety) and phenylalanine (Table 3). Three of them showed 

significant differences in relative concentration, with a concentration increase of fatty 

acids (=CH-CH2-CH= moiety) and a decrease concentration in glucose and valine (Figure 

5). 
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Table 3. Metabolites participating in the discriminative model 

*VIPS = Variable importance in projection score, represents the importance of the 
metabolite in the discriminative capacity of the model. 
** The arrow direction indicates the change in concentration of metabolites in patients 
without fibrotic sequelae vs. patients with fibrotic sequelae. Metabolites with significant 
differences are shown in bold. 

 

Figure 5. Comparison of the relative concentration of the metabolites in the model 
showing significant differences between NF-CT and F-CT groups. Boxplots 
representing the mean concentration of metabolites in serum samples are shown. The 
horizontal black line inside each box represents the median of each group for a 
determined feature. The relative concentration of each sample is shown as a black dot.  

Metabolites VIPS* p-value Trend 

=CH-CH2-CH= 1.81 0.004 ↑** 

Phenylalanine 1.11 0.245 ↓ 

Valine 1.02 0.016 ↓ 

-CH3 0.95 0.090 ↑ 

Glutamine 0.85 0.668 ↓ 

N-acetyled compound 0.83 0.064 ↑ 

Glutamate 0.79 0.854 ↓ 

Proline 0.74 0.298 ↑ 

Citrate 0.71 0.864 ↓ 

Glucose 0.64 0.000 ↓ 
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4.4 Metabolic Pathways Analysis 

To identify possible metabolic routes, all the metabolites participating in the 

discriminatory model were analyzed in Metaboanalyst. Starch and sucrose metabolism 

and galactose metabolism pathways were identified to be significantly altered in 

patients who showed fibrotic sequelae 12 months after hospital discharge (Figure 6). 

Glucose is the identified metabolite that participates in both metabolic pathways. The 

differences in the relative concentration of glucose in both groups has already been 

highlighted (Figure 5).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Metabolic pathways altered in COVID-19 patients who developed fibrotic 
sequelae.  Only significant pathways are labeled (p-value < 0.05, impact > 0). Color and 
size of the circles indicate the p-value and impact index, respectively: -log10(p) is 
represented from higher values (red) to lower values (yellow), and the pathway impact 
is reflected in the size of the circles from smaller circles (lower impact) to bigger circles 
(higher impact). 
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5. Discussion 

COVID-19 has affected millions of people worldwide up to date and the long-lasting 

sequelae are a clinical concern still under study. In this study, we have generated a 

model capable of predicting which patients will develop fibrotic sequelae one year after 

hospital discharge with 80.82% sensitivity, 70.22% specificity, and 0.83 AUC value.  

We found DLCO impairment in 32.94% of the whole cohort. These results are in 

agreement with other previously published studies. Wu X et al. found that, after one 

year, despite the improvement in mean DLCO values over the following months, up to 

33% of individuals still had an impaired DLCO, regardless of the severity of the disease.30 

We identified the fibrotic pattern in 33.02% of total patients. This percentage is 

consistent with other studies which found CT abnormalities on scan 1 year after in 24% 

of the patients.31 Another study reported radiological fibrotic sequelae one year after 

discharge in 25% of patients.32 

Valine, proline, glutamine, glutamate, citrate, glucose, n-acetyl compounds, 

phenylalanine and general fatty acids (-CH3) and unsaturated fatty acids (=CH-CH2-CH=) 

were the metabolites participating in the model. Among these metabolites, univariate 

statistics showed a significant increase in the amount of unsaturated fatty acids (=CH-

CH2-CH=) chain, and a decrease in the concentration of glucose and valine. 

Starch and sucrose metabolism, as well as galactose metabolism, are highlighted as 

statistically significant metabolic pathways affected in patients who developed fibrotic 

sequelae, being glucose the identified metabolite that participates in both pathways. 

These pathways involve the breakdown of polysaccharides into glucose. To our 

knowledge, this is the first time these pathways have been linked to the development 

of pulmonary fibrosis. The association of these pathways in pulmonary fibrosis could 

be related to a higher demand for glucose in patients who develop fibrotic sequelae. 

The observed decrease in glucose concentration could indicate an increase in glycolysis, 
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which has been related to the development of pulmonary fibrosis. Fibrosis occurs due 

to the recurrent injury of epithelial cells and the activation of fibroblasts in the lungs, 

that leads to increased glycolysis.33 Lung myofibroblasts are reprogrammed into a 

secretory phenotype, producing excessive extracellular matrix, leading to the 

characteristic tissue stiffening and scarring observed in fibrotic lungs.34 

An impairment in lipid metabolism has previously been related to the development of 

IPF. We observed an increase in fatty acids (-CH3) chain concentration, and a 

significative increase in the concentration of unsaturated fatty acids (=CH-CH2-CH=) 

chain. Similar to changes in glucose metabolism, the reprogramming of cells in the 

development of a pro-fibrotic phenotype, involves changes in the lipid metabolism, 

including alteration in the synthesis, storage and oxidation of lipids.35 Fatty acids have 

important roles in several cellular processes are associated with the pathogenesis and 

progression of pulmonary fibrosis.35 Furthermore, previous research on pulmonary 

fibrosis has shown an increase in total fatty acids serum levels in IPF patients,36 as well 

as the accumulation of lipid droplets in fibrotic lung tissue.37 

We observe a decrease in the relative concentration of valine in patient with fibrotic 

sequelae, which contrast with previous studies that describe an increase in the exhaled 

concentration of valine, as well as other amino acids, such as proline, alanine, and 

leucine/isoleucine in IPF patients.38 Branched chain amino acids, including valine, are 

key substrates for energy metabolism and protein synthesis, and play significant roles 

in signaling and energy pathways, being, for example, the main activators of the 

mammalian target of rapamycin (mTOR), a pro-growth enzyme that is hyperactivated 

in fibroblast in IPF.39 Further research would be needed to determine the specific 

mechanisms by which valine contributes to the development of fibrotic sequelae in 

COVID-19 patients.  

Furthermore, glutamine is as well involved in the discriminative model for the 

identification of patients with fibrotic sequelae. Glutamine metabolism has been 
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proved to be important in the regeneration of alveolar cells in IPF and in the alveoli 

repair after epithelial injury, crucial pathway to stop fibrosis progression. Glutamine is 

involved in the TGF-β-induced myofibroblast activation.40 The impairment in glutamine 

metabolism might as well be involved in the development of fibrosis sequelae in 

COVID-19 patients. Further studies to verify the misfunction of enzymes involved in 

glutamine metabolism should be performed.41 Glutamine metabolism is also required 

for the synthesis of proline, which also participates in the discriminative model. In fact, 

flux analysis has shown that proline is the major cellular destination for glutamine 

metabolism in myofibroblasts. Proline is the second most abundant amino acid in 

collagen, one of the main proteins in the extracellular matrix.33   

Altogether, our results show that it is possible to identify changes in the metabolic 

signature of COVID-19 patients that will develop radiological fibrotic pattern. This 

suggests the potential of NMR metabolomics for predicting the onset of fibrotic 

sequelae. However, further research would need to be performed to elucidate the 

cellular mechanisms that lead to the development of this sequelae and are responsible 

for the differences observed in the metabolome of COVID-19 patients with and without 

fibrotic signs one year after hospital discharge. 
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The research performed in this thesis has aimed to explore the potential of 

NMR-based metabolomics as a tool for the identification of early non-invasive 

biomarkers of disease. NMR is used in this thesis for metabolomic research because it 

is a highly reproducible and non-destructive technique. To date, several studies have 

validated the usefulness of NMR as a diagnosis support.  

 

Metabolomics is the omic science closest to phenotype, as it focuses in the end 

products of all the metabolic processes occurring in a living organism, showing the 

interplay between genetic and environmental factors.1 There is a need to identify early 

biomarkers of diseases in the context of personalized medicine for a better 

clusterization of patients and for the identification of more straightforward treatment 

strategies. Furthermore, the importance and impact of cellular metabolism in disease 

development and in the different outcomes of patients with the same conditions is 

gaining relevance.2 This work has studied four diseases to identify new biomarkers of 

diagnosis and progression through NMR-based metabolomics.  

 

In the first chapter, following the proposed objective, serum samples from patients 

with AD and MCI were analyzed by NMR-based metabolomics. The PLSDA models 

generated were able to discriminate with high sensitivity and specificity AD patients 

from controls (93.75% and 94.75%) and AD from MCI (100% and 82.35%). When the 

metabolites in the model were analyzed, we found significant differences for most of 

them, highlighting the impact that the development of AD has on cellular metabolism. 

A third model for the classification between MCI and HC was performed. However, in 

this case, the model was not discriminative (67% sensitivity and 50% specificity). This 

shows that patients with MCI are closer in phenotype to HC than to AD patients. The 

analysis of the evolution of MCI patients to AD in a frame time of one to three years 

resulted in the identification of five metabolites (lysine, pyruvate, phenylalanine, mixed 

lipoproteins and choline) as potential biomarkers of the progression of MCI patients to 

AD. To date, there is no precise biomarker able to predict the evolution of MCI patients 
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to AD, as MCI patients can remain stable, as previously mentioned in the general 

introduction. Furthermore, the metabolic pathways involved in the progression of MCI 

to AD were studied. Overall, in this chapter, we validated already known information 

about the impact of AD on cellular metabolism while providing new non-invasive 

metabolites for the follow-up of MCI patients by NMR-based metabolomics. However, 

further studies would need to be conducted to validate the aforementioned 

metabolites as biomarkers of MCI to AD transition. It would be necessary to increase 

the size of the study, as when dividing the MCI group in our study, the size of the 

subgroups was very limited. Moreover, it would be interesting to carry out a 

longitudinal study to corroborate that in MCI patients, the value of the metabolites 

increases or decreases, as described here, when they progress to more advanced stages 

of dementia.  

 

In Chapter 2, MCI patients of the AD type were further studied. We observed that the 

combination of NMR-based metabolomics with peroxidation lipids obtained by UPLC-

MS/MS improves the generation of classification models for the discrimination 

between MCI and HC. As mentioned in the introduction, comparing metabolomic 

results among different studies is difficult. Furthermore, the study presented in Chapter 

1 was made with serum samples, and for Chapter 2, the sample used was plasma. Still, 

in both projects, we can observe that the metabolism of amino acids, such as valine 

and isoleucine, is involved in the discriminative classification of MCI patients from HC. 

Furthermore, from this second study, we can corroborate that oxidative stress is a 

crucial player in the development of cognitive impairment, as the inclusion of 

isoprostanes in the discriminative model improves its classification ability.  

 

Attending to the third objective of this thesis, in Chapter 3, biomarkers of primary open 

glaucoma were found in tears. Through NMR-based metabolomics, discriminative 

models of POAG patients with high sensitivity and specificity values (100% and 83.3%) 

were built. A decrease in the relative concentration of phenylalanine, phenylacetate, 
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leucine, n-acetyled compounds, formic acid, and uridine, and an increase in the 

concentration of taurine, glycine, urea, glucose, and UFA in tears of POAG patients was 

observed, being these metabolites postulated as biomarkers for the diagnosis of POAG.  

However, this work is a preliminary study, as the number of samples is limited (n=30), 

and increasing the study size would be crucial for validating these metabolites as 

biomarkers of POAG.  

 

Chapter 4 aimed to identify potential biomarkers of plaque vulnerability that could be 

used as a supportive tool for intervention decisions. Serum (70) and tissue (atheroma 

plaque, 38) samples from patients with recently symptomatic and asymptomatic 

carotid stenosis were analyzed by NMR-based metabolomics. The discrimination model 

obtained for atheroma plaque samples could classify stable (asymptomatic patients) 

from unstable plaques (symptomatic patients) with high sensitivity and specificity 

(100% and 96.4%). In addition, attending to the univariate statistics and the biological 

contest, glutamate is proposed as a relevant biomarker of plaque vulnerability. 

Furthermore, circulant biomarkers were identified in serum by generating another PLS-

DA model, able to classify unstable from stable plaques with 88.37% sensitivity and 

77.78% specificity. Threonine, histamine, and unsaturated fatty acids (-CH=CH-) are 

described as potential biomarkers of plaque vulnerability. In this Chapter, we have 

discovered potential new biomarkers of plaque instability in serum and tissue samples. 

However, as discussed in Chapter 4, it is not possible, from the study performed, to 

determine whether the biomarkers described here are found as a cause or as a 

consequence of plaque rupture. To validate the use of these biomarkers for rupture 

prediction, a longitudinal study following patients previously to a cardiovascular event 

and after it should be performed.  

 

In the last Chapter, the identification of biomarkers of post-COVID pulmonary fibrosis 

is assessed. Serum samples from 109 COVID-19 patients obtained after hospital 

discharge were analyzed by NMR-based metabolomics. The diagnosis one year after 
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discharge was used for the classification model. The obtained model was able to classify 

with 85.56% sensitivity and 83.33 % specificity the patients that showed pulmonary 

fibrosis one year after the acquisition from those who didn’t show pulmonary sequelae. 

(=CH-CH2-CH) chain, found in higher concentrations in patients who later would 

develop fibrosis, and glucose and valine, found in lower concentrations, are proposed 

as potential biomarkers of fibrosis development. It is remarkable that in this project, 

the metabolic changes were already observed one year before the evaluation of 

pulmonary fibrosis by CT, showing the importance of cellular metabolism in all the 

processes occurring in a living system that can lead to the development of diseases. 

Nevertheless, although these results are promising, further studies would need to be 

performed in order to validate the use of glucose, valine and fatty acids concentration 

as biomarkers of pulmonary fibrosis development. 

 

In summary, the research presented in this thesis highlights the potential of NMR-based 

metabolomics as a valuable tool to support diagnosis of disease, and for the 

identification of new biomarkers. However, it is important to note that while the 

findings presented here are promising, they are still preliminary, as in most cases, the 

number of samples studied is limited, and longitudinal studies would be required for 

validation. Still, the use of metabolomics allows us to get an insight into the effect that 

the development of diseases has on metabolism, as well as how differences in the 

metabolism can result in different illness outcomes.  
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This PhD thesis has contributed to the development of new strategies for an early and 

non-invasive disease diagnosis by the use of NMR-based metabolomics, covering a 

need for the identification of new biomarkers of diseases. Specifically, the conclusions 

acquired from this work are: 

 

1. Metabolites and metabolic pathways that could potentially be biomarkers for 

AD diagnosis and MCI progression have been identified by the NMR 

spectroscopy analysis of serum samples. 

 

2. The combination of UPLC-MS/MS and 1H-NMR allows the identification of 

metabolic differences between patients with MCI and healthy controls. 

 

3. NMR-based metabolomics of tear samples shows promising results in the 

identification of potential biomarkers of POAG. 

 

4. NMR-based metabolomics in atheroma plaque tissue and serum samples 

provides insights into potential biomarkers associated with plaque 

vulnerability and subsequent risk of rupture in carotid artery stenosis patients. 

 

5. Metabolomic analysis of serum samples from discharged COVID-19 patients 

reveals potential biomarkers for predicting the development of pulmonary 

fibrosis sequelae. 
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