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ABSTRACT Vision and Robotic technologies are progressively becoming ubiquitous for automating and
digitizing quality control in the food industry. This paper aspires to provide a high-level technical review
on the crucial role of advanced automation technologies, including versatile or dedicated robotic systems,
specialized end-effectors, machine vision, and efficient material handling systems, which collectively
enhance food processing efficiency. While the manuscript aims to document the various automation
sub-systems utilized generally in food processing, it places a particular emphasis on the primary processing
phase of food production. Most food products in the primary processing phase exhibit a plethora of
complex physical properties and manipulation conditions, making it difficult to reliably automate the various
processes. This research aims to outline the contemporary advances and requirements for integrating various
automation technologies, to enhance the efficiency and precision of primary food processing. Furthermore,
it aspires to serve as a valuable, up-to-date survey and analysis of the latest advances in automation and
vision technologies and their capability to automate a food processing line.

INDEX TERMS Artificial intelligence, conveyors, end-effectors, machine vision, primary food processing,
robotic systems.

I. INTRODUCTION
Global food production and processing is capable of sustain-
ing today’s human population, which has recently surpassed
the 8 billion mark [1]. It is estimated to reach 9.7 billion in the
mid 2050’s, and peak at around 10.4 billion in the 2080’s [2].
The global consumer spending on food which was totalling
approximately $7457 billion in 2019, is expected to grow at
a rate of 7% to $11,167 billion by 2025 [3]. These indicators
point towards the rise in demand on a global scale for food
production and related processes.

According to the FoodDrinkEurope (trade association
which represents Europe’s food and drink industry) Data
& Trends 2023 report, the industry employs 4.6 million
people, generating a turnover of AC1.1 trillion with AC229
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billion in value added [4]. However, the median wage
for personnel in the food service sector is notably lower
at AC14,600 [5] compared to the EU average of AC30500
[6] across all industries. <Additionally, the food service
sector has the lowest rate of job automation at 24% [7],
indicating that a large volume of production processes are
performed manually, involving low-skilled and part-time
workers. Concurrently, the EU is the largest exporter of
agri-food products with a revenue ofAC182 billion in 2023 [4],
and this statistic is projected to rise in the coming decades,
with the growing global population and increasing purchasing
power of people from developing nations [8].

Prior to the industrial revolution, the majority of industries
relied on manual equipment and processes to produce and
process food. However, the rapidly growing global popula-
tion, coupled with declining regional (European) populations
and increasing quantity of global food consumption, has
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become a primary driver for the food industry to innovate and
upgrade its production processes, by automating the entire
production or at least certain individual sub-processes. More
notably in the European context, the food and agribusiness
industry which was traditionally low-tech, is increasingly
implementing robotics and special automation machinery,
to offset workforce issues and to increase output yields while
reducing waste [9]. This shift towards automation is also
accompanied by a gradual increase in R&D expenditure,
with small and medium-sized enterprises (SME) prioritizing
product and process innovation, reflecting the sector’s
response to evolving market demands and technological
advancements [10].

Large scale food processing units usually have the
resources and a market stable product, enabling them to get
dedicated Special Purpose Machinery (SPM) to profitably
automate their production lines. On the contrary small and
medium enterprises (SMEs), which comprise of 99% of the
entire food industry in Europe [11], usually require an agile
and flexible production line (with a strong emphasis on inno-
vation), to remain relevant and profitable in the market [12].
Automated operations require lesser number of human
workers in food processing lines, which also contributes
to the reduction in contamination by transient food borne
microbes and foreign matter of human origins. This increases
the shelf-life of food and also mitigates the indiscriminate
harm it could cause to the final consumers [13].
In addition to making the product more shelf stable, food

processing increases the usefulness and palatability of the
food. Common industrial processes employed to enhance the
quality of raw food products include milling, cooling, heat-
ing, smoking, fermentation, canning, and extrusion cooking.
Additionally, preservation methods such as smoking, brining,
pickling, and the use of chemical additives, antimicrobials,
and antioxidants are widely utilized [14]. All the afore-
mentioned steps vary depending on the particular product
being processed, consumption requirements, and the desired
end result required by the consumer. This diverse range of
processing variations, make food production a multifaceted
and dynamic field with extensive advances in research and
technology. Therefore for the sake of brevity, we are limiting
the scope of this paper to cover the technological advances
in the primary processing of food. Primary food processing
involves the initial handling and treatment of food after
harvesting. This includes activities such as cleaning, sorting,
initial packaging, and other essential tasks to prepare the food
for storage or transportation [15].

The equipment for automating primary processing of food
typically entail sensing systems, actuation systems, data
processing and storage systems, communication systems and
user interfaces [16]. The sensing systems detect the presence
or absence of certain specific physical or chemical properties,
along with the product’s position and physical state. Some
of the sensory systems utilized in food processing are
temperature indicators, humidity sensors, pH indicators, gas

sensors, pesticide detectors, pathogen detectors, and (most
predominantly) imaging sensors [17]. The actuation system
comprises the elements which bring about physical changes
(either in the form of value addition or material handling) in
state of the product being processed. They broadly consist of
SPMs, robot actuators, conveyor systems and transportation
equipment.

Primary handling in the food sector has enormous potential
for robotic automation, but it needs specifically developed
solutions [18]. Primary food handling with robots presents
difficulties due to the characteristics of the food. Foods
have variability in shape, structural integrity, and size (as
represented in Fig. 1), requiring end-effectors that can tolerate
these variations. Additionally, products can be susceptible
to damage or may be fragile, limiting the applicable
working pressure of end-effectors. The lack of knowledge
about potential robot applications, the limited functionality,
the lack of grippers, and their cost impede the use of
robotics in this sector. Within the food and beverage sector,
certain sub-sectors such as fruit and vegetable processing
have a lower degree of automation despite their economic
importance [19]. These sub-sectors have a more significant
opportunity to automate their production processes with
robots.

In food processing, robots boost productivity by cutting
costs, reducing waste, and saving time and space. They also
improve product quality by providing accurate assessments
and eliminating errors. Additionally, they create a better work
environment by allowing employees to focus on skilled tasks
and avoid dangerous or repetitive work. Robots increase
production flexibility, respond quickly to market demand,
and ensure food safety and hygiene standards are met [20].
Yet no universal robot end-effectors are available, and an
optimal end-effector should be designed for every product
and application process. An adequate end-effector for food
in the industry is challenging using a standard end-effector
because food can be soft, fragile, sensitive to damage, has
wide tolerances, and has complex shapes and sizes.

Alongside robots, another emerging technology for fresh
food processing is machine vision. It essentially incorporates
hardware and software components that harmonize together
to acquire, perceive, and interpret visual information. Its
importance for fresh food processing stems from several
advantages such as (i) food safety, owing to its non-invasive
nature as it processes only visual information, (ii) high
inspection speed, leading to higher throughput and reduced
production costs, (iii) better waste management, by increas-
ing the accuracy of identifying the healthy produce, (iv)
economically affordable, especially in the long-term, as com-
pared to a human operator, and (vi) product traceability by
identifying and tracking food items as they move through
complex production and supply chains.

While automatedmanipulation of food products in primary
processing is undeniably useful and essential, it presents
numerous challenges primarily due to the bio-physical and
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FIGURE 1. Graphical representation of the variability in geometry and structural integrity for
diverse representative food items. Typically, the more irregular and/or delicate the food item
is, the more challenging it is to manipulate it with robotic systems.

bio-chemical properties of the food products. Furthermore,
establishing a well integrated sensing and actuator system,
capable of performing real-time computational estimates and
motion planning, requires high amounts of expertise, time and
capital. Another factor which impedes the implementation of
automated solutions is the range of diversity in the charac-
teristics between seemingly similar food types, warranting
nuanced solutions for individual scenarios, depending on the
product and the processes to be performed on it.

So far, the literature pertinent to food processing has
accumulated an interesting amount of research, which has
been documented in several surveys. However, these are
either reviews of existing technologies for a particular type
of food such as meat [21], poultry [22], fish [23], fruits and
vegetables [24], or survey a specific technological solution as
applied to general food processing [25].

To the best of our knowledge, up until the date of
publishing this manuscript, there is no research that surveys
existing machine vision and robotic solutions for primary
food handling and packaging. We were able to ascertain this
by performing specific keyword searches, as specified in
Table 1 on the Scopus database [26], comparing the Abstract,
Author keywords, and Indexed keywords of all the articles
in the database. The frequency of the keyword appearance
and their co-occurence networks were visualized in Fig. 2
and Fig. 3 using a software tool - VOSviewer [27]. The
VOSviewer visualizations depict the ‘Network Visualization
Comparison’, and the ‘Density Visualization Comparison’.
The Network Visualization Comparison refers to the analysis
of the structure and connections between items in a map,

highlighting the number of nodes, the strength of links, and
the overall network density to understand the extent and
cohesion of research in a given area. The Density Visualiza-
tion Comparison focuses on evaluating the concentration of
research activity by identifying hotspots in the map, where
higher densities indicate more frequently occurring terms
or topics, and lower densities reveal underexplored areas.
Clustering in network visualization helps identify groups
of closely related items, highlighting the main topics or
themes within the research area (using color coded grouping).
Whereas in density visualization, clustering reveals areas of
high research concentration, indicating well-explored topics
and helping to pinpoint gaps in the literature.

The comparison of VOSviewer visualizations between the
two conditions clearly highlights the disparity in research
focus. Fig. 2, which examines robotics, machine vision, and
their application in the food industry, shows a sparse and
less connected network (left), indicating a limited number
of review articles and fragmented research in this niche
area. The lower density of terms and fewer clusters further
reinforce the idea that this specific intersection has been
explored very minimally (right), with only 24 documents
identified in the search. In contrast, Fig. 3, focuses on robotics
and machine vision without the food industry context,
presents a much denser and highly connected network,
with 358 documents identified. The presence of numerous
strong clusters and hotspots indicates a well-established and
widely researched field. The lack of significant overlap
with food-related terms in this broader research stresses the
conclusion - that while robotics and machine vision are
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TABLE 1. Keyword comparison on Scopus database.

FIGURE 2. VOSviewer visualizations of the network visualization comparison (left) and the density visualization comparison (right) for reviews
including the keywords for robotics, vision and food.

FIGURE 3. VOSviewer visualizations of the network visualization comparison (left) and the density visualization comparison (right) for reviews
including only the keywords robotics and vision. Without including food.

extensively studied, their specific application in the food
industry remains underrepresented in the literature.

This work aims to bridge this gap. We showcase a
landscape of existing vision and robotic systems currently
used in primary food processing and their challenges in the
form of a technical review. In fact, different issues must
be considered: primary food is prone to deformation and

bruising, and typically exhibits a shorter shelf-life (e.g., fresh
versus dried fruit), which suggests that their handling must be
timely, accurate and non-destructive.

The remaining sections of the paper are structured as
follows. Section II deals with the smart sensing element of
the food process automation system- with an emphasis on
machine vision systems. This section further touches on the
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various challenges impeding installation and operation of
vision systems; briefly introduces Artificial Intelligence (AI)
and it’s impact on the system; and it also outlines existing
contemporary research in machine vision systems to sense
fresh produce and animal products. Section III discusses
the hardware aspects utilized in food processing system
which primarily comprises robotic systems, end-effectors
and material handling (transportation) systems. Section V
highlights some insights regarding the existing literature and
source materials, and provides a summary of the manuscript
along with our concluding remarks on the current state of the
industry and its future potential.

II. VISION SYSTEMS
A. MACHINE VISION: A BACKGROUND
Machine vision (MV) is an advantageous tool that can be
harnessed to automate the inspection of food and agricultural
products. It provides an automated, non-destructive, and
cost-effective technique to accomplish quality inspection,
which has found a variety of different applications in the food
industry. The inspection approaches are normally based on
image acquisition, analysis, and processing. A typical MV
system incorporates four interdependent components:

1) LIGHT SOURCE
Light is a fundamental component in many vision systems
in order to ensure that the objects/scene under exposure
are clearly visible and enable an accurate image analysis.
In this respect, important features to consider in lighting
source are the light intensity and the light uniformity across
the scene. Light intensity should not be too low or too
high to prevent dark images as well as undesired saturation
effects. Light uniformity helps to surpass glare and shadow
effects.

Another important parameter to take into account is the
energy consumption especially in large-scale application.
However, the parameters of the lighting source depend
tightly on the requirements of the application in hand.
The commonly used lighting sources are (i) Fluorescent,
which provide consistent and even illumination, (ii) Quartz
Halogen, which are noted for color temperature stability, (iii)
LED (Light Emitting Diode), which are widely used due
to their energy efficiency and versatility, (iv) Metal Halide
(Mercury), which are used for high-intensity applications,
and (v) Xenon, which are suitable for short-duration and
high-intensity bursts. Fluorescent, quartz halogen, and LED
lighting sources are the most widely adopted in MV
applications. For more in-depth analysis, we refer the reader
to [28], [29], [30], [31], [32], and [33]. A comparative graph
among lighting sources is given in Fig. 4.

2) ACQUISITION SENSOR
Cameras are the eye of any MV system since they provide
the visual input that can be processed and analyzed by the
vision software to further extract and analyse the required

FIGURE 4. Comparison of common MV lighting sources on a scale of 5.
Figure data sourced from [34].

output (e.g., quality control, inspection, measurement,
identification). In particular, they can see object details that
are too small or too fast to be captured by the human
eye, often with accuracy and efficiency. Standard cameras
acquire RGB images through three wideband filters capturing
the short, medium and long wavelength of the light and
encoding the responses in the RGB color space. RGB
images are used in many color-based applications, such
as fruit detection [35], [36]. Multispectral cameras capture
information that is not visible to a typical RGB camera. They
incorporate narrowband filters to divide the light into more
than three channels, such as near-infrared (NIR), or thermal.
Multispectral sensors can be tailored to applications such as
identifying fresh food diseases, maturity, and mapping [37],
[38]. Fig. 5 shows some examples of sensing solutions.

3) PROCESSING UNIT
The processing unit reads, analyzes and makes appropriate
decision pertaining to the task of interest based on the
images acquired by the camera sensor(s). On the other hand,
software programs are normally ad-hoc to the addressed
problem and can be broadly split into two lines, namely
(i) traditional vision algorithms that deal with object edges,
texture, pixel intensity and handcrafted features [47], and
(ii) recent data-driven methodologies that learn from data
in order to approach the problem at hand [48], [49].
These latter have demonstrated cutting-edge accuracy across
various applications. Therefore, the processing unit typically
comprises hardware devices and software that run on them.
The hardware components may involve central processor
(CPU) that can process data as in [50]. CPUs are normally
adopted in vision tasks that implement traditional non-
demanding methodologies. However, recent deep learning
methodologies normally require specialized graphical pro-
cessing units for a real time performance as in [51] and
[52]. Yet, the choice of the processing unit depends on
the complexity and requirements of the application and can
affect the speed, accuracy, power consumption, and cost.
In order to clarify this, in Table 2 we provide a landscape of
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FIGURE 5. Examples of common sensing solutions in a MV system (first two rows) and enclosure-based vision systems (last row) where cameras and
light sources are normally mounted inside an enclosure through which passes the product under inspection [39], [40]. Row 1 (left to right): RGB [41],
multi-RGB [42] and stereo vision [43]. Row 2 (left to right): Depth camera [44], multispectral sensor [45] and Infrared [46].

machine vision-based analysis systems that involve different
processing units for various types of food such as poultry,
beef, fruits, and fish.

4) COMMUNICATION MODULE
Communication module is an essential instrument as it
enables a seamless flow of data between the various parts
of a MV system. It also controls how input and output
information is synchronized in coordination with external
collaboration devices (e.g., a robotic arm that operates and
executes item handling commands and instructions that
are output by vision system). The communication module
may adopt various protocols which have evolved over
time to meet the growing demands of higher resolution,
faster frame rates, and increased data transfer speeds.
Thus, wired and wireless communication standards are
envisioned.

B. CHALLENGES OF MV SYSTEMS
Apart from the initial cost which can be compensated with
the long-term benefits of a MV system, there are several
bottlenecks that may eventually rise during and after the
installation of a MV solution. For instance:

1) CONFIGURATION COMPLEXITY
Traditional computer vision software rely on handcrafted
parameters (e.g., pixel segmentation thresholds) that are
normally determined offline based either on (i) a limited
number of data (e.g., images) or (ii) a large number of
data that is repetitive (i.e., statistically highly consistent)
and does not necessarily mimic the real-time scenario
of the application. In both cases, when challenging and
unseen examples (outliers) are presented to the system,
it fails to perform efficiently. This problem is less prevalent
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TABLE 2. Summary of processing units adopted in various use-cases.

in learning-based methodologies that are trained on large
volumes of data, where the parameters are learning in an
automatic fashion.

2) SCALABILITY
This may occur when a MV solution is setup at a production
line without prior long-term planning to scale it up across
the production facility. This, in turn, poses space and cost
management difficulties.

3) MAINTENANCE
Like any other system, MV systems require monitoring to
ensure that the whole pipeline manifests no anomalies. For
instance, this may entail the implementation of image quality
assessment mechanisms, which help evaluating how well the
acquisition sensor and the lighting sources are functioning.

4) SOFTWARE UPDATE
Data-driven computer vision techniques that require training
may require fine-tuning with new data to improve their
performance. Furthermore, they need to be retrained on newly
introduced item categories (e.g., a system that was trained to

detect red apples can be fine-tuned to accommodate green
apples too).

5) ROBUSTNESS TO REFLECTIVE OBJECTS
This poses a major challenge as shiny items may be handled
less accurately leading to error. This problems evenmagnifies
in fast production lines.

6) HANDLING LIGHT CONDITIONS
In view of the illumination component, it is noteworthy that
in some applications, even if the item of interest is exposed
to artificial illumination, the output image may still require
further postprocessing. In particular, the uncontrollability of
the natural light in outdoor environments (e.g., acquisition of
images of fruits in the field) represents a challenging issue
in MV, since image quality strongly depends on the illumi-
nation, backlight, shadows, reflections, as well as smooth or
abrupt variations of light intensity and chromaticity caused
for instance by time and weather changes. These often occur
in natural scenes and determine undesired artifacts that hinder
both human and machine image understanding [65]. To this
end, enhancement algorithms are necessary to increase the
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image quality and thus consolidate further decision-making
(i.e., quality grading). These algorithms basically process the
image channels or brightness and increase the brightness of
dark areas while preserving that of bright regions, magnify
the image edges and colorfulness, while decrease possible
chromatic noise. Some examples of image enhancers are
histogram-based equalization techniques, e.g., [66], [67],
Retinex and Retinex-inspired approaches performed at single
or multiple scales and implemented with traditional or deep
learning based models, e.g., [68], [69], [70], [71], [72], [73],
[74], [75], [76], multi-level enhancement algorithms [77],
[78], [79], other deep learning techniques, as in [80], [81],
and [82]. The choice of a specific enhancer is generally
driven by the image and application at hand. To this purpose,
it is important to take into account possible a-priori infor-
mation regarding the illumination source and the materials
composing the scene, verifying the hypotheses under which
the enhancer works and - in case of applications with
time constraints - the algorithm complexity and execution
speed. In indoor scenarios, light must be bright enough
to allow visibility and detection of object details, and at
the same time, it must minimize reflections as well as
saturation. Since colors strongly depend on the light and
on the camera’s physical features and setting, images of the
same object acquired under different lights and/or by different
cameras may manifest differ colors. In this case, color
transformation and gamut mapping are necessary to process
colors effectively against light and camera changes [83], [84],
[85], [86].

C. ARTIFICIAL INTELLIGENCE
Before we delve into existing software methodologies
for primary food processing, we deem it necessary to
explain briefly three common techniques, namely artificial
intelligence, machine learning, and deep learning. Artificial
intelligence (AI) belongs to the processing part of a MV
system. It has become ubiquitous in many industrial applica-
tions [87]. AI attempts to carry out tasks, solve problems and
make decisions that often require human-like reasoning and
intelligence such are visual and audible perception [88], [89],
[90]. AI is an overarching term that encompasses other sub-
fields. Two of the most applicable sub-fields in recent days
are machine learning and deep learning:

1) MACHINE LEARNING
Amajor subset of AI that enables machines (e.g., computers)
to learn from data, draw patterns, and make decisions with
limited or no human interference. In other words, machine
learning gives machines the potential to decipher, estimate
and interpret from data on their own without being explicitly
programmed. Depending on the nature and complexity of
the problem, as well as the quantity and quality of data,
three main learning algorithms can be employed, namely
(i) supervised learning, where both input data and its labelled
output are required, (ii) unsupervised learning, in which

only input data are envisioned and typically explored via
clustering techniques to discern correlation patterns, and
(iii) reinforcement learning, where data and abstract labels
(e.g., yes, no) are provided to the algorithm to learn potential
actions and decisions to take. In this context, machine
learning has found its way to many application domains
such as finance [91], healthcare [92], manufacturing [93],
logistics [94], industry 4.0 [95], and climate science [96].

2) DEEP LEARNING
A subset of machine learning that consists in training a
deep Neural Network by leveraging plenty of data records.
Deep networks consist of interconnected nodes that are
distributed according to three types of layers, namely (i) an
input layer that receives the input (e.g., image, text, voice),
(ii) intermediate hidden layers that extract and process
features of the input and pass them forward to an (iii) output
layer that maps these latter to a desired output according to the
problem being tackled (e.g., locations and classes of objects
in an image, prediction of a future state). This type of network
is termed ‘deep’ as they involve abundant hidden layers that
enable the interpretation of complex cues in the input data.
Therefore, such networks are trained with large amounts of
data, which renders them suitable to downstream tasks via
transfer learning where a specific model [97], [98], [99] that
was trained on a particular task (e.g., image recognition) is
fine-tuned to fit another task (e.g., object detection) [100].
This underlines why deep learning has become a cutting-edge
technology in many vision tasks [101].
In particular, one important task that relates to machine

vision for product inspection and quality control is object
detection, which entails the determination of the location and
often the class label of a certain object of interest in the scene.
Object detection has been gaining increasing attention over
the last two decades. To highlight this, we depict in Fig. 6.
Further, in Table 3 we highlight the key-differences between
deep learning and traditional handcrafted feature analysis.
We also illustrate the timeline development of object detec-
tion using traditional schemes versus deep learning in Fig. 7.

FIGURE 6. Publication trend on the task of object detection over the last
two decades. Figure data sourced from [102].

D. MV FOR PRIMARY FOOD PROCESSING
Considerable research has been developed in the relevant
literature so far regarding the primary food processing.
It is to note, however, that MV solutions depend on the
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TABLE 3. Key-differences between traditional engineered features and deep learning.

FIGURE 7. A timeline progress of object detection, traditional
methodologies vs deep learning. Figure data sourced from [102].

nature of food product. For example, the components of
a vision system to grade fruits on-tree are different than
those envisioned to do the grading indoors in a production
chain (i.e., due to differences lighting and available space
for instance). Moreover, the analysis of fruits and vegetables
versus meat, poultry and fish is subject to several key
differences, examples include:

• Viewpoint: fruits like oranges and apples and vegetables
such as tomatoes exhibit a spherical shape which calls
for multi-view analysis in order to cover the whole skin.
On the other hand, steaks and cuts of meat, chicken or
fish require the analysis of one or two sides only. This
implicates different image acquisition strategies.

• Texture: grading fruits is normally relevant to color, size,
and shape, bruises/blemishes, while grading meat, poul-
try or fish may involve thickness and fat content within
the tissue. This entails different grading algorithms.

• Internal quality: internal quality of fruits and vegetables
considers factors like ripeness, and sweetness. For meat,
poultry and fish, tenderness and juiciness are common
properties. This involves different sensing solutions
(e.g., regular RGB versus Multispectral sensors).

In the next sections, we survey existing MV approaches
for fresh produce (e.g., fruits and vegetables) as well as
meat/poultry/fish, respectively.

1) MV FOR FRESH PRODUCE
MV can boost the precision and speed of fruit and vegetable
inspection, yet increasing throughput. Common tasks include

counting and yield estimation, defect and disease detection,
grading, packaging inspection. Some of these tasks may be
performed in outdoor environments, while others may be
carried out in indoor facilities, depending on the application.
For instance, on-tree plum fruit detection was addressed
in [103]. In particular, an altered version of a sate-of-
the-art deep model, namely YOLOv7, was applied on
high-resolution images of plum fruit and scored plausible
results. Postharvest storage is a sensitive step in the fruit
supply chain due to a number of factors such as humidity,
temperature and ventilation. Adequate storage conditions
mitigates losses and ensures uninterrupted supply. Pre-
storage fruit analysis can help identifying premature diseases.
Computer vision was explored in [104] for blueberry disease
classification. After image acquisition, single blueberries are
segmented, followed by traditional texture, intensity and
geometrical feature extraction. Next, several classification
techniques were assessed for the classification task, including
Support Vector Machines and Linear Discriminant Analysis
which performed the best. PowderyMildew disease detection
in strawberries was considered in [105], where a mobile
mini vehicle that incorporates mainly two optical sensors
to increase the field of view for image acquisition, a GPS
module for mission planning, a laptop for data processing,
and an artificial cloud lighting made of black cloth to
prevent direct sunshine. Communication between the GPS
system and the laptop computer was established via a serial
link setting. Color co-occurrence matrix was explored for
feature extraction, and the features are learned by means
of an artificial neural network. Tomato maturity (Roma and
Pear varieties) was assessed in [106] by exploring color
features.

Regular visible light sensors have been used in many
MV systems to inspect visible produce conditions (i.e., size,
counting, blemishes). However, there are numerous plant
diseases that cannot be captured by the visible spectrum
and require in-depth imaging. For example, multispectral
imaging was applied in [107] for plant disease detection in
tomato, potato and papaya leaves, where convolutional neural
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networks and vision transformers were exploited for the
detection task. In [108], a solution that involves multispectral
imaging (covering 25 wavebands) and deep learning was
adopted for defect detection in potatoes (including five types
of defects, i.e. germination, common scab, bug-eye, dry-rot,
and bruise) and yielded a mean average precision of 90.26%.
Quality grading of apples was considered in [109] by means
of multispectral imaging and deep learning. In this regards,
while opting for only one modality (i.e., RGB or multispec-
tral) seems to satisfy the requirements of many MV tasks for
fresh produce processing, a multimodal approach can benefit
many other use-cases. For instance, hyperspectral, 3D, and
X-ray imaging were combined in [110] for quality inspection
of onions, and yielded a classification score of 88.9%
when classifying healthy and defective onions. Although the
proposed classification system achieves plausible results, it is
to note that recent deep learning techniques are prone to
introduce a significant improvement. For examples, RGB and
Hyperspectral imaging were leveraged for banana grading
into 3 classes in [111], and a deep learning model fed with
this bi-modal data was able to reach and overall accuracy of
98.45%.

Produce yield estimation is pivotal for logistic planning.
For instance, storage space, and transportation means depend
depend on the quantified yield (i.e., over-estimated yield
leads to unnecessary extra spending, while under-estimating
the yield causes space and transportation shortages at later
stages). For instance, kiwi fruit detection and counting for
yield estimation was addressed in [112]. It involves an optical
sensor mounted on a tractor that surveys the area of interest
at low speed. Afterwards, the acquired images are fed to
a software that implements image pre-processing, stitching,
and fruit counting algorithms and outputs an estimated yield.
Since kiwi trees develop a foliage canopy that blocks sunlight,
the fruits were exposed to a LED source mounted upside
down next to an optical camera to enable fruit detection.
An over-the-rowMV systemwas developed in [113] for apple
fruit counting and yield estimation. It comprises a tunnel-
like housing, RGB 3D sensors, a LED lighting. Interestingly,
dual imaging to capture opposite sides of the apple trees
was compared to regular single side imaging, and they
score 82% and 58% crop estimation accuracies, respectively.
The advantage of combining housing structures and uniform
LED lighting stems from their independence from natural
lighting conditions as they can be used during daytime and
nighttime.

Yet, it is worth-noting that, depending on the specifics of
the application, visual inspection of produce can be carried
out either in the field or in the production facility. This
implies different sensor configuration and placements as
well. For instance, in-lab MV systems normally rely on
artificial lighting which does not impose constraint on the
usage time. On the other hand, some on-tree inspection
systems can perform only during daytime, while other
systems can work during daytime and nighttime (e.g., Fig. 8).
Furthermore, indoorMV systems are normally deployed with

an enclosure/housing that accommodates the vision sensor
and the lighting source in order to enable uniform lighting
conditions (e.g., Fig. 5 bottom row). Another feature that
distinguishes indoor MV systems from outdoor systems that
the camera and lighting pose. In particular, most indoor
systems mount cameras and lighting sources in a top-down
position as the products under inspection typically roll on
a production platform (e.g., conveyor belt), whilst in-field
MV solutions are deployed various setups depending on the
subject canopy. For example, kiwi vine canopies require a
bottom-up sensor and lighting implementation, while mango
or apple trees may require a side-mounted camera (e.g.,
Fig. 8).

2) MV FOR FISH, POULTRY, AND MEAT
It is evident that fish, meat and poultry are far more sensible
than fresh produce as they have shorter shelf life and are
more subject to contamination. Moreover, they differ from
fresh produce in the sense that fresh fruits and vegetables are
typically harvested and subsequently processed. By contrast,
processing fish for instance, may involve extra pre-processing
steps such as removing the head and tail parts, trimming the
fins and gutting.

In this context, the work in [115] develops a MV system
to determine the orientation and cutting points in trout fish.
It comprises a housing with a RGB sensor and LED lights
both mounted on the ceiling of the case in top-down position,
a computer that incorporates the imaging modules, and a
power supply. In order to acquire the images, the trout subject
is laid down at the base of the stainless steel case, while the
LED lights and the camera are turned on, once the images
are acquired they are communicated to the computer. This
latter consists in traditional thresholding techniques for trout
segmentation from the background. Once segmented, the
centroid and orientation of the fish are determined. In [116]
MV was applied to estimate the total length of fusi form fish
by means of regional convolutional neural networks based on
optical sensors, where the fish size was converted from pixels
to real world via ArUco markers. 3D imaging was explored
in [42] for quality grading of Atlantic salmon. Flatfish
grading with MV was addressed in [117]. It consists mainly
of three components, namely a low-cost camera, LED lights
and a dark room to prevent shadows from compromising
image quality. The vision software implements traditional
thresholding andmorphological filtering steps. Near infra-red
was employed in [118] for herring fraction grading into three
classes (milt, roe and waste) based on a multi-class support
vector machine fed with a features like width and height.
The developed system was able to classify roe class from
the other two, while it suffers to separate milt from waste
samples. This might be mainly due to the extracted features
that are not representative enough of the three classes.
A vision pipeline was devised for fish grading according to
pesticide exposure in [119]. In particular, the eye tissue of
the fish was determined as a region of interest as fish eyes
manifest changes when exposed to pesticide. Next, statistical

152588 VOLUME 12, 2024



S. Vasudevan et al.: Machine Vision and Robotics for Primary Food Manipulation and Packaging: A Survey

FIGURE 8. On-tree produce assessment instances [112], [114]. The camera and light source position depends on the growth side of the
produce. Some systems perform independently of sunlight, while others work better during daytime.

features are extracted from this region and fed to different
machine learning classifiers for further classification, where
random forest turned out to be the best classifier. Fish eye
region was also tailored in [120] for freshness estimation.
Gaping blemishes detection in salmon was explored in [121],
where traditional histograms of oriented gradients features
were compared against convolutional neural network fea-
tures and these latter demonstrated superior performance.
Hyperspectral imaging was studied for differentiation of
organic and conventional farm-raised salmon fillets in
fresh and chill-stored conditions in [122], based on three
machine learning classifiers and highlighted the potential of
hyperspectral imaging of these two fish varieties. Freezer
burn is a leathery condition that occurs when air reaches
and dries the surface of food, causing color changes. It was
studied in [123] by comparing hyperspectral to RGB imaging
of frozen salmon, and hyperspectral imaging performed far
better.

In this regard, processing chicken samples from a MV
standpoint differs from processing fish in several aspects. For
example, color is a key-factor when adopting visible RGB
imaging. Shape is another feature to consider when process-
ing chicken parts. In particular, chicken portion sorting (i.e.,
breast, leg, fillet, wing, and drumstick) was addressed in [124]
via MV with an optical sensor. Handcrafted features based
on geometrical aspects, colour, and texture are extracted
from the images and fed to different classifiers for the
sorting task. An overall accuracy of 93% was achieved with
a conveyor belt of 0.2 m/s. Although the performance of
the developed system is reasonable, it was not validated
for higher conveyor speeds that are normally adopted in
industrial settings. Wooden breast muscle condition detection
was conducted in [125] by means of global shutter RGB
imaging from a side view of chicken fillets passing along
a conveyor belt. Fillet segmentation consisted of simple
global thresholding, combined with hole filling and median
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filtering. Fillet curvature was determined by applying second
degree polynomial fitting. In [126], weight estimation of
broiler carcass was studied with 3D imaging. In particular, the
carcass is segmented into 4 parts, namely drumsticks, breasts,
wings, and head/neck. Afterwards, 2D image geometric
features are drawn and fed to different regression models for
weight estimation. Hyperspectral imaging was employed in
[127] for the assessment of egg quality (i.e., freshness and
defection) by means of deep learning. Egg quality indicators
such as geometric dimensions, shape index and the mottling
grade were explored for grading the exterior quality of eggs
in [128].

With respect to fish and chicken, beef offers a dif-
ferent color and texture profile, which may imply the
implementation of different techniques. In [129], beef meat
freshness was classified according to two classes- fresh
and spoiled. The developed MV system consists of an
enclosure, at the top of which a camera and fluorescent
lights were mounted in top-down position and 45 degree
incidence angle, respectively, a digital signal processor and a
computer. To tackle the classification task, color and texture
features are extracted from the images and fed to probabilistic
neural network and linear discriminant analysis for decision
making. It was found that using both color and texture
features outperforms the scenario where each of them is used
individually. Nevertheless, the study remains inconclusive
as the number of beef samples used in the experimental
analysis is somewhat limited. Further, as aforementioned,
MV solutions that draw only handcrafted features from the
subject images often encounter generalization bottlenecks
when deployed in different setups with domain shifts (e.g.,
different lighting, different sensor). Beef cut classification
was addressed in [130] by means of multispectral imaging
and machine learning. Precisely, beef cuts were exposed
to a lighting source, and a top-down multispectral sensor
(500-800 nm) was used to capture six-band images. Several
feature types were extracted from the acquired images
and fed to various classifiers including linear discriminant
analysis. support vector machine, and random forest (RF).
A combination of multiple features outperformed each
feature when used individually. In Table 4, we report several
MV works and their components for different food item
analysis.

It is worth-noting that, apart from the choice and quality
of imaging sensors, the quality and uniformity of lighting
devices, the processing algorithms play a pivotal role in
the precision of the decision-making process. In particular,
manually engineered feature extraction techniques differ
drastically from state-of-the-art deep learning methodologies
in many aspects. In this context, the choice among these two
options depends on many criteria such as speed, cost, data
availability, among others.

In this context, depending on the use-case requirements
(e.g., product grading only versus grading and packaging),
a MV system can be standlone, or execute tasks in coordina-
tion with another system. For instance, many industrial setups

involve a vision system that discerns visual properties (grade,
size, color, among others) of a certain item of interest, as well
as a robotic system in order to handle the products according
to the visual attributes inferred by the vision system (e.g.,
place the high-grade items into a package and discard the low-
grade ones). We provide in Fig. 9 an abstract depiction of a
MV system in collaboration with a robotic handling solution.

III. ACTUATION SYSTEMS
This section deals with the elements of the food processing
system, which physically manipulate or bring about a change
in state to the food product. To align with the scope of
the paper we will only emphasize on robotic systems here,
and they typically include robot manipulators, end-effectors
and material handling (transportation) sub-systems. Food
grade material complying with the European Food Safety
Authority (EFSA) should be the only material considered
for constructing the surfaces of the physical actuators, which
come in contact with the food [135]. The material property
would vary depending on the application, compatibility with
the food product and sanitary design features, and any other
material which is unapproved must be strictly avoided [136].

A. ROBOT MANIPULATOR
Utilization of robot manipulators has been steadily increasing
over the last decade [19]. Especially when considering
the demographic and economic situation of the European
food industry, as outlined in Section I, which includes
lower median wages and a prevalence of low-skilled labor
coupled with labor shortages, the need for integrating robotic
manipulators in food production is highly warranted. The
introduction of robots in the production line improves
the repeatability of the process and ensures uniformity in the
production standard. Another advantage of robots over other
dedicated electro-mechanical machinery, is their capability
to be reprogrammed to perform a wide range of tasks and
varied operations, making it more attractive to medium scale
producers with a wide variety of products/processes [137].

Robotic manipulators coupled with vision sensors or any
relevant sensing element are prevalent in the food processing
sector for a few commercial applications in the food industry.
These include rapid pick and place of food products, palletis-
ing individual and bulk foods, and end of line packaging.
The aforementioned operations require minimal product
perception for real-time object manipulation, as the products
typically handled have predictable physical properties and
behaviors [137]. However, the robotic manipulation of
food types which have unpredictable physical behavior,
and fragile/delicate structural integrity is not as prevalent.
These food types include soft fruits and vegetables, poultry
products, fish and seafood andmeat products. The technology
for the complete butchering, portioning, packaging and
material handling (primary processing) is still unattainable as
a complete process. However, certain phases of the process
are being automated and research is constantly evolving to
utilize the advancements in sensor and end-effector hardware
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TABLE 4. Summary of MV technologies.

FIGURE 9. Components of a typical MV system in collaboration with a robotic system for fruit quality approval. The MV system is on the right hand
side, and provides information to the robotic manipulator in order to pass the product under inspection on for logistic treatment in case of approval,
and drop it off the processing line otherwise. The information might regard the grade of the product (i.e., according to criteria such as health status,
size, ripeness) as well as location coordinates to enable its handling.

capabilities, along with evolving processing pipelines pow-
ered byAI. Advances are now beingmade in the processing of
delicate fruits and vegetables [138], poultry processing [139],
[140], and red meat processing [141], [142], [143], and recent
research will yield viable solutions.

Robots come in various form factors and configurations,
each tailored to specific tasks, with distinct advantages
and limitations. Some types excel at particular tasks more

effectively than others. There are four physical configurations
or types of robots, which are prevalent in the food processing
industry. These include:

1) SCARA ROBOT ARM
SCARA is an acronym for Selective Compliant Articulated
Robot for Assembly. It has a work envelope which is
similar to a lobed hollow cylinder [144], showcasing a

VOLUME 12, 2024 152591



S. Vasudevan et al.: Machine Vision and Robotics for Primary Food Manipulation and Packaging: A Survey

large horizontal plane of operation with limited vertical
movement. As the name suggests it is primarily used in
assembly [145] and packaging applications [146]. SCARA
manipulators are predominantly used in the electronics indus-
try, with increasing utilization in the pharmaceutical and food
production industries. Their kinematic structure makes them
highly efficient for performing pick and place task, primarily
owing to their dedicated prismatic joint, which provides
the linear movement (whereas in robot configurations, this
linear motion is achieved by the combination of multiple
joints). Especially given the strides forward in their ease
of cleanability and maintaining hygiene, SCARA robots
are now finding applications in secondary food processing
applications [147], [148].

2) ARTICULATED ROBOT ARM
Articulated robots or serial-link manipulators have a con-
figuration, which is the most representative of an actual
human arm in terms of capabilities, and thus are also
referred to as anthropomorphic robots. Articulated robots
typically have a spherical or hemi-spherical work envelope,
and they have a larger work-envelope compared to other robot
configurations, having similar physical dimensions [149].
This robot configuration is highly versatile, has a high degree
of freedom (DOF) enabling it to perform complex operations,
and is suitable for a wide range of applications including
(but not restricted to) material handling, welding, painting,
surgery, food industry, etc. [150]. Dual-arm articulated robots
are emerging technologies capable of performing highly
complex tasks akin to a human, and are used in specialized
applications such as biomedical laboratories [151], cable
manipulation [152] and cooking [153]. Articulated robots
are used in primary food processing for performing tasks
like cutting [154], sorting, packaging and food handling.
The availability of hygienic robot manipulators which can be
safely washed down, to comply with the food safety standards
is promoting the applications of articulated robots in food
production [155].

3) DELTA ROBOT
Delta robots or parallel-link manipulators have a layout
configuration consisting of three to six arms, connected to
a universal base with several rotational joints [147], creating
a mechanism which makes it look spider-like. Delta robots
have a hemispherical or a truncated conical work envelope
(which is more restrictive than articulated robots); their
lightweight links and individualized parallel arm placement,
result in reduced inertia and load on the individual motors
enabling very fast motion and reduced vibrations [156]. They
are also renowned for their accuracy, and are predominantly
used in industries where speed, efficiency and precision
are paramount. This enables the high frequency handling
of a large volume of products, making them a perfect
choice for the food industry. Moreover they are suitable
for other industries as well including (but not restricted to)

the electronics and pharmaceutical industry. In primary food
processing, delta robots are increasing in popularity with the
prevalence of hygienic manipulator options [157], they are
utilized for mainly for sorting and packaging applications.

4) CARTESIAN ROBOT
Cartesian robot or gantry robot features a configuration based
on three orthogonal and linear axes. They have a work
envelope similar to that of a rectangular prism or cuboid
shape, enabling these manipulators to have easier planning
and control. They have high payload capabilities and high
accuracy, while being the cheapest type of robots in the
market owing to their limited flexibility [147]. These features
and their robust configuration enable them to effectively carry
heavy loads, efficiently and accurately. Furthermore, their
ease of maintenance and clean-ability, meets the hygiene
requirements of the food industry to perform pick and
place tasks and storage/retrieval operations [158] Moreover
they find application in the electronics, automotive and 3D
printing industries as well.

The aforementioned manipulator configurations are repre-
sented in Fig. 10

5) COBOTS
Cobots are collaborative robots designed to work safely
with humans, sharing their work envelope. They have grown
in popularity during the last few years, with increasing
applications across several industries [19].

Cobots have certain advantages over traditional industrial
robots in primary food handling, specially tailored suitability
for SMEs. They feature user-friendly interfaces, obviating the
need for specialized robotics engineers or programmers to
manage basic applications, aligning well with SMEs [163],
which often lack highly skilled personnel. Additionally,
cobots require comparatively simple installation procedures,
as they typically do not require the traditionally extensive
safety measures required by industrial robots. Their pro-
tective systems and slower operational speeds enable safe
collaboration with human operators in shared workspaces,
while their design facilitates the repetitive handling of
lighter loads, reducing ergonomic risks commonly associated
with primary food handling. Cobots also boast a smaller
installation footprint compared to their industrial counter-
parts, optimizing space utilization in food handling facilities.
Moreover, leading cobot brands like Universal Robots offer
compatible equipment and software solutions from external
providers, streamlining device integration through the cobot’s
Human-Machine Interface (HMI) and enhancing operational
efficiency and versatility. Cobots cannot directly replace
workers’ positions [164]. The production system should
be adapted to integrate cobots correctly with human-robot
collaboration. Factors such as ergonomics, safety, layout, and
the study of operations easily carried out by cobots must be
considered in the evaluation.

The previously discussed manipulator configurations are
succinctly represented in Table 5, with salient points
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FIGURE 10. Examples of the various robot configurations utilized in the food industry. (From left to right) articulated robot [159], cartesian robot [160],
delta robot [161], and SCARA [162].

TABLE 5. A brief comparison of manipulator hardware configurations.

highlighting their features, pros, and cons. Additionally,
a representation of the advances in robotic technologies
and available commercial robot-based solutions across the
various food categories, are depicted in Table 6 to provide an
overview of the state of research - highlighting the difficulty
to materialize into market ready solutions. However, the
availability of robots capable of being used in food processing
(using food grade material, hygienic design, wash down

capability, temperature resistance, etc.) is on the rise. The
options are so numerous it is not feasible to list and evaluate
individual robot models, even if we just consider the major
robot manufacturers. The Fig. 11 is a subjective rating of
the various robot configurations, and how they compare with
each other, based on the available performance parameters
cataloged on the website of the major robot manufacturers
[157], [165], [166], [167], [168] .
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TABLE 6. Robotic technologies in primary processing of food.

FIGURE 11. Graphical representation based on a relative analysis of the
performance capabilities of various types of food processing robots, from
the biggest robot manufacturers, compared across common parameters
[157], [165], [166], [167], [168].

B. END-EFFECTOR
Handling is the main application of industrial robot instal-
lations carried out [19], and the pick and place process is
the most common operation. The robot end-effector must be
able to quickly grip the product, perform the ‘pick’ operation,
provide a firm grip to prevent the product from being ejected
or displaced during the movement between pick and place,
and release the product rapidly with precision in position and
orientation that the system requires (place operation).

Robot manipulation systems can be classified according
to their grasp, hold, and manipulation capabilities. The
grasping capability goes from the simplest, gripping the
product in a predefined position and orientation, to increasing
the system’s complexity to handle products with large

dimensional and shape tolerances, and finally, being able
to manipulate products with unknown positions and ori-
entations. The ability to hold a product varies from the
simplest scenario, with no external disturbances, to the
most complex scenario, where the manipulation system
dynamically adapts to the object’s characteristics and system
disturbances (accelerations, impacts, product deformation).
The manipulation capability goes from predefined and
previously known positions to being able to manipulate by
achieving the position and orientation of the product, even
when the object is unknown, and the system itself can deduce
its properties.

There are various technologies to choose from when
creating or selecting end-effectors for robots. The two
significant systems commonly used in the industry are
astrictive and contact systems, each with advantages and
disadvantages. Astrictive systems often use air in both suction
and over-pressure.

Air suction with suction cups is a popular choice; it
allows for product manipulation through pressure difference,
is quick to act, is lightweight, and can be adapted to various
shapes and height tolerances. However, they have limitations,
such as malfunctioning on irregular or dirty surfaces,
difficulty handling porous products, low shear forces limiting
lateral accelerations in pick and place processes, and high
energy consumption; they also risk damaging the product and
its surface. Understanding these pros and cons is crucial for
making the right choice for automation needs.When handling
high-volume and heavy products, a practical solution is to use
multiple suction cups on a single manipulation system. The
force exerted on the product surface depends on the generated
vacuum and the surface area of the suction cup. In heavy or
large products is necessary the use of several suction cups,
for these cases, it is essential to consider using independent
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vacuum systems and/or cutoff valves. These can help limit the
maximum airflow when the suction cup does not seal tightly
against the product, ensuring efficient and effective handling.
In complex shapes products, suction cups must be distributed
along the product to adapt to its shape. 3D printing systems
can facilitate manufacturing multi-suction cup end-effectors
with complex shapes and reduced weights, increasing the
adaptability and versatility of robotic systems.

Blowing allows product manipulation by generating the
Bernoulli effect when a high-speed air stream over the
product surface creates a depression over the product that can
be used to manipulate it. These systems enable contactless
product handling and are simple and robust, with forces
distributed over a wide surface area, making them suitable for
light, flat, and fragile products. This system does not transmit
shear forces, so it is necessary to incorporate stops to prevent
the product from being released during translation.

Contact manipulation or gripping systems are widely used
in robotic manipulation. These systems can be classified
according to the number of fingers, the range of finger
motion, the type of motion (angular or parallel), the type
of actuator used (usually pneumatic or electric), the closing
force, and the shape of the fingers. Pneumatic actuators are
very easy to control, have a good weight-force-speed ratio,
do not suffer from mechanical blocking issues, and are easier
to control than electric actuators; however, they do not allow
for position control. Contact manipulation requires that the
lateral surfaces where pressure is applied to the product be
cleared during pick operation and place operation.

Parallel grippers ensure the same finger force regardless
of the position of the fingers. Require robust linear guides
(friction or ball screws) for handling high loads or long
fingers, limiting their range of motion. Fingers operate
perpendicular to the product and can adapt to its shape.
They offer superior grip precision, irrespective of object size.
In angular grippers, fingers pivot at a short angle, offering
internal mechanical simplicity and durability compared to
parallel grippers. The finger angle varies depending on the
size of the object. In radial grippers, fingers pivot at a
large angle, providing workspace flexibility and collision
avoidance during the robot approach but requiring higher
object clearance.

Adapting grippers or end-effectors to accommodate a
variety of shapes and sizes is a difficult task not solved for
all cases. In many cases, automation processes in primary
packaging are designed for manual operation. The manual
operation process cannot be directly translated into a robot
process due to special restrictions in robot automation,
particularly for robot grippers.

1) END-EFFECTORS FOR FOOD
For a proper selection of the robotic gripper for primary
food handling, it is necessary to analyze the product and its
characteristics, considering its properties and arrangement
within the process. Understanding the product properties is
the foundation of any handling system. Typically, not all

information is available in advance, and it is necessary to
investigate its characteristics and tolerances, including max-
imum and minimum dimensions, shapes, potential grasping
areas, location of the center of mass, and maximum pressure
not to damage the products. It is necessary to study the
process to be carried out with the product, including the
sequence of movements, position accuracy, accessibility to
the product, and the distribution of various elements such
as conveyors or auxiliary systems. It is crucial to consider
the distribution of the product in the process to facilitate the
design of the robot end-effector. Significant modifications
are often required to simplify and make the handling system
feasible. Fig. 12 summarizes the most significant steps for the
selection and/or design of a robot end-effector.

In the industry, the preferred parameter is to go as fast as
possible to achieve the shortest cycle time, thereby optimizing
the economic performance of the installation. Meeting speed
requirements is challenging when the object’s properties are
not fully defined or vary over time, as in primary food
handling. Adapting the handling system to various shapes
and sizes involves using end-effectors with wider motion
ranges, which are heavier and, therefore, more challenging
to achieve a reduced cycle time. The ultimate solution is a
compromise among various requirements, where the entire
set of equipment used, their distribution, the robot, and the
handling system must be considered. Simple solutions are
generally those that achieve a reduction in requirements,
lower costs, and simplify processes.

There is a growing interest in developing new end-effectors
for robots. Pneumatic end-effectors are advancing towards
new, more flexible systems thanks to 3D manufacturing tech-
niques, modular systems suitable for collaborative robots,
and new materials. These new features can facilitate food
manipulation [177].

Different challenges limit finding effective end-effectors
for robot primary food handling [178]. They face many
difficulties, such as softness, fragility, irregular shapes, wet-
ness, slipperiness, sticky surfaces, and hygienic requirements.
End-effectors must have simple motion, hygienic design,
high-speed operation, and low cost. End-effectors are plenty
of opportunities for robotic end-effectors due to an aging
society and labor shortages. Soft robotics end-effectors have
increased recently, but only some user cases have been
reported. The high mix and low volume are the most
significant difficulties in the food industry.

Current robot end-effector designs have been studied
considering their mechanism, degrees of freedom, and
grasping capabilities [179]. End-effectors with compliant
mechanisms, with three or more phalanges, are adequate
for complex shapes. Constrained mechanisms with rigid
links are good for heavy objects, but their motion range is
limited. Underconstrained mechanisms with rigid links are
adequate to undefined shape objects exerting high forces,
but their design limits their range of motion and increases
the mechanical complexity. Academic researchers have been
focused on developing underconstrained mechanisms and
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FIGURE 12. Flowchart for robot gripper selection and design process. Begin by thoroughly studying the product and its associated manufacturing
process. Next, based on the insights gained from the initial study, choose the appropriate gripper technology (astrictive [176]) and determine the
optimal robot/gripper process. Proceed to assembly and commissioning, where the behavior of the gripper is carefully checked. Simultaneously,
optimize the robot process, taking into account any necessary adjustments or potential re-designs.

actuators. The authors consider passive-compliant mecha-
nisms with rigid links and gecko-inspire surfaces the best
for handling objects with different shapes and weights. They
have a balance between flexibility and strength. If accurate
grasping forces are requested, constrained mechanisms with
rigid links are the best. No position and control forces have
been achieved with compliant links with underconstrained
mechanisms, but the ability to manipulate different shapes
increases.

In agriculture, there is prominent research on soft robotics
end-effectors [180]; they look for improved flexibility, safety,
accuracy, and adaptability. Soft robotics is a promising
solution to the challenges of harvesting and handling
agricultural products. They have gentle behavior but should
advance in control, sensors, grasping evaluation, reliability,
standardization, materials, and mechanical design [181].
Harvesting requires much low-skilled labor working in an
unfriendly environment. Harvesting involves grip and detach-
ment, where many simple operations should be considered,
such as cutting, pulling, bending, twisting, or combinations.
Current soft end-effectors’ performance does not fill har-
vesting labor gaps; maybe soft end-effectors that combine
simple operations could cover their needs. Most of the
soft end-effectors have only been tested for a few samples
and only a specific crop. Soft end-effectors need design
standardization [182]. Despite potential advances in using

soft robotics end-effectors, the most popular end-effectors are
multi-finger contact grippers alone or combined with scissors
or saw [183].

End-effectors have the opportunity to sense products while
touching them. Tactile sensing in agri-food manipulation has
a potential interest in robotic harvesting (ripeness, quality,
pest control, etc.), primary packaging and handling (gentle
manipulation and quality control), and kitchen robots (control
systems). Current tactile sensors need to increase sensitive
areas, improve dynamic ranges, increase resolution, and
develop commercial calibration systems. In the industry, the
inherent complexity of agri-food products limits the use of
the complex tactile sensors developed [184].

Much automation of product lines for packaging fresh
products has been done according to human handling. These
lines are a good opportunity for robotics, but many challenges
remain for robot manipulation should be developed to
replace human handling. Soft robotics end-effectors are an
opportunity solution, but their main limitations are lack
of motion control, tactile sensors, dexterity, and still high
investment in robotics [185].

The variability in shapes, dimensions, and sensibility
of agri-food products makes it necessary to find handling
systems capable of meeting these requirements. The 3D
printing manufacturing of soft robotics end-effectors presents
a clear opportunity [186] in this market because:
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FIGURE 13. Examples of end-effectors in robotic primary food packaging: a) RobotBacher flex 3D
printed self-centering enclosing gripper for poultry from Marel [188], b) compliant 4 fingers 3D
printed in FDA polyamide gripper with SLS printing technology from automatics and industrial
informatics research institute [189], c) Suction cup gripper for salmon handling from Gripwiq [190],
d) Underactuated mechanical gripper from Lacquey [191], e) piSoftgrip for fruits vacuum-based soft
grip from Piab [192], f) Soft gripper fingers for the industry from SoftGripping GmbH made it in
food-grade silicone [193], g) A single piece of three-finger 3D printed gripper made it in
Polyamide [187].

• It is a quick way to find soft end-effectors customized
for specific features and applications.

• Reduce manufacturing complexity.
• Short implementation times.
• Provide an easy way for design iterations.
• Provide the ability to manufacture parts that can-
not be made with conventional manufacturing tech-
niques [187].

• Open the possibility of using various materials and
integrating sensors.

The current major issues of 3D printing manufacturing
are different methodologies, materials, resolution, reliability,
and repeatability. Despite that, different manufacturers have
made straightforward advances using 3D printing technology
to implement end-effectors in robotic primary packaging
Fig. 13. When the dimensions are highly irregular, increasing
the finger aperture range Fig. 13a is necessary. If the product
cannot tolerate high suction forces, the area can be increased
with suction cups covering a large portion of the product
surface Fig. 13c. It is necessary to find the optimal geometry
that adapts to each product. Various technologies have been
employed to achieve this. Infra-actuated mechanisms consist
of rigid solids and joints that have more degrees of freedom
than the number of actuators. Each of the solids is locked
upon contact with the product. Usually, there will be as
many contact points as rigid solids and infra-actuated degrees
of freedom the end-effector mechanism has. The main

drawbacks are the lack of trajectory control and difficulties
finding mechanisms that lock as needed to grasp the product.
Some examples in the market are in Fig. 13d. The alternative
to rigid solids is to use flexible materials in the end-effector’s
fingers that adapt to the shape of the products to improve this
contact and limit high-pressure contact points. It is necessary
to increase the number of contact surfaces, reduce contact
rigidity, use independent and self-adaptable actuators for each
finger Fig. 13e, and reduce weight to avoid inertial efforts
due to high-speed movements. 3D printing allows for designs
in a single piece an end-effector with multiple independent
fingers Fig. 13b with pneumatic actuators Fig. 13g. Very
soft materials such as silicone can design movements that
mimic human finger movements, thus allowing for enormous
adaptability to various shapes Fig. 13f.

After analyzing grippers currently used in the industry for
primary food handling, it is possible to deduce the general
properties of the different systems employed, summarized
in Fig. 14. In these industrial designs, design modifications,
adaptations to specific products or processes, or new
materials can significantly change the main characteristics
shown in the Fig. 14.

C. LOGISTICS
Material handling and transportation are two essential
components in the world of logistics and supply chain
management, especially in the context of primary food
processing.
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FIGURE 14. Overall comparison of robot gripper features for primary handling in the food industry.

• Material handling involves the art and science of mov-
ing, packaging, storing of substances in any form [194].
It primarily deals with the efficient handling of materials
within a predefined area, such as a production facility.
This includes the use of equipment like conveyors,
elevators, pumps, and cranes.

• Transportation, on the other hand, is the process of phys-
ically moving products between different geographical
locations. It plays a role at various stages of product
completion and involves the use of trucks, rail, ships,
and airways for moving products across large distances.

While material handling and transportation may appear
analogous as they both involve product movement, they
fulfill unique roles within the supply chain. Material
handling focuses on the internal management of mate-
rials, while transportation is responsible for the external
movement of products. However, to avoid confusion in
the terminology of material handling- typically referring to
moving products within a facility, and material handling-
involving robotic manipulation (such as pick and place),
we will refer to material handling as ‘transportation’ in
the remainder of the paper. In this section, we will delve
into the transportation (material handling) principles of
food processing and highlight advancements in related
technologies.

Transportation especially in food production, is a key area
of focus primarily due to the fragile nature and biological
material property of food. If the working environment or
equipment is not maintained in the optimal conditions or

predefined sanitary standards, this can cause rapid decrease
in the quality of the food product, due to decay or disease.
In order to prevent the deterioration in the quality of the
food products, the equipment hardware which comes into
direct contact with the product must be constructed with
materials which are resistant to corrosion, which can also
be easily cleaned [195]. Some of the guidelines which can
greatly improve the efficiency of transportation in production
processes are as follows:

• Consolidate the product movement and handle it in bulk.
• Automating the process wherever applicable.
• Employ gravity to act as a primary mover of product
whenever possible and utilize all the layers of the
building.

• Avoid unnecessary product movement and optimize the
processing plant layout to minimize movement and
place related activity and operation zones near each
other.

• Combine operations to eliminate the handling between
them [196].

Different transportation approaches are used based on the
physical property of the respective food product. One of
the biggest factors determining the nature of the equipment
to perform the local transportation, is the consistency and
structural integrity of the food product. Based on the
medium (nature) of transportation, you could broadly classify
conveyors into mechanical conveyors, fluid conveyors, and
monorails. However these are broad-stroke categories and
there are numerous sub-types for each of them. Some
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additional details regarding the various conveyor types are as
follows:

1) MECHANICAL CONVEYORS
Mechanical conveyors are systems designed to transport
bulk materials or goods using mechanical mechanisms like
belts, screws, or rollers. They facilitate the movement of
materials along predetermined paths within industrial settings
for efficient handling and processing. Belt Conveyors have
long been the backbone of production operations, since
they were popularized in the mass production assembly
lines of the Ford Motor Company [197]. In the context of
food production, their capabilities for transporting bulk food
products which are generally non-abrasive, transport stable,
uniform size and shape, and non- reactive, are unparalleled.
The most bare bones construction of a belt conveyor entails
a seamless belt, which is maintained under tension between
two or more rollers (where at least one of them acts as the
driver). However, an issue particular to the food sector would
be the emphasis placed on the material of the belt, which
comes in direct contact with the food. The belt can be made of
homogeneous or composite materials, including fabrics, plas-
tics, and metals. Each material offers unique characteristics,
depending on the application, environmental factors, cleaning
requirements, and food-specific properties [196].
Based on the nature of belting there are several categories

for distinguishing between the various types of belt convey-
ors. They are:

• Homogeneous flat belts are manufactured from a single
extrusion of thermoplastic elastomer. This belt possesses
the required physical and material properties, making
it safe for coming into direct contact with food during
primary processing. The tops of the belt can either be
smooth or textured. Butt welding the material is the
preferred method for sealing the belt, and creating a
completely flush seam.

• Fabric-reinforced belts are manufactured by incorpo-
rating a reinforcing fabric/carcass layer sandwiched in
between thermoplastic or rubber surfaces. Ply belts are
comparatively inexpensive, and can be smooth on the top
or textured. These belts are made continuous/endless by
means of press welding, temporarymechanical fasteners
can also be used. However, they are generally considered
unsanitary for food safe belts [198].

• Positive-Drive homogeneous belts do not operate with
the traditional friction rollers. On the contrary the drive
is transferred to the belts by means of an array of teeth
on its under side, and these teeth engage with a sprocket
wheel or a toothed drive attached to a rotary motor. The
teeth element could be extruded from the belt material
during production, making it an integral part of the
belt. Or they could be welded to the underside of an
already extruded flat belt. They are usually made of
homogeneous food safe material, which eliminates the
risk of exposure of unsafe reinforcement material, while
also avoiding the use of temporary fasteners and face

similar issues as that of ply belts. As they are positively
driven (strong link between belt and drive), they can
handle significant loads.

• Modular belts are typically plastic belts consisting of
modules, in the form of platelets which are connected
and held together by pins. These belts are positively
driven by means of a toothed underside which engages
to a sprocket wheel or toothed drive or a low tension
drum motor drive. Modular belts are renown for
their minumum friction, high strength and a high
resistance to corrosion, abrasion, and cleaning agents.
Additionally, they are well suited for systems requiring
complex curves in converging and diverging production
lines. However it is possible that creep and material
fatigue, with constant exposure to extreme temperatures,
abrasive food particles, and chemical elements present
in food could comprimise the aforementioned physical
capabilities.

• Wire and Metal belts consist of metal wires which are
woven together from individual strands. They have open
structures which can allow air and fluids to flow through
the belt. These belts can convey the products along
straight lines and through curves along varying elevation
levels, and can be operated at high temperatures ranging
between 150 ◦ C to 800 ◦ C. The design of the individual
cable strands are made in the form of loops, which are
interconnected with joining clips or splice strands.

• Round and V-profile belts are typically utilised to
transfer light weight objects. The shape of the profile
enables a strong tension and minimal contact with the
product being conveyed. They are utilized for food
coating, and for spreading or separating the product, and
are often used in packaging applications. The materials
utilized for producing these belts are homogeneous,
avoiding the hassles posed by the ply belt types [199].

The Fig. 15 is a representation of the various types of
mechanical conveyors utilized in the food industry.

2) VIBRATORY CONVEYORS
Vibratory conveyors propagate their payload, which (in the
food sector) primarily consists of bulk solids and granular
material, by repeatedly displacing them over small distances.
The payloadmaterial can either slide along or bemomentarily
thrown forward from the surface of the conveyor deck,
with each displacing stroke. The mechanism which promotes
the flow of materials along the conveyor deck is through
sinusoidal vibrations [205]. However, depending on the
application and nature of the prime mover, different vibration
patterns could be achieved. The linear vibration pattern
is the most suitable for transporting solid food products,
additionally, it also does not require the utilization of gravity
to move the product along the deck (although it does have a
significant impact on the performance) [206].
Vibratory conveyors are capable of performing addi-

tional operations on the transferred product, some of these
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FIGURE 15. Examples of the various mechanical conveyors utilized in the food industry. Row 1: (From left to right) homogeneous flat-belt
conveyor [200], positive-drive homogeneous belts [201], and wire and metal belts [202]. Row 2: (From left to right) modular belts [203], and Round
belts [204].

operations which are relevant for the food industry are as
follows: Slicing is the process wherein conveyed objects
could be sorted into groups based on their graded size;
Scalping is the process of selectively retaining and processing
a single size (or group of sizes), while excluding all others
for further examination or screening. De-dusting as the name
suggests is the removal of dust and/or unwanted fine particles,
that may be generated during storage or handling [23]. Pas-
teurization by thermally processing the product, as it moves
along the production process, by using a continuous vibrating
conveyor system with resistive heating [207]. Chilling the
product, to reduce microbial growth and enzymatic reactions,
is possible increasing the dwell time on the conveyor or by
circulating cold refrigerants along the conveyor walls [208].

3) SCREW CONVEYORS
Screw conveyors typically contain a helical Screw-shaft
rotating inside a hollowed out trough or cylinder. They
are used to transfer bulk solids, which includes fine food
particles (flour, sugar, etc.) and small particulate foods
(peas and grains) [209]. Additionally, they are also utilized
for mixing ingredients, and for performing loading and
unloading operations. These conveyor systems are known
for their high throughput control, while maintaining a high
efficiency with low operating and maintenance costs [210].
As these conveyors are enclosed structures, they could work
in hazardous environments and consecutively, they generate
veryminimal dust andmaterial loss, making them a profitable
and an environmentally viable option. The material being
conveyed is designed to be transported in the bottom side of
the trough, and as the conveyor is enclosed the orientation of
transportation could either be horizontal, vertical or inclined
depending the application and the product conveyed [211].

However, due to power consumption restraints, the dimension
of a screw conveyor is restricted to less than 30 m [211],
[212].

4) FLUID CONVEYORS
Conveyor systems which utilize a fluid as the main operating
medium for conveyance, can be either classified as a pneu-
matic conveyor (if the operating medium is a compressible
fluid/air/vacuum) or hydraulic conveyor (if the operating
medium is a non-compressible fluid/oil/water).
Pneumatic conveyors are versatile systems and are suitable

for handling a wide array of materials, such as powders,
granules and bulk solids. Compressed dry air or vacuum is
generally the conveying medium of choice for most food
products [211]. Depending on the nature of the application-
the produce could be conveyed in suspension mode (low
quantity of product is moved with a higher proportion of
fluid), and it is termed as dilute phase; in non-suspension
mode (high quantity of product is moved with a lower
proportion of fluid), which is termed as dense phase. The
fluid speed for suspension mode conveyance ranges between
20 m/s to 40 m/s, while for the non-suspension mode it
ranges between 1 m/s to 3 m/s [213]. Solid loading ratio
(8) is a dimensionless number [214], which provides the
rating capacity for any pneumatic conveying system, and it
is defined by (1):

8 = ṁp/ṁa (1)

where, ṁp is the mass flow rate of the material conveyed
(kg/h) and ṁa is the mass flow rate of the fluid medium (kg/h)
used for conveying [214]. The solid loading ratio for dilute
phase remains under 15, whereas, for the dense phase it could
go as high as 100 [215].
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TABLE 7. A brief comparison of transportation hardware.

Pneumatic conveyors with a hygienic design, proper
sanitary sealing and connections [135], and with regulated
compressed air quality are in prevalent use for transporting
granular and bulk products.

5) MONORAIL
Monorail systems predominantly serve as a pivotal means of
product transportation within various industrial contexts, par-
ticularly in the logistical transfer of goods from warehousing
facilities to production and processing areas [216]. These sys-
tems functionally resemble mechanical conveyors, wherein
the transportation of objects is facilitated through a physical
support structure driven by an electric prime-mover. This
enables monorail systems to efficiently and autonomously
transport products along their dedicated rail infrastructure
with high levels of effectiveness. In contemporary industrial
settings, the deployment of monorail systems finds extensive
application, with a significant presence in sectors such as
meat processing, where they play a crucial role in the physical
handling/transportation of a majority of livestock [217]. They
prominently feature in the physical transportation and precise
measurement of animal carcass weights at various stages
of processing (which ranges from post slaughter bleeding,
hide and head removal, evisceration, splitting, trimming,
washing and storage). Moreover, the utility of monorail
systems transcends the meat industry, extending to sectors
encompassing beverages, tea, and baking.

FIGURE 16. Examples of other types of conveyors utilized in the food
industry. Row 1: (From left to right) vibratory conveyor [218], Pneumatic
(fluid) conveyor [219]. Row 2: (From left to right) monorails for animal
carcasses [220], screw conveyor [221].

The Fig. 16 is a representation of the various types of
mechanical conveyors utilized in the food industry. The
aforementioned conveyor types are succinctly represented
in Table 7, with salient points highlighting their features,
pros and cons. Furthermore, a representation of the advances
in conveying technologies and available commercial prod-
ucts across the various food categories is depicted in
Table 8 to provide an overview of available research and
solutions.
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TABLE 8. Transportation technologies in primary processing of food.

IV. SYSTEMS INTEGRATION AND CASE STUDIES
This section attempts to briefly bring together the various
subsystem discussed earlier, from an integration point of
view. Furthermore, this section would present a few relevant
use cases from industrial applications of robotic and machine
vision technologies, for the processing of food.

A. INTEGRATED SYSTEMS
According to the International Society of Automation (ISA),
the standard for the integration of enterprise and control
systems is ISA 95 [236]. It provides the framework which
defines the communication and data hierarchies of the
various automation devices, and their specific functions
at each levels. Additionally, it also introduces a detailed
information model, that specifies how the devices must
communicate with each other- within and across the layers.
The automation pyramid is diagrammatic representation of
these hierarchies and information models, and can be seen in
Fig. 17.

The devices such as robots, end-effectors, conveyors and
machine vision cameras form the lowest layers (actuators
and sensors), where the numbers of data points are high, but
the size and complexity of the data generated is low. These
low level device are controlled by PLCs (Programmable
Logic Controller), micro controllers, etc., which form the
next hierarchical layer. The supervision layer consisting of

HMIs (Human Machine Interface)and SCADA (Supervisory
Control and Data Acquisition) systems (sitting above the
control layer), is where the status of production and
machinery performance can bemonitored and controlledwith
real-time human intervention/interaction [237]. These three
layers form the base of the pyramid and is the framework
used by most full scale automation setups, with some
devices and systems blending between two layers, owing to
them being multi-functional. The Manufacturing Operations
management layer is the second highest layer on the pyramid
and it mainly pertains to theManufacturing Execution System
(MES) of the company. The MES deals with production
scheduling, inventory management, work order management,
worker management, and process control. The top layer of the
pyramid deals with Business Planning and Logistics which is
handled by the Enterprise Resource Planning (ERP) module.
The ERP deals with financial managmement, supply chain
management, human resources management, sales and order
management, and production planning. The top two layers of
the pyramid consists of the control systems which are critical
for manufacturing and business management, while these are
two distinct layers with their own functionalities, they are
interdependent and often integrated to improve efficiency,
operational reliability and decision making [238].

The systems and devices across the various layers of
the automation pyramid require a reliable infrastructure to
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TABLE 9. Relevant communication protocols for industry 4.0 and 5.0.

communicate between each other. High speed communica-
tion and seamless integration is a cornerstone for Industry
4.0, that enterprises aim to achieve [239]. However, some
technologies are suited better to certain applications, and
automation engineers need to make tradeoffs to get the most
suitable technology for their respective process application.
An analysis of a selection of relevant protocols suitable
for food automation industry, evaluated across common
parameters are presented in Table 9.

B. CASE STUDIES
in this section, we showcase three different real scenarios in
order to illustrate how machine vision and robotic systems
are tailored according to the particular needs of the problem
at hand.

1) CASE STUDY 1
The first use case regards Multiscan Technologies [263],
which is a Spanish company specialized in vision systems

developed for to agri-food industry. We describe a multi-view
system that was implemented in collaboration with Fon-
dazione Bruno Kessler, Trento-Italy, for grading orange fruits
based on machine vision. The system aims at grading the
oranges into three classes, namely good, bad, and undefined,
based only on the external quality of the fruits.

The grading software is based on deep learning, which
necessitates a training process by leveraging image and label
examples. Therefore, a dataset was acquired by Multiscan
Technologies. The dataset contains the images along with
their grade annotations. To this end, the oranges go through
a roller conveyor that moves them forward and rotates them
simultaneously (See Fig. 18) to ensure that each orange is
captured from different angles by the camera. As seen in
Fig. 20, the good grade oranges show a clean skin, while the
bad class oranges often manifest blemishes and bruises. The
undefined class oranges, however, report imperfections that
are neither too severe to be graded as bad nor insignificant to
be considered good.
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FIGURE 17. The automation pyramid showcasing the scope of the various layers of automation. The number of devices
reduces as you go higher up the pyramid, however, the size of data and its complexity increases.

FIGURE 18. Instances of oranges on a roller conveyor.

FIGURE 19. Acquisition chamber of Multiscan.

Once the fruits arrive into the acquisition chamber (right
behind the grey curtain at the end of the conveyor, depicted on
the rightmost of Fig. 18), they are captured by means of Sony
IMX429 camera (marked with a blue box in Fig. 19), which is
set up in a top-down position at about 90cm from the conveyor
plane. The oranges were exposed to cool white LEDs (the

four tubes at the angles of Fig. 19) to ensure a uniform
lighting source. As aforementioned, the oranges are shot from
different viewpoints by the camera, then the multiple view
images of each fruit are put together to form a single collage
image as shown in Fig. 20, which is used to train the grading
deep learning model along with the class label. One the deep
learning model was trained, it was deployed to perform the
grading task in real time and has shown interesting grading
capabilities. In this particular case study, the grading aims
at allocating different grades to different customers, which
entails different pricing too.

2) CASE STUDY 2
Marumi Foods Co., Ltd. [264] specializes in the processing
of radishes, to produce their end product which is frozen and
(freshly) grated Daikon radish. Each of the final packages
of the frozen and grated radish weigh about 500 grams.
Furthermore, they are cold (around −30 ◦ C to −40 ◦

C ) and slippery, further increasing the handling difficulty
and making prolonged working difficult hard for the human
workers. In order to reduce the burden on the employees and
to offset the increasing labour costs in the future, a full scale
automation system for box packaging was installed in 2021.
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FIGURE 20. Examples from each class. (a) Good, (b) Bad, and (c) Undefined. Each row represents the same orange captured from
different angles.

FIGURE 21. Robot gripper used and their main components: a) The soft
robotic pneumatic three fingers, b) Developed air compressor for the
mobile robot, c) Robot gripper in action picking from the floor an orange,
d) Electrovalve 5/2 to control gripper operation, e) air quick exhaust
valve.

The implemented solution for the box packaging solution
consists of
1) a Kawasaki RS020N [265] vertically articulated robot

responsible for the stacking/unstacking of the trays
(containers)

2) a suction conveyance device
3) a conveyer system
4) a workpiece alignment and box packing mechanism
5) a case former and
6) a case sealer

The automated system demonstrates a compact and
efficient approach to handling frozen food products, fitting
within a space of approximately four square meters. The
process starts with 30 stacked trays being retrieved from the
freezer and unstacked by a robot. The robot transfers each
tray onto a conveyor, where the six packs per tray are picked
up by a suction conveyor. Simultaneously, the empty trays
are moved to the stacking area. The packed products are then
transferred to the alignment and box-packing area, where they
are assembled into cardboard boxes containing 20 packs each.
Finally, the boxes are sealed and directed to the shipping area.
This entire process, which involves nine completed boxes per
cycle, takes approximately seven to eight minutes per rack.

This system has notably streamlined operations by reduc-
ing the number of workers required for box packing from
four or five to one or two, and by eliminating direct contact
between workers and the frozen products, thus preventing
thawing. Key innovations include the robot’s proximity
sensor, which adjusts unstacking based on tray height, and
the use of a drop impact mechanism to facilitate the removal
of frozen packs from trays. Additionally, the system features
a unique packing mechanism where boxes are initially laid
on their sides and filled through a side-sliding method before
being uprighted and sealed [266].

3) CASE STUDY 3
AINIA is a research association in the agri-food industry.
In the FOODCOLLECT project (IMDEEA/2021/74), AINIA
aims to automate the collection of fallen fruit (oranges
and persimmons) using a Kinova Gen3 collaborative robot
mounted on Robotnik’s RB-Summit mobile robot. The
product is located using a 3D machine vision camera. At the
beginning of the project, the Robotiq 2F 140 under-actuated
two-finger electric gripper was used. This gripper allows
the fingers to adapt to the shape of the products, increasing
the contact points. However, using two fingers limited the
product’s stability during the handling process and damaged
the more mature products.

A new three-finger gripper (Fig. 21) with flexible fingers
pneumatically actuated was developed for ai2-UPV (Insti-
tute of Automation and Industrial Informatics, Universitat
Politècnica de València). The developed gripper can handle
nearly spherical products with sizes between 50 and 100 mil-
limeters in diameter and weights between 150 and 300 grams.
The fingers are made of TPU material with a shore hardness
of 92A and manufactured in 3D printing using selective laser
sintering technology. Their maximum operating pressure is
3 bar. The chassis is made of polyamide. In the central part,
there is a VF38/5CN multi-bellows suction cup that serves as
a stop for the product, stabilizing it. This suction cup can be
connected to a vacuum circuit if necessary. The total weight
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of the gripper is 380 grams 63% less than the old one. The
closing and opening time is 0.3 seconds at 3 bar. A quick
exhaust valve opens the gripper’s fingers more quickly.

One of the main challenges was using compressed air
since mobile robots do not have this service; therefore,
it was necessary to develop a small compressor that suited
the product’s needs. For this purpose, the Xiaomi 1S mini
compressor was adapted with a specific electronic circuit
for analog control of the required pressure. The new models
of industrial mini compressors fulfill this function, such
as the SMC CRP model. More than 100 persimmons and
oranges have been handled without causing any damage to
the products. The reducedweight of the gripper has facilitated
the robot’s operation, with the main drawback being the use
of compressed air in mobile robots which requires an extra
installation.

V. DISCUSSIONS AND CONCLUSION
This review is a comprehensive exploration of the current
state of automation in the primary processing of food, with a
special emphasis on the capabilities and utilization of robotic
manipulators, end-effectors, machine vision, and material
transportation systems. From the fundamental elements of
a vision-based sensing system to nuanced applications of
various types of transportation systems, this manuscript
comprises a wide expanse of information. We would like
to highlight some of the key takeaways, for the sensing
and actuation systems, which we identified during the
compilation of this manuscript

Despite the ongoing evolution in machine vision, certain
bottlenecks persist in both the hardware aspect and processing
the captured data. Many machine vision solutions are
deployed in environmental conditions, which can impede
their functioning and degrade the physical quality of sensors
over time, owing to factors such as dust, temperature and
humidity. Furthermore, most existing systems require initial
data to make experimental analysis, parameter tuning, model
selection, and model training in the case of supervised
machine learning paradigms. Regarding supervised machine
learning techniques, two options are envisioned: starting the
training from scratch or initiating the training based on a
model previously pre-trained on similar data/tasks. The latter
option is favoured for more convincing results. However,
this is often unattainable due to the lack of such pre-trained
models.

In order to overcome the aforementioned machine vision
challenges some of the potential solutions include: the
installation of separate/isolated vision-based product inspec-
tion zones with optimal operating conditions; establishing
universal dataset repositories that can be exploited by inter-
ested stakeholders and solution developers; and developing
universal grading models that could serve as a starting point
for solution developers.

Robotic manipulators have been widely gaining traction in
many industrial sectors, and are increasingly being utilized in
primary food processing at varying levels. Food safe robotic

systems coupled with vision systems are currently capable
of performing material handling applications in current
food processing settings. However, the existing solutions
predominantly cater to the pick and place and packaging
applications on rigid food stuff, which exhibit minimal
unpredictable deformation. Alternately, for operations such
as food manipulation the robot-based solutions are currently
being explored and researched, and not many commercially
available solutions cater to directly handle and process many
of the deformable, viscoelastic food types. Improvements
in modelling the physical characteristics of food; increasing
the accessibility of food-safe force controlled manipulators
to incorporate higher degrees of precision while manip-
ulating deformable/delicate foods; incorporating suitable
(pre-trained) artificial intelligence models to monitor the
behavior of the manipulated product and perform necessary
corrective actions in real time, are the next logical steps to
create market ready robotic systems for processing food.

Robotic manipulators depend on appropriate end-effectors
to efficiently perform their manipulation/value-addition oper-
ations. End-effectors come in various shapes, sizes, and
mechanisms for operations, with varying levels of control
and operation time. The operational requirements of the
end-effectors aremainly dependant on the process parameters
to be satisfied. There is an extensive range of end-effectors
available in the market and newer variations are constantly
being developed to handle the ever-evolving requirements of
the industry.

Transportation systems are an integral part of many
industrial sectors, and the systems with hygienic and
sanitation features naturally find their way into the food
sector. From the ability of these systems to convey a wide
range of food types, ranging from powder/particulate to large
deformable portions of meat, showcases the versatility of the
market ready systems. The future developments regarding
the conveying systems, is to efficiently incorporate value
addition processes, and decrease the lead time required for
the production operation.

In conclusion, this review has highlighted the critical
role of automation technologies modernizing primary food
processing, and bridged gaps in the existing literature in
this niche domain. These integrated solutions are pivotal
for enhancing efficiency, safety, and quality, meeting the
increasing demands of global food production. As the
population grows and the industry evolves, the synergy
among these technologies will continue to be the cornerstone
of innovation and sustainability in food processing
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