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Abstract: In this manuscript, we introduce a novel parametric family of multistep iterative methods
designed to solve nonlinear equations. This family is derived from a damped Newton’s scheme but
includes an additional Newton step with a weight function and a “frozen” derivative, that is, the same
derivative than in the previous step. Initially, we develop a quad-parametric class with a first-order
convergence rate. Subsequently, by restricting one of its parameters, we accelerate the convergence to
achieve a third-order uni-parametric family. We thoroughly investigate the convergence properties
of this final class of iterative methods, assess its stability through dynamical tools, and evaluate
its performance on a set of test problems. We conclude that there exists one optimal fourth-order
member of this class, in the sense of Kung–Traub’s conjecture. Our analysis includes stability surfaces
and dynamical planes, revealing the intricate nature of this family. Notably, our exploration of
stability surfaces enables the identification of specific family members suitable for scalar functions
with a challenging convergence behavior, as they may exhibit periodical orbits and fixed points with
attracting behavior in their corresponding dynamical planes. Furthermore, our dynamical study
finds members of the family of iterative methods with exceptional stability. This property allows us
to converge to the solution of practical problem-solving applications even from initial estimations
very far from the solution. We confirm our findings with various numerical tests, demonstrating the
efficiency and reliability of the presented family of iterative methods.

Keywords: nonlinear equations; optimal iterative methods; convergence analysis; dynamical
study; stability

MSC: 65H05

1. Introduction

A multitude of challenges in Computational Sciences and other fields in Science and
Technology can be effectively represented as nonlinear equations through mathematical
modeling, see for example [1–3]. Finding solutions ξ to nonlinear equations of the form
f (x) = 0 stands as a classical yet formidable problem in the realms of Numerical Analysis,
Applied Mathematics, and Engineering. Here, the function f : I ⊂ R→ R is assumed to be
differentiable enough within the open interval I. Extensive overviews of iterative methods
for solving nonlinear equations published in recent years can be found in [4–6], and their
associated references.
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In recent years, many iterative methods have been developed to solve nonlinear
equations. The essence of these methods is as follows: if one knows a sufficiently small
domain that contains only one root ξ of the equation f (x) = 0, and we select a sufficiently
close initial estimate of the root x0, we generate a sequence of iterates x1, x2, . . . , xk, . . .,
by means of a fixed point function g(x), which under certain conditions converges to ξ.
The convergence of the sequence is guaranteed, among other elements, by the appropriate
choice of the function g and the initial approximation x0.

The method described by the iteration function g : I ⊆ R→ R such that

xk+1 = g(xk), k = 0, 1, . . . , (1)

starting from a given initial estimate x0, includes a large number of iterative schemes. These
differ from each other by the way the iteration function g is defined.

Among these methods, Newton’s scheme is widely acknowledged as the most renowned
approach for locating a solution ξ ∈ I. This scheme is defined by the iterative formula:

xk+1 = xk −
f (xk)

f ′(xk)
,

where k = 0, 1, 2, . . ., and f ′(xk) denotes the derivative of the function f evaluated in the
kth iteration.

A very important concept of iterative methods is their order of convergence, which
provides a measure of the speed of convergence of the iterates. Let {xk}k≥0 be a sequence
of real numbers such that limk→∞ xk = ξ. The convergence is called (see [7]):

(a) Linear, if there exist C, 0 < C < 1 and k0 ∈ N such that

|xk − ξ|
|xk−1 − ξ| ≤ C, for all k > k0;

(b) Is of order p, if there exist C > 0 and k0 ∈ N such that

|xk − ξ|
|xk−1 − ξ|p ≤ C, for all k > k0.

We denote by ek = xk − ξ the error of the k-th iteration. Moreover, equation
ek+1 = Cep

k + O(ep+1
k ) is called the error equation of the iterative method, where p is

its order of convergence and C is called the asymptotic error constant.
It is known (see, for example, [4]) that if xk+1 = g(xk) is an iterative point-to-point

method with d functional evaluations per step, then the order of convergence of the method
is, at most, p = d. On the other hand, Traub proves in [4] that to design a point-to-point
method of order p, the iterative expression must contain derivatives of the nonlinear
function whose zero we are looking for, at least of order p− 1. This is why point-to-point
methods are not efficient if we seek to simultaneously increase the order of convergence
and computational efficiency.

These restrictions of point-to-point methods are the starting point for the growing
interest of researchers in multipoint methods, see for example [4–6]. In such schemes, also
called predictor–corrector, the (k + 1)-th iterate is obtained by using functional evaluations
of the k-th iterate and also of other intermediate points. For example, a two-step multipoint
method has the expression

yk = Ψ(xk),

xk+1 = Φ(xk, yk), k = 0, 1, 2, . . .

Thus, the main motivation for designing new iterative schemes is to increase the order
of convergence without adding many functional evaluations. The first multipoint schemes
were designed by Traub in [4]. At that time the concept of optimality had not yet been
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defined and the fact of designing multipoint schemes with the same order as classical
schemes such as Halley or Chebyshev, but with a much simpler iterative expression and
without using second derivatives, was of great importance. The techniques used then have
been the seed of those that allowed the appearance of higher-order methods.

In recent years, different authors have developed a large number of optimal schemes
for solving nonlinear equations [6,8]. A common way to increase the convergence order
of an iterative scheme is to use the composition of methods, based on the following result
(see [4]).

Theorem 1. Let g1(x) and g2(x) be the fixed-point functions of orders p1 and p2, respectively.
Then, the iterative method resulting from composing them, xk+1 = g1(g2(xk)), k = 0, 1, 2, . . ., has
an order of convergence p1 p2.

However, this composition necessarily increases the number of functional evalua-
tions. So, to preserve optimality, the number of evaluations must be reduced. There are
many techniques used for this purpose by different authors, such as approximating some
of the evaluations that have appeared with the composition by means of interpolation
polynomials, Padé approximants, inverse interpolation, Adomian polynomials, etc. (see,
for example, [6,9,10]). If after the reduction of functional evaluations the resulting method
is not optimal, the weight function technique, introduced by Chun in [11], can be used to
increase its order of convergence.

There are also other ways in the literature to compare different iterative methods with
each other. Traub in [4] defined the information efficiency of an iterative method as

I(M) =
p
d

,

where p is the order of convergence and d is the number of functional evaluations per
iteration. On the other hand, Ostrowski in [12] introduced the so-called efficiency index,

EI(M) = p1/d,

which, in turn, gives rise to the concept of optimality of an iterative method.
Regarding the order of convergence, Kung and Traub in their conjecture (see [13])

establish what is the highest order that a multipoint iterative scheme without memory can
reach. Schemes that attain this limit are called optimal methods. Such a conjecture states that
the order of convergence of any memoryless multistep method cannot exceed 2d−1 (called
optimal order), where d is the number of functional evaluations per iteration, with efficiency
index 2(d−1)/d (called optimal index). In this sense, Newton is an optimal method.

Furthermore, in order to numerically test the behavior of the different iterative meth-
ods, Weerakoon and Fernando in [14] introduced the so-called computational order of
convergence (COC),

p ≈ COC =
ln |xk+1−ξ|
|xk−ξ|

ln |xk−ξ|
|xk−1−ξ|

, k = 1, 2, . . . ,

where xk+1, xk and xk−1 are three consecutive approximations of the root of the nonlinear
equation, obtained in the iterative process. However, the value of the zero ξ is not known
in practice, which motivated the definition in [15] of the approximate computational
convergence order ACOC,

p ≈ ACOC =
ln |xk+1−xk |
|xk−xk−1|

ln |xk−xk−1|
|xk−1−xk−2|

, k = 2, 3, . . . . (2)

On the other hand, the dynamical analysis of rational operators derived from iterative
schemes, particularly when applied to low-degree nonlinear polynomial equations, has
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emerged as a valuable tool for assessing the stability and reliability of these numerical meth-
ods. This approach is detailed, for instance, in Refs. [16–20] and their associated references.

Using the tools of complex discrete dynamics, it is possible to compare different
algorithms in terms of their basins of attraction, the dynamical behavior of the rational
functions associated with the iterative method on low-degree polynomials, etc. Varona [21],
Amat et al. [22], Neta et al. [23], Cordero et al. [24], Magreñán [25], Geum et al. [26],
among others, have analyzed many schemes and parametric families of methods under
this point of view, obtaining interesting results about their stability and reliability.

The dynamical analysis of an iterative method focuses on the study of the asymptotic
behavior of the fixed points (roots, or not, of the equation) of the operator, as well as on
the basins of attraction associated with them. In the case of parametric families of iterative
methods, the analysis of the free critical points (points where the derivative of the operator
cancels out that are not roots of the nonlinear function) and stability functions of the fixed
points allows us to select the most stable members of these families. Some of the existing
works in the literature related to this approach are Refs. [27,28], among others.

In this paper, we introduce a novel parametric family of multistep iterative methods
tailored for solving nonlinear equations. This family is constructed by enhancing the
traditional Newton’s scheme, incorporating an additional Newton step with a weight
function and a frozen derivative. As a result, the family is characterized by a two-step
iterative expression that relies on four arbitrary parameters.

Our approach yields a third-order uni-parametric family and a fourth-order member.
However, in the course of developing these iterative schemes, we initially start with a
first-order quad-parametric family. By selectively setting just one parameter, we manage to
accelerate its convergence to a third-order scheme, and for a specific value of this parameter,
we achieve an optimal member. To substantiate these claims, we conduct a comprehensive
convergence analysis for all classes.

The stability of this newly introduced family is rigorously examined using dynamical
tools. We construct stability surfaces and dynamical planes to illustrate the intricate behav-
ior of this class. These stability surfaces help us to identify specific family members with
exceptional behavior, making them well-suited for practical problem-solving applications.
To further demonstrate the efficiency and reliability of these iterative schemes, we conduct
several numerical tests.

The rest of the paper is organized as follows. In Section 2, we present the proposed
class of iterative methods depending on several parameters, which is step-by-step modified
in order to achieve the highest order of convergence. Section 3 is devoted to the dynamical
study of the uni-parametric family; by means of this analysis, we find the most stable
members, less dependent from their initial estimation. In Section 4, the previous theoretical
results are checked by means of numerical tests on several nonlinear problems, using a wide
variety of initial guesses and parameter values. Finally, some conclusions are presented.

2. Convergence Analysis of the Family

In this section, we conduct a convergence analysis of the newly introduced quad-
parametric iterative family, with the following iterative expression:

yk = xk − α
f (xk)

f ′(xk)
,

xk+1 = yk −
(

β + γ
f (yk)

f (xk)
+ δ

(
f (yk)

f (xk)

)2
)

f (xk)

f ′(xk)
,

(3)

where α, β, γ, δ are arbitrary parameters and k = 0, 1, 2, . . ..
Additionally, we present a strategy for simplifying it into a uni-parametric class to

enhance convergence speed. Consequently, even though the quad-parametric family has a
first-order convergence rate, we employ higher-order Taylor expansions in our proof, as they
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are instrumental in establishing the convergence rate of the uni-parametric subfamily. In
Appendix A, the Mathematica code used for checking it is available.

Theorem 2 (quad-parametric family). Let f : I ⊆ R → R be a sufficiently differentiable
function in an open interval I and ξ ∈ I a simple root of the nonlinear equation f (x) = 0. Let us
suppose that f ′(x) is continuous and nonsingular at ξ, and x0 is an initial estimate close enough to
ξ. Then, the sequence {xk}k≥0 obtained by using the expression (3) converges to ξ with order one,
being its error equation

ek+1 =
(
−α2δ + α(γ + 2δ− 1)− β− γ− δ + 1

)
ek +O

(
e2

k

)
,

where ek = xk − ξ, and α, β, γ, and δ are free parameters.

Proof. Let us consider ξ as the simple root of nonlinear function f (x) and xk = ξ + ek. We
calculate the Taylor expansion of f (xk) and f ′(xk) around the root ξ, we get

f (xk) = f (ξ) + f ′(ξ)ek +
1
2!

f ′′(ξ)e2
k +

1
3!

f ′′′(ξ)e3
k +

1
4!

f (iv)(ξ)e4
k +O(e

5
k)

= f ′(ξ)

[
ek +

1
2!

f ′′(ξ)
f ′(ξ)

e2
k +

1
3!

f ′′′(ξ)
f ′(ξ)

e3
k +

1
4!

f (iv)(ξ)
f ′(ξ)

e4
k

]
+O(e5

k)

= f ′(ξ)
[
ek + C2e2

k + C3e3
k + C4e4

k

]
+O(e5

k),

(4)

and
f ′(xk) = f ′(ξ) + f ′′(ξ)ek +

1
2!

f ′′′(ξ)e2
k +

1
3!

f (iv)(ξ)e3
k +O(e

4
k)

= f ′(ξ)

[
1 +

f ′′(ξ)
f ′(ξ)

ek +
1
2!

f ′′′(ξ)
f ′(ξ)

e2
k +

1
3!

f (iv)(ξ)
f ′(ξ)

e3
k

]
+O(e4

k)

= f ′(ξ)
[
1 + 2C2ek + 3C3e2

k + 4C4e3
k

]
+O(e4

k),

(5)

where Cp =
1
p!

f (p)(ξ)

f ′(ξ)
, p = 2, 3, ...

By a direct division of (4) and (5),

f (xk)

f ′(xk)
= ek − C2e2

k + 2
(

C2
2 − C3

)
e3

k −
(

4C3
2 − 7C2C3 + 3C4

)
e4

k +O
(

e5
k

)
. (6)

Replacing (6) in (3), we have

yk = ξ + (1− α)ek + αC2e2
k − 2α

(
C2

2 − C3

)
e3

k + α
(

4C3
2 − 7C2C3 + 3C4

)
e4

k +O
(

e5
k

)
. (7)

Again a Taylor expansion of f (yk) around ξ allows us to get

f (yk) = f ′(ξ)
[
(1− α)ek +

(
α2 − α + 1

)
C2e2

k +
(
−2α2C2

2 −
(

α3 − 3α2 + α− 1
)

C3

)
e3

k

+
(

5α2C3
2 + α2(3α− 10)C2C3 +

(
α4 − 4α3 + 6α2 − α + 1

)
C4

)
e4

k

]
+O

(
e5

k

)
.

(8)

Dividing (8) by (4), we obtain

f (yk)

f (xk)
= (1− α) + α2C2ek − α2

(
(α− 3)C3 + 3C2

2

)
e2

k

+ α2
((

α2 − 4α + 6
)

C4 + 2(2α− 7)C2C3 + 8C3
2

)
e3

k +O
(

e4
k

)
.

(9)
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Finally, substituting (6), (7) and (9), in the second step of family (3), we have

xk+1 = ξ + A1ek + A2e2
k + A3e3

k + A4e4
k +O

(
e5

k

)
, (10)

where

A1 = −α2δ + α(γ + 2δ− 1)− β− γ− δ + 1,

A2 =
(

2α3δ− α2(γ + δ)− α(γ + 2δ− 1) + β + γ + δ
)

C2,

A3 =
(
−2α4δ + α3(γ + 8δ)− α2(3γ + 4δ)− 2α(γ + 2δ− 1) + 2(β + γ + δ)

)
C3

−
(

α4δ + 8α3δ− 2α2(2γ + 3δ)− 2α(γ + 2δ− 1) + 2(β + γ + δ)
)

C2
2 ,

A4 =
(

7α4δ + 26α3δ− α2(13γ + 22δ)− 4α(γ + 2δ− 1) + 4(β + γ + δ)
)

C3
2

+
(

2α5δ + 4α4δ− α3(5γ + 48δ) + α2(19γ + 31δ) + 7α(γ + 2δ− 1)− 7(β + γ + δ)
)

C2C3

+
(

2α5δ− α4(γ + 10δ) + 4α3(γ + 5δ)− 3α2(2γ + 3δ)− 3α(γ + 2δ− 1) + 3(β + γ + δ)
)

C4,

(11)

being the error equation

ek+1 = A1ek + A2e2
k + A3e3

k + A4e4
k +O

(
e5

k

)
=
(
−α2δ + α(γ + 2δ− 1)− β− γ− δ + 1

)
ek +O

(
e2

k

)
,

(12)

and the proof is finished.

From Theorem 2, it is evident that the newly introduced quad-parametric family
exhibits a convergence order of one, irrespective of the values assigned to α, β, γ, and δ.
Nevertheless, we can expedite convergence by holding only two parameters constant,
effectively reducing the family to a bi-parametric iterative scheme. In Appendix B, the
Mathematica code used for checking it is available.

Theorem 3 (bi-parametric family). Let f : I ⊆ R→ R be a sufficiently differentiable function
in an open interval I and ξ ∈ I a simple root of the nonlinear equation f (x) = 0. Let us suppose
that f ′(x) is continuous and nonsingular at ξ, and x0 is an initial estimate close enough to ξ. Then,
the sequence {xk}k≥0 obtained by using the expression (3) converges to ξ with order three, provided

that β =
(α− 1)2(α2δ− α− 1

)
α2 and γ =

2α3δ− 2α2δ + 1
α2 , being its error equation

ek+1 =
(
−
(

α4δ− 2
)

C2
2 + (α− 1)C3

)
e3

k +O
(

e4
k

)
,

where ek = xk − ξ, Cq =
1
q!

f (q)(ξ)
f ′(ξ)

, q = 2, 3, ..., and α, δ are arbitrary parameters.

Proof. Using the results of Theorem 2 to cancel A1 and A2 accompanying ek and e2
k in (12),

respectively, it must be satisfied that{
−α2δ + α(γ + 2δ− 1)− β− γ− δ + 1 = 0,

2α3δ− α2(γ + δ)− α(γ + 2δ− 1) + β + γ + δ = 0.
(13)

It is clear that system (13) has infinite solutions for

β =
(α− 1)2(α2δ− α− 1

)
α2 and γ =

2α3δ− 2α2δ + 1
α2 , (14)
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where α and δ are free parameters. Therefore, replacing (14) in (11), we obtain that

A1 = 0,

A2 = 0,

A3 = −
(

α4δ− 2
)

C2
2 + (α− 1)C3,

A4 =
(

7α4δ− 9
)

C3
2 +

(
2(α− 3)α4δ− 5α + 12

)
C2C3 − (α− 3)(α− 1)C4,

(15)

being the error equation

ek+1 = A3e3
k +O(e

4
k)

=
(
−
(

α4δ− 2
)

C2
2 + (α− 1)C3

)
e3

k +O(e
4
k),

(16)

and the proof is finished.

According to the findings in Theorem 3, it is evident that the newly introduced bi-
parametric family

yk = xk − α
f (xk)

f ′(xk)
,

xk+1 = yk −
(

β + γ
f (yk)

f (xk)
+ δ

(
f (yk)

f (xk)

)2
)(

f (xk)

f ′(xk)

)
,

(17)

where k = 0, 1, 2, ..., β =
(α− 1)2(α2δ− α− 1

)
α2 and γ =

2α3δ− 2α2δ + 1
α2 consistently ex-

hibits a third-order convergence across all values of α and δ. Nevertheless, it is noteworthy
that by restricting one of the parameters while transitioning to a uni-parametric iterative
scheme, not only can we sustain convergence, but we can also enhance performance. This
improvement arises from the reduction in the error equation complexity, resulting in more
efficient computations.

Corollary 1 (uni-parametric family). Let f : I ⊆ R → R be a sufficiently differentiable
function in an open interval I and ξ ∈ I a simple root of the nonlinear equation f (x) = 0. Let us
suppose that f ′(x) is continuous and nonsingular at ξ and x0 is an initial estimate close enough
to ξ. Then, the sequence {xk}k≥0 obtained by using the expression (17) converges to ξ with order
three, provided that ε = α4δ = 2, being its error equation

ek+1 = (α− 1)C3e3
k +O

(
e4

k

)
,

where ek = xk − ξ, Cq =
1
q!

f (q)(ξ)
f ′(ξ)

, q = 2, 3, ..., and α is an arbitrary parameter. Indeed, α = 1

and, therefore, δ = ε = 2 provides the only member of the family of the optimal fourth-order of
convergence.

Proof. Using the results of Theorem 3 to reduce the expression of A3 accompanying e3
k in

(15), it must be satisfied that α4δ− 2 = 0 and/or α− 1 = 0. It is easy to show that the first
equation has infinite solutions for

ε = α4δ = 2. (18)
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Therefore, replacing (18) in (15), we obtain that

ek+1 = A3e3
k +O(e

4
k)

= (α− 1)C3e3
k +O

(
e4

k

)
,

(19)

and the proof is finished.

Based on the outcomes derived from Corollary 1, it becomes apparent that the recently
introduced uni-parametric family, which we will call MCCTU(α),

yk = xk − α
f (xk)

f ′(xk)
,

xk+1 = yk −
(

β + γ
f (yk)

f (xk)
+ δ

(
f (yk)

f (xk)

)2
)(

f (xk)

f ′(xk)

)
,

(20)

where k = 0, 1, 2, ..., β =
(α− 1)2(α2δ− α− 1

)
α2 , γ =

2α3δ− 2α2δ + 1
α2 and δ =

2
α4 consis-

tently exhibits a convergence order of three, regardless of the chosen value for α. Neverthe-
less, a remarkable observation emerges when α = 1: in such a case, a member of this family
attains an optimal convergence order of four.

Due to the previous results, we have chosen to concentrate our efforts solely on the
MCCTU(α) class of iterative schemes moving forward. To pinpoint the most effective
members within this family, we will utilize dynamical techniques outlined in Section 3.

3. Stability Analysis

This section delves into the examination of the dynamical characteristics of the rational
operator linked to the iterative schemes within the MCCTU(α) family. This exploration
provides crucial insights into the stability and dependence of the members of the family
with respect to the initial estimations used. To shed light on the performance, we create
rational operators and visualize their dynamical planes. These visualizations enable us to
discern the behavior of specific methods in terms of the attraction basins of periodic orbits,
fixed points, and other relevant dynamics.

Now, we introduce the basic concepts of complex dynamics used in the dynamical
analysis of iterative methods. The texts [29,30], among others, provide extensive and
detailed information on this topic.

Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a
point z0 ∈ Ĉ is defined as:

{z0, R1(z0), R2(z0), ..., Rn(z0), . . .}.

We are interested in the study of the asymptotic behavior of the orbits depending on
the initial estimate z0, analyzed in the dynamical plane of the rational function R defined
by the different iterative methods.

To obtain these dynamical planes, we must first classify the fixed or periodic points of
the rational operator R. A point z0 ∈ Ĉ is called a fixed point if it satisfies R(z0) = z0. If the
fixed point is not a solution of the equation, it is called a strange fixed point. z0 is said to be
a periodic point of period p > 1 if Rp(z0) = z0 and Rk(z0) 6= z0, k < p. A critical point zC
is a point where R′(zC) = 0.

On the other hand, a fixed point z0 is called attracting if |R′(z0)| < 1, superattracting
if |R′(z0)| = 0, repulsive if |R′(z0)| > 1, and parabolic if |R′(z0)| = 1.

The basin of attraction of an attractor z̄ is defined as the set of pre-images of any order:

A(z̄) = {z0 ∈ Ĉ : Rn(z0)→z̄, n→∞}.
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The Fatou set consists of the points whose orbits have an attractor (fixed point, periodic
orbit or infinity). Its complementary in Ĉ is the Julia set, J . Therefore, the Julia set includes
all the repulsive fixed points and periodic orbits, and also their pre-images. So, the basin of
attraction of any fixed point belongs to the Fatou set. Conversely, the boundaries of the
basins of attraction compose the Julia set.

The following classical result, which is due to Fatou [31] and Julia [32], includes
both periodic points (of any period) and fixed points, considered as periodic points of the
unit period.

Theorem 4 ([31,32]). Let R be a rational function. The immediate basins of attraction of each
attracting periodic point contain at least one critical point.

By means of this key result, all the attracting behavior can be found using the critical
points as a seed.

3.1. Rational Operator

While the fixed-point operator can be formulated for any nonlinear function, our focus
here lies on constructing this operator for low-degree nonlinear polynomial equations,
in order to get a rational function. This choice stems from the fact that the stability or
instability criteria applied to methods on these equations can often be extended to other
cases. Therefore, we introduce the following nonlinear equation represented by f (x):

f (x) = (x− a)(x− b) = 0, (21)

where a, b ∈ R are the roots of the polynomial.
Let us remark that when MCCTU(α) is directly applied to f (x), parameter α disappears

in the resulting rational expression; so, no dynamical analysis can be made. However, if we
use parameter ε = α4δ appearing in Corollary 1 the same class of iterative methods can be
expressed as MCCTU(ε) and the dynamical analyisis can be made depending on ε.

Proposition 1 (rational operator R f ). Let the polynomial equation f (x) given in (21), for
a, b ∈ C. Rational operator R f related to the MCCTU(ε) family given in (20) on f (x) is

R f (x, ε) =
x3(ε− x3 − 4x2 − 5x− 2

)
x3(ε− 2)− 5x2 − 4x− 1

, (22)

with ε ∈ C being an arbitrary parameter.

Proof. Let f (x) be a generic quadratic polynomial function with roots a, b ∈ C. We apply
the iterative scheme MCCTU(ε) given in (20) on f (x) and obtain a rational function A f (x, ε)
that depends on the roots a, b ∈ C and the parameters ε ∈ C. Then, by using a Möbius
transformation (see [22,33,34]) on A f (x, ε) with

h(w) =
w− a
w− b

,

satisfying h(∞) = 1, h(a) = 0 and h(b) = ∞, we get

R f (x, ε) =
(

h ◦ A f (x, ε) ◦ h−1
)
(x) =

x3(ε− x3 − 4x2 − 5x− 2
)

x3(ε− 2)− 5x2 − 4x− 1
, (23)

which depends on two arbitrary parameters ε ∈ C, thus completing the proof.

From Proposition 1, if we set ε− 2 = 0, we obtain

δ =
2
α4 , (24)
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and, then, it is easy to show that the rational operator R f (x, ε) simplifies to the expression

R f (x) =
x4(x2 + 4x + 5

)
5x2 + 4x + 1

, (25)

which does not depend on any free parameters.

3.2. Fixed Points

Now, we calculate all the fixed points of R f (x, ε) given by (22), to afterwards analyze
their character (attracting, repulsive, or neutral or parabolic).

Proposition 2. The fixed points of R f (x, ε) are x = 0, x = ∞, and also five strange fixed points:

• ex1 = 1,

• ex2,3(ε) = −
5
4
− 1

4
√

1− 4ε± 1
2

√
5
2
− ε− 20(ε + 8)− 165

2
√

1− 4ε
, and

• ex4,5(ε) = −
5
4
+

1
4
√

1− 4ε± 1
2

√
5
2
− ε +

20(ε + 8)− 165
2
√

1− 4ε
.

By using Equation (24), the strange fixed points ex2,3(ε) and ex4,5(ε) do not depend on any
free parameter,

• ex2,3(2) = −2.1943± 1.5370i, and
• ex4,5(2) = −0.3057± 0.2142i.

Morover, strange fixed points depending on ε are conjugated, ex2,3(ε) and ex4,5(ε). If ε = 1
4 ,

ex1(ε) = ex3(ε) and ex2(ε) = ex2(ε), so the amount of strange fixed points is three. Indeed,
ex3(−20) = ex4(−20) = 1 and ex3(0) = ex4(0) = −1.

From Proposition 2, we establish that there are seven fixed points. Among these, 0 and
∞ come from the roots a and b of f (x). ex1 = 1 comes from the divergence of the original
scheme, previous to the Möbius transformation.

Proposition 3. The strange fixed point ex1 = 1, ∀ε ∈ C, has the following character:

(i) If |ε− 12| > 32, then ex1 is an attractor.
(ii) If |ε− 12| < 32, then ex1 is a repulsor.
(iii) If |ε− 12| = 32, then ex1 is parabolic.

Moreover, ex1 can be attracting but not superattracting. The superattracting fixed points
of R f are x = 0, x = ∞, and the strange fixed points ex4,5(ε) for ε = 1

9

(
−5
√

97− 47
)

and

ε = 1
9

(
5
√

97− 47
)

.
In the particular case of ε = 2 (using the Equation (24)), all the strange fixed points are

repulsive.

Proof. We prove this result by analyzing the stability of the fixed points found in Proposi-
tion 2. It must be done by evaluating

∣∣∣R′f (x, ε)
∣∣∣ at each fixed point and, if it is lower, equal,

or greater than one it is called attracting, neutral, or repulsive, respectively.
The cases of x = 0 and ∞ are straightforward from the expression of R f (x, ε). When

ex1(ε) is studied, then ∣∣∣R′f (1, ε)
∣∣∣ = ∣∣∣∣ 32

12− ε

∣∣∣∣,
so it is attracting, repelling or neutral if |ε− 12| is greater, lower, or equal to 32. It can be
graphically viewed in Figure 1.

By a graphical and numerical study of
∣∣∣R′f (exi(ε), ε)

∣∣∣, i = 1, 2, 3, 4, it can be de-
duced that ex2,3(ε) are repulsive for all ε, meanwhile ex4,5(ε) are superattracting for
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ε = 1
9

(
−5
√

97− 47
)
≈ −10.6938 or ε = 1

9

(
5
√

97− 47
)
≈ 0.249365. Their stabil-

ity function is presented in Figure 2a,b. Moreover, ex1 can not be a superattractor as∣∣∣R′f (1, ε)
∣∣∣ 6= 0.

Figure 1. Stability function of ex1 = 1,
∣∣∣R′f (1, ε)

∣∣∣ for a complex ε.

(a)
∣∣∣R′f (ex4,5(ε), ε)

∣∣∣

(b)
∣∣∣R′f (ex4,5(ε), ε)

∣∣∣
Figure 2. Stability surfaces of ex4,5(ε) for different complex regions.

It is clear that 0 and ∞ are always superattracting fixed points, but the stability
of the remaining fixed points depends on the values of ε. According to Proposition 3,
two strange fixed points can become superattractors. This implies that there would exist
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basins of attraction for them, potentially causing the method to fail to converge to the
solution. However, even when they are only attracting (that can be the case of ex1), these
basins of attraction exist.

As we have stated previously, Figure 1 represents the stability function of the strange
fixed point ex1. In this figure, the zones of attraction are the yellow area and the repulsion
zone corresponds to the grey area. For values of ε within the disk, ex1 is repulsive; whereas
for values of ε outside the grey disk, ex1 becomes attracting. So, it is natural to select
values within the grey disk, as a repulsive divergence improves the performance of the
iterative scheme.

Similar conclusions can be stated from the stability region of strange fixed points
ex4,5(ε), appearing in Figure 2. When a value of parameter ε is taken in the yellow area
of Figure 2, both points are simultaneously attracting, so there are at least four different
basins of attraction.

However, the basins of attraction also appear when there exist attracting periodic
orbits of any period. To detect this kind of behavior, the role of critical points is crucial.

3.3. Critical Points

Now, we obtain the critical points of R f (x, ε).

Proposition 4. The critical points of R f (x, ε) are x = 0, x = ∞ and also:

• cr1 = −1, and

• cr2,3(ε) =
2ε + 6±

√
5
√

12ε− ε2

3(ε− 2)
.

Morover, if ε = 2, critical points are not free cr2,3(2) = 0. In any other case, cr2,3(ε) are
conjugated free critical points.

From Proposition 4, we establish that, in general, there are five critical points. The free
critical point cr1 = −1 is a pre-image of the strange fixed point ex1 = 1. Therefore,
the stability of cr1 corresponds to the stability of ex1 (see Section 3.2). Note that if the
Equation (24) is satisfied, the only remaining free critical point is cr1. Since cr1 is the
pre-image of ex1, it would be a repulsor.

Then, we use the only independent free critical point cr2(ε) (conversely, cr3(ε), as they
are conjugates) to generate the parameter plane. This a graphical representation of the
global stability performance of the member of the class of iterative methods. In a definite
area of the complex plane, a mesh of 500× 500 points is generated. Each one of these points
is used as a value of parameter ε, i.e., we get a particular element of the family. For each
one of these values, we get as our initial guess the critical point cr2(ε) and calculate its
orbit. If it converges to x = 0 or x = ∞, then the point corresponding to this value of ε is
represented using a red color. In other case, it is left in black. So, convergent schemes to
the original roots of the quadratic equations appear in the red stable area and the black
area corresponds to schemes of the classes that are not able to converge to them, by reason
of an attracting strange fixed point or periodic orbit. This performance can be seen in
Figure 3, representing the domain D1 = [−30, 50]× [−40, 40], where a wide area of stable
performance can be found around the origin, D2 = [−5, 15]× [−10, 10] (Figure 3b).

3.4. Dynamical Planes

A dynamical plane is defined as a mesh in a limited domain of the complex plane,
where each point corresponds to a different initial estimate x0. The graphical representation
shows the method’s convergence starting from x0 within a maximum of 80 iterations and
10−3 as the tolerance. Fixed points appear as a white circle ‘#’, critical points are ‘�’, and a
white asterisk ‘∗’ symbolizes an attracting point. Additionally, the basins of attraction
are depicted in different colors. To generate this graph, we use MATLAB R2020b with a
resolution of 400× 400 pixels.
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(a) D1 (b) D2

Figure 3. Parameter plane of cr2(ε) on domain D1 and a detail on D2.

Here, we analyze the stability of various MCCTU(ε) methods using dynamical planes.
We consider methods with ε values both inside and outside the stability surface of ex1,
specifically, in the red and black areas of the parameter plane represented in Figure 3a.

Firstly, examples of methods within the stability region are provided for ε ∈ {1, 2, 10, 5 +
5i}. Their dynamical planes, along with their respective basins of attraction, are shown
in Figure 4. Let us remark that all selected values of ε lie in the red area of the parameter
plane and have only two basins of attraction, corresponding to x = 0 (in orange color in
the figures) and x = ∞ (blue in the figures).

(a) ε = 1 (b) ε = 2

(c) ε = 10 (d) ε = 5 + 5i

Figure 4. Dynamical planes for some stable methods.
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Secondly, some schemes outside the stability region (in black in the parameter plane)
are provided for ε ∈ {100, 15,−15, 30}. Their dynamical planes are shown in Figure 5. Each
of these members have specific characteristics: in Figure 5a, the widest basin of attraction
(in green color) corresponds to ex1 = 1, which is attracting for this value of ε, the basin
of x = 0 is a very narrow area around the point; for ε = 15, we observe in Figure 5b
three different basins of attraction, the third of the two being attracting periodic orbits of
period 2 (one of them is plotted in yellow in the figure); Figure 5c corresponds to ε = −15,
inside the stability area of ex4,5(ε) (see Figure 2), where both are simultaneously attracting;
finally, for ε = 30, the widest basin of attraction corresponds to an attracting periodic orbit
of period 2, see Figure 5d.

(a) ε = 100 (b) ε = 15

(c) ε = −15 (d) ε = 30

Figure 5. Unstable dynamical planes.

4. Numerical Results

In this section, we conduct several numerical tests to validate the theoretical conver-
gence and stability results of the MCCTU(α) family obtained in previous sections. We use
both stable and unstable methods from (20) and apply them to ten nonlinear test equations,
with their expressions and corresponding roots provided in Table 1.

We aim to demonstrate the theoretical results by testing the MCCTU(α) family. Specifi-
cally, we evaluate three representative members of the family with δ = 2

α4 and α = 1, α = 2,
and α = 100. Therefore, in all cases, ε = 2.

We conduct two experiments. In the first experiment, we analyze the stability of
the MCCTU(α) family using two of its methods, chosen based on stable and unstable
values of the parameter α. In the second experiment, we perform an efficiency analysis of
the MCCTU(α) family through a comparative study between its optimal stable member
and fifteen different fourth-order methods from the literature: Ostrowski (OS) in [12,35],
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King (KI) in [35,36], Jarratt (JA) in [35,37], Özban and Kaya (OK1, OK2, OK3) in [8],
Chun (CH) in [38], Maheshwari (MA) in [39], Behl et al. (BMM) in [40], Chun et al. (CLND1,
CLND2) in [41], Artidiello et al. (ACCT1, ACCT2) in [42], Ghanbari (GH) in [43], and
Kou et al. (KLW) in [44].

Table 1. Nonlinear test equations and corresponding roots.

Nonlinear Test Equations Roots

f1(x) = sin(x)− x2 + 1 = 0 ξ ≈ −0.63673
f2(x) = x2 − ex − 3x + 2 = 0 ξ ≈ 0.25753
f3(x) = cos(x)− xex + x2 = 0 ξ ≈ 0.63915
f4(x) = ex − 1.5− arctan(x) = 0 ξ ≈ −14.10127
f5(x) = x3 + 4x2 − 10 = 0 ξ ≈ 1.36523
f6(x) = 8x− cos(x)− 2x2 = 0 ξ ≈ 0.12808
f7(x) = xex2 − sin2(x) + 3 cos(x) + 5 = 0 ξ ≈ −1.20765
f8(x) =

√
x2 + 2x + 5− 2 sin(x)− x2 + 3 = 0 ξ ≈ 2.33197

f9(x) = x4 + sin
( π

x2

)
− 5 = 0 ξ ≈ −1.41421

f10(x) =
√

x4 + sin
( π

x2

)
− 3

16
= 0 ξ ≈ −0.90599

While performing these numerical tests, we start the iterations with different initial estimates:
close (x0 ≈ ξ), far (x0 ≈ 3ξ), and very far (x0 ≈ 10ξ) from the root ξ. This approach allows us to
evaluate how sensitive the methods are to the initial estimation when finding a solution.

The calculations are performed using the MATLAB R2020b programming package
with variable precision arithmetic set to 200 digits of mantissa (in Appendix C, an example
with double-precision arithmetics is included). For each method, we analyze the number
of iterations (iter) required to converge to the solution, with stopping criteria defined
as |xk+1 − xk| < 10−100 or | f (xk+1)| < 10−100. Here, |xk+1 − xk| represents the error
estimation between two consecutive iterations, and | f (xk+1)| is the residual error of the
nonlinear test function.

To check the theoretical order of convergence (p), we calculate the approximate com-
putational order of convergence (ACOC) as described by Cordero and Torregrosa in [15].
In the numerical results, if the ACOC values do not stabilize throughout the iterative
process, it is marked as ‘-’; and if any method fails to converge within a maximum of
50 iterations, it is marked as ‘nc’.

4.1. First Experiment: Stability Analysis of MCCTU(α) Family

In this experiment, we conducted a stability analysis of the MCCTU(α) family by
considering values of α both within the stability regions (α = 2) and outside of them
(α = 100), setting δ = 2

α4 . The methods analyzed are of order 3, consistent with the
theoretical convergence results. A special case occurs when α = 0, where the associated
method never converges to the solution because the denominator in the relation δ = 2/α4

becomes zero, causing δ to grow indefinitely.
The numerical performance of the iterative methods MCCTU(2) and MCCTU(100) is

presented in Tables 2 and 3, using initial estimates that are close, far, and very far from the
root. This approach enables us to assess the stability and reliability of the methods under
various initial conditions.
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Table 2. Numerical performance of MCCTU(2) method on nonlinear equations (“nc” means non-
convergence).

Function x0 |xk+1− xk| | f (xk+1)| Iter ACOC

Close to ξ
f1 −0.6 2.2252 × 10−54 1.4765 × 10−162 4 3
f2 0.2 1.8447 × 10−50 1.3536 × 10−150 4 3
f3 0.6 2.3846 × 10−44 1.4235 × 10−131 4 3
f4 −14.1 5.1414 × 10−36 3.3633 × 10−111 3 3
f5 1.3 1.6295 × 10−53 4.3267 × 10−159 4 3
f6 0.1 4.6096 × 10−78 2.4334 × 10−208 4 3
f7 −1.2 3.6237 × 10−54 1.9349 × 10−159 4 3
f8 2.3 3.0861 × 10−54 6.9791 × 10−162 4 3
f9 −1.4 7.0858 × 10−51 3.8746 × 10−150 4 3
f10 −0.9 8.9456 × 10−45 9.7874 × 10−131 4 3

Far from ξ
f1 −1.8 1.5223 × 10−92 0 5 3
f2 0.6 6.6012 × 10−87 0 5 3
f3 1.8 3.8851 × 10−45 6.1565 × 10−134 6 3
f4 −42.3 nc nc nc nc
f5 3.9 1.0792 × 10−59 1.2569 × 10−177 6 3
f6 0.3 1.0805 × 10−48 2.6855 × 10−146 4 3
f7 −3.6 2.2394 × 10−55 4.5662 × 10−163 14 3
f8 6.9 1.1722 × 10−41 3.8248 × 10−124 6 3
f9 −4.2 1.3408 × 10−101 0 8 3
f10 −2.7 4.3149 × 10−78 3.1147 × 10−207 8 3

Very far from ξ
f1 −6.0 1.5491 × 10−52 4.9812 × 10−157 6 3
f2 2.0 1.6192 × 10−89 0 6 3
f3 6.0 7.1447 × 10−57 3.8290 × 10−169 10 3
f4 −141.0 nc nc nc nc
f5 13.0 1.6531 × 10−82 0 8 3
f6 1.0 1.6423 × 10−56 9.4291 × 10−170 5 3
f7 −12.0 nc nc nc nc
f8 23.0 1.2648 × 10−44 4.8043 × 10−133 7 3
f9 −14.0 2.3358 × 10−43 1.3880 × 10−127 10 3
f10 −9.0 3.0298 × 10−44 1.2080 × 10−128 6 3

From the analysis of the first experiment, it is evident that the MCCTU(2) method
exhibits robust performance. For initial estimates close to the root (x0 ≈ ξ), the method
consistently converges to the solution with very low errors, achieving convergence in three
or four iterations, and the ACOC value stabilizes at 3. For initial estimates that are far
(x0 ≈ 3ξ), the number of iterations increases, but the method still converges to the solution
in nine out of ten cases. For initial estimates that are very far (x0 ≈ 10ξ), the method holds
a similar performance, converging to the solution in eight out of ten cases. It is notable
that as the initial condition moves further away, the method shows a slight difficulty in
finding the solution. This slight dependence is understandable given the complexity of the
nonlinear functions f4 and f7. Nonetheless, the method is shown to be stable and robust,
with a convergence order of 3, verifying the theoretical results.

On the other hand, MCCTU(100) method encounters significant difficulties in finding
the solution. As the initial conditions move further away, the number of iterations increases.
Despite lacking good stability characteristics, the method converges to the solution for
initial estimates close to the root. However, for initial estimates that are far and very far
from the root, it fails to converge in four out of ten cases. Additionally, the method never
stabilizes the ACOC value in any case. These results confirm the theoretical instability of
the method, as α = 100 lies outside the stability surface studied in Section 3.
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Table 3. Numerical performance of MCCTU(100) method on nonlinear equations (“nc” means
non-convergence).

Function x0 |xk+1− xk| | f (xk+1)| Iter ACOC

Close to ξ
f1 −0.6 6.1808 × 10−99 7.6768 × 10−113 9 -
f2 0.2 2.1827 × 10−88 4.9309 × 10−102 9 -
f3 0.6 6.0791 × 10−94 8.8104 × 10−108 9 -
f4 −14.1 4.5379 × 10−95 1.3573 × 10−111 8 -
f5 1.3 4.9631 × 10−94 4.8998 × 10−107 9 -
f6 0.1 3.0953 × 10−100 1.4092 × 10−113 9 -
f7 −1.2 8.7126 × 10−95 1.0578 × 10−107 9 -
f8 2.3 2.1622 × 10−95 3.1373 × 10−109 9 -
f9 −1.4 4.0458 × 10−95 2.7366 × 10−108 9 -
f10 −0.9 6.2830 × 10−95 3.1368 × 10−108 9 -

Far from ξ
f1 −1.8 2.7746 × 10−92 3.4462 × 10−106 10 -
f2 0.6 6.8191 × 10−99 1.5405 × 10−112 10 -
f3 1.8 8.0835 × 10−90 1.1715 × 10−103 12 -
f4 −42.3 nc nc nc nc
f5 3.9 nc nc nc nc
f6 0.3 4.0669 × 10−95 1.8516 × 10−108 9 -
f7 −3.6 nc nc nc nc
f8 6.9 1.5980 × 10−88 2.3186 × 10−102 11 -
f9 −4.2 nc nc nc nc
f10 −2.7 1.5127 × 10−97 3.0929 × 10−110 11 -

Very far from ξ
f1 −6.0 1.2947 × 10−94 1.6081 × 10−108 11 -
f2 2.0 3.5429 × 10−94 8.0036 × 10−108 11 -
f3 6.0 4.5426 × 10−97 6.5836 × 10−111 18 -
f4 −141.0 nc nc nc nc
f5 13.0 nc nc nc nc
f6 1.0 1.4843 × 10−94 6.7580 × 10−108 10 -
f7 −12.0 nc nc nc nc
f8 23.0 7.4725 × 10−92 1.0842 × 10−105 12 -
f9 −14.0 nc nc nc nc
f10 −9.0 6.5629e × 10−95 3.2765 × 10−108 12 -

4.2. Second Experiment: Efficiency Analysis of MCCTU(α) Family

In this experiment, we conduct a comparative study between an optimal method of
the MCCTU(α) family and the fifteen fourth-order methods mentioned in the introduction
of Section 4, to contrast their numerical performances on nonlinear equations. We consider
the method associated with α = 1 and δ = 2, denoted as MCCTU(1), as the optimal stable
member of the MCCTU(α) family with fourth-order of convergence.

Thus, in Tables 4–14, we present the numerical results for the sixteen known methods,
considering initial estimates that are close, far, and very far from the root, as well as the ten
test equations.

Table 4. Numerical performance of iterative methods on nonlinear equations for x0 close to ξ (1/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f1 MCCTU(1) 8.4069× 10−27 2.2344× 10−105 3 4.0111
x0 = −0.6 OS 1.2193× 10−29 2.7787× 10−117 3 4.0062

KI 3.9435× 10−29 3.8183× 10−115 3 4.0070
JA 1.3498× 10−29 4.2651× 10−117 3 4.0061
OK1 5.0547× 10−32 2.9443× 10−127 3 3.9991
OK2 4.0266× 10−30 2.6729× 10−119 3 4.0052
OK3 2.5735× 10−30 4.5908× 10−120 3 3.9937
CH 1.6691× 10−28 1.6213× 10−112 3 4.0081
MA 3.0371× 10−27 3.1217× 10−107 3 4.0103
BMM 1.2299× 10−28 4.4824× 10−113 3 4.0084
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Table 4. Cont.

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

CLND1 8.643 × 10−27 2.5116× 10−105 3 4.0110
CLND2 1.6691× 10−28 1.6213× 10−112 3 4.0081
ACCT1 8.4069× 10−27 2.2344× 10−105 3 4.0111
ACCT2 7.4417× 10−32 1.0756× 10−126 3 4.0294
GH 1.9739× 10−26 8.0112× 10−104 3 4.0119
KLW 8.4441× 10−28 1.4567× 10−109 3 4.0092

f2 MCCTU(1) 4.0916× 10−36 1.3257× 10−144 3 3.9624
x0 = 0.2 OS 2.6718× 10−32 8.6963× 10−129 3 3.9998

KI 1.7333× 10−32 1.4291× 10−129 3 3.9987
JA 1.1553× 10−31 4.1074× 10−126 3 3.9990
OK1 2.4295× 10−31 9.1464× 10−125 3 4.0008
OK2 1.4863× 10−31 1.1754× 10−125 3 3.9997
OK3 1.3844× 10−31 8.8054× 10−126 3 3.9988
CH 5.002 × 10−32 1.2502× 10−127 3 3.9969
MA 2.1425× 10−34 1.6464× 10−137 3 3.9844
BMM 5.5838× 10−31 2.8585× 10−123 3 4.0057
CLND1 9.7338× 10−34 9.6229× 10−135 3 3.9830
CLND2 5.002 × 10−32 1.2502× 10−127 3 3.9969
ACCT1 4.0916× 10−36 1.3257× 10−144 3 3.9624
ACCT2 1.4832× 10−31 1.1243× 10−125 3 4.0029
GH 2.5248× 10−38 6.6868× 10−154 3 3.9675
KLW 1.8553× 10−33 1.2914× 10−133 3 3.9925

f3 MCCTU(1) 2.2096× 10−83 0 4 4
x0 = 0.6 OS 1.7622× 10−27 3.3439× 10−108 3 3.9992

KI 1.6297× 10−100 0 4 4
JA 2.9708× 10−27 2.989× 10−107 3 3.9996
OK1 6.1743× 10−100 1.9467× 10−208 4 4
OK2 1.0137× 10−33 6.7493× 10−135 3 4.0975
OK3 1.0148× 10−27 3.9188× 10−110 3 4.2357
CH 2.1262× 10−94 0 4 4
MA 6.9765× 10−86 0 4 4
BMM 1.6076× 10−85 1.9467× 10−208 4 4
CLND1 2.5512× 10−83 0 4 4
CLND2 2.1262× 10−94 0 4 4
ACCT1 2.2096× 10−83 6.8135× 10−208 4 4
ACCT2 2.5202× 10−91 0 4 4
GH 2.2217× 10−81 0 4 4
KLW 2.4336× 10−89 0 4 4

Table 5. Numerical performance of iterative methods on nonlinear equations for x0 close to ξ (2/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f4 MCCTU(1) 2.4812× 10−61 0 3 4
x0 = −14.1 OS 5.7494× 10−76 0 3 4

KI 2.6178× 10−66 0 3 4
JA 4.5662× 10−69 3.8934× 10−208 3 4
OK1 1.6181× 10−64 0 3 4
OK2 1.2341× 10−67 0 3 4
OK3 4.782 × 10−68 3.8934× 10−208 3 3.9998
CH 4.1273× 10−64 0 3 4
MA 5.9003× 10−62 0 3 4
BMM 2.4555× 10−61 3.8934× 10−208 3 4
CLND1 2.8374× 10−61 0 3 4
CLND2 4.1273× 10−64 0 3 4
ACCT1 2.4812× 10−61 0 3 4
ACCT2 7.6144× 10−63 0 3 4
GH 7.562 × 10−61 0 3 4
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Table 5. Cont.

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

KLW 7.8025× 10−63 0 3 4
f5 MCCTU(1) 1.5146× 10−80 0 4 4
x0 = 1.3 OS 4.0399× 10−98 0 4 4

KI 4.6142× 10−94 0 4 4
JA 4.0399× 10−98 0 4 4
OK1 1.6263× 10−26 3.9339× 10−104 3 4.0265
OK2 3.7251× 10−26 1.5538× 10−102 3 4.0049
OK3 2.6244× 10−29 4.1697× 10−115 3 3.8563
CH 5.0966× 10−90 0 4 4
MA 8.4188× 10−83 0 4 4
BMM 8.6757× 10−85 0 4 4
CLND1 1.5146× 10−80 0 4 4
CLND2 5.0966× 10−90 0 4 4
ACCT1 1.5146× 10−80 0 4 4
ACCT2 1.0557× 10−91 0 4 4
GH 1.0682× 10−78 0 4 4
KLW 8.3547× 10−86 0 4 4

f6 MCCTU(1) 1.1439× 10−32 5.0948× 10−129 3 3.9969
x0 = 0.1 OS 5.058 × 10−36 4.1154× 10−143 3 3.9980

KI 2.4554× 10−35 3.1386× 10−140 3 3.9979
JA 7.2379× 10−36 1.8516× 10−142 3 3.9981
OK1 8.6178× 10−41 3.6529× 10−163 3 4.0021
OK2 1.3158× 10−36 1.4361× 10−145 3 3.9982
OK3 2.2299× 10−36 1.2384× 10−144 3 4.0031
CH 1.6189× 10−34 8.6635× 10−137 3 3.9977
MA 3.8478× 10−33 5.2367× 10−131 3 3.9971
BMM 7.9902× 10−34 7.003× 10−134 3 3.9985
CLND1 1.2375× 10−32 7.0855× 10−129 3 3.9970
CLND2 1.6189× 10−34 8.6635× 10−137 3 3.9977
ACCT1 1.1439× 10−32 5.0948× 10−129 3 3.9969
ACCT2 2.0595× 10−36 9.7992× 10−145 3 3.9952
GH 2.7869× 10−32 2.1488× 10−127 3 3.9967
KLW 9.5356× 10−34 1.49 × 10−133 3 3.9974

Table 6. Numerical performance of iterative methods on nonlinear equations for x0 close to ξ (3/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f7 MCCTU(1) 8.109 × 10−29 1.224× 10−110 3 4.0025
x0 = −1.2 OS 1.0259× 10−36 8.588× 10−144 3 3.9987

KI 2.2 × 10−33 8.266× 10−130 3 4.0003
JA 1.3275× 10−35 3.987× 10−139 3 3.9993
OK1 2.8995× 10−32 4.1375× 10−125 3 4.0011
OK2 4.5559× 10−36 4.3528× 10−141 3 4.0014
OK3 3.3899× 10−35 9.9763× 10−138 3 4.0602
CH 1.5282× 10−31 4.4541× 10−122 3 4.0011
MA 1.9806× 10−29 3.2969× 10−113 3 4.0021
BMM 5.13 × 10−29 1.8531× 10−111 3 3.9988
CLND1 8.8475× 10−29 1.7657× 10−110 3 4.0024
CLND2 1.5282× 10−31 4.4541× 10−122 3 4.0011
ACCT1 8.109 × 10−29 1.224× 10−110 3 4.0025
ACCT2 1.7685× 10−30 1.2708× 10−117 3 4.0037
GH 2.4542× 10−28 1.2766× 10−108 3 4.0029
KLW 2.7616× 10−30 8.4579× 10−117 3 4.0014

f8 MCCTU(1) 3.2362× 10−36 1.278× 10−144 3 4.0010
x0 = 2.3 OS 4.7781× 10−35 1.1082× 10−139 3 3.9959

KI 3.867 × 10−35 4.5395× 10−140 3 3.9962
JA 6.4886× 10−36 2.6103× 10−143 3 3.9934
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Table 6. Cont.

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

OK1 1.3631× 10−35 5.9439× 10−142 3 3.9927
OK2 8.3354× 10−36 7.4954× 10−143 3 3.9931
OK3 8.2958× 10−36 7.3117× 10−143 3 3.9935
CH 2.8017× 10−36 7.5934× 10−145 3 3.9943
MA 7.3689× 10−36 4.1437× 10−143 3 3.9992
BMM 2.6822× 10−34 1.5979× 10−136 3 3.9934
CLND1 5.1248× 10−38 3.528× 10−152 3 4.0005
CLND2 2.8017× 10−36 7.5934× 10−145 3 3.9943
ACCT1 3.2362× 10−36 1.278× 10−144 3 4.0010
ACCT2 1.2316× 10−34 5.9984× 10−138 3 3.9946
GH 1.2035× 10−36 1.9404× 10−146 3 4.0036
KLW 1.4928× 10−35 8.1719× 10−142 3 3.9978

f9 MCCTU(1) 1.2504× 10−28 6.0286× 10−111 3 3.9982
x0 = −1.4 OS 2.2297× 10−33 5.9539× 10−131 3 4.0107

KI 3.571 × 10−39 4.8453× 10−155 3 3.9663
JA 6.6365× 10−33 5.9006× 10−129 3 4.0095
OK1 1.7043× 10−30 8.4881× 10−119 3 4.0019
OK2 8.1242× 10−32 2.3078× 10−124 3 4.0049
OK3 1.3061× 10−31 1.4689× 10−123 3 4.0184
CH 5.6961× 10−33 3.922× 10−129 3 3.9887
MA 2.4063× 10−29 5.9988× 10−114 3 3.9973
BMM 2.911 × 10−28 2.1169× 10−109 3 3.9971
CLND1 1.0887× 10−28 3.3751× 10−111 3 3.9980
CLND2 5.6961× 10−33 3.922× 10−129 3 3.9887
ACCT1 1.2504× 10−28 6.0286× 10−111 3 3.9982
ACCT2 1.7434× 10−29 1.473× 10−114 3 4.0025
GH 4.3546× 10−28 1.1301× 10−108 3 3.9989
KLW 2.0248× 10−30 1.8702× 10−118 3 3.9955

Table 7. Numerical performance of iterative methods on nonlinear equations for x0 close to ξ (4/4).

Function Method |xk+1− xk| 1c| f (xk+1)| Iter ACOC

f10 MCCTU(1) 1.3096× 10−27 1.0557× 10−105 3 4.0263
x0 = −0.9 OS 1.2157× 10−28 5.2236× 10−110 3 4.0178

KI 1.6268× 10−28 1.7588× 10−109 3 4.0189
JA 2.5808× 10−28 1.2592× 10−108 3 4.0158
OK1 1.2566× 10−28 6.3023× 10−110 3 4.0126
OK2 2.0733× 10−28 5.0608× 10−109 3 4.0149
OK3 1.9638× 10−28 4.0898× 10−109 3 4.0133
CH 4.7545× 10−28 1.6033× 10−107 3 4.0184
MA 7.9356× 10−28 1.3045× 10−106 3 4.0246
BMM 1.3934× 10−30 4.5027× 10−118 3 3.9969
CLND1 2.1208× 10−27 8.164× 10−105 3 4.0242
CLND2 4.7545× 10−28 1.6033× 10−107 3 4.0184
ACCT1 1.3096× 10−27 1.0557× 10−105 3 4.0263
ACCT2 1.9256× 10−29 2.4651× 10−113 3 4.0090
GH 2.0723× 10−27 7.171× 10−105 3 4.0278
KLW 4.546 × 10−28 1.2771× 10−107 3 4.0226

In Tables 4–7, we observe that MCCTU(1) consistently converges to the solution for initial
estimates close to the root (x0 ≈ ξ), with a similar number of iterations as other methods
across all equations. The theoretical convergence order is confirmed by the ACOC, which
is close to 4. However, what about the dependence of MCCTU(1) on initial estimates? To
answer this, we analyze the method for initial estimates far and very far from the solution,
specifically for x0 ≈ 3ξ and x0 ≈ 10ξ, respectively. The results are shown in Tables 8–15.
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Table 8. Numerical performance of iterative methods on nonlinear equations for x0 far from ξ (“nc”
means non-convergence). (1/4)

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f1 MCCTU(1) 3.15 × 10−28 4.4044× 10−111 4 3.9913
x0 = −1.8 OS 5.8375× 10−36 1.46 × 10−142 4 3.9979

KI 1.5765× 10−34 9.7538× 10−137 4 3.9972
JA 5.3832× 10−35 1.0789× 10−138 4 3.9976
OK1 9.9392× 10−40 4.4016× 10−158 4 4.0001
OK2 2.4525× 10−36 3.6785× 10−144 4 3.9982
OK3 1.1878× 10−33 2.0829× 10−133 4 4.0017
CH 2.7866× 10−32 1.2595× 10−127 4 3.9958
MA 2.0068× 10−29 5.9514× 10−116 4 3.9929
BMM 1.3126× 10−31 5.814× 10−125 4 4.0050
CLND1 7.4349× 10−28 1.3753× 10−109 4 3.9907
CLND2 2.7866× 10−32 1.2595× 10−127 4 3.9958
ACCT1 3.15 × 10−28 4.4044× 10−111 4 3.9913
ACCT2 6.7276× 10−44 7.1842× 10−175 4 3.9954
GH 2.7189× 10−27 2.8837× 10−107 4 3.9896
KLW 7.9363× 10−31 1.1367× 10−121 4 3.9946

f2 MCCTU(1) 6.8509× 10−86 0 4 4
x0 = 0.6 OS 7.8707× 10−82 0 4 4

KI 4.1628× 10−82 0 4 4
JA 5.9451× 10−78 7.7869× 10−208 4 4
OK1 1.7391× 10−77 7.7869× 10−208 4 4
OK2 8.4717× 10−78 0 4 4
OK3 8.9827× 10−78 0 4 4
CH 1.8951× 10−78 0 4 4
MA 1.8733× 10−84 0 4 4
BMM 1.2206× 10−79 0 4 4
CLND1 2.1212× 10−80 0 4 4
CLND2 1.8951× 10−78 0 4 4
ACCT1 6.8509× 10−86 0 4 4
ACCT2 1.366 × 10−80 0 4 4
GH 1.4879× 10−88 0 4 4
KLW 2.1154× 10−83 0 4 4

f3 MCCTU(1) 6.0868× 10−31 6.9016× 10−121 5 3.9978
x0 = 1.8 OS 7.2812× 10−73 0 5 4

KI 8.2846× 10−59 0 5 4
JA 6.0259× 10−71 0 5 4
OK1 1.1879× 10−82 0 5 4
OK2 6.2111× 10−27 9.5138× 10−108 4 4.1522
OK3 7.5783× 10−53 0 5 4.0205
CH 9.6923× 10−49 1.3715× 10−192 5 3.9999
MA 1.3275× 10−34 1.1979× 10−135 5 3.9989
BMM nc nc nc nc
CLND1 9.5034× 10−31 4.1315× 10−120 5 3.9978
CLND2 9.6923× 10−49 1.3715× 10−192 5 3.9999
ACCT1 6.0868× 10−31 6.9016× 10−121 5 3.9978
ACCT2 6.1271× 10−31 2.8102× 10−121 4 3.9953
GH 1.4039× 10−28 2.4077× 10−111 5 3.9965
KLW 4.5965× 10−39 1.1996× 10−153 5 3.9996

Table 9. Numerical performance of iterative methods on nonlinear equations for x0 far from ξ (“nc”
means non-convergence) (2/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f4 MCCTU(1) nc nc nc nc
x0 = −42.3 OS 2.602 × 10−54 0 6 4.0004

KI nc nc nc nc
JA 1.0645× 10−51 0 6 4
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Table 9. Cont.

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

OK1 nc nc nc nc
OK2 nc nc nc nc
OK3 nc nc nc nc
CH nc nc nc nc
MA nc nc nc nc
BMM nc nc nc nc
CLND1 nc nc nc nc
CLND2 nc nc nc nc
ACCT1 nc nc nc nc
ACCT2 nc nc nc nc
GH nc nc nc nc
KLW nc nc nc nc

f5 MCCTU(1) 5.1192× 10−33 6.3445× 10−129 5 3.9976
x0 = 3.9 OS 1.8922× 10−60 0 5 4

KI 1.6925× 10−53 0 5 3.9999
JA 1.8922× 10−60 0 5 4
OK1 4.3746× 10−85 0 5 4
OK2 8.1261× 10−70 0 5 4
OK3 8.7491× 10−49 5.1503× 10−193 5 4.0015
CH 1.68 × 10−47 2.7094× 10−187 5 3.9998
MA 3.351 × 10−36 9.1961× 10−142 5 3.9986
BMM nc nc nc nc
CLND1 5.1192× 10−33 6.3445× 10−129 5 3.9976
CLND2 1.68 × 10−47 2.7094× 10−187 5 3.9998
ACCT1 5.1192× 10−33 6.3445× 10−129 5 3.9976
ACCT2 1.7037× 10−75 0 5 4
GH 8.0066× 10−31 4.5963× 10−120 5 3.9964
KLW 5.3477× 10−40 4.373× 10−157 5 3.9993

f6 MCCTU(1) 2.8249× 10−77 1.2167× 10−208 4 4
x0 = 0.3 OS 4.615 × 10−92 1.2167× 10−208 4 4

KI 4.375 × 10−89 1.2167× 10−208 4 4
JA 1.7544× 10−91 1.2167× 10−208 4 4
OK1 3.5822× 10−29 1.0907× 10−116 3 3.9593
OK2 1.0602× 10−94 1.2167× 10−208 4 4
OK3 1.3907× 10−101 1.2167× 10−208 4 4
CH 1.6778× 10−85 1.2167× 10−208 4 4
MA 2.2127× 10−79 1.2167× 10−208 4 4
BMM 3.3893× 10−83 1.2167× 10−208 4 4
CLND1 3.6933× 10−77 1.2167× 10−208 4 4
CLND2 1.6778× 10−85 1.2167× 10−208 4 4
ACCT1 2.8249× 10−77 2.4334× 10−208 4 4
ACCT2 3.1138× 10−91 1.2167× 10−208 4 4
GH 1.6004× 10−75 1.2167× 10−208 4 4
KLW 3.9889× 10−82 1.2167× 10−208 4 4

Table 10. Numerical performance of iterative methods in nonlinear equations for x0 far from ξ (“nc”
means non-convergence) (3/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f7 MCCTU(1) 2.1695× 10−40 6.2709× 10−157 12 3.9997
x0 = −3.6 OS 8.7445× 10−42 4.5328× 10−164 9 4.0005

KI 3.5832× 10−59 0 10 4
JA 1.445 × 10−33 5.5984× 10−131 9 4.0010
OK1 4.5904× 10−56 0 9 4
OK2 2.2993× 10−100 0 9 4
OK3 4.4822× 10−55 0 11 3.9955
CH 2.5759× 10−93 0 11 4
MA 1.0752× 10−70 0 12 4
BMM nc nc nc nc
CLND1 5.1735× 10−38 2.0643× 10−147 12 3.9995
CLND2 2.5759× 10−93 0 11 4
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Table 10. Cont.

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

ACCT1 2.1695× 10−40 6.2709× 10−157 12 3.9997
ACCT2 7.4341× 10−57 0 8 4
GH 2.2938× 10−28 9.7412× 10−109 12 3.9971
KLW 6.4489× 10−31 2.515× 10−119 11 3.9988

f8 MCCTU(1) 8.9717× 10−34 7.5485× 10−135 5 3.9964
x0 = 6.9 OS 3.5465× 10−42 3.3638× 10−168 5 3.9988

KI 3.0788× 10−46 1.8241× 10−184 5 3.9994
JA 3.8134× 10−44 3.1142× 10−176 5 3.9984
OK1 4.9365× 10−41 1.0225× 10−163 5 3.9972
OK2 1.6379× 10−42 1.1175× 10−169 5 3.9979
OK3 9.2522× 10−52 1.0123× 10−206 5 4.0004
CH 6.7803× 10−74 1.5574× 10−207 5 4
MA 4.1752× 10−36 4.2707× 10−144 5 4.0002
BMM 1.4528× 10−98 1.5574× 10−207 5 4
CLND1 2.6243× 10−36 2.4259× 10−145 5 3.9960
CLND2 6.7803× 10−74 1.5574× 10−207 5 4
ACCT1 8.9717× 10−34 7.5485× 10−135 5 3.9964
ACCT2 7.0924× 10−38 6.5962× 10−151 5 3.9970
GH 9.3051× 10−33 6.9333× 10−131 5 3.9867
KLW 1.1619× 10−39 2.9996× 10−158 5 4.0009

f9 MCCTU(1) 1.9461× 10−27 3.5371× 10−106 6 4.0014
x0 = −4.2 OS 4.9716× 10−100 0 6 4

KI 2.3907× 10−73 0 6 4.0003
JA 1.5785× 10−91 0 6 4
OK1 7.3314× 10−101 0 6 4
OK2 5.2967× 10−94 0 6 4
OK3 3.3512× 10−48 6.3655× 10−190 6 3.9987
CH 1.4014× 10−54 0 6 4.0003
MA 2.5559× 10−32 7.6354× 10−126 6 4.0012
BMM nc nc nc nc
CLND1 1.866 × 10−27 2.9131× 10−106 6 4.0016
CLND2 1.4014× 10−54 0 6 4.0003
ACCT1 1.9461× 10−27 3.5371× 10−106 6 4.0014
ACCT2 7.4372× 10−40 4.8779× 10−156 5 3.9995
GH 3.5153× 10−95 0 7 4
KLW 1.7919× 10−38 1.147× 10−150 6 4.0009

Table 11. Numerical performance of iterative methods on nonlinear equations for x0 far from ξ (4/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f10 MCCTU(1) 1.4573× 10−79 1.0707× 10−207 6 3.9998
x0 = −2.7 OS 5.9731× 10−31 3.7644× 10−111 10 4.0223

KI 3.5019× 10−84 3.3094× 10−207 6 4.0006
JA 2.7724× 10−41 1.3193× 10−154 5 3.9916
OK1 4.672 × 10−37 3.3675× 10−141 5 4.0067
OK2 6.9502× 10−38 2.3984× 10−144 5 3.9545
OK3 4.1808× 10−48 2.2923× 10−179 5 4.0014
CH 1.8136× 10−97 3.8389× 10−205 6 4
MA 2.2689× 10−93 3.8934× 10−208 5 4
BMM 2.6823× 10−41 6.1829× 10−161 6 3.9999
CLND1 8.2625× 10−101 2.7254× 10−207 5 4
CLND2 1.8136× 10−97 3.8389× 10−205 6 4
ACCT1 1.4573× 10−79 1.0707× 10−207 6 3.9998
ACCT2 3.3917× 10−58 2.3908× 10−204 6 4.0003
GH 2.2337× 10−72 1.0707× 10−207 5 3.9994
KLW 2.4673× 10−32 6.302× 10−122 4 3.8791

The results presented in Tables 8–11 are promising. MCCTU(1) converges to the
solution in nine out of the ten nonlinear equations, even when the initial estimate is far
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from the root (x0 ≈ 3ξ). In these cases, the ACOC consistently stabilizes and approaches
4. Only in one instance, for the function f4, does MCCTU(1) fail to converge, similar to
the other thirteen methods. For this particular equation, only two methods successfully
approximate the root. In the remaining equations, MCCTU(1) converges to the solution
with a comparable number of iterations to other methods and even requires fewer iterations
than Ostrowski’s method, as seen with function f10. Therefore, we confirm that this method
is robust, consistent with the stability results shown in previous sections.

Table 12. Numerical performance of iterative methods on nonlinear equations for x0 very far from
ξ (“nc” means non-convergence) (1/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f1 MCCTU(1) 3.9494× 10−95 0 6 4
x0 = −6.0 OS 7.5454× 10−40 4.0753× 10−158 5 3.9989

KI 2.2846× 10−36 4.3008× 10−144 5 3.9980
JA 4.2789× 10−41 4.3067× 10−163 5 3.9992
OK1 2.8437× 10−53 0 5 4
OK2 2.0962× 10−46 1.9632× 10−184 5 3.9997
OK3 1.9553× 10−33 1.5296× 10−132 5 4.0018
CH 1.6161× 10−33 1.4248× 10−132 5 3.9966
MA 2.632 × 10−26 1.7609× 10−103 5 3.9875
BMM nc nc nc nc
CLND1 5.8255× 10−95 0 6 4
CLND2 1.6161× 10−33 1.4248× 10−132 5 3.9966
ACCT1 3.9494× 10−95 0 6 4
ACCT2 5.5395× 10−58 0 5 3.9996
GH 6.2374× 10−89 0 6 4
KLW 1.0186× 10−28 3.0849× 10−113 5 3.9921

f2 MCCTU(1) 1.0368× 10−34 5.4646× 10−139 4 4.0222
x0 = 2.0 OS 2.3862× 10−93 0 5 4

KI 1.2873× 10−25 4.3485× 10−102 4 3.9933
JA 4.1797× 10−95 0 5 4
OK1 8.2892× 10−82 0 5 4
OK2 5.051 × 10−87 0 5 4
OK3 4.2138× 10−33 7.557× 10−132 4 3.9991
CH 1.639 × 10−29 1.4412× 10−117 4 3.9949
MA 9.1807× 10−43 5.5512× 10−171 4 4.0028
BMM 2.9675× 10−52 0 6 3.9998
CLND1 9.0974× 10−32 7.3425× 10−127 4 4.0155
CLND2 1.639 × 10−29 1.4412× 10−117 4 3.9949
ACCT1 1.0368× 10−34 5.4646× 10−139 4 4.0222
ACCT2 1.9358× 10−73 0 5 4
GH 6.4242× 10−33 2.803× 10−132 4 4.0791
KLW 1.6753× 10−39 8.5848× 10−158 4 3.9976

f3 MCCTU(1) 1.0037× 10−74 0 9 4
x0 = 6.0 OS 1.4888× 10−45 1.7033× 10−180 7 4

KI 3.4193× 10−27 1.1139× 10−106 7 3.9978
JA 2.4788× 10−42 1.4488× 10−167 7 4
OK1 7.5531× 10−64 0 7 4
OK2 5.2399× 10−91 0 7 4
OK3 2.024 × 10−56 0 8 4.0130
CH 3.2307× 10−66 6.8135× 10−208 8 4
MA 2.7511× 10−26 2.21 × 10−102 8 3.9951
BMM nc nc nc nc
CLND1 5.7924× 10−73 0 9 4
CLND2 3.2307× 10−66 6.8135× 10−208 8 4
ACCT1 1.0037× 10−74 0 9 4
ACCT2 1.643 × 10−31 1.4531× 10−123 6 4.0042
GH 1.8548× 10−60 0 9 4
KLW 1.1156× 10−35 4.1633× 10−140 8 3.9992
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Table 13. Numerical performance of iterative methods on nonlinear equations for x0 very far from
ξ (“nc” means non-convergence) (2/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f4 MCCTU(1) nc nc nc nc
x0 = −141.0 OS nc nc nc nc

KI nc nc nc nc
JA nc nc nc nc
OK1 nc nc nc nc
OK2 nc nc nc nc
OK3 nc nc nc nc
CH nc nc nc nc
MA nc nc nc nc
BMM nc nc nc nc
CLND1 nc nc nc nc
CLND2 nc nc nc nc
ACCT1 nc nc nc nc
ACCT2 nc nc nc nc
GH nc nc nc nc
KLW nc nc nc nc

f5 MCCTU(1) 1.2254× 10−58 0 7 4
x0 = 13.0 OS 4.3174× 10−43 5.0572× 10−170 6 3.9996

KI 5.4113× 10−35 1.9154× 10−137 6 3.9985
JA 4.3174× 10−43 5.0572× 10−170 6 3.9996
OK1 1.2884× 10−87 0 6 4
OK2 1.1488× 10−54 0 6 4
OK3 1.3547× 10−27 2.9602× 10−108 6 4.0338
CH 1.1569× 10−28 6.0929× 10−112 6 3.9948
MA 2.1036× 10−69 6.2295× 10−207 7 4
BMM nc nc nc nc
CLND1 1.2254× 10−58 0 7 4
CLND2 1.1569× 10−28 6.0929× 10−112 6 3.9948
ACCT1 1.2254× 10−58 0 7 4
ACCT2 7.7193× 10−68 0 6 4
GH 6.6848× 10−52 2.2302× 10−204 7 3.9999
KLW 1.4904× 10−82 6.2295× 10−207 7 4

f6 MCCTU(1) 1.4106× 10−84 1.2167× 10−208 5 4
x0 = 1.0 OS 1.0011× 10−40 6.3155× 10−162 4 3.9991

KI 6.4033× 10−37 1.4516× 10−146 4 3.9984
JA 2.3288× 10−40 1.9843× 10−160 4 3.9991
OK1 1.8287× 10−53 1.2167× 10−208 4 3.9997
OK2 1.2544× 10−44 1.1864× 10−177 4 3.9995
OK3 7.2892× 10−32 1.4139× 10−126 4 3.9897
CH 9.2308× 10−32 9.1584× 10−126 4 3.9962
MA 1.5346× 10−95 1.2167× 10−208 5 4
BMM 2.958 × 10−31 1.3155× 10−123 4 4.0024
CLND1 1.5451× 10−84 1.2167× 10−208 5 4
CLND2 9.2308× 10−32 9.1584× 10−126 4 3.9962
ACCT1 1.4106× 10−84 1.2167× 10−208 5 4
ACCT2 5.8091× 10−73 1.2167× 10−208 5 4
GH 4.0743× 10−77 1.2167× 10−208 5 4
KLW 3.7745× 10−28 3.658× 10−111 4 3.9931

Table 14. Numerical performance of iterative methods on nonlinear equations for x0 very far from
ξ (“nc” means non-convergence) (3/4).

Function Method |xk+1− xk| | f (xk+1)| iter ACOC

f7 MCCTU(1) nc nc nc nc
x0 = −12.0 OS nc nc nc nc

KI nc nc nc nc
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Table 14. Cont.

Function Method |xk+1− xk| | f (xk+1)| iter ACOC

JA nc nc nc nc
OK1 nc nc nc nc
OK2 nc nc nc nc
OK3 nc nc nc nc
CH nc nc nc nc
MA nc nc nc nc
BMM nc nc nc nc
CLND1 nc nc nc nc
CLND2 nc nc nc nc
ACCT1 nc nc nc nc
ACCT2 1.2624× 10−39 3.2997× 10−154 50 4.0007
GH nc nc nc nc
KLW nc nc nc nc

f8 MCCTU(1) 7.1071× 10−32 2.9726× 10−127 6 3.9944
x0 = 23.0 OS 3.9961× 10−44 5.4218× 10−176 6 3.9991

KI 1.9961× 10−46 3.223× 10−185 6 3.9995
JA 2.8208× 10−93 1.5574× 10−207 6 4
OK1 1.2245× 10−30 3.8716× 10−122 5 3.9812
OK2 1.3604× 10−44 5.3174× 10−178 5 3.9985
OK3 1.477 × 10−56 1.5574× 10−207 6 3.9998
CH 3.6894× 10−61 1.5574× 10−207 6 3.9999
MA 5.2575× 10−34 1.0738× 10−135 6 4.0001
BMM 3.7259× 10−45 3.1549× 10−179 7 4.0007
CLND1 1.0076× 10−36 5.271× 10−147 6 3.9964
CLND2 3.6894× 10−61 1.5574× 10−207 6 3.9999
ACCT1 7.1071× 10−32 2.9726× 10−127 6 3.9944
ACCT2 1.1468× 10−52 1.5574× 10−207 6 3.9997
GH 3.8246× 10−31 1.9787× 10−124 6 3.9800
KLW 1.5819× 10−37 1.0306× 10−149 6 4.0012

f9 MCCTU(1) 7.6712× 10−52 8.5422× 10−204 9 4
x0 = -14.0 OS 2.3748× 10−99 0 8 4

KI 7.9344× 10−69 0 8 4.0006
JA 1.0139× 10−94 0 8 4
OK1 3.2135× 10−50 1.0728× 10−197 7 3.9999
OK2 1.5049× 10−32 2.7173× 10−127 7 3.9952
OK3 7.1691× 10−34 1.3332× 10−132 8 3.9822
CH 8.1205× 10−44 1.62 × 10−172 8 4.0015
MA 5.7604× 10−70 0 9 4
BMM nc nc nc nc
CLND1 9.8978× 10−52 2.306× 10−203 9 4
CLND2 8.1205× 10−44 1.62 × 10−172 8 4.0015
ACCT1 7.6712× 10−52 8.5422× 10−204 9 4
ACCT2 7.9723× 10−43 6.4405× 10−168 7 4.0003
GH 3.8751× 10−42 7.0871× 10−165 9 4.0001
KLW 1.1099× 10−94 0 9 4

The results presented in Tables 12–15 confirm the exceptional robustness of the MC-
CTU(1) method for initial estimates that are very far from the root (x0 ≈ 10ξ), as the
method converges in eight out of ten cases. A slight dependence on the initial estimate is
observed for functions f4 and f7, where the method does not converge; however, in these
two cases, the other methods also fail to approximate the solution, except for the ACCT2
method, which converges to the root of function f7 with 50 iterations. The complexity of
the nonlinear equations plays a significant role in finding their solutions. Moreover, in the
cases where the MCCTU(1) method converges to the roots, it does so with a comparable
number of iterations to other methods and often with fewer iterations, as seen in function
f2. Additionally, for these cases, the ACOC consistently stabilizes at values close to 4.
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Table 15. Numerical performance of iterative methods in nonlinear equations for x0 very far from
ξ (“nc” means non-convergence) (4/4).

Function Method |xk+1− xk| | f (xk+1)| Iter ACOC

f10 MCCTU(1) 1.2776× 10−70 1.0707× 10−207 6 4.0008
x0 = −9.0 OS 2.9225× 10−29 1.7446× 10−112 5 3.9821

KI 7.9476× 10−94 1.5574× 10−207 8 4
JA 6.1519× 10−29 1.4803× 10−108 8 4.0703
OK1 2.3282× 10−63 9.7336× 10−208 6 4
OK2 2.4314× 10−75 1.9467× 10−208 7 4
OK3 1.9369× 10−93 4.9203× 10−206 6 4
CH 1.0491× 10−37 1.9596× 10−135 8 4.0092
MA 9.5564× 10−89 3.8934× 10−208 6 4
BMM nc nc nc nc
CLND1 1.5067× 10−28 4.9584× 10−107 12 3.7072
CLND2 1.0491× 10−37 1.9596× 10−135 8 4.0092
ACCT1 1.2776× 10−70 1.0707× 10−207 6 4.0008
ACCT2 1.463 × 10−49 5.2801× 10−191 5 4.0594
GH 2.4513× 10−45 6.3226× 10−174 7 4.0044
KLW 5.7956× 10−39 1.4646× 10−150 6 4.0153

Therefore, based on the results of the second experiment, we conclude that the
MCCTU(α) family demonstrates impressive numerical performance when using the opti-
mal stable member with α = 1 as a representative, highlighting its robustness and efficiency
even with challenging initial conditions. Overall, the selected MCCTU(1) method exhibits
low errors and requires a similar or fewer number of iterations compared to other methods.
In certain cases, as the complexity of the nonlinear equation increases, the MCCTU(1)
method outperforms Ostrowski’s method and others. The theoretical convergence order is
also confirmed by the ACOC, which is always close to 4.

5. Conclusions

The development of the parametric family of multistep iterative schemes MCCTU(α)
based on the damped Newton scheme has proven to be an effective strategy for solving
nonlinear equations. The inclusion of an additional Newton step with a weight function
and a “frozen” derivative significantly improved the convergence speed from a first-order
class to a uniparametric third-order family.

The numerical results confirm the robustness of the MCCTU(2) method for initial
estimates close to the root (x0 ≈ ξ), with very low errors and convergence in three or
four iterations. As the initial estimates move further away (x0 ≈ 3ξ) and (x0 ≈ 10ξ),
the method continues to show solid performance, converging in most cases and confirming
its theoretical stability and robustness.

Through the analysis of stability surfaces and dynamical planes, specific members
of the MCCTU(α) family with exceptional stability were identified. These members are
particularly suitable for scalar functions with challenging convergence behavior, exhibiting
attractive periodic orbits and strange fixed points in their corresponding dynamical planes.
The MCCTU(1) member stood out for its optimal and stable performance.

In the comparative analysis, the MCCTU(1) method demonstrated superior numerical
performance in many cases, requiring a similar or fewer number of iterations compared
to well-established fourth-order methods such as Ostrowski’s method. This superior
performance is especially notable in more complex nonlinear equations, where MCCTU(1)
outperforms several alternative methods.

The theoretical convergence order of the MCCTU(α) family was confirmed by calculat-
ing the approximate computational order of convergence (ACOC). In most cases, the ACOC
value stabilized close to 3, validating the effectiveness and accuracy of the proposed meth-
ods both theoretically and practically. Additionally, it was confirmed that the convergence
order of the method associated with α = 1 is optimal, achieving a fourth-order convergence.
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Finally, the analysis revealed that certain members of the MCCTU(α) family, particu-
larly those with α values outside the stability surface, exhibited significant instability. These
methods struggled to converge to the solution, especially when initial estimates were far or
very far from the root. For instance, the method with α = 100 failed to stabilize and did
not meet the convergence criteria in four out of ten cases. Additionally, the ACOC values
for this method did not stabilize, confirming its theoretical instability. This highlights the
importance of selecting appropriate parameter values within the stability regions to ensure
reliable performance.
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Appendix A. Detailed Computation of Theorem 2

The comprehensive proof of Theorem 2, methodically detailed step-by-step in Section 2,
is further validated in Wolfram Mathematica software v13.2 using the following code:

fx = dFa SeriesData[Subscript[e, k], 0, {0, 1, Subscript[C, 2], Subscript[C, 3],
Subscript[C, 4], Subscript[C, 5]}, 0, 5, 1];
dfx = D[fx, Subscript[e, k]];
fx/dfx // Simplify;
(*Error in the first step*)
Subscript[y, e] = Simplify[Subscript[e, k] - \[Alpha]*fx/dfx];
fy = fx /. Subscript[e, k] -> Subscript[y, e] // Simplify;
(*Error in the second step*)
Subscript[x, e] = Subscript[y, e] - (\[Beta] + \[Gamma]*fy/fx +
\[Delta]*(fy/fx)^2)*(fx/dfx) // Simplify

Appendix B. Detailed Computation of Theorem 3

The comprehensive proof of Theorem 3, methodically detailed step-by-step in Section 2,
is further validated in Wolfram Mathematica software v13.2 using the following code:

fx = dFa SeriesData[Subscript[e, k], 0, {0, 1, Subscript[C, 2], Subscript[C, 3],
Subscript[C, 4], Subscript[C, 5]}, 0, 5, 1];
dfx = D[fx, Subscript[e, k]];
fx/dfx // Simplify;
(*Error in the first step*)
Subscript[y, e] = Simplify[Subscript[e, k] - \[Alpha]*fx/dfx];
fy = fx /. Subscript[e, k] -> Subscript[y, e] // Simplify;
(*Error in the second step*)
Subscript[x, e] = Subscript[y, e] - (\[Beta] + \[Gamma]*fy/fx +
\[Delta]*(fy/fx)^2)*(fx/dfx) // Simplify;
Solve[1 - \[Beta] - \[Gamma] - \[Delta] - \[Alpha]^2 \[Delta] + \[Alpha]
(-1 + \[Gamma] + 2 \[Delta]) == 0 && \[Beta] + \[Gamma] + \[Delta] + 2 \[Alpha]^3
\[Delta] - \[Alpha]^2 (\[Gamma] + \[Delta]) - \[Alpha] (-1 + \[Gamma] + 2 \[Delta])
== 0, {\[Alpha], \[Beta], \[Gamma], \[Delta]}];
Subscript[x, e] = FullSimplify[Subscript[x, e] /. {\[Beta] -> ((-1 + \[Alpha])^2
(-1 - \[Alpha] + \[Alpha]^2 \[Delta]))/\[Alpha]^2, \[Gamma] -> (1 - 2 \[Alpha]^2
\[Delta] + 2 \[Alpha]^3 \[Delta])/\[Alpha]^2}]
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Appendix C. Additional Experiment Focused on Practical Calculations

In this comprehensive experiment, we conduct an in-depth efficiency analysis of the
MCCTU(1) method, set with ε = α4δ = 2, specifically tailored for practical calculations.
This analysis begins with initial estimates that closely approximate the roots (x0 ≈ ξ). All
computations are carried out using the MATLAB R2020b software package with standard
floating-point arithmetic. We assess the number of iterations (iter) each method requires
to reach the solution, with sttopping criteria of |xk+1 − xk| < 10−10. We also calculate the
Approximate Computational Order of Convergence (ACOC) to verify the theoretical order
of convergence (p). Our findings indicate that fluctuating ACOC values are marked with a
‘-’, and methods that do not converge within 50 iterations are labeled as ‘nc’. Additionally,
this study aims to examine how the convergence order is influenced by the number of
digits in the variable precision arithmetic employed in the experiments, using the same
ten nonlinear test equations listed in Table 1. Thus, the numerical results are presented in
Table A1.

Table A1. Numerical results of MCCTU(1) in practical calculations for x0 close to ξ.

Function x0 |xk+1− xk| Iter ACOC ξ

f1 −0.6 8.4069× 10−27 3 4.0111 −0.6367
f2 0.2 4.0915× 10−36 3 3.9624 0.2575
f3 0.6 1.8066× 10−21 3 4.0121 0.6392
f4 −14.1 3.6467× 10−15 2 - −14.1013
f5 1.3 1.2827× 10−20 3 4.0226 1.3652
f6 0.1 1.1439× 10−32 3 3.9969 0.1281
f7 −1.2 8.1090× 10−29 3 4.0025 −1.2076
f8 2.3 3.2363× 10−36 3 4.0010 2.3320
f9 −1.4 1.2504× 10−28 3 3.9982 −1.4142
f10 −0.9 1.3096× 10−27 3 4.0263 −0.9060

From the analysis of this experiment, it is confirmed that convergence to the solution
is achieved in all cases, with errors smaller than the set threshold, reaching convergence
within 2 or 3 iterations. The value of the ACOC stabilizes at 4, thus verifying the theoretical
results. Furthermore, it is clear that the convergence order is not affected by the number
of digits in the variable precision arithmetic used. The number of digits plays a crucial
role when higher precision is required, particularly for smaller errors, preventing divisions
by zero in this case. Additionally, it is noted that the ACOC for function f4 cannot be
calculated, due to convergence to the solution in just 2 iterations, while (2) requires at least
3 iterations to calculate the approximate order of convergence.
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