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Abstract: Andean roots, such as zanahoria blanca, achira, papa China, camote, oca, and mashua,

contain high amounts of dietary fiber, vitamins, minerals, and fructo-oligosaccharides. This study

aimed to demonstrate the possibility of obtaining healthy second-generation (2G) snacks (products

obtained from the immediate expansion of the mixture at the exit of the extruder die) using these

roots as raw materials. Corn grits were mixed with Andean root flour in a proportion of 80:20, and a

Brabender laboratory extruder was used to obtain the 2G snacks. The addition of root flour increased

the water content, water activity, sectional expansion index, hygroscopicity, bulk density, and water

absorption index but decreased the porosity. However, all 2G snacks manufactured with Andean

root flour showed better characteristics than did the control (made with corn grits) in texture (softer

in the first bite and pleasant crispness) and optical properties (more intense and saturated colors).

The developed snacks could be considered functional foods due to the high amount of carotenoids

and phenolic compounds they exhibit after the addition of Andean root flours. The composition of

raw roots, specifically the starch, fiber, and protein content, had the most impact on snack properties

due to their gelatinization or denaturalization.

Keywords: Arracacia xanthorrhiza; Canna indica; Colocasia esculenta; Ipomoea batatas; Oxalis tuberosa;

Tropaeolum tuberosum

1. Introduction

South America is one of the most megadiverse regions worldwide due to its biological
variety, cultural richness, and economic potential. Contrary to popular belief, it has low
food production and high malnutrition rates [1]. Developing nutritious foods from local
crops poses a research challenge. The local crops comprise Andean roots, such as zanahoria
blanca (Arracacia xanthorrhiza Bancr.), achira (Canna indica L.), papa China (Colocasia esculenta
(L.) Schott), camote (Ipomoea batatas (L.) Lam.), oca (Oxalis tuberosa Molina), and mashua
(Tropaeolum tuberosum Ruiz & Pavón) (Figure 1).

These roots have a high amount of water in a fresh state (>72.7%), which makes
them highly perishable (Table 1). In nutritional terms, these roots contain considerable
amounts of protein (3.11–5.74%) and fiber (0.9–3.41%) compared to potatoes (1–2% and
0.5%, respectively) [2]. They are an excellent source of carbohydrates (8.5–15.09%), which
is why residents of the Andean areas widely consume them. The most traditional way
to consume them is cooked or fried. Also, zanahoria blanca, achira, papa China, and
camote contain a considerable amount of starch (42.82, 52.18, 59.98, and 40.05, respectively)
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(Table 1). This characteristic is of great technological interest since starch is the basis for
making pasta, baked food, and extrusions.

 
    

Ax Ci Ce IbP IbY 
Zanahoria blanca Achira Papa China Sweet potato purple variety Sweet potato yellow variety 

Arracacia xanthorrhiza Bancr. Canna indica L. Colocasia esculenta (L.) Schott Ipomoea batatas (L.) Lam. 

 
   

OtW OtY OtR Tt 
Oca white variety Oca yellow variety Oca red variety Mashua 

Oxalis tuberosa Molina Tropaeolum tuberosum Ruiz & Pavón 

ff

ff

Figure 1. Andean tubers and tuberous roots.

Also, these roots contain high amounts of minerals (Ca, Cu, Fe, Mn, Mg. P, K, and Zn),
vitamins (A, B, C, E), and fructo-oligosaccharides (FOS), which are considered prebiotics [3].
Some scientific studies have demonstrated high antioxidant activity due to polyphenols,
anthocyanins, and flavonoids; consequently, they have curative effects against urinary
disorders, asthma, arthritis, and diarrhea [4]. A significant benefit is the absence of gluten,
which is crucial for those intolerant to these proteins [4].

Table 1. Mean values and standard deviations of chemical composition (% wb) of Andean roots and

raw flours.

Moisture Protein Fat Ash Carbohydrates Fiber Starch

Ax
Root a 76 (2) 4.76 (0.86) 2.2 (0.3) 2.3 (0.3) 15.1 (2.3) 3 (1) 14 (2)

Flour f 6.2 (0.2) 2.1 (0.2) 0.69 (0.08) 4.5 (0.2) 77.3 (0.5) 9.25 (0.02) 42.8 (0.6)

Ci
Root b 73.04 (0.33) 3.93 (0.04) 3.40 (0.04) 2.70 (0.02) 14.15 (0.02) 2.78 (0.03) 13.63 (0.52)

Flour f 5.9 (0.2) 4.8 (0.2) 0.63 (0.29) 8.04 (0.04) 69.09 (0.04) 11.51 (0.05) 52.18 (0.72)

Ce
Root b 72.7 (0.2) 5.7 (0.2) 2.2 (0.2) 2.96 (0.26) 13.2 (0.2) 3.4 (0.2) 12.2 (0.2)

Flour f 6.22 (0.26) 8.4 (0.2) 0.73 (0.08) 5.55 (0.02) 64.2 (0.2) 14.90 (0.02) 59.98 (0.82)

Ib
Root c 74.2 (0.2) 5.6 (0.2) 1.1 (0.2) 1.9 (0.2) 13.7 (0.2) 3.4 (0.2) 12.7 (0.2)

Flour f 6.20 (0.27) 4.65 (0.24) 0.37 (0.06) 3.24 (0.49) 74.35 (0.36) 11.2 (0.2) 40.05 (0.55)

Ot
Root d 79.22 (0.62) 3.11 (0.02) 1.71 (0.03) 1.29 (0.03) 13.01 (0.02) 1.66 (0.08) 9.6 (0.2)

Flour f 16.4 (0.2) 1.63 (0.07) 1.06 (0.06) 3.04 (0.24) 72.5 (0.2) 5.33 (0.05) 28.12 (0.39)

Tt
Root e 82.8 (0.2) 5.5 (0.2) 1.7 (0.2) 0.6 (0.2) 8.5 (0.2) 0.9 (0.2) 7.1 (0.2)

Flour f 18.87 (0.06) 9.12 (0.13) 0.59 (0.07) 4.94 (0.05) 56.9 (0.3) 9.60 (0.05) 22.2 (0.3)

a Matsuguma et al., 2009 [5]; b Tresina et al., 2020 [6]; c Mohanraj and Sivasankar 2014 [7]; d Jimenez, et al., 2015 [8];
e Apaza et al., 2020 [9]; f Salazar et al., 2021 [10] (dried at 60 ◦C for ~6 h).

However, although South America has crops rich in nutrients and with excellent
technological characteristics, their qualities are not taken advantage of in the development
of food. According to statistical data, although the cost of acquiring a healthy diet is similar
between South America and the rest of the world (approximately USD 3.5 per person per
day) (Figure 2a), only 18% of the South American population is able to afford this daily
cost (Figure 2b). This statistic is alarming, especially when compared to the approximately
43% reported worldwide. This shows the need to develop more accessible (cheap) foods
for this population.
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South American farmers sell the roots, vegetables, and fruits they grow to buy processed 
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shows the need to value the crops developed locally the through research and develop-
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problems in terms of food security and malnutrition. The main drawback is diet, which 
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of these crops are not valued. In this sense, one challenge facing the food industry today 
is the development of nutritious foods that are attractive in the market. Children and 
youth are among the most challenging sectors to tackle because healthy food is often as-
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expanded snacks because they are an attractive food for these populations.

Extrusion is broadly used due to its versatility and low-cost food production. This 
technology involves a high-temperature (180–190°C) short-time process (20–40 s), and it 
can transform a wide variety of raw materials into intermediate and finished products 
[14]. There are three types of extruded snack foods:
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Under the previously stated context, it is evident that South America presents severe
problems in terms of food security and malnutrition. The main drawback is diet, which
depends on wheat, corn, rice, and potatoes. It is contradictory that despite South America
being a region with a diversity of vegetables and fruits, the excellent nutritional qualities of
these crops are not valued. In this sense, one challenge facing the food industry today is
the development of nutritious foods that are attractive in the market. Children and youth
are among the most challenging sectors to tackle because healthy food is often associated
with less tasty options [13]. Therefore, this study proposes the development of expanded
snacks because they are an attractive food for these populations.

Extrusion is broadly used due to its versatility and low-cost food production. This
technology involves a high-temperature (180–190 ◦C) short-time process (20–40 s), and it
can transform a wide variety of raw materials into intermediate and finished products [14].
There are three types of extruded snack foods:
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• First-generation snacks (1G) are minimally processed by roasting and frying. They are
used for snacking (i.e., eating small amounts of food between meals) and include, for
example, nuts, potato chips, and popped popcorn [15].

• Second-generation snacks (2G) are the most popular and commonly called “ready-to-
eat” or “three-dimensional” snacks. These snacks are directly expanded through the
extrusion exit [16]. Examples of snacks in this category include puffed corn, onion
rings, and flavored loops.

• Third-generation snacks (3G), called “pellets” or “glassy half-products”, are not ex-
panded directly through the extrusion exit and must be expanded before being con-
sumed using additional processes, such as frying or microwave heating. These pellets
are shelf-stable without refrigeration due to their low moisture (around 10% wb) as
long as their packaging prevents moisture from increasing [17]. These snacks are made
for export due to their high bulk density and stability.

Of the three types of extrudate snacks described above, the second-generation snacks
(2G) were chosen in this study because they are more attractive to children, especially if
there are plans to include these foods as part of a school breakfast or midmorning snack in
future government policy [18].

The objectives of this work were (1) to manufacture second-generation (2G) snacks
(product obtained from the immediate expansion of the mixture at the exit of the extruder
die) with the addition of Andean tubers and tuberous root flour to increase the nutritional
characteristics of this type of food and (2) to explore the influence of these flours on water
content (xw), water activity (aw), the sectional expansion index (SEI), hygroscopicity, bulk
density, porosity, the water absorption index (WAI), the water solubility index (WSI), the
swelling index (SWE), texture, optical properties, and bioactive compounds. The study is
expected to demonstrate the possibility of obtaining healthy snacks and to promote the
appreciation of native Andean crops in the South American region and worldwide.

2. Materials and Methods

2.1. Raw Materials

Zanahoria blanca (Arracacia xanthorrhiza Bancr.), achira (Canna indica L.), papa China
(Colocasia esculenta (L.) Schott), two varieties of sweet potato (Ipomoea batatas (L.) Lam.)
(purple and yellow), three varieties of oca (Oxalis tuberosa Molina) (white, yellow, and red),
and mashua (Tropaeolum tuberosum Ruiz & Pavón) were purchased from a local market
(Ambato, Ecuador). The Andean crops were selected based on a previous critical analysis
(SWOT) of the tubers most undervalued in the locality since long-term research seeks to
enhance their use as an ingredient in food products. Maicerías Españolas S.L. (València,
Spain) supplied the corn grits.

2.2. Flour Manufacturing

Ten roots of each type with no physical defects were selected. The roots were washed,
peeled, and cut into slices (2 ± 0.1 mm). The drying process was conducted in a convective
dehydrator (Gander mtn, CD 160, Saint Paul, MN, USA) at 60 ◦C for 24 h. The dehydrated
products were ground in an electric mill (Hamilton Beach, model: 80393, Picton, ON,
Canada) at three intervals of 10 s. The flour was preserved in separate airtight aluminized
bags at 25 ◦C.

2.3. Production of 2G Snacks

Ten different samples were prepared (one control and nine mixtures of corn + root
flour). For the control, 100% corn grits were used. For the remaining nine samples, the
corn grits were mixed with each root flour in a proportion of 80% corn grits to 20% of the
samples’ flour. The following samples were obtained: C, control (corn grits); Ax, zanahoria
blanca flour; Ci, achira flour; Ce, papa China flour; IbP, purple sweet potato flour; IbY,
yellow sweet potato flour; OtW, oca white variety flour; OtY, oca yellow variety flour; OtR,
oca red variety flour; and Tt, mashua flour.
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A laboratory extruder (single-screw KE 19/25; length-diameter ratio of 25:1; nozzle
diameter 3 mm; Brabender, Duisburg, Germany) was used to obtain 2G snacks. The process
was conducted at a compression ratio of 3:1, and the samples were fed at a constant speed
of 150 rpm. The rotation speed was 120 rpm, and temperatures of the barrel were as follows:
Section 1, 25 ◦C; section 2, 70 ◦C; section 3, 170 ◦C; and section 4, 175 ◦C. The equipment
was monitored through the Extruder Winext software, version 4.4.3 (Brabender, Duisburg,
Germany). The 2G snacks were preserved in airtight aluminized bags at 25 ◦C.

2.4. Characterization of 2G Snacks

2.4.1. Water Content (xw) and Water Activity (aw)

A vacuum oven (Vaciotem, J.P. Selecta, Barcelona, Spain) was used (103 ◦C for 48 h)
to obtain the xw. A hygrometer (AquaLab PRE, Decagon Devices, Inc., Pullman, WA,
USA) was used to determine the aw. An average of 3 measurements were made in each
characteristic.

2.4.2. Sectional Expansion Index (SEI)

A digital caliper was used to measure the width and length of the 2G snacks. The
SEI was determined using the methodology proposed by Patil et al. [19]. An average of
10 measurements were made.

2.4.3. Hygroscopicity (Hy)

Hygroscopicity is the capacity of a food to absorb water. At an industrial level, food
low in hygroscopicity is desirable since this characteristic makes it less perishable [20]. The
method proposed by Cai and Corke [21] was used to determine the Hy. The samples were
positioned in glass Petri dishes in a desiccator with saturated Na2SO4 solution (at 25 ◦C
and 81% relative humidity). After seven days, each sample was weighed with a precision
balance (±0.001 g) (Mettler Toledo, Greifensee, Switzerland). The results are expressed as
grams of water gained per 100 g dry solids. An average of 3 measurements were made.

2.4.4. Bulk Density (ρb) and Porosity (ε)

Bulk density (ρb) is the ratio between the total mass and the total volume, including
the air contained in that volume [22]. The method proposed by Gujska and Khan [23] was
used to determine ρb. It was calculated by dividing the mass of the product (weighed with
a precision balance ((±0.001 g) Mettler Toledo, Greifensee, Switzerland) by the volume
(measured with an electronic Vernier caliper; Comecta S.A., Barcelona, Spain) and expressed
as g/m3. The porosity (ε) was calculated from density (ρ) (determined with a helium
pycnometer; AccPyc 1330, Micromeritics, Norcross, GA, USA) and bulk density (ρb),
according to García-Segovia et al. [24]. An average of 10 measurements were made in
each characteristic.

2.4.5. Water Absorption Index (WAI), Water Solubility Index (WSI), and Swelling Index (SWE)

The methods proposed by Singh and Smith [25] and Uribe-Wandurraga et al. [26]
were used to measure the WAI and WSI, respectively. The snacks were milled (average
particle size of 180 to 250 µm), and 2.5 g of milled sample was dispersed in 25 g of
distilled water. The mixture was stirred for 30 min using a magnetic stirrer and placed
in centrifuge tubes (50 mL) until reaching a weight of 32.5 g. The tubes were centrifuged
at 3000 rpm for 10 min. Finally, the supernatant was decanted to determine its dissolved
solids content, and the sediment was weighed. The results of WAI and WSI were calculated
with Equations (1) and (2), respectively.

WAI =
weight of sediment

weight of dry solids
(1)

WSI (%) =

(

weight of dissolved solids in supernatant

weight of dry solids

)

× 100 (2)
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The method detailed by Robertson [27] was used to measure SWE. One gram of
milled sample (particle size: 180–250 µm) was placed in graduated cylinders, and 10 mL of
distilled water was added. The mixture was left to rest for 18 h, and the volume reached
was recorded. The result is expressed as the milliliters of swollen sample per gram of dry
initial sample. An average of 3 measurements were made in each characteristic.

2.4.6. Texture Properties

Texture properties were measured using a TA-XT2 Texture Analyzer (Stable Micro
Systems Ltd., Godalming, UK). Puncture tests (speed 0.6 mm/s) were performed on
cylinders of 2 mm in diameter. The area under the force–time curve plot was determined
using Texture Exponent software (version 6.1.12.0). The properties measured were the
average specific force of structural ruptures (Fs), the average puncturing force (Fp), the
spatial frequency of structural ruptures (Nsr), the number of peaks (N0), and the crispness
work (Wc) [28,29]. An average of 3 measurements were made in each characteristic.

2.4.7. Optical Properties

Optical properties were measured with a Minolta spectrophotometer (CM-3600d,
Tokyo, Japan) using the standard light source D65 and a standard observer 10. The
CIE*L*a*b* color coordinates (spectra 400 to 700 nm) were considered, and the param-
eters determined were luminosity (L*), chroma (C*), hue (h*), and the total color difference
(∆E) between the mixture before extrusion and the 2G snack. An average of 3 measurements
were made in each characteristic.

2.4.8. Bioactive compounds

• Total carotenoids (TC)

The method proposed by Olives Barba et al. [30] was used to determine total carotenoids
(TC). The AOAC spectrophotometric method [31] was used to quantify TC and is expressed
as the milligrams of β-carotene per 100 g of sample.

• Lycopene (LP)

This property was determined (at 503 nm) using the TC extract and is expressed as
milligrams per 100 g of the sample [32].

• Total phenols (TP)

Igual et al. [33] described the method for measuring total phenols (TP). A UV-3100 PC
(VWR, Radnor, Philadelphia, PA, USA) was used to measure the absorbance of the sample
at 765 nm, and the TP is expressed as milligrams per gallic acid/100 g of dry solid sample.

• Antioxidant capacity (AC)

The 2,2-diphenylpicrylhydrazyl (DPPH) method described by Igual et al. [33] was used
to determine antioxidant capacity (AC). The absorbance was measured at a wavelength of
515 nm, and the results were expressed as milligram Trolox equivalents (TE) per 100 g of
dry solid sample. An average of 3 measurements were made in each characteristic.

2.5. Statistical Analysis

Statgraphics Centurion XVII software (version 17.2.04; Statgraphics Technologies, Inc.,
The Plains, VA, USA) was used for statistical analysis. Analysis of variance (ANOVA) and
Tukey’s multirange test were applied, with a confidence level of 95% (p < 0.05), to evaluate
differences among snacks. A Pearson correlation analysis was performed between the
bioactive compounds analyzed and the antioxidant capacity determined, with a significance
level of 95%.
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3. Results and Discussion

3.1. Characterization of 2G Snacks

Table 2 shows the results found in aw, the sectional expansion index (SEI), hygroscop-
icity (Hy), bulk density (ρb), porosity (ε), the WAI, the WSI, and the swelling index (SWE)
for all 2G snacks and control sample.

Table 2. Mean values and standard deviations of the 2G snacks for measure parameters.

Sample aw SEI

Hy
ρb ε

WAI
WSI SWE

(gw/100 g

dry solid)
(g/cm3) (%) (%)

(mL swollen/g

dry solid)

C 0.567 (0.003) b 11.1 (0.8) bcd 11.5 (0.4) d 0.085 (0.005) c 92.4 (0.2) a 4.73 (0.06) c 11.57 (0.14) a 4.03 (0.12) bcd

Ax 0.665 (0.003) a 12.1 (0.6) a 17.2 (0.6) a 0.084 (0.005) c 91.9 (0.2) ab 4.65 (0.07) c 12.1 (0.3) a 4.1 (0.3) bcd

Ci 0.525 (0.003) b 10.4 (0.8) d 14.563 (0.107) bc 0.08 (0.007) c 90.3 (0.6) bc 4.72 (0.05) c 11.6 (0.2) a 4.32 (0.12) bcd

Ce 0.631 (0.003) a 11.6 (0.9) ab 13.6 (0.7) c 0.11 (0.002) b 89.3 (0.8) c 4.72 (0.04) c 11.960 (0.002) a 3.67 (0.08) d

IbP 0.606 (0.003) a 10.6 (0.7) cd 17.0 (0.4) a 0.156 (0.003) a 84.9 (0.7) e 5.27 (0.02) a 5.68 (0.17) d 6.1 (0.4) a

IbY 0.585 (0.003) b 11.14 (0.8) bc 17.0 (0.6) a 0.095 (0.006) bc 91.5 (0.5) ab 5.03 (0.07) b 9.59 (0.12) b 4.3 (0.2) bcd

OtW 0.645 (0.003) a 11.1 (0.7) bcd 15.0 (0.3) b 0.098 (0.004) bc 90.82 (0.05) abc 5.00 (0.07) b 9.6 (0.3) b 4.59 (0.19) bc

OtY 0.674 (0.003) a 11.6 (0.8) ab 15.6 (0.6) b 0.097 (0.002) bc 90.59 (0.13) bc 5.26 (0.03) a 8.0 (0.6) c 3.94 (0.15) cd

OtR 0.593 (0.003) b 11.1 (0.7) bcd 15.4 (0.3) b 0.09 (0.006) c 91.4 (0.3) ab 4.55 (0.04) c 12.4 (0.5) a 3.98 (0.12) cd

Tt 0.546 (0.003) b 11.2 (0.4) bc 15.691 (0.159) b 0.16 (0.003) a 87.54 (0.05) d 5.29 (0.02) a 5.9 (0.5) d 4.76 (0.03) b

C—control; Ax—zanahoria blanca; Ci—achira; Ce—papa China; IbP—purple sweet potato; IbY—yellow sweet
potato; OtW—oca white variety; OtY—oca yellow variety; OtR—oca red variety; Tt—mashua; aw—water activity;
SEI—sectional expansion index; Hy—hygroscopicity; ρb—bulk density; ε—porosity; WAI—water absorption
index; WSI—water solubility index; SWE—swelling index (SWE). Different letters in the columns represent
significant differences (p < 0.05) by samples.

3.1.1. Water Content (xw) and Water Activity (aw)

Extrusion is a typical food industry process used to produce cooked food by exposing
the materials to high-pressure (1.0 to 5.1 MPa), high-shear, and high-temperature (>150 ◦C)
environments [34]. Due to the temperature reached in the process (170 and 175 ◦C), the
extrusion considerably reduced the xw in all the samples (Figure 4). According to some
studies, the moisture content is reduced by approximately 60% during extrusion. For
example, in an extruded snack made with maize and lupine (Lupinus albus L.) flour (ratio
80:20, processed at 150 ◦C), a reduction from 16% moisture in the mixture to 6.96 ± 0.61%
moisture in the snack was observed [35]. Also, a study on maize grits showed a reduction
from 10.94% moisture in the mixture to 5.05% moisture in the snack [36].
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The samples that showed the most significant reduction were OtW, OtY, and OtR
(p < 0.05). This effect was also demonstrated in third-generation (3G–pellets that are ready
to be consumed after a secondary expansion extrusion), microwave-expanded snacks [37]
manufactured from Andean tubers and tuberous root flours [38]. However, the samples
that showed less variation were C and Tt (Figure 4). This means that xw variations are
influenced by root composition. The corn grits and Tt root have a higher amount of protein
(8.61 ± 0.01% [39] and 9.12 ± 0.13% [10], respectively) compared to Ot root (1.63 ± 0.07%)
(Table 1) [10]. This could indicate that protein plays an essential role during extrusion.

The aw values of the 2G snacks were >0.5 (Table 2). Statistically significant differ-
ences were observed among snacks made with roots of the same species (p < 0.05). For
example, OtR (0.593 ± 0.003) had lower values compared to OtW (0.645 ± 0.003) and
OtY (0.674 ± 0.003). A similar effect was observed between IbY (0.585 ± 0.003) and IbP
(0.606 ± 0.003). This parameter represents the “water availability” and indicates how per-
ishable and highly hygroscopic foods are. These values are essential for selecting the
packaging and storage for food industrialization. Some studies have shown that snacks
lose crispness when aw exceeds 0.5 and lose brittleness at 0.8 [40,41]. The high aw values
emphasize the need to pack these snacks in containers that prevent moisture, such as
biaxially oriented films and films coated with other polymers or aluminum to improve the
barrier properties [42].

Also, aw depends on the composition of the food solute. Foods have high aw values
when their composition contains a large amount of high-molecular-weight solutes (proteins,
cellulose, starch) [43]. In this case, the water molecules interact with the hydrophilic sites
of these solute structures. This also means that polymeric solutes produce stable products
regarding aw. According to the significant differences observed (p < 0.05), it can be inferred
that this occurred in the C, Ci, IbY, OtR, and Tt samples. On the other hand, carbohydrates
with low molecular weight (glucose, fructose, etc.) interact and dissolve in water through
hydrogen bonds, resulting in fewer free water molecules being available [44]. Likewise,
it can be inferred that this occurred in the Ax, Ce, IbP, OtW, and OtY samples. Finally, it
could be summarized that the snacks obtained from these roots have a different solute
composition, which affects different values of aw.

3.1.2. Sectional Expansion Index (SEI)

The 2G snacks examined in this investigation had an SEI value between 10.4 and 12.1
(Table 2). These values can be considered high compared to snacks made with corn flour
with the addition of amaranth, quinoa, and kañiwa flour (ratio of 80% corn flour and 20%
crop flour), which had SEI values of 7.6, 6.1, and 5.1, respectively. These values may be
attributable to the plasticizing effect of monosaccharides, oligosaccharides, amines, and
water in these crops [45].

Tubers Ax and OtY provides snacks a higher SEI value; however, samples Ci and IbP
had the lowest SEI (Table 2). Some studies have shown that higher proportions of fiber in
the mixtures cause lower extrudate expansion [46,47]. The insoluble fiber components, such
as cellulose and hemicellulose, have a high content of hydroxyl groups that can link with
water. Consequently, there is insufficient water to complete starch gelatinization [48], and
the lower the gelatinization degree is, the less expansion is observed in the final product [49].
This could explain why the Ot samples showed lower SEI values compared to the other
samples. The Ot roots (Oxalis tuberosa Molina) had lower fiber values (5.33 ± 0.05%) [10]
compared to root Ci (11.51 ± 0.05%) and IbP (11.19 ± 0.11%) (Table 1) [10].

3.1.3. Hygroscopicity (Hy)

In this study, all snacks comprised sugars, pectin, and cellulosic material (due to the
nature of the corn grits and the Andean roots used—Table 1), which have an affinity for
water vapor. The Ax, IbP, and IbY products had higher hygroscopicity values (Table 2).
These results could indicate that these snacks have substantial carbohydrates with low
molecular weight (glucose, fructose, etc.), which causes increased hydration [50]. Research
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shows that the Ax root has 34.94% sugar while the IbP root has 34.3% [10]. The snacks with
the lowest tendency to gain water are C and Ce. As previously discussed in the aw results,
the proportional trend was observed between the hydration capacity and the amount of
sugars in the raw materials. Furthermore, studies have shown that corn grits (C: control)
have 1.64% sugar [39], whereas Ce roots have 4.28% sugar [10]. This parameter is also
relevant because a notable loss of crispness is usually observed when the moisture content
of low-moisture products increases due to their hygroscopic capacity. Water absorption in-
fluences the mobility and flexibility of molecules, increasing chemical degradation reactions
and altering the texture of the snack (which reduces hardness) [51]. Therefore, the snacks
developed in this research must be packaged in containers that prevent the permeability of
water vapor from the environment to preserve their characteristic textural properties.

3.1.4. Bulk Density (ρb) and Porosity (ε)

These properties are usually used to evaluate the extruded expansion in all directions.
The 2G snacks examined in this investigation had bulk density values between 0.084
and 0.16 g/cm3 (Table 2). These values are similar to those obtained in snacks prepared
with brown rice grits (0.06–0.14 g/cm3) [52], rice and corn flour with spirulina addition
(0.071–0.185 g/cm3) [53], and corn flour with microalgae addition (0.079–0.105 g/cm3) [26].

The 2G snacks with the highest ρb were IbP and Tt. In contrast, the snacks with the
lowest values were C, Ax, Ci, and OtR. Some studies reported an inversely proportional
relationship between the mixtures’ fat content and the snacks’ bulk density [24]. This would
explain the low values obtained in the IbP and Tt snacks, as these roots had fat contents of
0.37 ± 0.06% and 0.59 ± 0.07% (Table 1) [10], respectively, which were lower than those of
the corn grits (2.62 ± 0.02%) [39] and Ot (1.06 ± 0.06%) [10]. The density did not show an
evident relationship with the values determined for porosity (%).

The porosity values ranged from 84.86% to 92.42% (Table 2). The addition of root flour
reduced the porosity. The samples observed with the least porosity were Ce, Tt, and IbP.
According to previous studies, there is an inversely proportional relationship between the
protein content of the mixtures and the snack porosity [54,55]. During extrusion, proteins
change, exposing the hydrophobic amino acids initially enclosed. These hydrophobic amino
acids compete for water with starch and produce aggregation through protein–protein and
protein–water links. Finally, water evaporation occurs, which forms an inflated structure
sustained by protein crosslinking [56,57]. These protein alterations influence the change in
viscosity, gelation, solubility, and textural properties, which would explain the low porosity
values obtained in the Ce, Tt, and IbP snacks, whose raw root flours demonstrated protein
contents of 8.37 ± 0.14%, 9.12 ± 0.13%, and 4.65 ± 0.24% [10], respectively [10]. Other
factors, such as raw protein type, pretreatment, and extrusion conditions, can also play an
essential role [58].

3.1.5. Water Absorption Index (WAI), Water Solubility Index (WSI), and Swelling Index (SWE)

The WAI showed significant differences between the samples (p < 0.05) (Table 2). The
IbP, OtY, and Tt snacks had the highest values. This property measures the snack’s water
absorption capacity, which affects its melt, break-up, and distend power after extrusion [41].
The more aggressive the process is, the greater the breakage of inter- and intramolecular
hydrogen bonds, resulting in more exposed hydroxyl groups [59]. Therefore, it can be
inferred that the IbP, OtY, and Tt samples underwent greater starch degradation during
the process. Finally, a direct proportional relationship was observed between bulk density,
porosity, and WAI in the IbP and Tt samples. A similar direct proportional relationship was
observed in the puffed rice snacks [60].

The WSI reflects the amount of soluble compounds released from the starch granules
during extrusion, generating higher solubility values [61]. It can be inferred that the
starch of samples C, Ax, Ci, Ce, and OtR underwent a more remarkable disintegration
during processing according to the high WSI values observed (Table 2). In addition to
the changes that starch undergoes during extrusion, this process reduces the molecular
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weight of polysaccharides (such as pectin and hemicellulose), producing more soluble
components [62]. Some studies have demonstrated that even when the fiber content does
not change considerably, the extrusion solubilizes some fiber components, and increases in
soluble dietary fiber can be observed [63,64]. The lowest values were observed in the IbP
and Tt snacks. Also, the extrusion process increases the exposure of hydrophobic groups
due to protein denaturation, which reduces the extruded solubility in aqueous systems.
For example, it releases the amino acids alanine, valine, leucine, isoleucine, tyrosine,
and phenylalanine, which are present in IbP [65] and Tt [66]. This effect was studied by
Chiang [67], who demonstrated the importance of the protein–protein interaction during
the process. During extrusion, soy isolate protein develop new chemical bonds or cross-
linkages (hydrogen bonds and hydrophobic interactions). These bonds and links participate
in the texture and fibrous structure, which are characteristic of the protein network and
reduce the solubility of extrudates [68].

The SWE showed significant differences among the samples (p < 0.05) (Table 2).
The highest SWE values were found the IbP and Tt samples. In this parameter, starch
gelatinization plays an essential role. The raw starch is transformed into cooked and
digestible material in this conversion. Furthermore, the starch molecules can be divided
through a process called dextrinization. All these internal changes generate greater swelling
power in the snacks. Likewise, a direct proportional relationship was observed between
the WAI and SWE in all samples except for OtY. A similar effect was observed in a study on
optimizing the extrusion process of soybean hull [69]; the authors explain this is because
both reflect the hydration properties of soluble components such as sugars and fibers.
Therefore, a deeper predictive model needs to be conducted between the composition of
the roots and its interrelation with the operating conditions to optimize the process.

3.1.6. Texture Properties

Fs expresses the strength spent to break each bubble of air in the snack structure. The
addition of root flour reduced Fs, except for IbP, for which the value was significantly
higher (p < 0.05) (Table 3).

Table 3. The texture parameters (mean values and standard deviations) of expanded snacks.

Sample
Fs

(N)
Fp

(N)
Nsr

(mm−1)
N0 Wc

(N.mm)

C 3.1 (0.4) b 2.2 (0.3) b 6.1 (0.5) d 61 (5) c 0.50 (0.03) b

Ax 1.6 (0.2) f 1.2 (0.2) c 6.7 (0.4) bcd 71 (5) ab 0.23 (0.03) e

Ci 2.5 (0.12) cd 2.01 (0.08) b 6.2 (0.5) d 70 (5) ab 0.40 (0.02) cd

Ce 2.2 (0.2) de 1.8 (0.2) b 6.6 (0.5) cd 66 (6) b 0.33 (0.05) d

IbP 5.1 (0.9) a 4.2 (0.6) a 6.5 (0.7) cd 62 (6) c 0.82 (0.13) a

IbY 1.2 (0.3) g 0.9 (0.3) d 7.4 (0.6) ab 77 (5) a 0.16 (0.04) f

OtW 1.74 (0.14) ef 1.34 (0.08) c 7.2 (0.4) ab 72 (3) ab 0.23 (0.03) e

OtY 1.6 (0.2) fg 1.3 (0.2) cd 7.4 (0.3) a 72 (3) ab 0.22 (0.03) ef

OtR 1.55 (0.06) fg 1.17 (0.06) cd 7.5 (0.5) abc 70 (5) ab 0.22 (0.02) ef

Tt 2.9 (0.5) bc 2.3 (0.5) b 7.3 (0.5) abc 74 (7) ab 0.39 (0.08) bc

Different letters in the columns represent the significant differences (p < 0.05) of the samples. Fs—average
specific force of structural ruptures; Fp—average puncturing force; Nsr—spatial frequency of structural ruptures;
N0—number of peaks; Wc—crispness work.

The average puncturing force (Fp) is the most direct sensory index associated with
hardness. Low values indicate less force required to initially bite through the snack. In this
study, the softer snacks during the first bite were IbY, OtY, OtR, and Ax.

Nsr describes the number of peaks along the distance traveled by the sensor. This
parameter reflects phenomena during extrusion, such as nucleation, extrudate swelling,
bubble growth, and bubble collapse [70]. In this study, two important groups were observed.
Snacks made with C and Ci showed the significantly lowest values (p < 0.05). This can be
observed in Figure 5, where the sections show solid areas in both samples and a smaller
number of collapsed bubbles. N0 indicates the number of bubble air pockets present in the
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structure. Lower values were observed in the C and IbP samples. The remaining samples
had high values and no significant differences (p > 0.05). However, this property should be
correlated with Fp values because numerous cells with low Fp indicate good crispness in
this type of food [71]. Samples Ax, IbY, OtW, OtY, and OtR had better crunchiness.

 

ff

ff

Figure 5. Transverse and longitudinal section of 2G snacks. Samples: C—control; Ax—zanahoria

blanca; Ci—achira; Ce—papa China; IbP—purple sweet potato; IbY—yellow sweet potato; OtW—oca

white variety; OtY—oca yellow variety; OtR—oca red variety; Tt—mashua.

The crispness work (Wc) values ranged between 0.16 and 0.82 N.mm. The addition
of root flour reduced Wc, except for the IbP sample, in which the value was significantly
higher (p < 0.05) (Table 3). This textural parameter is associated with the initial sound
produced by the snack during the first bite [72]. It is essential because snacks are desired
for their crispness and the pleasant sound produced when bitten.

The parameters Wc, Fs, and Fp showed higher values in IbP and lower values in IbY.
As discussed in Section 3.1.1, statistically significant differences were observed between
snacks made with roots of the same species but different varieties (p < 0.05). The evidence
shows that the textural properties are related to protein denaturation. Furthermore, some
studies have shown that a reduced amount of lipid (<5%) facilitates steady extrusion and
improves texture.

The presence of crude fiber increases the water absorption of food, giving it an excellent
final texture [73]. This study highlights the necessity for a more thorough analysis and
microscopy of the composition of roots used. Furthermore, a more detailed evaluation of
the starch granules and fiber is essential to define the most influential parameters in this
textural property.

3.1.7. Optical Properties

The extrusion process significantly reduced the lightness values (L*) in all the samples
analyzed (p > 0.05) (Table 4). The samples with higher values of L* were C, Ce, and OtW.
This could be related to these roots having whitish pulps (Figure 6). In contrast, lower
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values were obtained in the IbP, IbY, and Tt samples. Apart from the more saturated colors
presented by the pulps of these roots, this trend could indicate that the mixtures in these
treatments had lower values of starch content and feed moisture, which usually develop
low L* values and darker products [74].

Table 4. Color coordinates (L*, a*, b*, C* and h*) (mean values and standard deviations) and total

color differences (∆E) between the mixtures before extrusion and the 2G snacks.

Sample L* a* b* C* h* ∆E

Mixtures before extrusion

Control 81.53 (0.04) Aa 7.5 (0.2) Bfg 42.7 (0.3) Ba 43.4 (0.3) Ba 80.1 (0.04) Aa -

Ax 79.5 (0.3) Ad 5.3 (0.2) Bd 27.8 (0.2) Bf 28.3 (0.3) Be 79.2 (0.3) Ae -

Ci 72.93 (0.02) Af 6 (0.03) Be 30.6 (0.2) Be 31.2 (0.2) Bd 79.01 (0.04) Acd -

Ce 83.67 (0.02) Ab 4.13 (0.02) Bg 23.87 (0.02) Bh 24.22 (0.02) Bg 80.18 (0.02) Ab -

IbP 73.5 (0.2) Ag 7.17 (0.03) Bc 27.2 (0.2) Bf 28.14 (0.13) Be 75.24 (0.02) Af -

IbY 74.0 (0.7) Af 5.82 (0.14) Bde 30.3 (0.2) Be 30.8 (0.2) Bd 79.1 (0.2) Ad -

OtW 80.89 (0.02) Ac 6.3 (0.2) Bd 37.9 (0.3) Bc 38.4 (0.3) Bc 80.58 (0.04) Ad -

OtY 79.46 (0.02) Ae 6.53 (0.02) Bb 39.64 (0.02) Bb 40.17 (0.02) Bb 80.64 (0.02) Ae -

OtR 79.24 (0.02) Ae 3.4 (0.2) Bf 26.7 (0.2) Bg 26.9 (0.2) Bf 82.7 (0.2) Abc -

Tt 67.21 (0.02) Ah 8.86 (0.02) Ba 32.8 (0.2) Bd 34 (0.2) Bc 74.89 (0.03) Ag -

2G Snacks

Control 72.9 (0.2) Ba 5.57 (0.03) Afg 40.1 (0.2) Aa 40.5 (0.2) Aa 82.1 (0.2) Ba 9.22 (0.06) f

Ax 61.7 (0.2) Bd 9.72 (0.14) Ad 32.8 (0.8) Af 34.2 (0.8) Ae 73.47 (0.14) Be 18.9 (0.2) c

Ci 65.4 (0.2) Bf 8.2 (0.2) Ae 31.7 (0.02) Ae 32.73 (0.03) Ad 75.58 (0.13) Bcd 7.97 (0.02) g

Ce 66.7 (0.6) Bb 8.3 (0.2) Ag 32.3 (0.2) Ah 33.31 (0.13) Ag 75.7 (0.2) Bb 19.35 (0.02) b

IbP 63.7 (0.2) Bg 9.3 (0.2) Ac 32.9 (0.2) Af 34.2 (0.2) Ae 74.2 (0.2) Bf 11.6 (0.2) d

IbY 64.6 (0.3) Bf 8.9 (0.4) Ade 32.4 (0.3) Ae 33.6 (0.4) Ad 74.6 (0.6) Bd 10.1 (0.6) e

OtW 61.8 (0.4) Bc 9.0 (0.9) Ad 30 (0.4) Ac 31.2 (0.5) Ac 73.4 (0.9) Bd 20.8 (0.2) a

OtY 60.2 (0.2) Be 10.69 (0.04) Ab 32.47 (0.02) Ab 34.19 (0.02) Ab 71.8 (0.2) Be 21 (0.02) a

OtR 61 (0.3) Be 9.7 (0.4) Af 30.5 (0.7) Ag 32 (0.7) Af 72.4 (0.3) Bbc 19.65 (0.02) b

Tt 57.5 (0.4) Bh 11.8 (0.2) Aa 33.7 (0.2) Ad 35.7 (0.2) Ac 70.8 (0.2) Bg 10.21 (0.02) e

Different capital letters represent significant differences (p < 0.05) between processes, and lowercase letters
represent significant differences (p < 0.05) between samples.
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Figure 6. The appearance of mixtures and 2G snacks. Samples: C—Control; Ax—zanahoria blanca;

Ci—achira; Ce—papa China; IbP—purple sweet potato; IbY—yellow sweet potato; OtW—oca white

variety; OtY—oca yellow variety; OtR—oca red variety; Tt—mashua.
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The extrusion process increased the chroma values (C*) in the Ce, IbP, Ax, and OtR
samples. The extrusion process can explain this, as the high-temperature cooking releases
free sugars (glucose and fructose) from starch hydrolysis. Furthermore, some soluble fiber
fragments can be found after this process. Both compounds are precursors for the Maillard
reaction with proteins, which causes more saturated colors in snacks due to the formation
of melanoidins (brown polymers). However, OtW, OtY, and C exhibited less saturated
colors. These samples also had low WAI and SWE values (Table 3). Therefore, it can be
inferred that these samples released less soluble compounds, such as sugars and fibers,
during the extrusion process.

The hue (*h) values showed significant differences between the process and the sam-
ples (p < 0.05) (Table 4). Higher values were observed in the mixtures compared to the
snacks obtained. This parameter is related to the type of color. Snacks are mostly grouped
in the CIE*L*a*b* space based on similar h* values. Samples C and Ce had higher values
(82.1 ± 0.06 and 75.67 ± 0.07, respectively), whereas the OtY and Tt samples had the lowest
values (71.77 ± 0.06 and 70.8 ± 0.2, respectively). This is evident visually in Figure 6, where
the OtY and Tt samples have slightly different colors than do the other samples.

The samples that showed the most remarkable color variation (between the mixture
and the 2G snacks) were OtW, OtY, OtR, and Ax (p < 0.05). In contrast, the samples with the
least variation were C, Ci, and Tt. From the images in Figure 6, it can be inferred that when
the mixtures had less saturated colors, and they generate more notable color changes in the
snack. In contrast, darker and more saturated mixtures (C, Ci, and Tt) caused fewer overall
color variations (∆E). Even if the snack had different colors, all the samples developed
satisfactory colored products under the processing conditions of this study.

The properties previously discussed demonstrate the excellent technological character-
istics of 2G snacks. They have low water content and their aw makes them a nonperishable
food. Also, Andean root flours achieved higher SEI and ρb than did the control snacks
(100% corn grits). They had a higher WAI value and a lower WSI value than did the control
snacks. Considering processed snacks can be consumed for breakfast, these characteristics
are interesting when analyzing the conservation of its crunchy features when immersed in
aqueous bases (milk or yogurt) [75]. Furthermore, adding Andean root flour improved the
snack’s textural characteristics in terms of crunchiness and crunchiness. It generated more
brown saturated colors, which can be attractive to the consumer since it can be related to
more natural and integral products [76].

This shows the viability of using Andean flour and roots in preparing snacks that
consumers widely accept. Furthermore, as they are undervalued crops, the cost of market-
ing in the Andean agricultural sector is lower than it is for potatoes, rice, and corn. For
example, 100 kg of roots such as Ax, Ot, and Tt usually cost USD 4, while 100 kg of potatoes
generally reach values of up to USD 30 [77], rice around USD 42 [78], and corn USD 18 [79].

The excellent technological characteristics of these 2G snacks and the considerably
lower price of the Andean roots (raw material) constitute two great strengths that the food
industry must consider when deciding to develop this type of food.

3.1.8. Bioactive Compounds

The results of bioactive compounds characterized as total carotenoids (TC), total
phenols (TP), and antioxidant capacity (AC) are shown in Table 5. Undervalued or unknown
Andean crops represent a challenge because the results are not easily comparable to those
in the literature, as there is insufficient information on how to use them for food production.
However, there is information on crops’ nutritional, antioxidant, or technological properties,
such as raw material or flour. In this sense, the results obtained in this study could help to
understand the behavior in extrusion operations.
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Table 5. Total carotenoids (TC), total phenols (TP), and antioxidant capacity (AC) (mean values and

standard deviations) of 2G snacks.

Sample
TC

(mgβcarotene/100 g)
TP

(mgGAE/100 g)
AC

(mgTrolox/100 g)

C 1.75 (0.02) e 111 (4) d 0.27 (0.12) d

Ax 1.75 (0.02) e 123 (2) c 4.6 (0.2) ab

Ci 2.14 (0.06) c 130.6 (1.2) a 4.1 (0.4) b

Ce 1.42 (0.03) f 112 (3) d 0.9 (0.2) d

IbP 1.68 (0.02) e 124.2 (1.3) c 2.53 (0.14) c

IbY 2.18 (0.02) c 123.9 (1.3) c 4.5 (0.3) ab

OtW 1.96 (0.07) d 131 (2) a 4.58 (0.14) ab

OtY 4.74 (0.04) a 127.4 (0.8) b 4.9 (0.2) a

OtR 2.20 (0.04) c 126 (2) bc 1.9 (0.6) c

Tt 3.76 (0.02) b 124.2 (1.3) c 4.8 (0.4) ab

Different lowercase letters in the columns represent significant differences (p < 0.05) between samples.

The TC values showed a significant variation (p < 0.05) between 1.75 and 4.74 mgβcarotene/100 g
of a sample. Most snacks showed higher TC values than did the control snacks. The
exception was found in the Ax, Ce, and IbP snacks. In this study, OtY had the highest
carotenoid value (4.74 mgβcarotene/100 g of sample) (p < 0.05); this value was also highest
in the Tt sample, which corresponds to mashua root, reported as a crop with an essential
carotenoids content [9,80]. The TC value in OtY in this study was 1.63 mgβcarotene/100 g,
which is more that of a 3G yellow oca obtained in a previous study [38]. Furthermore,
the values are greater than those reported by Campos [81], who studied 14 oca genotypes
(0.2–0.25 mgβcarotene/100 g of sample). The lowest value was detected in Ax and C probably
due to the reduced pigment content in contrast with the other crops. However, when
comparing TC values between 3G snacks and 2G snacks, some observed that 2G snacks
with purple camote and white oca had 0.42 and 0.22 mgβcarotene/100 g less than did the 3G
snacks, respectively. However, the TC content was higher in 3G red oca and mashua snacks.
These results are probably attributable to the nature of the components; furthermore, the
different thermic treatments could influence the results.

The total phenol results showed that Ci had the highest value (130.6 mgGAE/100 g); it
is essential to note that all extruded Andean crops had values above the control (p < 0.05).
The results are comparable with those obtained by Praseptiangga [82], who reported a value
of 125 mgGAE/100 g in boiled Canna indica. The total phenol could be attributed to phenolic
acids, flavonoids, tannins, and the hydrolysis of different compounds, such as proteins,
which release phenolic compounds and make them more available. Furthermore, it could
be attributed to the degradation of anthocyanins that help form various polyphenolic
compounds because the Folin–Ciocalteu reagent could react with proteins and sugars
that are part of the composition of these tubers [10,83]. In this study, the extruded 2G
snacks from Andean crops had values around 112–130 mgGAE/100 g. The Ce sample
had the lowest value compared with the other Andean tubers; however, it is essential to
note that these values (112 mgGAE/100 g) were the highest compared to those reported by
Salazar [10] in taro flour. The phenol content of IbP, IbY, Ax, and Tt was similar to those
reported by Catunta [84] in fresh mashua samples (128–146 mgGAE/100 g). However, in the
OtW, OtY, and OtR snacks, the phenolic content values were similar to those reported by
Campos [81] in fresh oca genotypes (71–132 mgGAE/100 g). Phenolic compounds, naturally
occurring antioxidants, are abundant in various plant-based foods and beverages and play
an essential role in nutritional and healthcare contexts [85,86].

The AC results showed that the highest value corresponds to the OtY snack; however,
there was a slight difference with the Tt snack (p < 0.05). This is important because mashua
eventually showed the best antioxidant activity of the Andean crops studied here and
reported in the literature [10,38,87]. In contrast, Ce snacks had the lowest AC (p < 0.05)
between Andean crops; Ce was higher than C. The AC is attributable to the phenolic
compounds, flavonoids, carotenes, and vitamin C, which are reported to be part of these
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roots [88]. The evaluation of Pearson correlations between TC and TP with AC showed a
significant difference (p < 0.05), and correlational statistical analyses showed the influence
of TC and TP on the AC of the samples. TP was essential in AC (0.75, p < 0.05).

4. Advantages and Limits

The advantages of this study are that it aims to apply a different extrusion method to
obtain snack-type products based on nonconventional raw materials (flour from Andean
crops). Even though this technology has previously been tested for producing 3G snacks,
this study shows the possibility of obtaining completely expanded snacks directly on the
equipment. The population’s desire for foods based on new raw materials that are ready to
eat generated certain expectations before carrying out this research. The authors examined
the developed snacks to assess the possibility of producing technologically stable appetizers
with better nutritional value than conventional products found on the market. Although
this work shows progress in this type of product and in the potential to offer new products
based on these tubers and tuberous roots in disuse, it is necessary in the future to cover the
issue of sensory and consumer perception.

5. Conclusions

Extrusion is becoming essential in modern food processes because some previously
published studies show its ability to cook, minimize nutrient loss, and texturize products
cheaply. This study showed that adding root flour increased the xw, aw, SEI, Hy, ρb, and the
WAI, but decreased the ε. However, all 2G snacks manufactured with Andean root flour
showed better characteristics in texture, optical properties, and bioactive compounds. From
a textural point of view, the IbY, OtY, OtR, and Ax samples established better characteristics
in terms of crispness and crunchiness. The Ce, IbP, Ax, and OtR samples showed intense
and saturated colors due to this process. During extrusion, the free sugars produced by
starch hydrolysis and proteins were precursors for the Maillard reaction, which causes
saturated colors in snacks. From the point of view of bioactive components, the snacks
made with the roots of Ci, IbY, Ot, OtY, OtR, and Tt stand out. It can be inferred that
the composition of raw roots plays a crucial role, as previous studies have shown that
compounds, such as starch, fiber, and protein, change through the extrusion process,
exposing the hydrophobic points and producing aggregation through protein–protein and
protein–water links, which affects the extrinsic properties of the snacks.
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