
Citation: Mora, P.; Garcia, C.; Ivorra,

E.; Ortega, M.; Alcañiz, M. Virtual

Experience Toolkit: An End-to-End

Automated 3D Scene Virtualization

Framework Implementing Computer

Vision Techniques. Sensors 2024, 24,

3837. https://doi.org/10.3390/

s24123837

Academic Editor: Paolo Gastaldo

Received: 28 March 2024

Revised: 30 May 2024

Accepted: 11 June 2024

Published: 13 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Virtual Experience Toolkit: An End-to-End Automated
3D Scene Virtualization Framework Implementing
Computer Vision Techniques
Pau Mora, Clara Garcia, Eugenio Ivorra *, Mario Ortega and Mariano L. Alcañiz

Research in Human-Centred Technology University Research Institute, Universitat Politècnica de València,
46022 Valencia, Spain
* Correspondence: euivmar@upv.edu.es

Abstract: Virtualization plays a critical role in enriching the user experience in Virtual Reality (VR)
by offering heightened realism, increased immersion, safer navigation, and newly achievable levels
of interaction and personalization, specifically in indoor environments. Traditionally, the creation of
virtual content has fallen under one of two broad categories: manual methods crafted by graphic
designers, which are labor-intensive and sometimes lack precision; traditional Computer Vision (CV)
and Deep Learning (DL) frameworks that frequently result in semi-automatic and complex solutions,
lacking a unified framework for both 3D reconstruction and scene understanding, often missing a fully
interactive representation of the objects and neglecting their appearance. To address these diverse
challenges and limitations, we introduce the Virtual Experience Toolkit (VET), an automated and
user-friendly framework that utilizes DL and advanced CV techniques to efficiently and accurately
virtualize real-world indoor scenarios. The key features of VET are the use of ScanNotate, a retrieval
and alignment tool that enhances the precision and efficiency of its precursor, supported by upgrades
such as a preprocessing step to make it fully automatic and a preselection of a reduced list of CAD
to speed up the process, and the implementation in a user-friendly and fully automatic Unity3D
application that guides the users through the whole pipeline and concludes in a fully interactive and
customizable 3D scene. The efficacy of VET is demonstrated using a diversified dataset of virtualized
3D indoor scenarios, supplementing the ScanNet dataset.

Keywords: 3D scene understanding; indoor scenes; virtual reality (VR); ScanNet; scene reconstruction

1. Introduction

Virtual reality (VR) has transformed into a groundbreaking technology, impacting a
wide array of fields ranging from entertainment and gaming to healthcare, education, and
beyond [1,2]. While VR technology itself is fascinating, it is the content that users interact
with—the virtualized environments and objects—that truly defines the user’s experience.
Therefore, in the context of VR, the concept of virtualization is fundamental, acting as the
critical foundation for crafting these interactive and immersive worlds.

Virtualization enables the digital replication of real-world scenes, objects, and in-
teractions within a virtual space, providing the heightened realism that is crucial for an
immersive experience [3,4]. The more accurate and detailed the virtualization, the more
convincing the virtual environment becomes. This not only enhances the user’s sense of
immersion but also has practical implications, such as providing safer navigation within the
virtual world [5]. Moreover, well-crafted virtualization allows for increased interactivity
and personalization options, enriching the user’s experience and expanding the capabilities
of VR applications among others, such as gaming and architecture [6].

Fundamentally, virtualization transcends its role as a mere technological requirement; it is
paramount in shaping user perception and interaction within the virtual environment [7]. With
the rapid advancement in technology and the enhanced resolution of VR headsets, there is a

Sensors 2024, 24, 3837. https://doi.org/10.3390/s24123837 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24123837
https://doi.org/10.3390/s24123837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24123837
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24123837?type=check_update&version=1


Sensors 2024, 24, 3837 2 of 31

pressing need for virtualization to be of even higher quality. This progression not only demands
virtualization techniques that yield authentic and reliable results but also insists that these
methods become more accessible. They should evolve to be user-friendly, adopting automatic
or semi-automatic functionalities to cater to a broader user base. As the technology becomes
more widely available, the ease of implementing virtualization techniques becomes as crucial as
their performance. This shift underscores the urgent demand for developing new frameworks
and methodologies in this field. Such foundational advancements are necessary to support
the creation of sophisticated high-level applications, ensuring that VR continues to grow in
effectiveness and influence across various domains.

This is particularly true when considering the increasing significance of virtualization
in indoor spaces [8], especially in today’s era where VR has been brought to the general
public thanks to devices like the Oculus Rift (Meta Platforms, Inc., Menlo Park, CA, USA,
https://www.meta.com/ (accessed on 30 May 2024)) and HTC Vive (HTC Corporation,
Taoyuan, Taiwan, China, https://www.htc.com/ (accessed on 30 May 2024)) [3]. For many
users, the primary interaction with VR occurs at their homes. This increase in domestic
use highlights the need for sophisticated virtualization of indoor environments. As these
locations become the main spaces for immersive experiences, tailoring and optimizing
virtual representations of such areas becomes essential. This not only enhances the user
experience but also ensures that VR applications become more immersive by being able
to relate to and interact with familiar environments. This closer connection with users’
everyday surroundings helps to deepen the sense of presence and realism within the virtual
realm. The evolution of VR devices and their increasing accessibility has thus placed an
even greater emphasis on improving the virtualization of indoor spaces.

Regarding the main process of virtualization of indoor scenes, 3D reconstruction is a
crucial component [9]. It involves creating a digital representation of an indoor environ-
ment, aiming to faithfully reproduce its geometry and features. This digital representation
can take various forms, such as polygonal meshes or point clouds, either with color or
without, derived from the collection and analysis of visual data (e.g., images, videos, or
depth sensor information) collected from indoor settings. Beyond 3D reconstruction [10],
virtualization also includes scene understanding, which detects objects [11], classifies them,
and segments the instances in the scene [12] (for example, the individual chairs in a living
room), or a combination of the three [4], allowing for customization in VR settings. It is
typically executed after acquiring the digital representation of the environment to be able
to manipulate, change, and interact with the elements in the virtual reality scenario, thus
enhancing the user’s interactive experience. Moreover, to maintain a clean and efficient
digital representation, these elements are often replaced by the most similar CAD mod-
els [3] in terms of shape positioned in the same location, orientation, and scale within the
scene. Finally, another step of scene understanding is the layout extraction [2], referring to
the estimation of the 3D planes that limit the scene (such as the walls and floor of a living
room or bedroom). This leads to an improvement in the safety of the virtual scene, enabling
not only a more accurate and efficient representation of the space’s limits but also safer
interaction and navigation within it.

As previously mentioned, virtualization frameworks have significantly advanced;
however, many of the current methods do not perform the complete process, resulting in a
partial virtualization of the scene [4,13]. Additionally, there are persistent challenges that
limit their effectiveness and applicability in VR settings [3]. These challenges span various
domains according to the techniques applied, from automation to the quality and fidelity
of the rendered environments.

Traditionally, 3D scene virtualization had been achieved manually [2]. Specifically,
a team of graphic designers had to create every object in the scene and insert it into the
scene in the correct place. Therefore, the scene had to be previously measured in detail.
This method of manual design results in long, labor-intensive tasks. Moreover, if the
application requires high-quality models, it increases the cost, thus making it unfeasible for
smaller projects or companies. Additionally, hand-crafted models often lack the level of

https://www.meta.com/
https://www.htc.com/


Sensors 2024, 24, 3837 3 of 31

detail or accuracy required for certain applications, like architectural simulations. These
limitations regarding high time costs and quality were partially solved by the advances in
CV and DL techniques, which allowed some semi-automatic scene virtualization methods
to emerge [4,14,15], but these methods still suffer from various limitations.

These restraints include the lack of complete frameworks that execute different steps
in order to make the virtual scene fully interactive, realistic, immersive, and safe to explore.
For instance, some methods lack a comprehensive 3D understanding of the scene and are
focused primarily on the 3D reconstruction aspect, often overlooking the contents of the
scene [15]. Furthermore, some approaches have limited precision, personalization, and
interaction since they are focused only on safety navigation [5,16].

Another major limitation of current methodologies lies in the degree of automation
within the frameworks. As pointed out by [4], many of these frameworks are not entirely
automated, necessitating manual involvement at certain stages. This necessity often arises
from the divergent methodologies employed at different phases of the process, which
complicates the integration of these stages [3]. Consequently, substantial effort is required
to achieve a cohesive and unified virtualization process.

In summary, the main challenges that virtualization frameworks face nowadays are the lack
of a complete pipeline that executes all the different stages and the lack of completely automated
methods that automatically generate the VR scene from the gathered images. We aim to solve
these issues by introducing the Virtual Experience Toolkit (VET) framework. VET is designed to
address the aforementioned limitations, offering a complete application that includes both the 3D
reconstruction of the scene and the scene understanding step, ensuring a faithful representation
of the layout and components of the scene, and a fully automated virtualization process that
generates a customizable and interactive VR scene without intervention. Additionally, it is
encapsulated in a user-friendly and intuitive Unity application that guides the user through
the acquisition of the images, shows the processing stage, and loads the generated scene
into a VR application for its exploration or customization. Concretely, VET performs a 3D
reconstruction using an RGB-D camera and a dense-SLAM-based method, then applies
a 3D scene understanding step composed by a layout estimation algorithm and a CAD
substitution for the objects in the scene that also includes an automated version of the
ScanNotate [17] method. Finally, the information obtained is integrated into a digital scene,
where the user can interact and edit the scene according to the necessity, using a custom
and intuitive GUI. Moreover, the proposed solution is verified by our own scene dataset
(consisting of various scenes such as bathrooms, bedrooms, conference rooms, and offices,
among others) and ScanNet [18] to prove its effectiveness and precision. Herein, we outline
the principal contributions of our work:

• Fully automated and user-friendly: The VET system stands out for its automation
and ease of use. Upon acquiring the 3D reconstruction, it seamlessly virtualizes the
captured data through an intuitive framework that guides the user. This integration is
accomplished within a singular graphical application that harnesses the power of C++,
Python, and Unity3D (Unity Software Inc., San Francisco, CA, USA, https://unity.com/
(accessed on 30 May 2024)).

• Complete virtualization: VET implements all the necessary stages to ensure a complete
virtualization, including a 3D reconstruction to obtain a 3D replica of the scene and a scene
understanding stage to process said scene. The scene understanding step is divided into
two sub-stages—layout generation, responsible for generating the layout of the room and
ensuring safety in the navigation, and the room objects substitution, responsible for detecting
and substituting the objects for CAD models to heighten the interactivity and immersion.

• High quality: The VET framework produces high-quality results by implementing
methods that have proven to be highly effective, such as the real-time 3D reconstruction
method BundleFusion [19]; the current state-of-the-art (SOA) algorithms in the following
pipeline steps, such as Mask3D [12], for 3D instance segmentation using the ScanNet
[18] and ScanNet200 [20] datasets; or an improved version of ScanNotate [17] for CAD
retrieval and pose estimation.

https://unity.com/


Sensors 2024, 24, 3837 4 of 31

• Personalization: The solution offers extensive customization options for users to accom-
modate their virtual experiences through a custom GUI.

• New layout method: VET presents a new, fast, and robust method for layout calcula-
tion of indoor rooms, employing the Robust Statistics-based Plane Detection (RSPD)
algorithm [21] and the O-CNN [22] segmentation technique.

• Broad applicability: Our framework can be applied across a wide range of indoor scenes,
working with an extensive array of classes, specifically 200 ScanNet object classes. This
is demonstrated using a dataset acquired through VET that complements ScanNet,
comprising RGB-D images, camera pose information, 3D reconstructed scenes, 3D scene
understanding results, and complete virtualization.

By detailing these aims and goals, the paper will offer a comprehensive solution to
existing challenges in the virtualization domain for VR, providing both theoretical and
practical contributions to the field.

This paper expands the work of our previous research presented at the conference
MetroXRAINE in 2023 with the following title: Virtual Experience Toolkit: Enhancing 3D
Scene Virtualization from Real Environments through Computer Vision and Deep Learning Tech-
niques [23]. While the conference paper provides an initial exploration of our framework,
this paper offers a more comprehensive analysis and a more in-depth explanation of the
methods, emphasizing the layout algorithm, the upgrades to the ScanNotate method, and
the integration of the whole framework in a single application.

The remainder of this paper is organized as follows: Section 2 briefly reviews existing
3D scene virtualization methods according to the different stages performed. Section 3
presents the proposed framework, deeply explaining the different methods incorporated to
obtain the complete 3D virtualization. Section 4 introduces the results obtained step by step
and the discussion about them, along with a brief comparison with other known methods.
Finally, Section 5 includes the overall conclusions and some suggestions for future work.

2. State of the Art

In recent years, 3D scene virtualization has gained widespread attention due to the growth
in the usage of VR and increased automation, specifically in indoor scenarios [4]. Therefore,
several solutions have been proposed for 3D realistic, personalized, immersive, and interactive
scene generation, with varying approaches depending on the techniques used. Concretely, 3D
reconstruction, scene understanding CAD retrieval, and pose estimation steps are required
to link the physical and digital worlds in a virtual 3D scene while ensuring that the virtual
scene closely mirrors the real world. Early 3D virtualization methods were performed manually.
However, this solution is time-consuming and requires highly detailed information about the
scene. Nowadays, the different virtualization methods vary depending on the methods used to
perform the three main steps to carry out the virtualization process.

2.1. 3D Reconstruction

In the particular case of 3D reconstruction, one of the first methods to reconstruct 3D
scenes automatically was photogrammetry. This traditional CV technique [24] is used to create
3D maps or models of objects or scenes, among others, from a set of 2D images using the
information of the matching between features extracted from the 2D images. Despite the
high volume of methods that use photogrammetry for 3D modeling, it is sensitive to image
quality; challenging in featureless scenes and occlusions; and it also limited when texture-less
elements, repetitive patterns, and reflecting surfaces are present in the scene like walls (in
indoor scenarios). It is also computationally expensive [25]. Moreover, the main problem
of using standard RGB images is the small field-of-view of 2D cameras [9] that can make
contextual information insufficient for reliable full-room reconstruction. Another investigation
field that overcome the mentioned drawback related to the field-of-view is the usage of full-view
panorama images for indoor capture and 3D reconstruction [26,27]. Using 360-degree cameras
for indoor 3D reconstruction faces two significant limitations: limited depth information and
inconsistent resolution. These cameras can capture extensive views but struggle with accurately



Sensors 2024, 24, 3837 5 of 31

gauging depth, which is crucial for rendering precise 3D layouts and dimensions. Additionally,
the panoramic images may have an uneven resolution, causing distant objects to appear less
detailed or blurry. Together, these issues complicate achieving accurate and detailed 3D models
of indoor spaces. Currently, with the introduction of accessible RGB-D cameras like Kinect
(Microsoft Corporation, Redmond, WA, USA, https://www.microsoft.com/ (accessed on 30
May 2024)), different methods have been introduced to reconstruct 3D scenes from single or
multiple RGB-D images based on dense SLAM. For instance, KinectFusion [28] creates a high-
quality 3D model from the depth data of a Kinect camera. However, this method is constrained
by the depth range of the Kinect sensor; thus, it only works for small, static scenarios. Since
the introduction of KinectFusion, other algorithms based on dense-SLAM have appeared like
InfiniTAM [29] and ElasticFusion [30], but all of them are computationally expensive. More
recently, BundleFusion [19] takes advantage of SLAM combined with volumetric fusion to
create detailed 3D models of large environments in real-time. Finally, one of the last novelties
in this field is the introduction of Neural Radiance Fields (NeRF), a simple, fully connected
network trained to reconstruct 3D scenes from a set of input images [31,32]. Currently, this
approach is being applied in many practical applications such as robotic navigation and VR.
Nevertheless, NeRFs suffer from large optimization times and slow rendering, especially for
large-scale scenes.

Considering the aforementioned methods, in the literature, there are several 3D vir-
tualization methods that use these methods to carry out the 3D reconstruction step. For
instance, the Snap2Cad [10] solution is a 3D virtualization framework that uses a single
RGB smartphone camera to reconstruct the 3D scenario, extracting planes and oriented
bounding boxes information to finally replace the objects with 3D models. In addition,
Lou et al. [13] presented a virtualization framework that uses as input a panorama image,
detects 2D objects, estimates the layout, and finally applies a CAD retrieval algorithm com-
paring the CADs on a photo with the input image. On the other hand, Shapira et al. [14]
presented a virtualization solution that uses KinectFusion data to reconstruct the 3D scene
to be virtualized.

2.2. 3D Indoor Scene Understanding

Once the 3D reconstruction is obtained, it is required to interpret the scene content.
In other words, different information should be estimated such as the spatial layout and
the 3D objects that compose the scenario. In the specific case of layout estimation, it
is commonly used to guarantee safe navigation in indoor scenarios. Traditionally, it
was achieved using bottom-up image features such as local color, texture, or edges and
the computation of the vanishing points considered geometric features. For example,
Hedau et al. [33] introduced an iterative method that obtains the vanishing points and
sample pairs of rays from those vanishing points to obtain the box parameters and, finally,
it will extract the layout information. However, the results obtained by this method
depend on the quality of the extracted features—in other words, it is sensitive to noise and
occlusions. Due to the advances in RGB-D sensors, novel methods of layout estimation have
appeared. Particularly, those methods are based on plane detection and plane intersection.
Recently, layout estimation methods based on DL techniques have appeared. For instance,
Dasgupta et al. [34] introduced a method that uses an FCNN that learns semantic surface
labels with an optimization framework to generate the layout estimation. Moreover,
Lee et al. [35] presented RoomNet, an End-to-End room layout estimation that extracts
keypoints and connects them to obtain the final layout. The main drawback is the difficulty
of finding suitable training data with enough layout information, because the performance
is totally dependent on these data. Transferring this information into the field of 3D
virtualization, it is important to mention that, in the literature, there are some methods
that do not carry out this step. This is particularly observed in virtualization frameworks
for outdoor scenarios like TransformMR [11], which is a 3D virtualization framework for
outdoor scenes, where there is no limit. In the specific case of indoor scenarios, there are
methods that do not ensure the safety navigation concept, such as the VRFromX method [4]

https://www.microsoft.com/


Sensors 2024, 24, 3837 6 of 31

and the method proposed by Han et al. [25], which do not estimate the layout to carry out
the virtualization. On the other hand, the ScanToVR [3] framework uses RANSAC to detect
the planes; then, it checks if these planes are composed by a minimum number of points
to finally select those planes to compose the layout. However, this method depends on
the planes detected by RANSAC and is also sensitive to occlusion. In addition, another
virtualization framework that estimates the layout was presented by Luo et al. [13]. This
solution uses LayoutNet [36], an algorithm that predicts the layout of the scene using a
single panorama image as input. The main limitation of this method is the distortion of the
performance produced by the usage of panorama images.

2.3. Instance Segmentation

Another step of the interpretation of the content in the scene is the processing of
the objects present in the scene, such as the furniture of an indoor scene. This process
aims to provide information about the 3D objects in the scene, which then can be used
to define obstacles and substitute the reconstruction with more detailed versions of the
objects. In this step, either a simple detection, classification, or segmentation of the objects
can be carried out, or a combination of the three methods. Traditionally, this step was
executed via clusterization methods; however, the advances in CV and DL have enabled
the development of 2D and 3D methods based on diverse neural network architectures [37].

These CV- and DL-based methods have become the preferred technology for this step
in the recent virtualization frameworks. The aforementioned methods can be classified
based on the type of data they use to segment the scene; some frameworks implement a
segmentation and classification (usually referred to as instance segmentation) step based
on the RGB images used for the reconstruction, such as Snap2cad [10], which implements a
convolutional neural network (CNN) with HRNet-W48 architecture for the segmentation.
Another example is the work of Luo et al. [13], which similarly uses a Faster-RCNN network
to detect furniture in panorama images. Given the origin of the data being RGB images,
this approach presents some limitations, such as possible occlusions between the objects or
the need to translate the 2D segmented information to the 3D space, which often generates
noise and requires a refinement step for the 3D segmented object, such as that implemented
in Snap2cad [10]. Due to the growth in popularity and availability of RGB-D cameras for
indoor virtualization, some methods have emerged that combine the depth information
with the RGB image to perform the segmentation. For example, Han et al. [25] fused the
panoptic segmentation of the RGB image with the depth segmentation of the depth image,
combined with an extra Euclidean clustering to improve the segmentation of the RGB image
(i.e., two close chairs detected as one). Even with the improvement, the need to translate
the 2D information to the 3D space still persists. To assess this limitation, other frameworks
implement methods of 3D segmentation that are applied directly to the 3D reconstruction
of the scene. A basic implementation of the aforementioned technology can be seen in the
work of Moro et al. [38], where they apply a clusterization method to detect the objects in
the scene that are not planes (walls, floor, and ceiling); however, the detected clusters of
objects are used as obstacles to avoid, hindering the realism and interaction of the virtual
scene. For a more detailed detection of the objects, ScanToVR [3] implements a 3D instance
segmentation method based on 3D CNN, providing information about the class (chair,
table, cabinet, etc.) and individually segmenting the different objects. Nonetheless, it is
only able to detect eight classes, limiting the scalability of the framework.

2.4. CAD Retrieval and Pose Estimation

Once the information in the scene is interpreted, to increase the interactivity, it is required
to individualize each 3D object in the scene. Huan et al. [15] introduced a method in the
virtualization framework that isolates clusters; then, a mesh is reconstructed for each cluster.
However, it is sensitive to noise in the scene, like points that belong to other objects and where the
polygonal load is high. To reduce it, different methods based on replacing the 3D reconstructed
object with the most similar CAD models appeared. For instance, the Snap2Cad framework [10]



Sensors 2024, 24, 3837 7 of 31

uses a VGG-19 CNN to obtain the CAD model retrieval and PoseFromShape method [39] to
obtain the pose estimation of the bounding box. Despite the computation of the pose estimation,
it is less accurate due to the background on the RGB image used to compute the pose estimation.
Another framework is ScanToVR [3], which uses a model retrieval algorithm based on 3D
CNN and then uses another algorithm to estimate the seven-DoF pose. Additionally, the pose
estimation step works under the assumption of having all the objects in the scene placed upright,
considering only one rotation on the Z-axis. Moreover, the usage of two different methods
and the need to link both of them increase the computational cost. This same problem is also
presented in the VRFromX [4] virtualization framework, where a model retrieval algorithm that
uses the information of an ROI is used and the PointNetLK [40] method is responsible for the
pose estimation step. Finally, Luo et al. [13] presented a framework that uses a Faster-RCNN
network to carry out the CAD model selection. However, this framework uses 2D information
instead of 3D to carry out this last step, thus losing the depth information.

2.5. Texture Synthesis

One extra step that makes the final scene more realistic and immersive is the texture
synthesis of the planes of the room. Even if the generated room highly resembles the original
space in its geometry and the objects that are present, the resemblance of the walls and floor plays
a great role in the realism of the scene. Originally, the approach was to copy a crop of the desired
texture in a tiled fashion for the walls; however, this results in undesirable regular paving [41].
In the last decades, texture synthesis methods have evolved to generate high-quality textures
from sample images; nevertheless, we find few applications in virtualization applications. For
example, OpenRooms [42] implements a texturing step but is not guided by the reference
images; rather, it focuses on the photorealism and semantics of the scene. Another approach
can be seen in PhotoScene [43] and PSDR-Room [44], which use a differentiable rendering
to modify a base texture to match a reference image; however, these approaches require the
manual selection of the initial material and make use of proprietary software. Additionally,
another generalized method for texture synthesis is the use of CNN to generate a new texture
from the reference image, such as the work of Li et al. [45], although these methods still face
some issues for implementation in virtualization frameworks, such as the selection of the crops
and the seamless tilling of the generated texture.

2.6. Summary

Following this review of the 3D virtualization literature, we summarize the methods in
Table 1 in order to compare them to the VET framework. In said table, we can visualize that
some of the methods are not complete and lack key steps to make a complete framework for
the user, and some methods are not automated and require user input to generate the final VR
scene. Some existing methods are both complete and automatic; however, they present some
limitations. RealitySkins [14] is limited to four classes of objects, and the CAD placement is
aligned to minimize the loss calculated with the occupancy grid of the original scene, meaning
that the objects are a set of preselected CADs and are placed to fill the space that the original
objects occupy, instead of substituting each independent object for a similar CAD model,
hindering the realism and immersion of the final scene. The remaining method, GeoRec [15],
uses the RGB images both for the layout estimation and the 3D object detection and substitution,
facing issues such as occlusion and incomplete information and difficulty translating the 2D
information of the images to a 3D scenario. In contrast, we present a framework that works
with up to 200 different classes, prioritizes using the 3D reconstruction as the input data for
the various steps, and substitutes the individual objects with the same class CAD models.
Additionally, VET is fully automatic and incorporates every step of the workflow to ensure a
high-quality virtualization, including the acquisition of the data; a dedicated step to generate a
similar texture for the planes, which enhances immersion; and the VR environment, which is
also customizable to the user demands.



Sensors 2024, 24, 3837 8 of 31

Table 1. Comparison of state-of-the-art virtualization methods and VET.

Framework
3D Reconstruction Layout Estimation 3D Object Understanding

Automated CAD Align Appearance Scenario
Method Sensor Input Data Method Input Data Method Amount of

Classes

RealitySkins
[14] KinectFusion Kinect Structure Tango RGB-D image Hough

transform 3D information
Random

Forest
Classifier

4 Yes Occupancy grid loss No Indoor Scenarios

Snap2CAD [10]
Android
Capture
System

Android + RGB camera - - RGB Image HRNet-W48 13 Yes CNN + PoseFromShape No Indoor Scenarios

TransforMR [11] - - - - RGB Images SMOKE 2 Yes Custom method No Oudoor Scenarios
GeoRec [15] GeoRec Not Specified RGB-D images GeoLE RGB-D images GeoOD 9 Yes Mesh Alignment No Indoor Scenarios

VRFromX [4] Not Specified LiDAR - - - Manual - No Custom CNN + PointNetLK No Indoor Scenarios
ScanToVR [3] - - Point Cloud RANSAC Point Cloud SoftGroup 20 Yes 4D Spatio Temporal ConvNets No Indoor Scenarios
OpenRooms [42] - - Point Cloud RANSAC Point Cloud PartNet 24 Yes Photoshape++ Yes Indoor Scenarios

VET BundleFusion Intel RealSense D4XX Point Cloud Own Point Cloud Mask3D 200 Fully-automated ScanNotate Yes (planes) Indoor Scenarios



Sensors 2024, 24, 3837 9 of 31

3. Method

In this section, we provide a detailed explanation of the different stages that our pro-
posed framework, VET, carries out to achieve 3D virtualization of real indoor scenes. Each
step is applied to obtain a realistic, interactive, and safe environment that is geometrically
and color-similar to the real indoor scene. The complete pipeline is carried out through
different parts, as depicted in Figure 1, and is fully encapsulated in a Unity3D application
that guides the user through the whole process. Furthermore, the generated room can
be customized to meet the user’s needs using a user-friendly custom Unity3D Graphical
User Interface (GUI). The postprocessing and the 3D reconstruction, along with the scene
understanding steps, are processed in a PC with specifications that can be found at the
end of Section 4, and the VR step—where the user can visualize, interact, and edit the
scene—is loaded onto a VR headset. It is important to remark on the significant efforts
made to guarantee seamless integration and compatibility across diverse algorithms and
methods, spanning from the initial acquisition phase to the ultimate virtualization stage.
This meticulous process is conducted in a manner that remains transparent to the user,
ensuring a smooth and intuitive experience.

Figure 1. Pipeline followed by VET framework.

3.1. 3D Reconstruction

3D reconstruction is the foundational step in our Virtual Environment Toolkit (VET)
for indoor space virtualization, employing RGB-D imagery to accurately recreate real-world
environments in a three-dimensional context.

The core of our methodology is BundleFusion, an advanced technique that originates
from the domain of Dense Simultaneous Localization and Mapping (SLAM). Proposed
by Dai et al. [19], BundleFusion has established itself as a robust solution for generat-
ing real-time, high-fidelity 3D models of interior settings. The technology shines in its
comprehensive treatment of volumetric data, marked by a multi-tiered approach that
commences with meticulous frame-to-model camera tracking. This initial phase harnesses
a fine-grained iterative closest point (ICP) algorithm, ensuring acute preservation of detail
in real-time.

BundleFusion’s robustness is anchored in its global pose graph optimization, which
meticulously refines camera trajectories to minimize drift and bolster the trajectory estima-
tion process. A salient feature of this technology is its dense surfel-based fusion, paired
with a loop closure detection mechanism, ensuring the structural coherence of the model
by rectifying cumulative drifts through pose graph optimization.

A globally consistent surface reconstruction complements this process by unifying
and refining surfels, culminating in a seamlessly integrated global model. BundleFusion
stands out by implementing an energy minimization strategy that effectuates simultaneous
refinement of camera poses and geometry, enabled by a global non-rigid deformation
framework, thus ensuring fidelity to sensor-captured data.



Sensors 2024, 24, 3837 10 of 31

Addressing the challenges posed by large-scale environments, BundleFusion effec-
tively manages both memory and computational demands with an efficient hierarchical
data structure. This enables incremental integration of depth frames into a comprehen-
sive model without compromising on detail—a significant stride beyond conventional
SLAM systems.

The integration of BundleFusion within VET enhances the precision of our 3D recon-
structions. Also, it aids the user during the reconstruction process by providing real-time
feedback on scanned and unscanned areas. To further augment this precision, we incor-
porated a more accurate volumetric fusion algorithm, as developed by Dong et al. [46],
providing VET with the ability to produce superior-quality models compared to those
generated solely by BundleFusion in a non-real-time reconstruction that typically requires
an average of 4 min to perform the 3D reconstruction.

VET’s adaptability is evidenced by its support for an extensive range of RGB-D cam-
eras, including popular models such as the Intel® Realsense D435 and D415 (Intel ® Corpo-
ration, Santa Clara, CA, USA, https://www.intel.com/ (accessed on 30 May 2024)); the
Stereolabs ZED2i (Stereolabs Inc., San Francisco, CA, USA, https://www.stereolabs.com/
(accessed on 30 May 2024)) cameras, which were instrumental in our dataset compilation;
and the Structure Sensor (Structure, Boulder, CO, USA, https://structure.io/ (accessed on
30 May 2024))) leveraged in the ScanNet initiative.

Postreconstruction refinement is crucial to optimize the 3D models for further pro-
cessing. Applying Quadric Decimation [47] reduces polygon counts drastically, improving
computational efficiency. We also mitigate sensor-induced artifacts by removing isolated
noise clusters, an improvement informed by the work of Kadambi et al. [48]. The culminat-
ing step aligns the reconstructed scene with the ScanNet dataset’s coordinate system [18],
facilitating seamless integration and comparability.

It is crucial to bring to attention the importance of the data acquiring step. The VET
framework generates the virtualization based on the RGB-D images gathered; therefore, a
high-quality acquisition is needed, taking the necessary time and reviewing the quality of
the scanning through BundleFusion. Moreover, this method has some limitations during
the acquisition: sudden or quick movements and reflective surfaces generate a temporary
loss of the camera pose, effectively losing the affected frames, and translucent or transparent
objects will not be correctly scanned.

VET uses an indoor scene understanding approach to build on the reconstructed
framework. This dual process comprising semantic segmentation and layout estimation,
alongside instance segmentation and CAD model retrieval and alignment, is conducted
in parallel. Such comprehensive processing paves the way for accurate digital scene
virtualization, reflecting the intricacies and nuances of the physical space.

3.2. Semantic Segmentation and Layout Estimation

The layout computation begins with the semantic segmentation of the scene, aiming
to label the reconstructed 3D environment by dividing it into semantically distinct regions
corresponding to indoor objects, such as furniture, windows, or doors, and room parts
like the walls and floor. For this task, we employ O-CNN (Octree-based Convolutional
Neural Networks) [22], which has demonstrated high efficiency and precision within the
ScanNet dataset.

Particularly, the approach uses octree representation to efficiently detect the features
of the point cloud and the 3D shapes present in it, calculating average normal vectors
from finely sampled leaf octants. This representation is then used to train a semantic
segmentation CNN network showing improved performance over standard CNN for
3D data and tasks. For this step, VET specifically uses an octree-based U-net trained for the
semantic segmentation of the ScanNet dataset, which provides a semantically segmented
3D scene that aligns with our requirements for the following stages. In other words, all
the different objects are semantically segmented depending on the indoor object type.
Specifically, we leverage ScanNet’s existing semantic classes, such as walls, floors, cabinets,

https://www.intel.com/
https://www.stereolabs.com/
https://structure.io/


Sensors 2024, 24, 3837 11 of 31

doors, and windows, which are potential layout parts. The scene undergoes filtration
to exclude all but the aforementioned classes, resulting in a streamlined point cloud for
further analysis.

The layout estimation phase is crucial as it defines the spatial boundaries within a
room by estimating 3D planes and corners, which are identified at the intersections of these
planes. The method proposed follows Algorithm 1, where the variable points are the points
that compose the 3D reconstruction and colorlayout refers to a list of those segmentation
colors corresponding to layout selected labels. Also, target_points makes reference to the
selected points from the mesh that will be used to estimate the layout. In addition, planes
stores the estimated ones from which we will compute the normal (nplane) and the center
(c_pl) if it follows the Manhattan rules. Finally, the information required to obtain the
layout (intersection points and planes) is stored in the layout variable.

Although RANSAC is widely recognized for plane detection [38,49], we adopt a novel
approach known as Robust Statistics-based Plane Detection (RSPD) [21]. RSPD offers sig-
nificant advantages, including faster computational performance, fewer initial constraints,
and enhanced accuracy. From the semantic segmentation step, we extract the points seg-
mented with the target labels and those that are part of the layout, and by employing
RSPD, we detect planes within the point cloud. These planes are then processed based
on their normal vectors to isolate the ones pertinent to the layout and also remove those
duplicated planes.

Specifically, to detect duplicate planes, we consider both normal vectors and the
centers of the planes. By merging this information, we can detect closely parallel planes.
After studying typical features of indoor scenes, we decided to set an experimental distance
threshold of approximately 10 cm, meaning that any pair of walls that are parallel and their
centers are closer than the said threshold will be considered duplicate, and one of them
would be eliminated since, typically, walls are not that close in indoor settings.

Once the filtered planes are estimated, the intersection between them is computed,
obtaining the corners that will compose the layout assessment. Finally, the resultant
selection of planes and corners forms the basis of our layout estimation.

Algorithm 1 Algorithm for layout estimation

for p in points do
pcolor ← get_color(p)
if pcolor in colorlayout then

target_points← p
end if

end for
planes← estimate_planes(target_points)
for pl in planes do

nplane ← get_normal(pl)
if nplane in manhattan_rules then

plane_select← pl
c_pl ← get_center(pl)
if c_pl − c_planes < 0.1 then

plane_select← remove(pl)
end if

end if
end for
layout← intersection(plane_select)

Although this method has demonstrated its efficiency during the validation of VET, it
still presents some limitations. The layout estimation step operates under the Manhattan
World assumption, albeit with some flexibility. This means that while walls can deviate
slightly from being parallel, the method is not suitable for scenes featuring diagonal or
circular walls. Moreover, walls may not be detected if they are crystal walls, since the



Sensors 2024, 24, 3837 12 of 31

scanning method will not capture it; if they are partially scanned; or if they present some
gaps.

3.3. 3D Instances Segmentation

To deal with each object independently, all the 3D objects in the scene should be
segmented as independent instances. For this step, we adopt Mask3D, which currently
stands as the state-of-the-art (SOA) for 3D semantic instance segmentation [12], particu-
larly evidenced by its performance on ScanNet200 datasets. Using a pretrained model
on ScanNet200 dataset, we automatically obtain the 3D instances segmented aligned to
our requirements.

Concretely, Mask3D demonstrates proficiency in predicting semantic classes and in-
stance features, such as the full semantic and geometric detail of each instance in a 3D
scene. This capability makes Mask3D suitable for our segmentation tasks. The model
combines a sparse convolutional feature backbone with Transformer decoders, enabling
efficient whole-scene processing. As a result of this combination, Mask3D obviates the ne-
cessity for manual fine-tuning and the heuristic postprocessing that typically accompanies
traditional methods.

Likewise, during the critical training phase, Mask3D uses bipartite graph matching
to align predicted masks with the ground truth accurately. This method ensures a more
precise and effective training process over simpler matching techniques.

Significantly, Mask3D has established new state-of-the-art benchmarks across various
datasets, such as S3DIS [50], STPLS3D [51], ScanNet [18], and ScanNet200 [20]. These
results further prove that Mask3D can yield high-quality segmentation results and can
adapt to a higher number of classes.

Nonetheless, Mask3D presents some limitations in specific conditions. Mainly, in cases
where the objects are very close, Mask3D may predict only one instance for more than one
object. Further, in cases where the objects are partially scanned, the predictions may not
be accurate.

The incorporation of Mask3D within our research not only aligns us with the current
state-of-the-art but also allows us to take advantage of its advanced technological frame-
work, enhancing our 3D instance segmentation process. The model’s inherent capacity to
predict intricate queries based on scene semantics and geometry considerably minimizes
the need for human intervention, yielding superior segmentation accuracy. To successfully
implement the method in VET, we modified the data loading step to make it process a
single point cloud and adapted the output to the following method’s input to incorporate
it seamlessly into our workflow.

3.4. CAD Retrieval and Alignment

Once the instance segmentation is carried out, it is required to automatically and
precisely replace the instances of the different objects in the 3D scene with CAD models in
the same position, orientation, and scale as real-world objects. This process is performed
to be able to modify the shape, appearance, and spatial location of the elements in the
scene later using our GUI while reducing the polygonal load of the scene. To do so, VET
incorporated the recent method proposed by Ainetter et al. [17] known as ScanNotate,
which replaces the objects detected in the scene with semantically and geometrically similar
CAD models. ScanNotate first estimates the 7 DoF pose of the objects; then, it retrieves the
closest matching CAD by comparing the labeled object with the CAD models of the same
class. In addition, this method joins objects of the same class into clusters to assign the
same CAD to all the objects in one cluster if they are similar enough and, finally, it applies
a refinement step to make the results more precise.

Regarding the dataset, the original implementation of ScanNotate works with the
ShapeNet [52] dataset, a large-scale dataset designed for object recognition and under-
standing in computer vision and machine learning tasks. This dataset covers a wide range
of object categories, including everyday items and furniture, among other least common



Sensors 2024, 24, 3837 13 of 31

classes. For its use in ScanNotate, multiple classes of this CAD model dataset are mapped
to the ScanNet classes so the algorithm can search for the CAD models in the respective cat-
egories. Nevertheless, we made specific improvements to the dataset and its management.
Specifically, we reduced the dataset by eliminating the outdoor classes and keeping only
indoor objects, and filtered non-realistic and repeated models from the most populated
classes: “chairs” and “tables”. Additionally, we created the refrigerator class isolating
models from the “cabinet” category and complemented the dataset with models from
ModelNet [53], creating these new classes: range hood, toilet, curtain, door, and sink.
Finally, since VET uses ScanNet200 for instance segmentation, we mapped the 200 labels
to the modified dataset, resulting in a more optimal and versatile dataset. This modified
version of the dataset is available at https://github.com/Pamogar/VET-IndoorDataset
(accessed on 30 May 2024).

However, ScanNotate presents two main limitations for our pipeline. First, the method
is conceived as an annotation application. Therefore, it requires as an input a list of 3D
bounding boxes of the objects and a list of the images where the objects are visible. Second,
the processing time is proportional to the size of the dataset since it checks every model for
the instance selected, thus making it highly time-consuming. To tackle these limitations,
VET implements a preprocessing step that calculates the 3D bounding boxes from the
instance segmentation results and selects the best images for each object, and a fast mode
that implements the work of Beyer et al. [54] to preselect a reduced list of possible CAD
models, significantly speeding the CAD retrieval and alignment step.

3.4.1. Preprocessing

As mentioned above, the ScanNotate method requires a preprocessed input for the
scenes. This input is mainly a list of 3D bounding boxes, a list of selected images for the
objects, and the class of the object.

Starting with the 3D bounding boxes, using the results of the instance segmentation
step, VET extracts the instance class and the 3D points that belong to the instance and
computes a 3D bounding box aligned with the floor plane (only rotated in the height axis).
In the case of some special classes, such as chairs and tables, the bounding box is extended
down to the floor to ensure that it is correctly placed since, typically, these classes are
always in contact with the floor, and the instance segmentation step may fail to include the
legs in the cluster.

To refine the selection of object images, VET implements an initial filtering stage,
addressing the common challenge of managing the extensive volume of RGB images.
Given the prevalence of numerous, often indistinguishably similar images of any given
object, it becomes crucial to streamline the selection process. To achieve this, our method
incorporates a custom filtering algorithm. This algorithm systematically excludes images
by analyzing the camera’s rotation and position, employing a sequential approach. This
strategic filtering not only simplifies the dataset by removing redundant or less informative
images but also ensures the selection of the most representative and diverse images for
further analysis. This filter implementation is depicted in Algorithm 2, where posre f and
rotre f are the translation and rotation of the camera for a reference image, imgi is a given
image in the image list, posre f and rotre f are the translation and rotation of the camera for
the given image, posdi f f and rotdi f f are the difference in translation and rotation between
two camera poses, and list_ f iltered is the list of filtered images.

Starting with the first image, we use the pose of the camera as the reference, read the
following image poses, and compare the poses until one image exceeds the threshold of
minimum rotation or translation, which can be configured. Then, we add this image to the
filtered list and use its pose as the reference to decide the next images. Iterating over all
the RGB images obtained in the scan, we retrieve a list of filtered images, ensuring that the
images are sufficiently different.

https://github.com/Pamogar/VET-IndoorDataset


Sensors 2024, 24, 3837 14 of 31

Algorithm 2 Algorithm for filtering the images

posre f , rotre f ← get_pose(img0)
for imgi in img_list do

posi, roti ← get_pose(imgi)
posdi f f ← abs(posre f − posi)
rotdi f f ← abs(rotre f − roti)
if posdi f f ≥ posth or rotdi f f ≥ rotth then

list_ f iltered← imgi
posre f , rotre f ← get_pose(imgi)

end if
end for

At this point, for every instance, we sample the 3D points of the instance following a
voxelization method and use the camera intrinsics and the pose of the images to project
the 3D points into the image. Additionally, we compare the depth of the 3D points and the
depth image to determine if the point is visible in the image or is occluded.

Next, we annotate the number of visible points of the object for each image and store
the value; once we have processed all of the images, we can calculate the score of the images
following Equation (1), where inst refers to a given instance of one of the objects detected
in the scene, i refers to a given image in the list, visinst,i is the number of points in an image
i for the instance inst, and maxi′(visinst,i′) is the maximum number of points visible in a
single image for the instance inst.

scoreinst,i =
visinst,i

maxi′(visinst,i′)
(1)

Therefore, to calculate the score of each image, we first find the maximum number
of visible points for a particular object across all the images. Then, for each image, we
divide the number of visible points for that object in that image by the previously found
maximum. This gives us a score that represents the proportion of visible points in that
image compared to the maximum number of visible points across all images. This results
in a list of scores of images, ranging between 1 and 0, where the image or images with a
score of 1 are the images where the object is most visible, and the images with a 0 do not
contain the object. In summary, the closer the score is to 1, the more visible the object is in
the image, and the closer it is to 0, the less visible it is. From this score list, VET extracts
the top ten images with the higher scores, to use them in the CAD retrieval and alignment
step. Additionally, given that the algorithm can also work with fewer images, VET filters
out images with a score lower than 0.05 to ensure that the instance is clearly visible in the
selected images.

This process ensures a high-quality image selection, with high visibility of the object
and varied angles. Additionally, it enables the ScanNotate method to be used in an
automatic setting, solving one of the main limitations observed.

3.4.2. Fast Mode

As previously disclosed, one of the limitations we found with ScanNotate is the
processing time with the ShapeNet dataset, especially with classes linked to the chairs and
tables. To solve this issue, we opted for implementing a different CAD retrieval method
previous to the ScanNotate method; with this approach, we preselect a reduced number
of CAD models for classes that are types of chairs and tables and feed it to ScanNotate to
obtain the most similar CAD and the alignment.

To select the reduced CAD model dataset, VET implements the work of [54]. This
approach starts with the calculation of a 32 × 32 occupancy grid of the CAD datasets and
the 3D instances; then, the grids are encoded using a 3D convolutional neural network with
residual connections that produce a 128-dimensional embedding. Finally, the embeddings



Sensors 2024, 24, 3837 15 of 31

are compared, calculating the pairwise cosine similarity loss, and the CAD models with the
lower value are selected as the most similar.

The first step for implementing this method is the preprocessing of the dataset. In
order to eliminate the need to encode all the possible CAD models in every execution of
VET, we preprocess the whole dataset offline, saving the results into a file that VET can
then load when required, reducing the computational cost of this step. This file is also
available at the dataset github.

For the implementation in the VET pipeline, once the 3D points of the instance and the
3D bounding box have been extracted, the instance is transformed into a 32 by 32 occupancy
grid. However, given that the bounding box is not oriented, we create four copies of the
instance and rotate it by 90 degrees on the Y axis (height in PyTorch3D coordinate system).
At this point, the four versions of the instance are processed into the 128-dimensional
embeddings and are compared with the CAD dataset via cosine similarity. This produces
a loss matrix from which VET extracts the top k most similar CAD models from the four
iterations of the instances, with k being a configurable parameter set by default at 50.
Finally, the resulting list is filtered to ensure that the models are not repeated, and the
corrected list is fed into the ScanNotate algorithm, overriding the base dataset and using
this reduced one instead.

With this implementation, VET is able to reduce the computational cost of the CAD
retrieval and alignment step while retaining high-quality CAD retrieval results and making
use of the efficient ScanNotate method for the orientation of the selected CAD model. This
step generates a list of the CAD models that better resemble the original objects they are
substituting; have the correct position, orientation, and scale; and are prepared to be fully
interactive in the VR scene.

3.5. Plane Textures

Once VET obtains a fully virtualized version of the original room, with interactive and
lightweight furniture and defined limits for the scene, we add an extra step to improve the
realism and immersion of the whole experience, specifically by adding texture to the floor
and wall planes, using the original room textures for reference.

For this step, we opted for a texture synthesis approach that generates a new texture
base on an input crop of the planes. Precisely, we extract the crops of the planes from the
images taken for the 3D reconstruction of the scene. These crops then serve as inputs to
the isolated texture generation module of Plan2Scene [55]. This module stands out for its
adeptness at synthesizing a diverse range of textures. Remarkably, it achieves this without
necessitating pretraining specific to the crop at hand. The result is a synthesized texture
for the planes that not only closely mirrors the original but also features meticulously cor-
rected borders. This enhancement ensures seamless integration, effectively eliminating any
conspicuous seams and promoting a pristine, cohesive appearance throughout the scene.

For the crop selection part, we use a similar approach to the preprocessing of the CAD
retrieval and alignment step to select the images. We obtain a list of 3D points for each wall
using the semantic segmentation and layout results. Then, using a voxelization method,
we sample points from each wall, project said points to the RGB images, and select the
image where the highest quantity of points are visible. For the next step, using Grounded
SAM [56] with the prompt “wall” or “floor” (according to the type of plane), we obtain the
segmentation mask that indicates where the planes are in the image. Next, we extract five
rectified crops of the masked area using the paired depth image.

At this point, we feed the rectified crops into the texture generation module of
Plan2Scene. This method first computes a texture embedding for each surface crop, then
decodes a texture from said embeddings, and finally applies a postprocessing step to the
crop to make it seamless. For the first two steps, this module implements a version of the
approach of [57], modified to enhance the disentangling of the color, pattern, and substance
type and to allow the use of a single model for various substances. This method is applied
for all the crops of the planes, and the best crop for each instance is selected using the



Sensors 2024, 24, 3837 16 of 31

L2 difference of VGG Gram Matrices with the generated texture. This step ensures the
selection of the best possible crop, avoiding the inclusion of artifacts and edges in the
textures. Finally, the postprocessing step is carried out with the Embark Studios Texture
Synthesis Library to correct the borders of the generated texture and ensure that the seams
are not noticeable once the texture is tilled into the planes.

Additionally, in cases where the plane’s texture is just a plain color, VET assigns the
median of the color of the 3D points assigned for each plane.

Regarding some limitations of this approach, lighting variations may affect the re-
trieved texture and low-quality RGB-D cameras may generate lower-quality texture, since
the synthesis is heavily influenced by the input crop extracted from the RGB images ac-
quired.

With this extra step, VET reaches a higher level of realism and immersion to further
enhance the user experience and the perception that the virtual scene is equivalent to the
real one in terms of geometry and appearance.

3.6. Integration

VET was developed using Unity3D (Version 2020.3.39f1). The application presents a
custom GUI (Figure 2) to guide the user during the whole pipeline and to show the current
state of the processing, showcasing the different steps of the pipeline and its progression.

Figure 2. GUI created for the VET framework.

At the same time, the Unity3D application is responsible for executing all the different
C++ and Python processes configured to work automatically using a single configuration
file in the background. These different processes are performed following the workflow of
the diagram in Figure 1.

Starting from the 3D reconstruction, VET uses the BundleFusion method to scan and
generate the 3D reconstruction of the fly. This method incorporates its own GUI, shown
in Figure 3, from which the user can observe a preview of the 3D reconstructed scene in
real-time. Once the 3D reconstruction is completed, VET carries out the postprocessing of
the 3D scene and then executes two different stages in parallel.

The first stage handles room boundaries, starting with semantic segmentation, fol-
lowed by layout estimation, and concluding with texture extraction for walls and floors.
The second stage focuses on the room’s objects, utilizing instance segmentation to fa-
cilitate CAD model retrieval and object orientation. Executing these stages in parallel
optimizes hardware use and minimizes processing time, ensuring a detailed and accurate
reconstruction of physical spaces.

Finally, the generated 3D room is loaded into a VR application developed also with
Unity3D, where the scene is displayed through a realistic render with illumination. Specifi-
cally, the illumination is added through a real-time point light from Unity, which generates
realistic illumination that interacts with the uv maps of the models, which are proven to be
of high quality. In this environment, the user can inspect the final result and fully explore



Sensors 2024, 24, 3837 17 of 31

the scene, moving freely both by walking and using teleportation, which allows VET to be
used in any type of environmental setting.

Figure 3. GUI of BundleFusion showing the reconstruction in real-time.

Additionally, VET allows the user to interact completely with the scene and all the
objects present in it, including walls, doors, windows, furniture, etc. VET also offers a
high level of customization, enabling the user to edit the objects in many ways. Figure 4
shows the options the user has to edit any placed object in the form of buttons with an icon
indicating the option, and Figure 5 depicts how the user would see these buttons in the
VR scenario.

Figure 4. Edit option buttons from left to right: Edit rotation and scale, Change model, Edit colors,
and Undo.

Figure 5. GUI for the editing of CAD models in the VR scene.

In addition to these options, the user can simply select and grab the object in order to
move it through the scene to a different location. Regarding the edit menu, the leftmost
button allows the user to freely edit the rotation and scale of the model. Specifically, when
selected, VET shows the 3D bounding box of the object; by grabbing the sides of the
bounding box, the user is capable of rotating the object one axis at a time. Figure 6a shows
a translation and rotation of an object placed automatically by VET. Moreover, grabbing



Sensors 2024, 24, 3837 18 of 31

the corners of the bounding box allows the user to uniformly scale the object to modify its
size, as depicted in Figure 6b with the same object.

(a) (b)
Figure 6. Examples of an edited object using the custom GUI of VET. (a) Translated and rotated object.
(b) Scaled object.

Additionally, VET enhances user interactivity by featuring an option to select an
alternative 3D model for any given object. This functionality is accessible through the
second button on the editing interface. By default, when activated, this feature presents a
curated selection of 3D models from the same category as the object in question, enabling
users to easily find a suitable replacement. However, for those seeking more creative
freedom, this tool also offers the flexibility to explore and choose from models across
different categories, thus broadening the scope for customization and innovation in the
replacement process. Figure 7 shows an example of the change of the model of an object;
specifically, Figure 7a displays the custom GUI of the Change model option, showing a
preview of the CAD models in the selected class, along with options to show the next or
previous CAD models or change it to another class. Finally, Figure 7b shows the object with
a new model selected by the user.

The remaining options are “Edit colors”, where the user can change the colors of the
CAD model selected, in order to adjust the appearance of the object freely, and an “Undo”
button, which allows the user to reverse the changes made to the object up to the original
configuration generated by VET; this enables the user to edit and interact with the scene
without fear of messing up the scene since there is always an option to go back. Thanks
to these capabilities, the range of applications for VET expands into tasks such as interior
design and renovations.



Sensors 2024, 24, 3837 19 of 31

(a) (b)
Figure 7. Example of a replacement of the CAD model of an object using the custom GUI of VET. (a)
Custom GUI for the CAD replacement. (b) Replacement of the CAD model.

Additionally, if there are objects detected that do not have a CAD model representation
in our database, VET generates a green cube of the dimensions and orientation of the
detected object, which serves as an initial anchor in case the user wants to select a CAD
model from the existing database, load a custom CAD model to use for the representation,
or load an image to use for the representation if the detected object is a picture. These
objects can also be deleted from the scene if there is no available representation, so as to not
hinder the immersion and realism of the scene.

In conclusion, the cohesive implementation of VET, developed using Unity 3D, creates
a seamless and user-friendly experience, guiding the user throughout the entire pipeline
and providing real-time feedback on the processing state. The final output, loaded into
a VR application, allows users to effortlessly observe, navigate, and interact with the 3D
room, with additional editing capabilities provided through a user-friendly interface, which
helps compensate the limitations of the methods implemented and achieve a higher level
of realism. Overall, the VET pipeline is easy to use, versatile, and fully automatic, offering
a comprehensive solution for 3D scene generation and manipulation.

4. Results

We developed a specialized dataset from the Universitat Politècnica de València (UPV),
featuring 30 unique indoor scenes for testing VET. This dataset, inclusive of necessary files
for scene reconstruction and an extra demo room for detailed evaluation, is aimed at
demonstrating our framework’s effectiveness. It is publicly available for research and
further exploration at https://github.com/Pamogar/VET-IndoorDataset (accessed on 30
May 2024), serving as a resource for those interested in the field of 3D scene analysis.

In this section, to qualitatively evaluate our method, we present the results of all the
independent stages, along with the final virtual scene in the VR application. The workflow
starts with the scanning of the real room; here, the user is aided by the BundleFusion
method, showing a real-time reconstruction of the scene, as shown in Figure 8. This helps
the user recognize the parts that have already been scanned and the parts that still need to be
scanned or may benefit from a re-scanning. Figure 9a shows a completed 3D reconstruction
using the BundleFusion method implemented in VET.

https://github.com/Pamogar/VET-IndoorDataset


Sensors 2024, 24, 3837 20 of 31

Figure 8. Real-time reconstruction of a scene using BundleFusion through VET.

Additionally, VET employs the method introduced by Dong et al. [46] to create a
higher quality 3D reconstruction of the scene from the acquired data at the cost of the
computational time of approximately 4 min. The same instance reconstructed with this
alternative method can be seen in Figure 9b. Furthermore, to highlight the differences
between the reconstructions and to compare them, Figure 9 shows both reconstructions and
Figure 10 presents a side-by-side view of the results. In these images, we can observe that
the reconstruction made with the method of Dong et al. [46] generates fewer artifacts and
holes and an overall higher quality reconstruction, with more detail and smoother edges.

(a)

(b)
Figure 9. Reconstruction results. (a) Reconstruction of the scene using the BundleFusion method. (b)
High-quality reconstruction of the scene using the method by Dong et al. [46].



Sensors 2024, 24, 3837 21 of 31

(a) (b)
Figure 10. Side-by-side comparison of the reconstructions between the two methods implemented
in VET. (a) BundleFusion reconstruction. (b) High-quality reconstruction.

Once the 3D reconstruction is generated, VET launches the next two stages: the room
limits extraction and the independent object substitution. Starting with the room limits,
the first step is the semantic segmentation of the room, where we aim to divide the point
cloud into different regions with labels to identify the layout components of the scene.
Specifically, we use an octree-based u-net, trained following the method of O-CNN. In
particular, this approach obtains an mIoU (mean Intersection over Union) of 0.762 on the
ScanNet dataset—this metric calculates the overlap between the predicted and ground
truth regions by measuring the intersection of their areas relative to their union, providing a
reliable metric to assess the accuracy of segmentation models. This result places this method
at the top of the SoA, notably performing better than Fully Convolutional Networks (FCN).
Furthermore, this method presents high scores for the classes that relate to the layout–
specifically, the wall, floor, cabinet, door, and window. The values are displayed in Table 2.
Regarding computational cost, the processing times vary according to the size of the scene;
for a typical room such as the one pictured in the previous figures, this method takes an
approximate time of 50 s.

Table 2. mIoU for layout classes evaluated on ScanNet dataset [18].

Classes Wall Floor Cabinet Door Window

mIoU 0.868 0.958 0.770 0.640 0.744

Applying this method to the 3D reconstruction of the scene, VET obtains a color-coded
segmented scene, such as the one present in Figure 11. We can observe that the method
correctly segments all the walls and the floor (light blue and green) and is capable of
detecting objects close to them and segmenting them correctly, ensuring a high-quality
segmentation of the elements that compose the layout of the scene, even if they are objects
such as doors or windows.



Sensors 2024, 24, 3837 22 of 31

Figure 11. Result of the instance segmentation step of VET.

From this step, VET extracts the 3D points that belong to the scene’s layout and
can conduct the next step of the stage, layout estimation. Using the RSPD method and
eliminating the duplicated planes, VET obtains the layout of the scene in about 30 s. The
generated layout for the previously shown scene is depicted in Figure 12. This image shows
the outline of the detected walls along with the corners where the walls intersect, creating a
complete layout for the virtual scene.

As a final step for the room limits extraction, VET generates textures for the planes
(walls and floor). This method first extracts rectified crops of the planes from the images
taken in the scanning of the room; then, the crops are fed into the plan2scene texture
generation module, generating high-quality textures that resemble the real scene. Finally,
the textures are loaded into the planes; the final result of a fully processed layout is
presented in Figure 13, where we can observe that the generated textures are similar to the
appearance of the original scene. This step takes approximately 2.5 min, including the crop
selection and the generation of the textures.

Figure 12. Result of the layout estimation step of VET.



Sensors 2024, 24, 3837 23 of 31

Figure 13. Result of the texture generation step of VET.

Simultaneously with the execution of the preceding steps, the process also advances on
a parallel track focusing on the discrete objects within the scene. Similarly to the other stage,
the first step is instance segmentation, where the aim is to obtain the individual instances
inside the scene alongside a label that determines the class of the instance (each chair,
table, cabinet, etc.). For this step, VET implements Mask3D, an SoA method for the task of
instance segmentation, obtaining an Avg AP50 = 0.780 on the ScanNet dataset and an Avg
AP50 = 0.388 on the ScanNet200 dataset. This metric measures the precision of a model’s
predictions when considering the top 50% of the retrieved objects ranked by confidence
scores. Regarding the completion time, it is dependent on the size of the scene and the
point cloud; for the scene used in the previous figures, it takes approximately 3.5 min. The
efficiency of this method can be seen in Figure 14, where the results of processing the 3D
reconstruction with this method can be seen. Specifically, this step is able to correctly and
individually detect the main objects of the scene, and assign them a unique color. The
detected classes for this scene are chair, table, cabinet, bookshelf, trash can, door, armchair,
coffee table, and monitor, some of which are exclusive of the ScanNet200 dataset.

With the instances detected and labeled, VET can carry out the CAD retrieval and
alignment step, where the algorithm replaces the objects in the point cloud with the most
similar CAD model in the given dataset and aligns it to position it in the scene. This step is
carried out with an automatic version of ScanNotate, which outperforms the Scan2CAD
approach, as stated in the original paper [17]. Additionally, we implemented an optional
preselection of CAD models in an effort to reduce the computational costs of the original
method. The computational cost of this method differs significantly depending on the
number of instances in the scene and their class, classes such as chairs and tables with a
high number of possible CAD models take the longest time, which is why we incorporated
the faster method for these two classes. Specifically, for the scene used in the figures, the
fast implementation with the refined dataset takes approximately 50 min, while the base
implementation of ScanNotate with the whole ShapeNet dataset takes about 68 min.



Sensors 2024, 24, 3837 24 of 31

Figure 14. Result of the instance segmentation step of VET.

Finally, by merging the textured layout extracted from the scene and the aligned CAD
models, VET loads the scene into a VR application where the user has full interaction with
the scene and a high level of editing power, being able to manipulate the objects, change
the CAD model, and edit its appearance. Figure 15 shows the complete rendered scene,
where we can see examples of the non-substituted objects represented with green cubes.
As mentioned in the previous section, these objects can be substituted with CAD models or
images (only for pictures) loaded by the user; alternatively, the user can select a different
class CAD model of our database or eliminate them. Combining all the steps, the time
to create the shown virtualization of the scene once the acquisition step has finished is
approximately 57.5 min, thanks to the parallel execution of two stages. Specifically, this time
was performed using a custom-built PC with an NVIDIA (Nvidia Corporation, Santa Clara,
CA, USA, https://www.nvidia.com/ (accessed on 30 May 2024)) GeForce RTX 3060 12 GB,
an AMD (Advanced Micro Devices, Inc., Santa Clara, CA, USA, https://www.amd.com/
(accessed on 30 May 2024)) Ryzen 7 5700 G, and 32 GB of DDR4 RAM. Breaking down
the time step-by-step, once the scene is scanned by the user, the initial 3D reconstruction
takes approximately 4 min, and the scene understanding step, which executes two sub-
steps, takes the remaining 53.5 min. In this step, the CAD retrieval and alignment take the
longest, and it also varies notably according to the contents of the scene. The implemented
method is a brute force algorithm that simulates all of the possible CAD models for the
given class. Therefore, the computational cost of the generation of the room is heavily
influenced by the number and type of objects. Additionally, the time of the CAD retrieval
and alignment step escalates linearly with the number of objects since the method processes
them individually. The performance of this step increases drastically with the increase in
the GPU computational power and the VRAM available. Regarding hardware and software
requirements, it is necessary to use an NVIDIA GPU compatible with CUDA version 11.7,
with at least 12 GB of VRAM to load the models. As for the CPU, it is recommended that it
matches the computational power of the GPU to avoid bottlenecks. Finally, the framework
is designed to be used in Windows 10.

https://www.nvidia.com/
https://www.amd.com/


Sensors 2024, 24, 3837 25 of 31

Figure 15. Reconstructed scene in the VR scenario.

In the culmination of our discussion on VET, Figure 16 serves as a comprehensive
showcase, illustrating the tool’s process across five distinct scenes that we have captured.
Specifically, from top to bottom, the first scene is a bathroom, the second is a bedroom,
the third is a living room, and the fourth and fifth scenes are two different offices. This
figure vividly outlines the key phases of VET, encompassing layout extraction, texturing,
CAD retrieval, and alignment, all culminating in the creation of the final virtual reality (VR)
environment. It is important to note that the images were generated on a PC, but the VR
column depicts what the user would see through a VR headset.

Figure 16. Results of multiple scenes virtualized with VET.



Sensors 2024, 24, 3837 26 of 31

VET’s adaptability is highlighted through its application to a diverse array of room
types, including bathrooms, bedrooms, living rooms, and offices. The figure not only
demonstrates VET’s versatility but also evidences the high quality of the reconstructions,
which faithfully mirror the original scenes. Through the lens of semantic segmentation,
we discern VET’s proficiency in accurately delineating the architectural elements (notably,
walls and floors) from furnishings and other objects (such as chairs and tables).

Further examination of the instance segmentation phase reveals VET’s adeptness
at identifying and classifying each element within the scene across a broad spectrum of
categories, effectively handling complex arrangements like groups of chairs around a
table. The final VR visualization underscores VET’s ability to translate these meticulously
reconstructed and segmented scenes into immersive, lifelike, and fully interactive virtual
environments that closely replicate real-world settings.

This comprehensive depiction underscores VET’s integral role in advancing the field of
scene reconstruction, offering a powerful tool for creating detailed and interactive models
of real-world spaces.

4.1. Applications

This framework is developed as part of the EXPERIENCE project (EXPERIENCE
PROJECT, Grant Agreement No. 101017727 Experience, https://experience-project.eu/
(accessed on 30 May 2024)), a European collaboration project involving multiple universi-
ties. The project receives funding from the European Union’s Horizon 2020 research and
innovation program. EXPERIENCE’s goal is to obtain a new framework for the classifica-
tion and treatment of the clinical spectrum of psychiatric disorders, unveiling previously
undiscovered subtypes of anxiety, depression, and eating disorders through the use of VR
scenarios.

VET plays an important role in the development of EXPERIENCE since it provides
the capability of generating realistic and immersive 3D scenarios for non-expert users
(i.e., psychologists). The 3D scenes generated with VET have multiple applications in the
EXPERIENCE project; for instance, VET allows the reconstruction of familiar spaces in
order to help the patients approach traumatic or phobic situations in a safe and controlled
space, and in a gradual manner. The patients can experience new realities without feeling
threatened through edited 3D scenes or non-familiar scenarios. Moreover, the patients’
safe spaces can be recreated and visited in different moods, with the addition of music
and modifications in the lighting. Those scenes can be edited in many ways to study
the patient’s capability of detecting the changes and the effects it has on them, among
other implementations.

Furthermore, VET presents an opportunity in other fields, such as home decoration,
where users could experience through VR how their home would look with specific fur-
niture that stores provide; additionally, the client could reconfigure the furniture of the
room to the desired distribution, saving time and effort later. Similarly, home renovations
could be previewed in a VR experience, helping clients decide the renovations they want
and creating a better experience for them. Similarly, real estate companies could offer a
VR tour through the different properties they have to save time for both the company and
the clients by giving them an immersive preview of the properties instead of visiting them
all. Other applications can be found in home insurance, providing the insurance company
with a digital representation of our homes, which would facilitate the estimation when
calculating damages at our homes. Moreover, VET provides a cheap and easy way to
generate 3D scenes for gaming and VR applications.

4.2. Limitations

In this subsection, we discuss the limitations of our automatic 3D scene generation
framework. Despite its advancements and capabilities, it is essential to acknowledge
the boundaries within which the framework operates. Understanding these limitations
is crucial for interpreting the results and identifying areas for future improvement and

https://experience-project.eu/


Sensors 2024, 24, 3837 27 of 31

development. The specific limitations of the methods implemented in VET have been
pointed out in Section 3. However, this subsection provides a more in-depth analysis of the
limitations, along with the general restraints of the framework.

In the first step, the data acquisition, BundleFusion is sensitive to fast and sharp
movements, and to reflective surfaces, since it might result in a temporary loss of the
camera pose for some frames, rendering them unusable for posterior methods. However,
the object can be partially reconstructed with frames that did not lose the tracking and
substituted with a similar model, such as the monitor that can be seen in the sample scene
in the results section (Section 4). Moreover, transparent objects present some difficulties,
mainly the fact that the acquisition method does not detect transparent surfaces, and they
will not show in the initial reconstruction. On a different note, highly detailed structures
or objects can become less detailed if the elements are smaller than 1 cm (the voxel size
for the reconstruction); however, most of the details can be represented with that voxel
size, such as the individual books in a bookshelf or details in a poster, such as in Figure 10.
Nonetheless, the model retrieved for highly detailed objects heavily depends on the dataset,
and the objects could be replaced with more basic representations. The Mask3D method
implemented in the instance segmentation step has some limitations in its predictions;
mainly, if similar objects are close by in the 3D space, Mask3D may predict only one instance
for multiple objects. For example, in Figure 17, the algorithm predicts only one instance
for the two sofas, as it can be easily confused with an L-shaped sofa. Figure 17a shows the
initial 3D reconstruction of the room, where we can see that there are two sofas; Figure 17b
shows the instant segmentation results, in which we can see that the two sofas have been
assigned the same color, thus belonging to the same instance; finally, Figure 17c shows the
CAD replacement, which uses an L-shaped sofa to substitute the instance.

(a) (b) (c)

Figure 17. Example of wrong prediction of Mask3D. (a) 3D reconstruction. (b) Instance segmentation.
(c) CAD replacement.

Moreover, the ScanNotate method implements a brute force algorithm that simulates
every CAD model available for the class of the object being processed; thus, the compu-
tational cost is elevated. However, VET solves this limitation by implementing a faster
mode that preselects a reduced list of possible CAD models for each object, achieving a
more efficient implementation. Regarding the layout method, given how the planes are
detected and processed to eliminate duplicates, the method is subjected to the Manhattan
World assumption, meaning that the method is not suited for diagonal or circular walls;
however, it can work with slightly non-parallel walls. Additionally, it may fail to detect
partially scanned walls or walls with big gaps. Finally, the texture synthesis method gener-
ates the textures based on the input crop of the acquired images. Therefore, the lighting
conditions can drastically change the generated texture, and the quality of the RGB image
also influences the quality of the synthesized texture.

Nonetheless, most of these limitations can be compensated in the final visualization
step of VET, where the user can explore the generated VR scenario and has the editing
freedom to change the scene to match the necessities, enhancing the reliability of our
framework.



Sensors 2024, 24, 3837 28 of 31

On a more general note, the framework is limited by the initial input of the data
acquisition step. Therefore, it is recommended that the user uses a good quality RGB-
D camera, and it is important that the user scans the room carefully and in detail in
order to ensure that the room has been correctly captured. Moreover, VET is tailored to
specific indoor scenarios, specifically homes and offices, and will generate lower-quality
virtualizations in industrial or sanitary environments. This is primarily due to the use of
ScanNet for the training of Mask3D, which is focused on homes and offices, and the use of
ShapeNet in the CAD alignment and retrieval step, which lacks CAD models for industrial
or sanitary objects. Additionally, it is not targeted to dynamic scenarios, where objects,
persons, or animals are in motion; this is due to the tracking method using the RGB and
depth information to track the camera, and moving objects appear in different positions
in each frame, possibly generating an incorrect camera pose prediction or simply losing
completely the pose tracking. Finally, regarding scalability, with the hardware described in
Section 4 and a voxel size of 1 cm, we were able to capture approximately 15,000 images in
around 20 min, covering a surface area of roughly 75 m2; we recommend this value as a
maximum surface area to ensure quality scanning of the room.

5. Conclusions

In conclusion, VET is a novel framework integrated into a single application that
automates the complete virtualization of 3D scenes using CV and DL methods that have
been quantitatively evaluated in specialized datasets. It is versatile, capable of handling
diverse indoor scenes and capable of working with 200 object classes. This approach
implements most of the current state-of-the-art methods for each pipeline step, generating
an accurate virtualization of the 3D scene. This framework has been qualitatively analyzed
using a variety of indoor scenes from a ScanNet-like custom dataset.

Future work includes training Mask3D to segment walls and floors, using these
predictions to extract the layout information. Also, Mask3D could be retrained with
industrial or sanitary scenes to improve the performance in those settings. Additionally, the
CAD model dataset could be complemented with industrial or sanitary objects to further
enhance the applicability of VET in those scenarios. Regarding the illumination of the scene,
the light points could be generated in the same points as in the original scene, adding an
extra step in the acquisition to annotate the pose of the lights. Furthermore, this framework
could be extended to outdoor scenes, contributing to outdoor VR applications, which
remains a challenge. Moreover, we plan to conduct an SUS usability test to substantiate the
user-friendly claims of the framework. Finally, this framework will be applied in several
real-use cases from the EXPERIENCE project, introduced in Section 4.1, further contributing
to the usability claims of the framework since it will be used by non-expert users.

Author Contributions: Conceptualization, M.L.A. and E.I.; methodology, M.O. and E.I.; software,
P.M., C.G., and E.I.; validation, P.M. and C.G.; formal analysis, P.M. and M.O.; investigation, E.I. and
M.O.; resources, M.L.A.; data curation, C.G., P.M., and E.I.; writing—original draft preparation, P.M.,
C.G., E.I., and M.O.; writing—review and editing, P.M. and E.I.; visualization, M.L.A.; supervision,
M.L.A.; project administration, E.I. and M.O.; funding acquisition, M.L.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the European Community’s Horizon 2020 (FETPROACT-2018-
2020). Grant Agreement RIA-101017727 Experience. The author P.M. is the beneficiary of a University
Teacher Training scholarship granted by the Spanish Ministry of Universities.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The necessary data to reconstruct the scenes in our dataset, along with
the step-by-step results of the processing of the scene used during the results section, are available at
https://github.com/Pamogar/VET-IndoorDataset (accessed on 30 May 2024).

https://github.com/Pamogar/VET-IndoorDataset


Sensors 2024, 24, 3837 29 of 31

Acknowledgments: The authors want to thank Victor Gascó for his technical support during the
development phase and also express gratitude to Pablo Escribano for his help in creating the figures
in this paper.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
VR Virtual Reality
CV Computer Vision
DL Deep Learning
VET Virtual Experience Toolkit
SLAM Simultaneous Localization and Mapping
CAD Computer-Aided Design
GUI Graphical User Interface
RSPD Robust Statistics-based Plane Detection
O-CNN Octree-based Convolutional Neural Networks
NeRF Neural Radiance Fields
CNN Convolutional Neural Networks
FCNN Fully Connected Neural Networks
HRNet High-Resolution Networks
RCNN Region-based Convolutional Neural Network
DoF Degrees of Freedom
ROI Region Of Interest
ICP Iterative Closest Point
SoA State of the Art
UPV Universitat Politècnica de Valencia
FCN Fully Convolutional Networks

References
1. Zheng, J.; Chan, K.; Gibson, I. Virtual reality. IEEE Potentials 1998, 17, 20–23.
2. Yang, M.J.; Guo, Y.X.; Zhou, B.; Tong, X. Indoor scene generation from a collection of semantic-segmented depth images.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–18 October 2021;
pp. 15203–15212.

3. Kumar, H.G.; Khargonkar, N.A.; Prabhakaran, B. ScanToVR: An RGB-D to VR Reconstruction Framework 2018. Available online:
https://bpb-us-e2.wpmucdn.com/sites.utdallas.edu/dist/f/1052/files/2023/03/final_draft_withnames.pdf (accessed on 30
May 2024).

4. Ipsita, A.; Li, H.; Duan, R.; Cao, Y.; Chidambaram, S.; Liu, M.; Ramani, K. VRFromX: From scanned reality to interactive virtual
experience with human-in-the-loop. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–7.

5. Zhang, Y.; Devalapalli, S.; Mehta, S.; Caspi, A. OASIS: Automated Assessment of Urban Pedestrian Paths at Scale. arXiv 2023,
arXiv:2303.02287.

6. Marullo, G.; Zhang, C.; Lamberti, F. Automatic generation of affective 3D virtual environments from 2D images. In Proceedings
of the GRAPP, Valletta, Malta, 27–29 February 2020.

7. Simeone, A.L.; Velloso, E.; Gellersen, H. Substitutional reality: Using the physical environment to design virtual reality
experiences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of
Korea, 18–23 April 2015; pp. 3307–3316.

8. Estrada, J.G.; Simeone, A.L. Recommender system for physical object substitution in VR. In Proceedings of the 2017 IEEE Virtual
Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 359–360.

9. Pintore, G.; Mura, C.; Ganovelli, F.; Fuentes-Perez, L.; Pajarola, R.; Gobbetti, E. State-of-the-art in automatic 3D reconstruction of
structured indoor environments. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 39, pp.
667–699.

10. Manni, A.; Oriti, D.; Sanna, A.; De Pace, F.; Manuri, F. Snap2cad: 3D indoor environment reconstruction for AR/VR applications
using a smartphone device. Comput. Graph. 2021, 100, 116–124.

https://bpb-us-e2.wpmucdn.com/sites.utdallas.edu/dist/f/1052/files/2023/03/final_draft_withnames.pdf


Sensors 2024, 24, 3837 30 of 31

11. Kari, M.; Grosse-Puppendahl, T.; Coelho, L.F.; Fender, A.R.; Bethge, D.; Schütte, R.; Holz, C. Transformr: Pose-aware object
substitution for composing alternate mixed realities. In Proceedings of the 2021 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), Bari, Italy, 4–8 October 2021; pp. 69–79.

12. Schult, J.; Engelmann, F.; Hermans, A.; Litany, O.; Tang, S.; Leibe, B. Mask3D for 3D semantic instance segmentation. arXiv 2022,
arXiv:2210.03105.

13. Luo, C.; Zou, B.; Lyu, X.; Xie, H. Indoor scene reconstruction: From panorama images to cad models. In Proceedings of the 2019
IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019;
pp. 317–320.

14. Shapira, L.; Freedman, D. Reality skins: Creating immersive and tactile virtual environments. In Proceedings of the 2016 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), Yucatan, Mexico, 19–23 September 2016; pp. 115–124.

15. Huan, L.; Zheng, X.; Gong, J. GeoRec: Geometry-enhanced semantic 3D reconstruction of RGB-D indoor scenes. ISPRS J.
Photogramm. Remote Sens. 2022, 186, 301–314.

16. Cheng, L.P.; Ofek, E.; Holz, C.; Wilson, A.D. Vroamer: Generating on-the-fly VR experiences while walking inside large, unknown
real-world building environments. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
Osaka, Japan, 23–27 March 2019; pp. 359–366.

17. Ainetter, S.; Stekovic, S.; Fraundorfer, F.; Lepetit, V. Automatically annotating indoor images with CAD models via RGB-D scans.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023;
pp. 3156–3164.

18. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-annotated 3D reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5828–5839.

19. Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3D reconstruction using
on-the-fly surface reintegration. ACM Trans. Graph. 2017, 36, 1.

20. Rozenberszki, D.; Litany, O.; Dai, A. Language-grounded indoor 3D semantic segmentation in the wild. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 125–141.

21. Araújo, A.M.; Oliveira, M.M. A robust statistics approach for plane detection in unorganized point clouds. Pattern Recognit. 2020,
100, 107115.

22. Wang, P.S.; Liu, Y.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-cnn: Octree-based convolutional neural networks for 3D shape analysis. ACM
Trans. Graph. 2017, 36, 1–11.

23. Garcia, C.; Mora, P.; Ortega, M.; Ivorra, E.; Valenza, G.; Alcañiz, M.L. Virtual experience toolkit: enhancing 3D scene virtualization
from real environments through computer vision and deep learning techniques. In Proceedings of the 2023 IEEE Interna-
tional Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Online,
25–27 October 2023; pp. 694–699.

24. Linder, W. Digital Photogrammetry; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1.
25. Han, M.; Zhang, Z.; Jiao, Z.; Xie, X.; Zhu, Y.; Zhu, S.C.; Liu, H. Scene reconstruction with functional objects for robot autonomy.

Int. J. Comput. Vis. 2022, 130, 2940–2961.
26. Yang, H.; Zhang, H. Efficient 3D room shape recovery from a single panorama. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5422–5430.
27. Yang, Y.; Jin, S.; Liu, R.; Kang, S.B.; Yu, J. Automatic 3D indoor scene modeling from single panorama. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Online, 25–27 October 2028; pp. 3926–3934.
28. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.

Kinectfusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

29. Prisacariu, V.A.; Kähler, O.; Golodetz, S.; Sapienza, M.; Cavallari, T.; Torr, P.H.; Murray, D.W. Infinitam v3: A framework for
large-scale 3D reconstruction with loop closure. arXiv 2017, arXiv:1708.00783.

30. Whelan, T.; Leutenegger, S.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J. ElasticFusion: Dense SLAM without a pose graph. In
Proceedings of the Robotics: Science and Systems, Rome, Italy, 10–14 July 2015; Volume 11, p. 3.

31. Wang, J.; Wang, P.; Long, X.; Theobalt, C.; Komura, T.; Liu, L.; Wang, W. Neuris: Neural reconstruction of indoor scenes using
normal priors. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 139–155.

32. Gao, Y.; Cao, Y.P.; Shan, Y. SurfelNeRF: Neural surfel radiance fields for online photorealistic reconstruction of indoor scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023;
pp. 108–118.

33. Hedau, V.; Hoiem, D.; Forsyth, D. Recovering the spatial layout of cluttered rooms. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1849–1856.

34. Dasgupta, S.; Fang, K.; Chen, K.; Savarese, S. Delay: Robust spatial layout estimation for cluttered indoor scenes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 616–624.



Sensors 2024, 24, 3837 31 of 31

35. Lee, C.Y.; Badrinarayanan, V.; Malisiewicz, T.; Rabinovich, A. Roomnet: End-to-end room layout estimation. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4865–4874.

36. Zou, C.; Colburn, A.; Shan, Q.; Hoiem, D. Layoutnet: Reconstructing the 3D room layout from a single rgb image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–26 July 2018; pp. 2051–2059.

37. He, Y.; Yu, H.; Liu, X.; Yang, Z.; Sun, W.; Wang, Y.; Fu, Q.; Zou, Y.; Mian, A. Deep learning based 3D segmentation: A survey.
arXiv 2021, arXiv:2103.05423.

38. Moro, S.; Komuro, T. Generation of virtual reality environment based on 3D scanned indoor physical space. In Proceedings of
the Advances in Visual Computing: 16th International Symposium, ISVC 2021, Virtual Event, 4–6 October 2021; Proceedings,
Part I; Springer: Berlin/Heidelberg, Germany, 2021; pp. 492–503.

39. Xiao, Y.; Qiu, X.; Langlois, P.A.; Aubry, M.; Marlet, R. Pose from shape: Deep pose estimation for arbitrary 3D objects. arXiv 2019,
arXiv:1906.05105.

40. Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2019;
pp. 7163–7172.

41. Akl, A.; Yaacoub, C.; Donias, M.; Da Costa, J.P.; Germain, C. A survey of exemplar-based texture synthesis methods. Comput. Vis.
Image Underst. 2018, 172, 12–24.

42. Li, Z.; Yu, T.W.; Sang, S.; Wang, S.; Song, M.; Liu, Y.; Yeh, Y.Y.; Zhu, R.; Gundavarapu, N.; Shi, J.; et al. Openrooms: An open
framework for photorealistic indoor scene datasets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7190–7199.

43. Yeh, Y.Y.; Li, Z.; Hold-Geoffroy, Y.; Zhu, R.; Xu, Z.; Hašan, M.; Sunkavalli, K.; Chandraker, M. Photoscene: Photorealistic material
and lighting transfer for indoor scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LO, USA, 18–24 June 2022; pp. 18562–18571.

44. Yan, K.; Luan, F.; Hašan, M.; Groueix, T.; Deschaintre, V.; Zhao, S. Psdr-room: Single photo to scene using differentiable rendering.
In Proceedings of the SIGGRAPH Asia 2023 Conference Papers, Sydney, Australia, 20–25 December 2023; pp. 1–11.

45. Li, X.; Dong, Y.; Peers, P.; Tong, X. Modeling surface appearance from a single photograph using self-augmented convolutional
neural networks. ACM Trans. Graph. 2017, 36, 1–11.

46. Dong, W.; Lao, Y.; Kaess, M.; Koltun, V. ASH: A modern framework for parallel spatial hashing in 3D perception. IEEE Trans.
Pattern Anal. Mach. Intell. 2022, 45, 5417–5435.

47. Garland, M.; Heckbert, P.S. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the IEEE
Visualization ’98 (Cat. No. 98CB36276), Research Triangle Park, NC, USA, 18–23 October 1998; pp. 263–269.

48. Kadambi, A.; Bhandari, A.; Raskar, R. 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware: with an Emphasis
on the First-and Second-Generation Kinect Models. Comput. Vis. Mach. Learn. RGB-D Sens. 2014, 3–26.

49. Li, Y.; Li, W.; Tang, S.; Darwish, W.; Hu, Y.; Chen, W. Automatic indoor as-built building information models generation by using
low-cost RGB-D sensors. Sensors 2020, 20, 293.

50. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D semantic parsing of large-scale indoor spaces.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1534–1543.

51. Chen, M.; Hu, Q.; Yu, Z.; Thomas, H.; Feng, A.; Hou, Y.; McCullough, K.; Ren, F.; Soibelman, L. STPLS3D: A Large-Scale Synthetic
and Real Aerial Photogrammetry 3D Point Cloud Dataset. arXiv 2022, arXiv:2203.09065.

52. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet:
An information-rich 3D model repository. arXiv 2015, arXiv:1512.03012.

53. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 1912–1920.

54. Beyer, T.; Dai, A. Weakly-supervised end-to-end cad retrieval to scan objects. arXiv 2022, arXiv:2203.12873.
55. Vidanapathirana, M.; Wu, Q.; Furukawa, Y.; Chang, A.X.; Savva, M. Plan2scene: Converting floorplans to 3D scenes.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 10733–10742.

56. Ren, T.; Liu, S.; Zeng, A.; Lin, J.; Li, K.; Cao, H.; Chen, J.; Huang, X.; Chen, Y.; Yan, F.; et al. Grounded SAM: Assembling
Open-World Models for Diverse Visual Tasks. arXiv 2024, arXiv:2401.14159.

57. Henzler, P.; Mitra, N.J.; Ritschel, T. Learning a neural 3D texture space from 2d exemplars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8356–8364.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	State of the Art
	3D Reconstruction
	3D Indoor Scene Understanding
	Instance Segmentation
	CAD Retrieval and Pose Estimation
	Texture Synthesis
	Summary

	Method
	3D Reconstruction
	Semantic Segmentation and Layout Estimation
	3D Instances Segmentation
	CAD Retrieval and Alignment
	Preprocessing
	Fast Mode

	Plane Textures
	Integration

	Results
	Applications
	Limitations

	Conclusions
	References

