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Abstract: Jump height tests are employed to measure lower-limb muscle power of athletic and
non-athletic populations. The most popular instruments for this purpose are jump mats and, in
recent years, smartphone apps, which compute jump height through the manual annotation of video
recordings and recently automatically using the sound produced during the jump to extract the flight
time. In a previous work, the afore-mentioned sound systems were presented by the authors in which
the take-off and landing events from the audio recordings of jump executions were obtained using
classical signal processing. In this work, a more precise, noise-immune, and robust system, capable of
working in the most unfavorable environments, is presented. The system uses a deep neural network
trained specifically for this purpose. More than 300 jumps were recorded to train and validate the
network performance. The ground truth was a jump mat, providing a slightly better accuracy in
quiet and medium quiet environments but excellent accuracy in noisy and complicated ones. The
developed audio-based system is a trustworthy instrument for measuring jump height accurately
in any kind of environment, providing a perfect measurement tool that can be accessed through a
mobile phone in the form of an app.

Keywords: instrument; validation; accuracy; test; reliability; robustness; signal; detection; CNN

1. Introduction

Vertical jump height serves as a fundamental metric for evaluating the muscular
strength and coordination of the lower extremities [1,2], providing valuable insights for
athletes and individuals engaging in physical activities. This measure is widely utilized by
sports professionals to monitor the neuromuscular and performance characteristics of both
athletes and non-athletes. Any changes in jump height are indicative of shifts in functional
performance [3].

There are a variety of tools and methods available for evaluating lower body power
through vertical jump tests. One approach involves the use of force plates to measure
ground reaction forces, which can then be numerically integrated to determine jump
height [4]. Another method involves tracking the body’s center of gravity during a jump us-
ing biomechanical motion capture, which allows for the analysis of movement patterns [5,6].
Lastly, the duration between take-off and landing can be converted into jump height using
basic linear kinematics, with timekeeping instruments used to measure the flight times of
athletes [7].

Timekeeping instruments have gained popularity in the sports world due to their
simplicity, portability, and affordability compared to lab equipment, like force plates and
motion capture systems. These instruments accurately select take-off and landing time
events to calculate the displacement of the center of gravity during flight or jump height [8].
The first of these were jump mats, or contact mats, which function as an electric switch
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activated by the athlete’s weight [9]. Later, photocell mats were developed, featuring an
array of IR diodes that create an optical barrier interrupted by athletes during jumps [10,11].
More recently, smartphone apps have emerged that use high-speed video recordings
to allow users to manually select take-off and landing frames. The flight time is then
computed by counting the number of frames between these events [12]. These apps have
become prevalent in sports sciences due to the inherent advantages of smartphones, such
as portability, connectivity, and data processing capabilities.

While the estimation of jump height through flight time is a proven method [9], the
manual digitization of events by video observation presents several challenges. The image
sensor’s sampling frequency in smartphones is often insufficient for the temporal resolution
needed to select key frames. Additionally, the take-off and landing phases of a vertical jump,
which exhibit the maximum velocity values, are typically undersampled in slow-motion
videos [13]. Shutter speeds, which are usually not user-operable and only reach their fastest
speed in brightly lit scenes, can result in slightly blurred images of feet during the take-off
and landing phases in most indoor or poorly lit environments [14]. These factors can affect
measurement accuracy due to uncertainty in selecting the correct frame. For example, an
observation inaccuracy of just one frame in the take-off and landing events can introduce
an error of 0.9 cm for a 30 cm jump when using a high-speed video of 240 fps. Furthermore,
different observers may yield different results due to varying precision levels and potential
bias, known as the observer effect [15]. The manual analysis required by these systems also
lacks the necessary speed for sessions involving a large number of athletes. As such, apps
based on manual digitization by video observation have several limitations that prevent
them from being valid alternatives to other instruments like jump mats.

A previous investigation proposed a novel audio-based system that automatically
detected take-off and landing moments during jumps, outperforming high-speed video
smartphones in time precision [16]. While this system demonstrated excellent precision in
quiet and moderately quiet environments, it was found to detect false positives in highly
acoustically challenging environments. These false positives corresponded to non-executed
jumps or, at times, small errors when an impulsive noise coincided closely with the sounds
of the jump.

In this paper, we developed a highly accurate algorithm designed to operate effec-
tively in diverse acoustic environments. Our objective was to create a robust, unattended
commercial product usable in any environmental condition without constraints. To attain
this goal, a deep neural network was trained using take-off and landing sounds, effectively
mitigating confusion with other impulsive environmental sounds.

2. Methodology and Preprocessing
2.1. Experimental Procedure

An audio capture system was used to record the sound wave produced by an athlete
during a vertical jump. Our objective was the automatic extraction of the take-off and
landing phases. The microphone was strategically placed to capture audio waveforms
from both feet at these critical moments. Similarly to what was conducted in [16], we
employed a piece of adhesive tape stuck to the sole of the shoe for identifying take-off. All
measurements were conducted using a smartphone’s audio system to replicate conditions
similar to manual video digitization through smartphone apps, as shown in Figure 1. The
selected smartphone operated at a sampling frequency of 48,000 Hz and the raw audio
signals were subsequently transferred to a computer for in-depth analysis.

To assess accuracy, all jumps were measured concurrently using a validated jump mat
system (Chronojump-Boscosystem, Barcelona, Spain) as a benchmark [17]. Subsequently,
after algorithm development, a study of repeated measurements of countermovement
jump (CMJ) height during a single test session was carried out. The session commenced
with a standardized warm-up, including 5 min of running with directional changes and
3 min of dynamic stretching and movement exercises. Following this, the subjects received
instruction and practice in proper CMJ execution for 2 min. Finally, the subjects performed



Sensors 2024, 24, 3505 3 of 18

three CMJ [3] with a one-minute rest between the trials. The executions were meticulously
monitored for precise technique, and only successful trials were considered. The subjects
were instructed to execute jumps at varying heights, encompassing a comprehensive range
of jump height measurements.
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Figure 1. Experimental setup of jump recordings with the microphone of a smartphone.

2.2. Audio Signal Characteristics of the Jumps

In our previous work [16], it was demonstrated that the algorithm based on classical
signal processing techniques yielded excellent results, even in moderately noisy environ-
ments. Realistic samples were included in the study, taken from gyms and sports facilities,
albeit not in particularly challenging situations such as crowded sports arenas or gyms
during moments of intense impulsive noise, like weight dropping or noise generated by
training equipment. Additionally, outdoor samples were not taken. The objective of the
current study was to develop a much more robust algorithm in high background noise
situations, as mentioned previously, while being equally robust and accurate as the classic
algorithm in quieter environments.

Figure 2a depicts a jump signal in a moderately noisy environment similar to the
database used in the previous work. Slight background noise and occasional impulsive
noises can be observed. In contrast, Figure 2b illustrates the same jump in a highly noisy
environment, where identifying take-off and landing events becomes significantly more
challenging. During training sessions, especially in indoor facilities, background noise
levels may range from 70 to 90 dBA. Decibels (dBA) represent a logarithmic scale used to
express the intensity or loudness of sound, with each 10 dB increase indicating a tenfold
increase in sound intensity. This noise can come from various sources, such as equipment
(e.g., weights and machines), coaches providing instructions, and athletes communicating
with each other. The nature of noises in such environments is diverse and is a function
of the facilities, equipment, number of people present, and the type of activities being
performed. However, this noise can be generally modeled as a combination of a constant
background noise level, interspersed with impulsive noises from various sources, such
as weight dropping, machines clanking, and other sudden impact sounds. The take in
Figure 2b was recorded in a crowded sports arena where the background noise was 80 dBA
SPL, measured with a sound meter. Moreover, the additional interferences in this take,
especially from impulsive sounds, pose a significant challenge to the classical algorithm
as it can mask the distinctive patterns associated with take-off and landing events. The
previous algorithm relied on adaptative energy levels, but such a method proved ineffective
in the presence of background noise and impulsive sounds, as will be demonstrated in
Section 4.
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noise; (b) with background noise.

Considering the analysis of the samples we encountered, such as the one depicted in
Figure 2b, the objective of this work was to develop an AI-based algorithm that enables
us to measure flight time by discerning between interferences and genuine jump events
effectively. Our approach focused on developing techniques to mitigate the effects of
background noise and impulsive sounds on jump event detection.

2.3. Addition of Background Noise and Interferences

As previously mentioned, the noise in highly noisy environments, such as crowded
sports arenas and gyms, can be modeled as a combination of constant background noise and
interspersed impulsive noises. To enhance the detection algorithm and make it more robust
in such challenging conditions, we considered signals of jump landing and take-off sounds
mixed with highly noisy environmental recordings. By artificially introducing these jump
sounds into real-world noise samples, we can systematically evaluate the performance of
our improved algorithm under controlled yet realistic conditions.

Background noise from training sessions typically ranges from 70 to 90 dBA and
forms the constant hum of activity within these spaces. This ambient noise encompasses
the collective sounds of equipment operation, athlete communication, and environmental
factors. The first signal encapsulated solely steady background noise, mirroring the ambient
audio environment typically observed in training session facilities (Figure 3). The typical
background noise is composed of music, murmurs, and people’s voices engaged in sports
activities, all with a significant reverberation to emulate typical gymnasium environments.
As depicted in the figure, the energy of these events is concentrated in the low frequencies.
As discussed earlier, having resolution in these frequencies allows the AI to better discern
the correct sounds of interest.

Figure 4 shows the second signal-integrated impulsive noises that are characteristic
of sport facilities. These impulses, interspersed within the steady background noise,
mirrored the abrupt sound bursts generated during athletic activities. This signal contains
impulsive noises, such as impacts and, notably, the sound of bouncing balls, which is a
typical impulsive sound in sports environments, which were also added. The spectrogram
illustrates how this type of sound is distributed across the entire frequency spectrum.
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The purpose of adding these noises is to contaminate the original audio samples across
as many frequencies as possible, simulating real-world conditions. This noise, consisting of
both background noise typical of noisy environments, approximately equivalent to 80 dBA
SPL with a balanced distribution around the mobile device at a close distance from the feet,
and impulsive noises, ensures that the AI model is trained to accurately discern relevant
sounds amidst realistic acoustic environments. This comprehensive approach enhances
the model’s ability to generalize and accurately distinguish between relevant sounds and
background noise in diverse scenarios.
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2.4. Feature Extraction

The utilization of time-frequency parameters, such as spectrograms, in classification
tasks employing convolutional neural networks (CNNs) is justified by their ability to
capture both temporal and frequency information simultaneously. Spectrograms provide a
comprehensive representation of the signal’s frequency content over time, enabling CNNs
to discern intricate patterns and variations crucial for accurate classification. This approach
enhances the network’s capacity to discriminate between different classes by leveraging
the rich temporal dynamics and frequency characteristics present in the data, ultimately
improving the classification performance. Furthermore, the utilization of Mel-frequency
scale [18] in CNN-based classification tasks is particularly compelling and is more aligned
with human auditory perception compared to linear frequency scales, offering a logarithm
resolution in the frequency axis that has been proven very useful for dealing with sound
signals. In this case, it is quite advantageous for capturing the characteristics of jump noise,
as demonstrated in Figure 5. Jump events often exhibit energy in these low-frequency
ranges, making Mel spectrograms effective in distinguishing between jump events and the
prevalent background noise in noisy environments.
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In this case, we calculated a Mel spectrogram with 128 bands employing a window
size of 16.6 ms, equivalent to 800 samples, providing a fine temporal resolution while
maintaining enough frequency resolution for our problem. An overlap of 50% between
windows was chosen, with a hop length of 8.8 ms.

To improve the detection of the acoustic events, more features were calculated to feed
the neural network, as the delta spectrogram and delta–delta spectrogram features. They
were extracted from the Mel spectrogram by processing differences [19,20]. These features
not only provide energy information per frequency band but also capture the velocity and
acceleration of audio changes, as it can be seen in Figure 6. Consequently, the regions where
a landing or take-off event occurs exhibit more prominently excited delta and delta–delta
features compared to other regions without these events, further aiding in the accurate
detection of jump noise.



Sensors 2024, 24, 3505 7 of 18

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19 
 

 

To improve the detection of the acoustic events, more features were calculated to feed 
the neural network, as the delta spectrogram and delta–delta spectrogram features. They 
were extracted from the Mel spectrogram by processing differences [19,20]. These features 
not only provide energy information per frequency band but also capture the velocity and 
acceleration of audio changes, as it can be seen in Figure 6. Consequently, the regions 
where a landing or take-off event occurs exhibit more prominently excited delta and 
delta–delta features compared to other regions without these events, further aiding in the 
accurate detection of jump noise. 

  
(a) (b) 

Figure 6. Comparison of Mel spectrograms for landing and non-landing events: (a) delta Mel spec-
trogram; (b) delta-delta Mel spectrogram. 

2.5. Data Preparation and Labeling 
To train a DNN (deep neural network) effectively, it is essential to have a correctly 

labeled training dataset, which serves as the ground truth. Our dataset comprised 300 
audio recordings sourced from a previous paper [16], wherein precise landing and take-
off events were already identified and time-labeled. Using data augmentation based on 
combining with the noise addition process explained in Section 2.3, we created a dataset 
of 600 samples that was employed to train and verify the DNN, as explained in Section 
3.3. 

Once the Mel spectrograms, along with their corresponding delta and delta–delta 
features, were obtained, as explained in the preceding section, the data underwent pre-
paratory steps for training. Similar to how an RGB image has three dimensions (red, green, 
and blue), we adopted an approach by concatenating the Mel spectrogram, its delta, and 
its delta–delta features in the third dimension of the tensor, effectively creating three di-
mensions alongside the dimensions of time and frequency inherent to spectrograms. This 
process enhances the representation of temporal and frequency features within each sam-
ple, providing the neural network with richer information to learn from. 

In tackling the problem at hand, the objective was to detect the occurrence and tem-
poral position of the jump event within a temporal segment containing spectrogram data. 
Directly inpuĴing the entire temporal segment into the neural network would pose inef-
ficiencies, as it would overlook temporal information crucial for pinpointing the event’s 
occurrence. To address this issue, a strategy was needed to selectively feed segments of 
the spectrogram data into the network at intervals, allowing for both computational effi-
ciency and the temporal localization of the event. 

To achieve this, a compromise must be struck between the temporal resolution of the 
input segments and the computational burden imposed. Introducing segments at too fine 
a temporal resolution, determined by the hop length, could overwhelm the computational 
resources, while too coarse a resolution might sacrifice temporal precision in event 

Figure 6. Comparison of Mel spectrograms for landing and non-landing events: (a) delta Mel
spectrogram; (b) delta-delta Mel spectrogram.

2.5. Data Preparation and Labeling

To train a DNN (deep neural network) effectively, it is essential to have a correctly
labeled training dataset, which serves as the ground truth. Our dataset comprised 300 audio
recordings sourced from a previous paper [16], wherein precise landing and take-off events
were already identified and time-labeled. Using data augmentation based on combining
with the noise addition process explained in Section 2.3, we created a dataset of 600 samples
that was employed to train and verify the DNN, as explained in Section 3.3.

Once the Mel spectrograms, along with their corresponding delta and delta–delta
features, were obtained, as explained in the preceding section, the data underwent prepara-
tory steps for training. Similar to how an RGB image has three dimensions (red, green,
and blue), we adopted an approach by concatenating the Mel spectrogram, its delta, and
its delta–delta features in the third dimension of the tensor, effectively creating three di-
mensions alongside the dimensions of time and frequency inherent to spectrograms. This
process enhances the representation of temporal and frequency features within each sample,
providing the neural network with richer information to learn from.

In tackling the problem at hand, the objective was to detect the occurrence and tem-
poral position of the jump event within a temporal segment containing spectrogram data.
Directly inputting the entire temporal segment into the neural network would pose inef-
ficiencies, as it would overlook temporal information crucial for pinpointing the event’s
occurrence. To address this issue, a strategy was needed to selectively feed segments of the
spectrogram data into the network at intervals, allowing for both computational efficiency
and the temporal localization of the event.

To achieve this, a compromise must be struck between the temporal resolution of the
input segments and the computational burden imposed. Introducing segments at too fine a
temporal resolution, determined by the hop length, could overwhelm the computational
resources, while too coarse a resolution might sacrifice temporal precision in event localiza-
tion. Thus, a judicious selection of both the temporal separation between input segments
and their size is essential.

The landing and take-off events last between 50 and 80 ms. Therefore, the segment
of the spectrogram that should be used as input to the neural network must contain at
least this temporal value. After several initial attempts, it was decided to use a fragment
of 100 ms as input to the CNN, which corresponds to 12 spectrogram windows totaling
approximately this duration. This choice ensures that take-off and landing events are
contained within each segment. The specific duration was chosen to strike a balance
between the computational efficiency and ensuring that each window encapsulates an
entire event. Subsequently, the segmented spectrogram was annotated employing the



Sensors 2024, 24, 3505 8 of 18

commented database at the beginning, with a binary value assigned: 1 indicates the
presence of a landing event within the window, whereas 0 signifies its absence. The same
was carried out for the take-off events.

3. Event Detection Using CNN
3.1. Introduction to CNNs

Convolutional neural networks (CNNs) are a specialized type of neural networks
known for their ability to extract features and automatically learn complex and signif-
icant patterns from a given dataset [21]. These networks consist of multiple layers of
interconnected neurons that learn to extract hierarchical features from input data through
convolutional operations, pooling, and non-linear activation functions. By leveraging these
hierarchical features, CNNs can effectively learn complex patterns and relationships. While
CNNs have primarily been applied to image analysis, they have increasingly demonstrated
their high efficiency in audio classification and detection tasks [18].

One important aspect of CNNs in audio event detection is their capability to learn
in a non-linear and hierarchical manner [22]. This means that these networks can acquire
low-level audio features, such as spectral characteristics and frequency components, and
combine them to form higher-level features [23]. This hierarchical learning capacity allows
CNNs to capture more abstract representations of the audio data, making them especially
valuable in the detection of audio events [24]. CNNs can identify key audio features
and establish relevant temporal and spectral relationships associated with specific audio
events. For this reason, CNNs have been used to detect fall events provided by audio, thus
addressing the limitations of the previous algorithm.

3.2. CNN Architecture

As seen in the previous section and based on experience with similar classification
problems, we propose the following model architecture: The model is built using convo-
lutional blocks, each of which has a basic architecture of three 2D convolutional layers,
along with activation, normalization, dropout, and 2D pooling layers. At the end of these
blocks, a flatten layer is implemented, followed by a couple of dense layers that analyze
the features extracted by the convolutional networks. To finalize the model, a final output
layer with sigmoid activation is added, providing binary classification, 0 or 1, depending
on the event that is detected. The overall structure of the network is shown in Figure 7.
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In each convolutional block, the model is sequentially divided into a series of layers op-
timized for feature extraction and dimensionality reduction. It begins with a Conv2D layer
with ReLU activation, which performs a 2-dimensional convolution operation on the input
feature maps, extracting features using learnable filters while introducing non-linearity



Sensors 2024, 24, 3505 9 of 18

through ReLU activation. This is followed by batch normalization, a layer that normalizes
the activations of the previous convolutional layer across the batch dimension, stabilizing
and accelerating the training process. Another Conv2D layer with ReLU activation is
then applied, performing another 2-dimensional convolution operation to further extract
higher-level features from the input feature maps while maintaining non-linearity through
ReLU activation. Subsequently, a dropout layer with a rate of 0.25 is introduced to mitigate
overfitting by randomly deactivating a fraction of neurons during training, promoting the
robustness and generalization of the model. Finally, an average pooling layer is applied
to reduce the spatial dimensions of the feature maps, aiding in feature extraction and
computational efficiency by downsampling the feature maps. As shown in Figure 7, in each
convolutional block, the number of filters is doubled as the signal becomes more complex,
starting with 16, then 32, and finally 64 filters. At the output of the last convolutional block,
a flatten layer is applied, which serves as the input for the fully connected layers. The fully
connected layers consist of a PReLU activation layer, followed by a dropout layer and batch
normalization. Subsequently, there is another layer with linear activation. Lastly, an output
layer with a single neuron and sigmoid activation is added, as mentioned before. Overall,
the model has 900,000 neurons.

3.3. Model Training

Once the model architecture was structured, we commenced the training phase. Given
that the sound level at landing, indicative of the impact of feet on the floor, is significantly
louder than that at take-off, it is reasonable to utilize landing as a triggering event to
identify a jump execution. Consequently, upon estimating the time position of the landing,
the algorithm proceeds to search for the take-off in a preceding position. This approach
enhances efficiency by training a binary neural network specifically to detect landings,
which continuously explores the temporal signal until detection. Subsequently, upon
detection, a second network is engaged to identify take-offs only within the possible
temporal window preceding a landing, thereby saving computational cost.

Therefore, instead of training a network to detect three classes—landings, falls, and
nothing—we opted to train two binary networks, each independently detecting landings
and take-offs. This approach mitigates the risk of increased error rates due to potential
false positives, a scenario more likely to occur when working with three classes. For each
network, spectrograms of the 0.1 s segments serve as the input features during training,
with the binary label indicating the presence (1) or absence (0) of the landing or take-off
event, respectively.

The training process comprised 100 epochs with a batch size of 64, incorporating early
stopping with a patience of 10. Precision was selected as the monitored metric, given its
importance in minimizing false positives and reducing potential errors in landing detection
within the audio recordings. The training dataset constituted 80% of the total data, with
10% allocated for testing and the remaining 10% reserved for the evaluation of the final
system. Although precision was monitored for early stopping, the recall and F1-score
metrics were utilized to evaluate the model’s performance applied to the final evaluation
samples. Given the binary classification nature of the problem, the model was compiled
with binary cross–entropy loss and the Adam optimizer, employing a learning rate of 0.01.
To assess the model’s generalization ability, a 5-fold cross-validation was implemented.

Cross-validation is a widely employed technique in machine learning for assessing
the generalization performance of a model. It involves partitioning the dataset into comple-
mentary subsets, performing training and validation iteratively on different subsets, and
then averaging the results to obtain a robust estimation of the model’s performance. In the
context of this study, cross-validation is particularly beneficial for evaluating the model’s
ability to generalize to unseen data while mitigating the risk of overfitting. By dividing the
dataset into multiple folds and training the model on different combinations of training
and validation sets, cross-validation provides a more comprehensive understanding of the
model’s performance across various data distributions. This approach helps to ensure that
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the model’s performance metrics, such as precision, recall, and F1-score, are robust and
representative of its true capabilities when deployed in real-world scenarios. While there
exist other, more complex validation techniques [25,26], for the current scope of our article,
we believe our validation approach may serve our purposes adequately.

For this purpose, a program was developed in TensorFlow to facilitate the implemen-
tation of the neural network architectures and the training process. TensorFlow provides
a comprehensive framework for building and training deep learning models efficiently.
The program is structured to handle the entire pipeline, from data preprocessing to model
evaluation. Additionally, the program incorporates functionalities for model configura-
tion, including defining the network architecture, selecting optimization algorithms, and
setting hyperparameters.

Furthermore, the program supports early stopping mechanisms to prevent overfitting
and save computational resources. Once the training process is complete, the program
facilitates model evaluation using separate validation datasets and generates performance
metrics and visualizations for analysis. Overall, the TensorFlow program streamlines the
development and training of neural network models for jump noise detection, providing a
scalable and efficient solution for researchers and practitioners in the field.

3.4. Training Results

Tackling the complexities of background noise presented a formidable challenge through-
out our training efforts. The pervasive nature of background noise, especially in masking
low-frequency components, alongside impulsive noises overshadowing high-frequency sig-
nals, posed significant hurdles during the training process. Despite these daunting obstacles,
considerable efforts were directed towards devising strategies to mitigate the adverse effects
of background noise and impulsive interferences on model performance.

To assess the quality of our predictions, we utilized precision, recall, and F1-score
metrics. These metrics were chosen deliberately due to the imbalance in class distribution
within our dataset. In the context of Mel spectrograms divided into 0.1 s fragments, it is
far more common to encounter segments labeled as 0, indicating the absence of any event,
compared to segments labeled as 1, where a landing or take-off event occurs. Therefore,
accuracy alone would not provide an accurate representation of the model’s performance.
The precision, recall, and F1-score metrics are well-suited for evaluating the performance
of our model in such scenarios.

Precision, as described in (1), measures the proportion of true positive predictions
among all positive predictions made by the model. It indicates the model’s ability to
correctly identify positive instances without misclassifying negative instances as positive.
A high precision value indicates that the model produces few false positives, making it
valuable in scenarios where false positives are costly or undesirable.

Precision =
True Positives

True Positives + False Positives
, (1)

Recall, denoted as (2), also known as sensitivity or true positive rate, measures the
proportion of true positive predictions among all actual positive instances in the dataset.
It reflects the model’s ability to capture all positive instances, minimizing false nega-
tives. High recall values suggest that the model effectively identifies most positive in-
stances in the dataset, making it suitable for scenarios where missing positive instances is a
significant concern.

Recall =
True Positives

True Positives + False Negatives
, (2)

The F1-score, referred to as (3), is the harmonic mean of precision and recall, providing
a balanced assessment of the model’s performance. It takes into account both false positives
and false negatives, making it a useful metric for evaluating classifiers with imbalanced
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datasets. A high F1-score indicates a balance between precision and recall, signifying a
robust performance across both metrics.

F1-Score =
2·Precision·Recall
Precision + Recall

, (3)

Our program demonstrated exceptional performance in binary classification for land-
ing detection, as evidenced by the evaluation results presented in Table 1. Across all five
iterations of k-fold cross-validation, our model consistently achieved high precision values,
ranging from 0.925 to a perfect precision of 1.0. This indicates that the majority of predicted
positive instances were indeed true positives, with very few false positives. Our model
also achieved very good recall, with scores between 0.891 and a perfect 1.0. This means
it effectively captured most of the relevant cases. The F1-score, a balanced measure of
precision and recall, ranged from 0.943 to a perfect score of 1.0, highlighting the robustness
of our model’s performance across different evaluation iterations. The mean values of
precision (0.970), recall (0.963), and F1-score (0.966) further underscore the consistent and
reliable performance of our program in accurately detecting jump noise events within audio
segments. These results validate the effectiveness of our approach and confirm the utility
of the precision, recall, and F1-score metrics in assessing the performance of classifiers
operating on imbalanced datasets.

Table 1. Results of the landing evaluation.

K-Fold Precision (%) Recall (%) F1-Score (%)

1 0.925 0.974 0.949
2 0.951 0.975 0.963
3 0.999 0.891 0.943
4 1.000 1.000 1.000
5 0.974 0.974 0.974

Mean 0.970 0.963 0.966

In addition to the high accurate performance showcased by our program in detecting
landing events, similarly outstanding results were achieved by the counterpart AI responsi-
ble for identifying take-off events. These results, as demonstrated in Table 2, mirror the
excellence observed in our model’s precision, recall, and F1-score metrics, affirming the
robustness and efficacy of our approach across both phases of jump noise detection. The
consistent attainment of high precision, recall, and F1-score values across five iterations of
k-fold cross-validation underscores the reliability and generalizability of our models in real-
world applications. By achieving comparable levels of accuracy in detecting take-off events,
our comprehensive approach ensures a thorough and accurate identification of jump noise
events throughout the entirety of audio segments. This synchronized performance across
complementary models further strengthens the credibility and utility of our methodology
in addressing the challenges posed by noisy and impulsive acoustic environments.

Table 2. Results of the take-off evaluation.

K-Fold Precision (%) Recall (%) F1-Score (%)

1 0.974 0.974 0.974
2 0.951 0.951 0.951
3 0.960 0.904 0.931
4 0.965 0.980 0.971
5 0.904 0.999 0.949

Mean 0.951 0.962 0.956
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3.5. Time Flight Extraction

Now that we utilized CNNs to determine the temporal segments containing the take-
off and landing events of a jump, the next step involved precisely calculating the flight time
of the jump. This required additional signal processing calculations to extract the necessary
temporal information.

Flight time, in the context of a jump, refers to the duration between take-off and
landing. To compute this accurately, signal processing techniques, such as event detection
and time stamping, are employed. This involves identifying specific features within the
temporal segments corresponding to take-off and landing events, and then determining the
exact timestamps associated with these features. Once the timestamps of both take-off and
landing events are determined, the flight time can be calculated as the difference between
these timestamps.

To ensure continuity, we now revisit the sequential process outlined earlier. Initially,
the CNN is utilized to detect the landing event within the temporal segments. Subse-
quently, within a reasonable preceding temporal window, the take-off event is sought.
The take-off event must fall within a reasonable timeframe, typically no more than 0.7 s,
corresponding to human performance constraints [16]. This ensures the temporal coher-
ence and physiological plausibility of the detected events within the context of human
movement dynamics.

To determine the flight time, a precise localization process is implemented to acquire
the exact onset of each event. The algorithm employed for this purpose entails an iterative
analysis in time of signal energy. Initially, the signal’s energy distribution is computed and
normalized to a scale ranging from 0 to 1, enabling consistent comparison across various
segments and signals. Subsequently, a threshold, initially positioned near 1, is imposed on
these normalized energy values to serve as a discriminant for event detection, where energy
values exceeding the threshold signify event occurrences. As the algorithm progresses
through the signal data, encountering energy values falling below the threshold, it dynami-
cally adjusts the threshold downwards. This adaptive thresholding mechanism enables
the algorithm to adapt to fluctuations in signal energy, ensuring accurate identification of
event onsets.

4. Experiments and Algorithm Comparison
4.1. Introduction of the Experiments

Having successfully trained the neural network and observed its proficiency in de-
tecting events, our primary objective shifted to evaluating the algorithm’s performance
comprehensively. Specifically, we aimed to accurately determine the flight time between the
jump and landing events. Unlike the binary classification of landing events, the flight time
represents a continuous numerical value, serving as our ground truth for evaluation. In
assessing the algorithm’s efficacy, we focused on minimizing errors in estimating the flight
time compared to this ground truth, obtained from the jump mat experiments conducted
in the previous paper [16]. In this section, we conduct various evaluations, comparing our
algorithm’s performance against the classical algorithm presented in [16] when subjected
to high-intensity noises, such as those introduced in Section 2.3.

In order to prevent the AI system from being biased towards the specific noise patterns
present in the training data, the addition of noise to the clean samples was randomized
once again. This involved introducing noise with similar characteristics but not identical
to the noise added in the training samples of the CNN. This process aims to evaluate the
generalization ability of our model. When validation is conducted using exactly the same
samples as those used for training, there is a risk of the AI being biased and producing
better results than it should.

In this section, our focus lies on a comprehensive comparison between the new and
old algorithms, targeting key performance metrics. Firstly, we commence our analysis by
scrutinizing false positives, given their pivotal role in the algorithm’s performance. This
examination seeks to uncover any differences in false positive rates between the two algo-
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rithms, offering insights into their respective capabilities in accurately detecting landings in
noisy environments. Following this, we proceed to compare flight time estimation between
the algorithms. This evaluation step aims to discern any discrepancies in the accuracy of
flight time estimation, the most critical aspect in jump event analysis. Finally, we employ
the synthesis of new audio samples to assess the new algorithm’s capacity to generalize to
unseen data. This evaluation scenario aims to gauge the robustness and adaptability of the
new algorithm across diverse environmental conditions, offering insights into its potential
applicability in real-world settings.

4.2. Analysis of Landing False Positives

As explained earlier in Section 3.3, given the sequential nature of the algorithm—first
detecting the landing and then searching for take-off within a precise time window—the
analysis of false positives for landings takes precedence. To ensure a fair comparison
between the two algorithms, a false positive was defined as the algorithm detecting a
landing outside a window of ±0.05 s, centered on the landing point. The reason for choosing
±0.05 s was because the spectrogram was divided into segments of 0.1 s. Therefore, a
margin of 0.05 s before and after the exact landing point (which was determined using the
ground truth) was left. If an event was detected outside this margin, it was considered a
false positive.

Figure 8 illustrates the introduction of noise leads to the detection of additional points
with low-frequency energy as jump landings in the old algorithm. This occurrence arises
because the previous algorithm terminated upon detecting a value exceeding a threshold
of low-frequency energy. The old algorithm exhibits 57 false positives out of a total
of 216 validation samples, accounting for 26.39% of the samples. Conversely, the new
algorithm does not activate any false positives, resulting in nearly perfect precision in
detecting landings.
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Figure 8. False positives in the algorithms. Blue line: time differences between ground truth and
algorithm landing predictions: (a) previous algorithm; (b) AI algorithm.

4.3. Analysis of the Flight Time

When comparing the values obtained by both algorithms in the detection and calcula-
tion of flight time study with the data provided by the same samples measured in a commer-
cial jump mat [17] (ground truth), a significant improvement between the two algorithms is
observed, as shown in Figure 9. In the previous algorithm without the use of AI, an average
error of 31.6 ms with a standard deviation of 53.3 ms is obtained, whereas in the AI-based
algorithm, an average error of 7 ms with a standard deviation of 9 ms is obtained. The
temporal error introduced by our algorithm results in a negligible error in the measurement
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of the jump height. For instance, in a typical 30 cm jump, the athlete’s flight time is 495 ms,
and adding an increment of 7 ms introduces a change of 8.5 mm. This error is negligible
and falls below the minimum expected change that a coach would look for to conclude
that there was a significant change in the jump height. The proposed system outperforms
the typical error of existing methods in the literature. Different instruments based on the
timekeeping of take-off and landing events show a variety of errors, which are greater than
the proposed system. For instance, jump mats typically exhibit around 1.2 cm error [9],
whereas photocells produce a 1.3 cm error [10] and smartphone apps introduce a 1.1 cm
error [12], considering that the latter needs human observation to retrieve the outcome.
These errors are substantially higher than the error introduced by our AI-based algorithm,
which is negligible at around 8.5 mm for a typical 30 cm jump. The proposed system’s
superior accuracy can be attributed to its utilization of AI-based learning for jump landing
recognition, which makes it more robust to noise compared to the traditional methods that
solely rely on signal energy analysis. As we can see, the system is much more robust to
noise as it utilizes AI-based learning for jump landing recognition, whereas the previous
algorithm solely relied on studying the signal’s energy, leading to inaccuracies and false
positives when noise was added to the samples.
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4.4. Analysis of Synthetically Created Jumps

Building upon the insights gleaned from previous studies, which underscored the
system’s effectiveness, we strove to deepen our understanding through further exploration.
To this end, we conceived a novel approach: the generation of synthetic jumps derived from
existing data. By combining both take-off and landing events and introducing arbitrary
time intervals, we aimed to expand the scope of our investigation.

Building on our previous work, we created synthetic jumps by precisely combining
take-off and landing segments from existing audio recordings. These synthetic jumps were
crafted with the flexibility to introduce arbitrary time intervals between the take-off and
landing events. Such a methodology not only allows for the exploration of diverse scenarios
but also provides a means to test the algorithm’s robustness across various temporal
configurations. This process ensures that each synthetic jump is crafted to mirror real-world
dynamics, thereby enriching our dataset and enhancing the comprehensiveness of our
analysis. Subsequently, these synthetic jumps undergo the same rigorous evaluation process
as their real-world counterparts, facilitating a comprehensive comparison of algorithmic
performance across synthetic and real-world scenarios. The results of this analysis can
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be found in Figure 10. Through this innovative approach, we aimed to glean deeper
insights into the system’s capabilities and limitations, thereby paving the way for further
refinement and optimization. By meticulously examining the performance of our algorithm
in synthetic scenarios, we endeavored to fortify its efficacy and reliability across diverse
real-world applications.
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As a future work, there is potential in integrating this algorithm into mobile applica-
tions tailored for devices such as smartphones and tablets. Such an endeavor would enable
users to engage in the real-time tracking of jump events during athletic endeavors through
their mobile devices. Efforts can be directed towards optimizing the algorithm’s perfor-
mance on devices with constrained computational resources, facilitating its deployment
across a broad spectrum of mobile platforms.

4.5. Practical Applications

The proposed audio-based system for measuring jump height offers significant prac-
tical implications for sports science professionals and athletes alike. The robustness and
accuracy of the AI-based algorithm provide a reliable and portable tool for monitoring and
assessing athletic performance in various environments. For sports science professionals,
this system presents a valuable opportunity to conduct comprehensive evaluations of an
athlete’s lower-body power and neuromuscular coordination. By accurately measuring
jump height, coaches and trainers can gain insights into an athlete’s functional capabilities,
enabling them to tailor training programs and track progress over time. The system’s
ability to operate effectively in challenging acoustic environments, such as crowded gyms
or outdoor settings, further enhances its practical utility. Athletes can benefit from the
system’s portability and ease of use. Integrated into a mobile application, this technology
empowers athletes to self-monitor their jump performance, fostering self-awareness and
enabling them to identify areas for improvement. Additionally, the system’s non-intrusive
nature eliminates the need for specialized equipment, allowing athletes to conduct jump
assessments in their preferred training environments without disrupting their routines.
Furthermore, the system’s applicability extends beyond individual athlete assessments.
Sports science professionals can use this technology to conduct large-scale screening and
talent identification programs, evaluating numerous athletes efficiently and accurately.
This capability can streamline the scouting process and aid in the early identification of
promising athletes, facilitating targeted development and resource allocation.

The proposed system demonstrates significant scalability and potential for commer-
cialization or widespread adoption in sports training and performance monitoring. Its
ability to function effectively on mobile devices, combined with its robustness and ease of
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use, makes it an attractive solution for various stakeholders in the sports industry. From
amateur athletes and local sports clubs to professional teams and organizations, this system
can be readily integrated into existing training and monitoring protocols, providing a
cost-effective and accessible tool for performance evaluation.

Overall, the proposed audio-based system for measuring jump height represents a sig-
nificant advancement in sports science technology, offering practical benefits to both profes-
sionals and athletes. By providing a reliable, portable, and accessible tool for performance
evaluation, this system empowers stakeholders to make informed decisions, optimize
training regimens, and ultimately enhance athletic development and achievement.

5. Conclusions

In this study, we have developed an innovative approach for measuring flight time in
jump events in noisy acoustic environments. Our approach relies on the implementation of
a convolutional neural network (CNN) for audio event detection in the jumps, both landings
and take-offs. This novel approach addresses the limitations of previous algorithms, which
were prone to failure when confronted with audio samples containing high levels of
background noise and impulsive interference.

Furthermore, the selection of robust features was crucial in enabling the comprehen-
sive analysis of jump events amidst noisy environments. These features have provided
insights into both the spectral components of the events and the temporal variations
in predominantly impulsive noises, thereby enhancing our ability to discern relevant
event signatures.

We demonstrated the efficacy of convolutional neural networks (CNNs) as efficient
deep neural networks (DNNs) for audio event detection, particularly in identifying impul-
sive events like jump take-offs and landings. Leveraging their machine learning capabilities
and inherent robustness to noise, CNNs exhibit remarkable proficiency in distinguishing
between background noise and target events of interest, thus offering valuable insights into
the temporal dynamics and spectral characteristics of these occurrences.

The algorithm’s efficacy is validated through rigorous experimentation, employing
robust methodologies and thorough validation procedures. By introducing noise and
synthesizing audio samples, the algorithm demonstrates resilience and adaptability across
diverse environments. A comparative analysis with previous algorithms revealed sig-
nificant enhancements in precision and robustness, notably reducing both calculation
errors for flight time estimation and false positive rates compared to previous approaches.
These findings underscore the algorithm’s effectiveness in analyzing jump events amidst
noisy acoustic environments and highlight its potential for practical deployment in vari-
ous settings, such as sports events, biomechanics research, and athlete training programs.
Ultimately, the proposed algorithm represents a significant leap forward in the accurate
measurement of jump flight times, offering a reliable and robust solution that overcomes
the limitations of previous approaches, particularly in challenging acoustic environments.

With its exceptional performance in mitigating the challenges posed by noisy environ-
ments and impulsive interference, this innovative algorithm facilitates the way for more
precise and reliable assessment of athlete performance, enabling coaches, researchers, and
athletes to unlock new insights and optimize training strategies.
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