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Abstract

Hydrogels are materials with the capacity to absorb and release significant amounts of fluid in
response to external factors such as mechanical stress, pH changes, or temperature variations.
This property is utilized in applications like drug delivery and impurity absorption. The fluid
absorption process is called swelling or hydration, and its reverse is known as deswelling or
dehydration. This study evaluates several models for characterizing the deswelling behavior
of hydrogels, including the First-Order Kinetic Model, Fickian Diffusion Model, Non-Fickian
Diffusion Model, Double Exponential Non-Linear Regression Model, Broken Stick Model, and
Polynomial Model (2nd Degree). Among these, the Polynomial Model (2nd Degree) proved to
be the most effective in capturing deswelling dynamics, providing superior fit quality. Future
research could explore applying these models to different hydrogels or conditions to further
enhance their practical applicability.
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CHAPTER 1
Introduction

The study of hydrogels holds paramount importance within the field of biomedical engineer-
ing. Hydrogels, hydrated networks of polymers, possess the remarkable ability to retain
substantial amounts of water within their intricate three-dimensional structure, rendering
them highly relevant for applications such as tissue engineering and advanced drug delivery
systems [1]. These materials can mimic the properties of biological tissues, providing a
supportive environment for cell growth and proliferation [2]. Furthermore, the high water
content and soft, (visco)elastic nature of hydrogels make them ideal candidates for replicating
the extracellular matrix of various tissues, including brain tissue [2].

Hydrogels are widely researched due to their biocompatibility, adjustable physical prop-
erties, and ability to mimic the extracellular matrix of biological tissue [2]. This makes
them ideal candidates for creating tissue-like scaffolds that can support cell growth and
tissue regeneration [3]. In particular, they can provide a suitable environment for neuronal
cells, facilitating studies on neural development, disease modelling, and potential treatments
for neurological disorders [4]. The motivation for this research stems from the need to
improve our understanding of the fundamental hydration and dehydration mechanisms of
these materials to optimise their design and application in biomedical engineering [5].

This thesis explores the hydration kinetics of brain tissue-mimicking hydrogels, with their
potential applications, diverse physical and chemical properties, and the fundamental pro-
cesses of hydration and dehydration [2]. Understanding these aspects is crucial for advancing
their use in regenerative medicine and other critical biomedical applications [1].
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CHAPTER 2
Background and Terminology

2.1 Hydrogels: Definition and Key Properties
Hydrogels are polymer networks that can absorb and retain substantial amounts of water
without dissolving [2]. These materials are characterised by their unique ability to swell and
maintain their structure, thanks to the crosslinking of polymer chains [6]. Key properties of
hydrogels include:

• Insolubility in Water: Hydrogels maintain their structure in aqueous environments
due to cross-linking, which prevents dissolution [3]. This insolubility is crucial for their
function as scaffolds and drug delivery systems, as it ensures stability in the biological
milieu [2].

• Covalent and Non-covalent Interactions: The polymer chains in hydrogels can
be linked through covalent bonds or held together by non-covalent interactions, such
as hydrogen bonding and van der Waals forces [3]. These interactions influence the
mechanical properties and responsiveness of hydrogels to environmental changes [2].

• Diffusivity and Permeability: The porous nature of hydrogels facilitates the diffusion
of molecules, which is crucial for applications requiring the controlled release or absorp-
tion of substances [2, 7]. This property is especially valuable in biomedical applications
where hydrogels can be used to deliver drugs or absorb impurities [8, 5].

• Mechanical Properties: The inherent softness of hydrogels makes them suitable for
mimicking the mechanical properties of soft tissues, such as the brain [4, 9]. This
softness is essential for applications that require flexibility and adaptability, ensuring
that the hydrogels can conform to and interact with various biological environments
effectively [1, 10].

• Biocompatibility: Hydrogels are widely recognized for their biocompatibility, par-
ticularly in medical and pharmaceutical applications. They are designed to be com-
patible with biological tissues, supporting essential processes such as cell attachment,
proliferation, and differentiation [1, 5]. This property is crucial for applications in
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Chapter 2: Background and Terminology

tissue engineering, where hydrogels must integrate with living tissues and promote the
regeneration of damaged or diseased areas [8, 9]. Additionally, their biocompatibility
extends to interactions with various cell types and tissues, ensuring minimal adverse
effects in medical implants and drug delivery systems [7, 10].

2.2 Applications of Soft Hydrogels in Biomedical
Engineering

Soft hydrogels have numerous applications in biomedical engineering, particularly in tissue
engineering and drug delivery [1]:

• Tissue Engineering in Neuroscience: Hydrogels serve as scaffolds that support cell
growth and neural tissue regeneration. Their high water content and softness provide
a permeable environment for the growth of delicate neural tissues [2]. For instance,
hydrogels can be used to create models of brain tissue for studying neurodegenerative
diseases or for developing new therapies [1].

• Controlled Delivery Systems: Hydrogels can be used to create controlled release
systems of drugs and genes, ensuring a sustained and localized delivery [2]. This is
particularly useful for delivering therapeutic agents directly to the brain, bypassing the
blood-brain barrier [1].

• Dermal Patches and Dressings: Hydrogels are used in wound care products to
maintain a moist environment, which is beneficial for healing. Their ability to conform
to the wound surface and provide a protective barrier makes them ideal for treating
burns and other injuries [3].

2.3 Hydration and Dehydration of Hydrogels
The processes of hydration (swelling) and dehydration (deswelling) are fundamental to the
behaviour of hydrogels [11] [12]:

• Hydration (Swelling): Hydrogels absorb water, expanding as they retain water be-
tween the polymer chains [3]. This swelling process increases the volume of the
hydrogel. The degree of swelling can be influenced by factors such as the polymer
composition, crosslinking density, and the presence of ions or other solutes in the
surrounding environment [11] [12].

• Dehydration (Deswelling): Upon losing water, hydrogels contract and return to
their original volume [3]. The rate and extent of dehydration can be influenced by
various factors, including temperature, humidity, and the chemical structure of the
hydrogel [11].
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2.3 Hydration and Dehydration of Hydrogels

Themechanisms underlying these processes are complex, involving the interplay of osmotic
pressure, polymer elasticity, and environmental conditions [12]. For example, the osmotic
pressure difference between the hydrogel and the surrounding solution drives water into the
hydrogel during swelling, while the polymer network’s elasticity resists this expansion [11].

2.3.1 Bound Water evaporates differently
In complex materials such as hydrogels, water is not uniformly distributed. There are two
primary types of water: free water and bound water. These two types of water behave
differently during evaporation processes due to their distinct characteristics [13].

Free Water

Free water is water that is not tightly bound to the structure of the material. In hydrogels, free
water is typically found in the intercellular spaces or between molecules. This type of water
behaves similarly to pure water, with a vapour pressure almost equal to that of pure water. As
a result, free water evaporates easily when heat is applied, as it requires less energy to change
from a liquid to a vapour state. During drying or dehydration processes, free water is the first
to evaporate. The rapid evaporation of free water does not cause significant changes to the
structure of the material, as it is not strongly attached to the solid matrix [13].

Bound Water

In contrast, bound water is water that is strongly attached to the solid matrix of the material,
either at the molecular level or through chemical bonds with components such as proteins,
carbohydrates, and other polymers. Bound water possesses unique characteristics that set it
apart from free water [13]:

1. Lower Vapour Pressure: Bound water has a significantly lower vapour pressure com-
pared to free water, which means that more energy is required for it to evaporate [13].

2. Higher Binding Energy: Bound water is held within the material by stronger bonds
than free water, such as hydrogen bonds and Van der Waals forces. This requires a
higher amount of energy to break these bonds during evaporation [13].

3. Reduced Mobility: Due to the nature of its bonds, the molecules of bound water have
lower mobility compared to free water molecules. This also means that bound water is
less accessible for evaporation processes [13].

4. Non-Freezing at Low Temperatures: Unlike free water, bound water does not freeze
at low temperatures, making it particularly difficult to remove in some dehydration and
preservation processes [13].

5. Dielectric Properties and Higher Boiling Point: Bound water has a higher boiling
point and different dielectric properties compared to free water. This influences the
dehydration and preservation methods that can be applied to effectively remove it [13].
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Chapter 2: Background and Terminology

2.3.2 Parameters Affecting Dehydration
Several parameters change during the dehydration process and influence its dynamics [14]:

• Volume andWeight: As hydrogels dehydrate, both their volume and weight decrease.
This is due to the loss of water from the polymer network [14] [15].

• Mechanical Properties: Dehydration often results in increased stiffness and brittle-
ness [2]. The loss of water reduces the hydrogel’s flexibility and can lead to changes in
its mechanical integrity [15].

• Porosity and Water Content: The porosity of the hydrogel decreases as water is
expelled [2]. This reduction in porosity can affect the diffusion of molecules through
the hydrogel and its overall functionality [8].

• Environmental Factors: Temperature, humidity, airflow, and pressure can signif-
icantly impact the dehydration rate. For example, higher temperatures and lower
humidity levels generally accelerate dehydration [15].

• Hydrogel Composition: The chemical makeup of the hydrogel, including crosslinking
density and solute concentration, plays a critical role in its dehydration behaviour [2].
Hydrogels with higher crosslinking densities tend to retain water more effectively,
leading to slower dehydration rates [3].

These parameters are categorized into physical (describing properties and environmental
conditions) and model-specific (used in mathematical models) [8]. Some parameters overlap
both categories, as classified in the Table 2.1, aiding in systematic hydrogel research [2].

Table 2.1: Classification and description of parameters used in hydrogel dehydration studies,
including specific parameters for various models.

Parameter Classification Description
Deswelling
Degree (DS)

Physical Quantifies the extent of water loss from the
swollen hydrogel.

Time to Dehy-
drate (T)

Physical Represents the time taken for the hydrogel to de-
hydrate to one-third of its original hydration level.
Indicates how quickly or slowly the material loses
water under specific environmental conditions.

Rate of Dehy-
dration (R)

Generic Quantifies the speed at which the hydrogel dehy-
drates. Derived from the slope of the dehydration
profile curve obtained from experimental data.

Diffusion Co-
efficients

Both Reflect the mobility of water molecules within the
hydrogel network. Influenced by polymer chain
interactions and crosslinking density.
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2.3 Hydration and Dehydration of Hydrogels

Parameter Classification Description
Crosslinking
Density

Physical Determines the mesh size of the hydrogel net-
work. Affects both the rate and extent of dehy-
dration.

Temperature
and pH

Both External conditions that can affect the swelling
equilibrium and dehydration kinetics of hydro-
gels.

Reaction Rates Both For chemically reactive hydrogels, parameters
such as reaction rate constants and activation
energies are essential for modelling dehydration-
induced structural changes.

Initial Condi-
tions

Both Initial water content, polymer composition, and
swelling state influence the kinetics of dehydra-
tion and subsequent structural changes.

Mechanical
Properties

Physical Shear moduli (G1, G2, ...), viscosity parameter
(Z), and other mechanical parameters define the
resistance of the hydrogel to deformation and its
ability to store and dissipate energy.

First-Order
Kinetic Model
Parameters

Model-
Specific

For the First-Order Kinetic Model: M(t) (amount
of water lost at time t), M∞ (maximumwater loss),
k (rate constant), t (time).

Double Expo-
nential Model
Parameters

Model-
Specific

For the Double Exponential Model: A (relative
weight of the first exponential term), τ1 and τ2
(time constants for the two exponential terms),
M∞ (equilibrium water loss).

Fickian
Diffusion
Model
Parameters

Model-
Specific

For the Fickian Diffusion Model: M(t) (amount of
water lost at time t), M∞ (equilibrium water loss),
D (diffusion coefficient), L (characteristic length),
t (time), erf (error function).

Non-Fickian
Diffusion
Model
Parameters

Model-
Specific

For the Non-Fickian (Anomalous) Diffusion
Model: M(t) (amount of water lost at time t), M∞

(equilibrium water loss), τ (characteristic time), n
(diffusion exponent).

Polynomial
Model
Parameters

Model-
Specific

For a second-degree polynomial model: a2 (coeffi-
cient of t2), a1 (coefficient of t), a0 (constant term).
These parameters define the curvature and linear
behaviour of the polynomial fit.
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Parameter Classification Description
Broken
Stick Model
Parameters

Model-
Specific

For the Broken Stick model: A1 (amplitude of the
first exponential term), B1 (decay rate of the first
exponential term), A2 (amplitude of the second
exponential term), B2 (decay rate of the second
exponential term). These parameters characterise
the exponential decay behaviour and the transi-
tion points of the model.

Key Diffusion
and Ther-
modynamic
Parameters

Generic Diffusion coefficient (D), relaxation time (τ), wa-
ter content (Mt and M∞), diffusion exponent (n),
rate constants (k), temperature (T ), Gibbs free
energy (∆G), and other parameters specific to
diffusion and thermodynamic models.

2.3.3 (Bio)Mechanical Implications of Dehydration
The dehydration of hydrogels has notable biomechanical implications:

• Increased Stiffness and Brittleness: As water is lost, hydrogels become stiffer and
more brittle, losing some of their flexibility [2]. This change in mechanical proper-
ties can impact their performance in applications where flexibility and softness are
required [6] [3].

• Contraction and Volume Decrease: Dehydration leads to a reduction in volume and
porosity, potentially altering the hydrogel’s load-bearing capacity and impact absorption
ability [2]. This is particularly important in applications where the hydrogel needs to
maintain a specific shape or volume [14] [11].

2.4 Formulations for Modelling Dehydration of
Hydrogels

Hydrogels exhibit complex swelling and deswelling behaviors due to their porous structure
and interaction with fluids. Understanding these behaviors is crucial for optimizing their
performance in various applications, from drug delivery to tissue engineering [10, 1]. To
capture these dynamics, several mathematical models have been developed. These models
aim to describe the fluid transport mechanisms within hydrogels under various conditions,
such as temperature, pH changes, or mechanical stress [16, 11]. Each model offers a different
perspective on the dehydration process, focusing on specificmechanisms and assumptions [17,
18].

Several models are used to describe the dehydration of hydrogels, each with its specific
focus and assumptions:

8



2.4 Formulations for Modelling Dehydration of Hydrogels

• Diffusion Models: These models, based on Fick’s laws of diffusion, characterise the
transport of water within the hydrogel matrix. They describe how the concentration
gradient drives the movement of water molecules, accounting for factors such as diffu-
sion coefficients and boundary conditions [8].

• Swelling Equilibrium Models: These models predict the equilibrium swelling be-
haviour of hydrogels in response to external stimuli such as temperature and pH [12].
They consider the balance between osmotic and elastic forces within the hydrogel [8].

• MechanicalModels: These models describe the mechanical response of hydrogels dur-
ing dehydration, including stress, strain, and deformation. They help in understanding
how the hydrogel’s mechanical properties evolve as it loses water [8].

This thesis delves into the following models for analysing the dehydration behaviour of hy-
drogels: thekineticmodels, which include the First-Order Kinetic Model for Deswelling [19];
the diffusionmodels, such as the Fickian DiffusionModel [20] and the Non-Fickian (Anoma-
lous) Diffusion Model [21]; and the empirical fitting models, which comprise the Double
Exponential Non-Linear Regression Model [22], the Second-Degree Polynomial Model [23],
and the Broken Stick Model [18].

First-Order Kinetic Model for Deswelling:

• This model is used to describe the deswelling behaviour of hydrogels [24].

• The deswelling degree (DS) is calculated using the equation [7]:

DS =
Me −Mt

Me −M0
(2.1)

where:
– Mt represents the mass of the hydrogel at time t ,
– Me is the weight of the swollen gel at equilibrium,
– M0 is the initial dry weight.

• The model is further described by the equation [19]:

M(t) = M∞ ·
(

1− e−kt
)

(2.2)

where:
– M(t) is the amount of water lost at time t ,
– M∞ is the maximum water loss (equilibrium water loss),
– k is the rate constant, indicating the speed of deswelling,
– t represents time.

9



Chapter 2: Background and Terminology

• Thismodel quantifies thewater expulsion rate from the hydrogel network over time [16].

• Key assumptions include:
– It assumes that deswelling follows first-order kinetics, where the rate of change in

deswelling degree is directly proportional to the remaining water content relative
to the equilibrium state [7].

– It assumes uniform deswelling throughout the hydrogel matrix [7].
– Environmental conditions, such as temperature and humidity, are assumed to

remain constant during deswelling [7].

Double Exponential Non-Linear Regression Model:

• This model is commonly used to fit thermogravimetric analysis (TGA) data, allowing
the determination of both dehydration time and rate [25] [22].

• It is described by the equation:

M(t) = M∞

[
A · e−t/τ1 +(1−A) · e−t/τ2

]
(2.3)

where:
– M(t) represents the amount of water lost at time t ,
– M∞ is the equilibrium water loss,
– A is the relative weight of the first exponential term,
– τ1 and τ2 represent the dehydration rates of the two exponential terms.

• The model captures the dehydration profiles of various hydrogel materials under differ-
ent environmental conditions [25].

• Assumptions include:
– It assumes that the dehydration process can be effectively represented by a double

exponential decay function, capturing multiple stages of water loss [22].
– It assumes that TGA data accurately reflects the dehydration kinetics of the hydro-

gel [25].
– No significant experimental errors or artifacts are assumed to influence the TGA

measurements [25].

Fickian Diffusion Model:

• This model describes dehydration as a diffusion-controlled process following Fick’s laws
of diffusion [20].

10



2.4 Formulations for Modelling Dehydration of Hydrogels

• It is expressed by the equation:

Mt = M∞

(
1− erf

(
L

2
√

Dt

))
(2.4)

where:
– Mt is the amount of water lost at time t ,
– M∞ is the equilibrium water loss,
– erf represents the error function,
– L is the characteristic length of the material,
– D is the diffusion coefficient,
– t represents time.

• This model is characterised by a linear relationship between the square root of time and
the amount of water lost [20].

• It is particularly applicable when the diffusion rate of water is slower than the polymer
chain relaxation [20].

• Key assumptions are:
– Watermolecules diffuse through the hydrogel matrix according to Fick’s laws, with

the rate of diffusion proportional to the concentration gradient of water [20].
– The hydrogel structure is assumed to be uniform and isotropic, facilitating even

diffusion pathways [20].
– It assumes no significant interactions betweenwatermolecules and polymer chains

other than simple diffusion [20].

Non-Fickian (Anomalous) Diffusion Model:

• This model accounts for scenarios where diffusion and polymer relaxation occur on
comparable time scales [21].

• It is described by the equation:

Mt = M∞

(
1−

( t
τ

)n
)

(2.5)

where:
– Mt represents the amount of water lost at time t ,
– M∞ is the equilibrium water loss,
– τ is the characteristic time,
– n is the diffusion exponent, indicating the transport mechanism.

11
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• Key assumptions are:
– It assumes the diffusion process exhibits non-uniformity or heterogeneity, possibly

due to polymer relaxation, swelling gradients, or internal structural changes [21].
– The diffusion coefficient is assumed to vary over time or space within the hydrogel

matrix [21].
– Multiple transport mechanisms are assumed to influence water migration, such as

polymer relaxation or hindered diffusion [21].

Second-Degree Polynomial Model:

• This model captures non-linear relationships between a dependent variable and one or
more independent variables by incorporating a quadratic term [26].

• The model is expressed as:

Y = a2X2 +a1X +a0 +A1 · e−B1·X +A2 · e−B2·X (2.6)

where:
– Y is the dependent variable,
– X is the independent variable,
– a2 is the coefficient of the quadratic term,
– a1 is the coefficient of the linear term,
– a0 is the intercept,
– A1 and A2 are the coefficients of the exponential terms,
– B1 and B2 are the rate constants of the exponential terms [26].

• Assumptions include:
– The relationship between the dependent and independent variables involves both

quadratic and exponential components [26].
– Polynomial models are useful for capturing non-linear relationships in data where

simple linear models might not be sufficient [26].
– The degree of the polynomial affects the model’s complexity and its ability to fit

the data, with higher degrees potentially leading to overfitting [26].

Broken Stick Model:

• This model analyses irregular longitudinal data by approximating each sample’s trajec-
torywith a series of connected straight lines, or "broken sticks," defined by user-specified
breakpoints. This approach is effective for managing and interpreting datasets from
drying experiments where the timing of measurements is inconsistent [18].

12



2.4 Formulations for Modelling Dehydration of Hydrogels

• The model is expressed by the equation:

Y (t) =

{
a2t2 +a1t +a0 for t ≤ tc
b2t +b1 for t > tc

(2.7)

where:
– Y (t) is the amount of water lost at time t ,
– tc is the critical time (breakpoint) where the transition between the two phases

occurs,
– a2, a1, and a0 are the coefficients of the polynomial segment before tc,
– b2 and b1 are the coefficients of the linear segment after tc.

• Assumptions include:
– It assumes linear trajectories between breakpoints, which simplifies the repre-

sentation of drying phases by standardising the timing of measurements across
samples [18].

– The breakpoint tc represents a significant transition between the rapid and slow
drying phases [18].

• Applications include:
– Modelling drying kinetics and structural changes in materials with irregular data

collection times, such as hydrogels and other porous materials [18].
– Combining with other models like the Two-Phase Drying Model to enhance un-

derstanding of drying dynamics and improve accuracy in predicting drying be-
haviour [27].
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CHAPTER 3
Methods

This section presents the methods used for processing and analyzing data from six tests on
hydrogel deswelling. It outlines the data acquisition, cleaning procedures, and model fitting
techniques applied. The aim is to identify the model that best represents the hydrogel’s
deswelling behavior.

3.1 Experimental Data
Data were provided from six different tests which involved measuring the deswelling (water
loss) of hydrogels over time showing the weight and volume evolution of a hydrogel sample ,
as we can see in table 3.1, (5 mm diameter, 2 mm height) at temperatures ranging from 21 to
24 °C and a humidity of about 50%.

All experiments were repeated at 37 °C with humidity levels of 40%, 60%, and 80%, and the
hydrogel discs had a height of 1 mm.

Time S S Weight (g) Area Side Area Top
13:56:11 S S 0.0393 5188100.0 4450.0
13:56:41 S S 0.0391 5196700.0 4450.0
13:57:11 S S 0.0390 5195550.0 4450.0
13:57:41 S S 0.0388 5193300.0 4450.0
13:58:12 S S 0.0388 5164750.0 4450.0
13:58:42 S S 0.0387 5171650.0 4450.0
13:59:13 S S 0.0385 5170450.0 4450.0
13:59:43 S S 0.0385 5127450.0 4450.0
14:00:13 S S 0.0383 5106800.0 4450.0
14:00:43 S S 0.0382 5105400.0 4450.0
Table 3.1: First 10 rows of the pilot test dataset.
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3.2 Data Processing
The data processing was conducted in MATLAB and involved the following steps:

• Loading Data: The experimental data from various Excel files were imported into
MATLAB.

• Data Cleaning: Non-numeric entries were removed from the data, as the Excel files
contained both numerical and textual data.

• Extracting Relevant Columns: The columns corresponding to time and weight were
extracted for further analysis.

• Outlier Removal: To enhance the accuracy of the data analysis:
– For the Pilot Test, many rows contained missing information (NaN). These rows

were removed from the dataset as they did not provide valid data for model fitting.
– For Test 3, Mahalanobis distance was employed to identify and remove outliers.

This method detects data points that significantly deviate from the overall pattern
of the multidimensional dataset.

– For Test 2 and Test 4, anomalous behaviours were observed at specific time points.
In Test 2, the dataset was truncated at second 0.57 to exclude subsequent data
exhibiting unusual patterns. Similarly, for Test 4, the dataset was truncated at
second 0.48400 due to unexpected data trends. For the remaining tests, outlier
removal was not performed as visual inspection did not reveal any significant
anomalies.

• Rescaling Time: Time data were rescaled by a factor of 100,000 to facilitate the analysis.

The data included the following parameters:

• Weight (Mt): The mass of the hydrogel sample at different time points.

• Time (Time): The time at which weight measurements were taken.

• Area Side (areaside): The side area of the hydrogel sample (not used directly in the kinetic
models).

• Area Top (areatop): The top area of the hydrogel sample (not used directly in the kinetic
models).

3.2.1 Model Fitting
The following models were fitted to the data:
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First-Order Kinetic Model

The First-Order Kinetic Model was fitted using non-linear regression. The deswelling degree
(DS) was calculated using the equation (2.2). The ‘nlinfit‘ function was used to estimate the
model parameters by minimising the sum of squared residuals between the observed and
predicted values.

Double Exponential Non-Linear Regression Model

For the Double Exponential Non-Linear Regression Model, a non-linear fitting approach was
employed. The model combines two exponential functions to describe the data (2.3). Initial
guesses for the parameters were based on preliminary analyses. The ‘lsqcurvefit‘ function was
used to optimise the model parameters, minimising the residuals.

Fickian Diffusion Model

The Fickian Diffusion Model was fitted using a non-linear least squares approach. The model
describes diffusion behaviour based on Fick’s laws (2.4). Parameter estimation was performed
using the ‘nlinfit‘ function, with the model’s parameters being adjusted to fit the experimental
data.

Non-Fickian (Anomalous) Diffusion Model

For the Non-Fickian (Anomalous) Diffusion Model, the fitting process involved using a power-
law function to capture the anomalous diffusion behaviour (2.5). Parameters were estimated by
fitting the model to the data using ‘nlinfit‘, with the focus on accurately capturing deviations
from Fickian diffusion.

Polynomial Model (2nd Degree)

The Polynomial Model of second degree (2.6) was fitted using the ‘polyfit‘ function to estimate
the coefficients of a quadratic polynomial. The model’s fit was evaluated by plotting the
observed data against the predicted values and assessing the residuals.

Two-Phase Drying Model

The Two-Phase Drying Model included a polynomial model for the initial phase and a linear
model for the subsequent phase. An optimisation approach was used to determine the
breakpoint time, ‘tc‘, which delineates the transition between the polynomial and linear
phases. The ‘lsqcurvefit‘ function was employed to optimise the breakpoint parameter. The
overall model was evaluated using the segmented function (2.7) that combines the polynomial
and linear models.
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3.2.2 Initial Parameter Values
Despite evaluating several models, including the First-Order Kinetic Model, Double Exponen-
tial Non-Linear Regression Model, Fickian Diffusion Model, and Non-Fickian (Anomalous)
Diffusion Model, it was found that these models did not sufficiently capture the deswelling
behavior of hydrogels. Consequently, only the Polynomial Model (2nd Degree) and the Broken
Stick Model were used to extract parameters, as these models provided a more accurate fit to
the data.

For the Polynomial Model (2nd Degree), the initial parameter values for the quadratic
coefficients were determined based on preliminary data analysis and literature insights [26].
Initially, the coefficients were set to approximate values close to zero, as polynomial coef-
ficients are often initialized based on the data range or preliminary observations [26]. In
the MATLAB code, these initial guesses were systematically adjusted through iterative fitting
procedures to improve the model’s accuracy. The optimization process involved refining these
estimates to capture the quadratic trends in the data effectively, with adjustments made to
minimize the residuals and improve the fit quality [26].

For the Two-Phase Drying Model, the initial value for the breakpoint time tc, which
distinguishes the polynomial and linear phases, was determined using an optimisation ap-
proach. The initial guess for tc was based on visual inspection of the drying curves and
adjusteding iteratively to find the value that provided the best fit to the experimental data. This
optimisation process involved systematically varying tc tominimise the difference between the
model predictions and the observed data, ensuring that the model accurately represented the
drying process [9].

3.2.3 Results Visualization and Error Handling
For each model, the results were visualized by plotting experimental data against model
predictions. MATLAB’s plotting functions were used to generate these plots, providing a
clear comparison between observed and modeled data. Error handling mechanisms were
incorporated throughout the process to address potential issues such as invalid data formats
or numerical problems during fitting.

3.2.4 Evaluation of FitQuality
Evaluation of the fit quality was performed by calculating several goodness-of-fit metrics
including Sum of Squared Errors (SSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared values to assess the models performance.

The SSE offers an overall indication of the fit by summing the squared differences between
predicted and actual values, while the RMSE and MAE provide scaled and absolute error
measures, respectively, which help in understanding the model’s precision [23]. The R2 value
further evaluates the model’s effectiveness by indicating the fraction of the data’s variability
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that is captured by the model [23]. A high R2 suggests a good fit, while lower values may
indicate that the model does not fully capture the data’s underlying patterns [23].

Residual plots and goodness-of-fit metrics were computed only for models that demon-
strated the best fit to the data. Detailed discussions of these metrics and their implications are
provided in the Discussions section.

19





CHAPTER 4
Results

The main objective of this study is to evaluate and compare the performance of the Broken
Stick Model (BSM) and the Polynomial Model in describing the deswelling behaviour of
hydrogels. To achieve this, the experimental data from various tests were analysed, and the
results are systematically presented in this section. The findings are organised based on the
research question of model fitting accuracy, followed by a detailed presentation of the fitting
parameters and residuals for each test.

4.1 Broken Stick Model Analysis
The Broken Stick Model was applied to the experimental data from several tests to assess its
suitability for representing hydrogel deswelling dynamics. The results of the fitting for each
test are summarised below.

4.1.1 Pilot Test
Figure 4.1 presents the overall fit of the Broken Stick Model to the data from the Pilot Test.
The model demonstrates a strong fit, with a high level of agreement between the predicted
and observed data points. To provide more insight into the fitting accuracy, a zoomed-in view
of the model in a specific time range is shown in Figure 4.2, highlighting the precision of the
model in this interval.

Residuals for the Pilot Test are shown in Figure 4.3, where small differences between the
model’s predictions and the actual data can be observed, confirming the accuracy of the model.
The model parameters for the Pilot Test, including the quadratic and linear coefficients, are
summarised in Table 4.1. These parameterswere optimised to achieve the best fit. Additionally,
Table 4.2 presents the goodness-of-fit metrics, including R2, SSE, RMSE, and MAE. The model
achieves an R2 value of 0.9994, indicating an excellent fit to the data.

4.1.2 Test T2
The fitting results for Test T2 are illustrated in Figure 4.4. The model accurately captures the
overall deswelling behaviour. Figure 4.5 provides a closer look at the fitting in a specific time
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Figure 4.1: General Broken Stick Model (BSM) plot for the Pilot Test. This plot illustrates the
overall fitting of the Broken Stick Model to the experimental data.

Figure 4.2: Zoomed-in view of the Broken Stick Model (BSM) plot for the Pilot Test, highlight-
ing the details of the fit in a specific time range.
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Figure 4.3: Residuals for the Broken Stick Model (BSM) fit for the Pilot Test. The plot shows
the difference between the observed data and the model’s predictions.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.86613

a1 (Linear Coefficient) -0.41991
a0 (Intercept) 0.039606

Linear Model (After tc) a1 (Slope) -0.26613
a0 (Intercept) 0.032988

Piecewise Model tc (Optimized Critical Time) 0.076615
Table 4.1: Broken Stick Model Parameters for Pilot Test

Metric Value
SSE (Broken Stick) 0.0000
RMSE (Broken Stick) 0.0003
MAE (Broken Stick) 0.0002
R2 (Broken Stick) 0.9994

Table 4.2: Goodness of Fit for Broken Stick Model (Pilot Test)
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range, showing a precise match between the model and experimental data.
Residuals for Test T2 are displayed in Figure 4.6, showing small deviations from the observed

data, further validating themodel’s reliability. Themodel parameters, as optimised for Test T2,
are presented in Table 4.3. These values reflect the model’s adjustment to the data. Table 4.4
summarises the goodness-of-fit metrics, with an R2 of 0.9993, confirming the model’s strong
performance.

Figure 4.7 illustrates the outliers that were removed during the analysis, enhancing the
model’s precision by excluding data points that significantly deviated from the general trend.

Figure 4.4: General Broken Stick Model (BSM) plot for Test T2. The plot shows the overall
fitting of the model to the data from Test T2.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 1.1277

a1 (Linear Coefficient) -0.58311
a0 (Intercept) 0.074672

Linear Model (After tc) a1 (Slope) -0.28577
a0 (Intercept) 0.055703

Piecewise Model tc (Optimized Critical Time) 0.11259
Table 4.3: Broken Stick Model Parameters for Test 2
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Figure 4.5: Zoomed-in view of the Broken Stick Model (BSM) plot for Test T2, focusing on a
specific time range.

Figure 4.6: Residuals for the Broken Stick Model (BSM) fit for Test T2. The residuals are the
differences between the observed data and the model predictions.

25



Chapter 4: Results

Metric Value
SSE (Broken Stick) 0.0002
RMSE (Broken Stick) 0.0005
MAE (Broken Stick) 0.0004
R2 (Broken Stick) 0.9993

Table 4.4: Goodness of Fit for Broken Stick Model (Test 2)

Figure 4.7: Outlier removal for Test T2. The plot illustrates the data points removed based on
the outlier detection method.
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4.1.3 Test T3
For Test T3, the overall fitting of the Broken Stick Model is shown in Figure 4.8, with the
model displaying a good match with the experimental data. A zoomed-in view of a specific
time range, shown in Figure 4.9, highlights the precision of the model in capturing subtle
variations in the data.

Residuals for Test T3 are presented in Figure 4.10, where minimal discrepancies between
the model and the actual data can be seen. The model parameters for Test T3, shown in
Table 4.5, were fine-tuned for accuracy. Table 4.6 presents the goodness-of-fit metrics, with
an impressive R2 value of 0.9998, indicating an almost perfect fit.

Figure 4.11 illustrates the outliers identified and removed from the analysis, further improv-
ing the model’s fit.

Figure 4.8: General Broken Stick Model (BSM) plot for Test T3. This plot shows the fitting of
the model to the data from Test T3.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.077303

a1 (Linear Coefficient) -0.056043
a0 (Intercept) 0.0092557

Linear Model (After tc) a1 (Slope) -0.032919
a0 (Intercept) 0.0075899

Piecewise Model tc (Optimized Critical Time) 0.12151
Table 4.5: Broken Stick Model Parameters for Test 3
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Figure 4.9: Zoomed-in view of the Broken Stick Model (BSM) plot for Test T3, focusing on a
specific time range.

Figure 4.10: Residuals for the Broken Stick Model (BSM) fit for Test T3. The plot shows the
discrepancies between the observed data and the model’s predictions.
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Metric Value
SSE (Broken Stick) 0.0000
RMSE (Broken Stick) 0.0000
MAE (Broken Stick) 0.0000
R2 (Broken Stick) 0.9998

Table 4.6: Goodness of Fit for Broken Stick Model (Test 3)

Figure 4.11: Outlier removal for Test T3. This plot shows the data points excluded due to
outlier detection.
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4.1.4 Test T4
Figure 4.12 shows the fit of the Broken Stick Model for Test T4. The model captures the overall
trend effectively. A zoomed-in view of a specific section of the data is provided in Figure 4.13,
illustrating the model’s high accuracy in this range.

Residuals for Test T4 are shown in Figure 4.14. The small residuals suggest that the model
performs well in representing the data. Table 4.7 lists the optimised parameters for Test T4,
and Table 4.8 shows the corresponding goodness-of-fit metrics, with an R2 value of 0.9993,
demonstrating a very strong fit.

Figure 4.15 shows the outliers removed during the fitting process, enhancing the accuracy
of the results.

Figure 4.12: General Broken Stick Model (BSM) plot for Test T4. The plot illustrates the overall
fitting of the model to the data from Test T4.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.86122

a1 (Linear Coefficient) -0.5439
a0 (Intercept) 0.06914

Linear Model (After tc) a1 (Slope) -0.3246
a0 (Intercept) 0.055836

Piecewise Model tc (Optimized Critical Time) 0.10161
Table 4.7: Broken Stick Model Parameters for Test 4
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Figure 4.13: Zoomed-in view of the Broken StickModel (BSM) plot for Test T4, showing details
of the fit within a particular time range.

Figure 4.14: Residuals for the Broken Stick Model (BSM) fit for Test T4. This plot depicts the
differences between observed data and model predictions.
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Metric Value
SSE (Broken Stick) 0.0001
RMSE (Broken Stick) 0.0005
MAE (Broken Stick) 0.0003
R2 (Broken Stick) 0.9993

Table 4.8: Goodness of Fit for Broken Stick Model (Test 4)

Figure 4.15: Outlier removal for Test T4. This plot illustrates the removal of data points
identified as outliers.
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4.1.5 Test T5
Figure 4.16 illustrates the overall fit of the Broken Stick Model to the data from Test T5. The
model captures the general drying behaviour of the material, showing a strong correlation
between the experimental data and the predicted values.

A more detailed view of the model fit within a specific time range is provided in Figure
4.17. This zoomed-in section highlights the model’s precision in describing the dynamics of
the deswelling process during this period.

Residuals for Test T5 are shown in Figure 4.18, presenting the differences between the
observed data and the model’s predictions. The residuals remain small, indicating that the
model accurately follows the experimental data.

Table 4.9 summarises the optimised model parameters for Test T5, including the quadratic
and linear coefficients, as well as the critical time tc. These parameters have been adjusted to
provide the best possible fit.

Table 4.10 presents the goodness-of-fit metrics for Test T5. The model achieves an R2 value
of 0.9980, indicating a very good fit to the experimental data, with low values for SSE, RMSE,
and MAE.

Figure 4.16: General plot for Test T5 showing the overall drying behaviour.

4.1.6 Test T6
Figure 4.19 shows the overall fit of the Broken Stick Model for Test T6. Similar to previous
tests, the model accurately represents the drying behaviour of the material, closely following
the experimental data throughout the entire time range.
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Figure 4.17: Zoomed-in plot for Test T5 highlighting specific details of the drying process.

Figure 4.18: Residuals for the Broken Stick Model (BSM) fit for Test T5. This plot depicts the
differences between observed data and model predictions.
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Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.80859

a1 (Linear Coefficient) -0.50826
a0 (Intercept) 0.075926

Linear Model (After tc) a1 (Slope) -0.19352
a0 (Intercept) 0.046317

Piecewise Model tc (Optimized Critical Time) 0.1679
Table 4.9: Broken Stick Model Parameters for Test 5

Metric Value
SSE (Broken Stick) 0.0004
RMSE (Broken Stick) 0.0010
MAE (Broken Stick) 0.0007
R2 (Broken Stick) 0.9980

Table 4.10: Goodness of Fit for Broken Stick Model (Test 5)

A zoomed-in view of the model fit is shown in Figure 4.20, focusing on a narrower time
range. This detailed view demonstrates the model’s ability to accurately capture smaller
variations in the data during this interval.

Figure 4.21 presents the residuals for the Broken Stick Model in Test T6. The residuals are
small, showing that the model closely predicts the experimental data.

Table 4.11 lists the parameters for the Broken Stick Model in Test T6. The coefficients and
critical time were optimised to ensure the best fit to the data.

Table 4.12 summarises the goodness-of-fit metrics for Test T6. The model achieves an R2 of
0.9989, reflecting a very high level of accuracy, with low SSE, RMSE, and MAE values.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.67403

a1 (Linear Coefficient) -0.52043
a0 (Intercept) 0.086772

Linear Model (After tc) a1 (Slope) -0.28583
a0 (Intercept) 0.067361

Piecewise Model tc (Optimized Critical Time) 0.13798
Table 4.11: Broken Stick Model Parameters for Test 6

4.2 Polynomial Model Analysis
The Polynomial Model (second degree) was also applied to the data, and its performance was
evaluated for each test. The findings for the Polynomial Model are summarised as follows.

35



Chapter 4: Results

Figure 4.19: General plot for Test T6 showing the overall drying behaviour.

Figure 4.20: Zoomed-in plot for Test T6 highlighting specific details of the drying process.
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Figure 4.21: Residuals for the Broken Stick Model (BSM) fit for Test T6. This plot depicts the
differences between observed data and model predictions.

Metric Value
SSE (Broken Stick) 0.0003
RMSE (Broken Stick) 0.0008
MAE (Broken Stick) 0.0006
R2 (Broken Stick) 0.9989

Table 4.12: Goodness of Fit for Broken Stick Model (Test 6)
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4.2.1 Pilot Test
Figure 4.22 shows the overall fitting of the Polynomial Model to the Pilot Test data. The model
accurately follows the experimental data, providing a close match.

Figure 4.23 displays the residuals of the Polynomial Model for the Pilot Test, where the
small residuals indicate a strong fit. Table 4.13 presents the model parameters, and Table
4.14 provides the goodness-of-fit metrics. With an R2 value of 0.9997, the Polynomial Model
performs exceptionally well.

Figure 4.22: General Polynomial Model (PM) plot for the Pilot Test. This plot illustrates the
overall fitting of the Polynomial Model to the experimental data.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.8661

a1 (Linear Coefficient) -1.2890
a0 (Intercept) 0.4683

Table 4.13: Polynomial Model Parameters for Pilot Test

4.2.2 Test T2
For Test T2, the overall fit of the Polynomial Model is shown in Figure 4.24. The model
accurately represents the deswelling behaviour, with small residuals as shown in Figure 4.25.

The parameters of the Polynomial Model for Test T2 are summarised in Table 4.15, and the
goodness-of-fit metrics in Table 4.16 indicate an R2 of 0.9998, reflecting a very accurate fit.
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Figure 4.23: Residuals for the Polynomial Model (PM) fit for the Pilot Test. The plot shows the
difference between the observed data and the model’s predictions.

Metric Value
SSE (Polynomial) 0.0000
RMSE (Polynomial) 0.0002
MAE (Polynomial) 0.0001
R2 (Polynomial) 0.9997

Table 4.14: Goodness of Fit for Polynomial Model (Pilot Test)

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 1.1277

a1 (Linear Coefficient) -1.4795
a0 (Intercept) 0.4846

Table 4.15: Polynomial Model Parameters for Test 2

Metric Value
SSE (Polynomial) 0.0000
RMSE (Polynomial) 0.0003
MAE (Polynomial) 0.0002
R2 (Polynomial) 0.9998

Table 4.16: Goodness of Fit for Polynomial Model (Test 2)
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Figure 4.24: General Polynomial Model (PM) plot for Test T2. The plot shows the overall fitting
of the model to the data from Test T2.

Figure 4.25: Residuals for the Polynomial Model (PM) fit for Test T2. The residuals are the
differences between the observed data and the model predictions.
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Figure 4.26: Outlier removal for Test T2. The plot illustrates the data points removed based on
the outlier detection method.

4.2.3 Test T3
The fitting results for Test T3 are shown in Figure 4.27, with the Polynomial Model providing
a good fit across the entire time range. Figure 4.28 shows the residuals, which remain small,
indicating the model’s accuracy.

Table 4.17 lists the optimised parameters for the Polynomial Model, while Table 4.18
presents the goodness-of-fit metrics, with an R2 of 0.9999, showing a near-perfect fit.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.0773

a1 (Linear Coefficient) -0.1137
a0 (Intercept) 0.0409

Table 4.17: Polynomial Model Parameters for Test 3

4.2.4 Test T4
For Test T4, Figure 4.30 illustrates the fit of the Polynomial Model, where it captures the overall
trend effectively. The residuals for Test T4, displayed in Figure 4.31, are minimal, indicating a
good fit.

Table 4.19 shows the model parameters for Test T4, and Table 4.20 presents the goodness-
of-fit metrics, with an R2 of 0.9993, indicating strong performance.
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Figure 4.27: General Polynomial Model (PM) plot for Test T3. This plot shows the fitting of
the model to the data from Test T3.

Figure 4.28: Residuals for the Polynomial Model (PM) fit for Test T3. The plot shows the
discrepancies between the observed data and the model’s predictions.
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Metric Value
SSE (Polynomial) 0.0000
RMSE (Polynomial) 0.0000
MAE (Polynomial) 0.0000
R2 (Polynomial) 0.9999

Table 4.18: Goodness of Fit for Polynomial Model (Test 3)

Figure 4.29: Outlier removal for Test T3. This plot shows the data points excluded due to
outlier detection.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.8612

a1 (Linear Coefficient) -1.0755
a0 (Intercept) 0.3190

Table 4.19: Polynomial Model Parameters for Test 4

Metric Value
SSE (Polynomial) 0.0001
RMSE (Polynomial) 0.0005
MAE (Polynomial) 0.0003
R2 (Polynomial) 0.9993

Table 4.20: Goodness of Fit for Polynomial Model (Test 4)
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Figure 4.30: General Polynomial Model (PM) plot for Test T4. The plot illustrates the overall
fitting of the model to the data from Test T4.

Figure 4.31: Residuals for the Polynomial Model (PM) fit for Test T4. This plot depicts the
differences between observed data and model predictions.
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Figure 4.32: Outlier removal for Test T4. This plot illustrates the removal of data points
identified as outliers.

4.2.5 Test T5
Figure 4.33 shows the overall fitting of the Polynomial Model to the data from Test T5. The
model provides a very close match to the experimental data, accurately capturing the drying
behaviour over the full time range.

Residuals for Test T5 are shown in Figure 4.34, where the small residuals suggest that the
Polynomial Model performs very well in this test, with minimal discrepancies between the
predicted and observed values.

Table 4.21 summarises the PolynomialModel parameters for Test T5, including the quadratic
and linear coefficients, which have been optimised to provide a good fit.

Table 4.22 presents the goodness-of-fit metrics for Test T5. The model achieves an R2 of
0.9994, indicating an excellent fit to the data with low error values.
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Figure 4.33: General plot for Test T5 showing the overall drying behaviour.
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Figure 4.34: Residuals for the Polynomial Model (PM) fit for Test T5. This plot depicts the
differences between observed data and model predictions.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.8086

a1 (Linear Coefficient) -1.0011
a0 (Intercept) 0.3059

Table 4.21: Polynomial Model Parameters for Test 5

4.2.6 Test T6
Figure 4.35 shows the overall fit of the Polynomial Model for Test T6. The model accurately
captures the overall trend in the data, providing a good fit across the full time range.

Figure 4.36 presents the residuals for Test T6, where the residuals are very small, indicating
the model’s high level of accuracy in predicting the experimental data.

Table 4.23 lists the parameters of the Polynomial Model for Test T6, including the quadratic
and linear terms, which were optimised for the best fit.

Table 4.24 summarises the goodness-of-fit metrics for Test T6. The Polynomial Model
achieves an R2 of 0.9990, reflecting a very strong fit with minimal error values.
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Metric Value
SSE (Polynomial) 0.0001
RMSE (Polynomial) 0.0006
MAE (Polynomial) 0.0005
R2 (Polynomial) 0.9994

Table 4.22: Goodness of Fit for Polynomial Model (Test 5)

Figure 4.35: General plot for Test T6 showing the overall drying behaviour.

Model Parameter Value
Polynomial Model a2 (Quadratic Coefficient) 0.6740

a1 (Linear Coefficient) -0.9451
a0 (Intercept) 0.3176

Table 4.23: Polynomial Model Parameters for Test 6

Metric Value
SSE (Polynomial) 0.0002
RMSE (Polynomial) 0.0008
MAE (Polynomial) 0.0005
R2 (Polynomial) 0.9990

Table 4.24: Goodness of Fit for Polynomial Model (Test 6)
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Figure 4.36: Residuals for the Polynomial Model (PM) fit for Test T6. This plot depicts the
differences between observed data and model predictions.
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CHAPTER 5
Discussion

The primary goal of this thesis was to determine which model best describes the behaviour of
hydrogels during deswelling. While extensive research has been conducted on the dehydration
behaviour of hydrogels, most studies have focused on simpler exponential or linear models
to describe deswelling kinetics [11, 16]. However, these models often fail to capture the
complexity observed inmaterials withmore intricate structures. To address this gap, this study
applied more sophisticated models, including the Two-Phase Drying Model and Polynomial
models [27, 28].

The performance of the models is assessed through graphical visualisations, residual plots,
and goodness-of-fit metrics. These aspects help determine the accuracy of each model in
representing the deswelling behaviour of hydrogels.

5.1 Model Performance

5.1.1 Graphical visualisation
Upon reviewing the graphical representations of various models, it was observed that the
First-Order Kinetic Model for Deswelling (see Figure A.1), Double Exponential Non-Linear
Regression Model (see Figure A.4), Fickian Diffusion Model (see Figure A.2), and Non-Fickian
(Anomalous) Diffusion Model (see Figure A.3) did not provide a sufficient fit to the data. These
models failed to accurately represent the deswelling behaviour of hydrogels, as evidenced by
their graphical outputs presented in the Appendix section A.1.

In examining the comparative fits of the Broken Stick Model and the Polynomial Model to
the hydrogel deswelling data, it is evident that both models provide a high degree of accuracy,
but differences emerge upon closer inspection. The Polynomial Model consistently aligns with
the data across all time intervals, capturing more subtle variations in the data trends. This is
particularly evident in the zoomed-in figures 4.2 4.5 4.9 4.13 4.17 4.20, where the Polynomial
Model, represented by the black dashed line, closely follows the observed fluctuations.

Conversely, the Broken Stick Model maintains a robust fit initially but starts to deviate
slightly after reaching the optimised critical time (tc) aswe can see in figures 4.2 4.5 4.9 4.13 4.17 4.20.
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At this point, the model transitions into following the linear model trend, which causes minor
discrepancies in the fit, especially when compared to the Polynomial Model’s ability to capture
non-linear variations in the later stages. While both models perform well, the Polynomial
Model generally offers a more accurate fit across all test sets.

Consequently, a more focused analysis was conducted on the Goodness-of-Fit metrics
and residual plots for the Broken Stick Model and the Polynomial 2nd Degree Model. This
comparative analysis aimed to identify which of these models offered a superior fit to the
data, ensuring a more accurate representation of the hydrogels’ deswelling characteristics.

5.1.2 Residual Analysis
Residual plots are a critical diagnostic tool used to assess the fit of a regression model. These
plots display the residuals, which are the differences between the observed and predicted
values, against the predicted values. Ideally, residuals should be randomly scattered around
zero with no clear pattern, indicating that the model adequately captures the relationship
between the variables and that the assumptions of linearity and constant variance are met [29].
If the residuals show a non-random pattern or curvature, it could suggest model inadequacy
or that a different model might be more appropriate [29].

An ideal residual plot would show no patterns, confirming that the model has accounted
for all systematic variation and leaving only random errors. Visual inspection of these plots,
as supported by statistical tests, helps in determining the suitability of the model [29].

The residual plots for both the polynomial and Broken Stick models reveal notable differ-
ences in the ability of eachmodel to fit the data. In both cases, residuals display clear curvature
patterns, which indicate that the models capture some non-linear trends in the data, although
imperfectly. Particularly in the later stages of the time series, both models show increasing
residuals, suggesting heteroscedasticity, where the variance of the residuals is not constant
across all fitted values [29].

According to theoretical expectations [29], residual plots should exhibit a random scatter
around zero without any discernible patterns and should maintain a consistent spread [29].
Neither model fully achieves this, as both present evident trends and increasing variability in
their residuals [29].

Comparing the two models, the Broken Stick Model appears to fit the data better, especially
towards the end of the time period analysed. The residuals for this model remain smaller and
more controlled compared to the polynomial model, which shows a significant increase in
residual magnitude in these regions [29]. However, the polynomial model might capture the
mid-range data more accurately, with smaller residuals in that portion of the time series. Its
tendency for larger errors at the end suggests that the Broken Stick Model might still be a
better overall fit due to more stable residuals across the full time span [29].

This nuanced interpretation depends on which part of the data is valued more: if the end-
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time performance is critical, the Broken Stick Model performs better, while the Polynomial
Model may be preferable for mid-range time data [29].

5.1.3 Goodness-of-fit analysis
The analysis of the goodness-of-fit metrics for the Broken Stick Model and the Polynomial
Model highlights several key findings regarding their performance across different test sets.

For the Broken Stick Model, the Sum of Squared Errors (SSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and R2 values consistently indicate a high level of accu-
racy. Specifically, R2 values range from 0.9980 to 0.9998 across various test sets, demonstrating
an exceptional fit to the data. Notably, the lowest R2 value of 0.9980 is observed in Test 5,
with corresponding SSE, RMSE, and MAE values remaining relatively low, reflecting a strong
performance of the model.

In comparison, the Polynomial Model exhibits even higher R2 values, ranging from 0.9990 to
0.9999 across the test sets. The highest R2 value of 0.9999 is recorded in Test 3, alongside lower
SSE, RMSE, and MAE values compared to the Broken Stick Model. These metrics suggest that
the Polynomial Model generally provides a slightly better fit, capturing data nuances more
effectively.

5.1.4 Comparison between models
Overall, while both models demonstrate high-quality fits, the Polynomial Model stands out
with marginally superior R2 values and error metrics, as well as a better fit with regard to
the visualisation, indicating a more accurate representation of the data across the test sets.
However, the Broken StickModel’s stability in residuals suggests that it may be a more reliable
choice when considering the full time span of the data.

The superior performance of the Polynomial Model is due to its ability to handle the
complexity of the data. Unlike simpler models, the polynomial model’s coefficients let it fit
the data more flexibly. The second-degree polynomial, in particular, captures the curvature in
the deswelling data, making it effective at representing non-linear trends. The coefficients of
the polynomial show how the input variables relate to the response, reflecting both linear and
quadratic effects. This allows for a better understanding of variations such as acceleration or
deceleration in deswelling. As noted by Ostertagová [26], polynomial regression provides a
detailed interpretation of these parameters, helping to explain the physical processes behind
the deswelling behaviour.

5.2 Limitations and Future Research
This study has several limitations that should be considered. One of the main constraints is the
potential impact of the model’s assumptions on the accuracy of the results. Specifically, the
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simplicity of the Polynomial and Broken Stick Models may not fully capture all the nuances of
the dataset, such as non-linear behaviour at extreme values of the time range. Additionally, the
limited number of test sets used in this study might restrict the generalisability of the findings
across a broader range of scenarios [6, 5].

To address these limitations and guide future research, there are several potential avenues
for improvement. Firstly, investigating models that account for more complex, non-linear
behaviours could lead to better accuracy, especially for time series data where extreme values
are important. Additionally, exploring hybrid models that combine aspects of both the
Broken Stick and Polynomial Models might offer a more robust solution, balancing mid-range
accuracy with stable performance across the entire data set [18, 25]. Future work could
also include testing the models on a more extensive dataset to enhance the reliability and
applicability of the findings to a wider variety of contexts.

5.3 Conclusion
This study has demonstrated that the Polynomial Model outperforms other models, including
the Two-Phase Drying Model, in predicting the dehydration behaviour of hydrogels [22, 28].
The Polynomial Model’s ability to capture non-linear trends through its coefficients, which
reflect both linear and quadratic effects, provides a more accurate representation of the drying
process compared to simpler models. This enhanced fit offers a better understanding of
hydrogel dehydration and highlights the model’s robustness in capturing the underlying
complexities of the data [26]. These findings not only contribute to a deeper insight into
hydrogel behaviour but also have implications for advancing the development of hydrogel-
based materials [7]. Future research should address the identified limitations and explore new
modelling approaches to further enhance the accuracy and applicability of predictions in this
field.
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CHAPTER A
Appendix

A.1 Additional Figures

Pilot Test 2 Test 3

Test 4 Test 5 Test 6

Figure A.1: Performance of the First-Order Kinetic Model for Deswelling.
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Pilot Test 2 Test 3

Test 4 Test 5 Test 6

Figure A.2: Performance of the Fickian Diffusion Model.

Pilot Test 2 Test 3

Test 4 Test 5 Test 6

Figure A.3: Performance of the Non-Fickian (Anomalous) Diffusion Model
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Pilot Test 2

Test 3 Test 4

Test 5 Test 6

Figure A.4: Performance of the Double Exponential Model
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CHAPTER B
Code Used

B.1 MATLAB Scripts

B.1.1 First-Order Kinetic Model for Deswelling
% Carga los datos desde el archivo de Excel
data = readtable("pilot2.csv");

%% CLEANING
% Clean and convert cells to numbers
time = seconds(data.Var1); %time
Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); %initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false);
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false);

% Convert cleaned cell arrays to numeric arrays
Mt = cell2mat(Mt);
Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

%% Deducir M0 (masa inicial) y Me (masa en equilibrio)
M0 = Mt(1); % Asumimos que la masa al tiempo t=0 es la masa inicial
Me = min(Mt); % Asumimos que la masa mínima registrada es la masa en equilibrio

%% Calcula el Deswelling Degree (DS)
DS = (Me - Mt) ./ (Me - M0);

%% Agrega la columna DS a la tabla original
data.DS = DS;

% % Muestra la tabla con el Deswelling Degree
% disp(data);
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%Guarda la tabla con el Deswelling Degree en un nuevo archivo de Excel
writetable(data, ’test_2DS.xlsx’);

% %% Plotear DS vs. masa
% figure;
% plot(Mt, DS, ’-o’, ’LineWidth’, 2);
% xlabel(’Mt’);
% ylabel(’DS’);
% title(’DS vs. Mt’);
% grid on;

%% Definición de la función del modelo exponencial

% Reescalar el tiempo si es necesario
time_rescaled = time / 100000;

% % Define la función modelo exponencial
% modelFun = @(k, t) 1 - exp(-k * t);
%
% % Define la función de error para el ajuste
% errorFun = @(k) sum((DS - modelFun(k, time_rescaled)).^2);
%
% % Probar diferentes valores iniciales de la constante k
% k0 = 0.01; % Ajusta este valor inicial si es necesario
%
% % Utiliza ’lsqcurvefit’ para ajustar el modelo a los datos
% kFit = lsqcurvefit(modelFun, k0, time_rescaled, DS);
%
% % Calcular el ajuste del modelo
% DS_fit = modelFun(kFit, time_rescaled);
%
% % Verifica el valor ajustado de k
% fprintf(’Valor ajustado de k: %.6f\n’, kFit);
%
% % Plot the data and model fit
% figure;
% plot(time, DS, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
% hold on;
% plot(time, DS_fit, ’-’, ’LineWidth’, 2, ’DisplayName’, sprintf(’Model Fit (k = %.6f)’, kFit));
% xlabel(’Time (s)’);
% ylabel(’Degree of Dehydration (DS)’);
% title(’Degree of Dehydration (DS) vs. Time (First-Order Model)’);
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% legend;
% grid on;

%% Define el tipo de ajuste usando ’fittype’
modelType = fittype(’1 - exp(-k * t)’, ’independent’, ’t’, ’coefficients’, ’k’);

% Define las opciones para el ajuste no lineal
fitOptions = fitoptions(’Method’, ’NonlinearLeastSquares’, ’StartPoint’, 0.01);

% Realiza el ajuste usando ’fit’
[fitResult, gof] = fit(time_rescaled, DS, modelType, fitOptions);

% Extrae el valor ajustado de k
kFit = fitResult.k;

% Verifica el valor ajustado de k
fprintf(’Valor ajustado de k: %.6f\n’, kFit);

% Calcular el ajuste del modelo
DS_fit = modelType(kFit, time_rescaled);

% Plot the data and model fit
figure;
plot(time, DS, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
hold on;
plot(time, DS_fit, ’-’, ’LineWidth’, 2, ’DisplayName’, sprintf(’Model Fit (k = %.6f)’, kFit));
xlabel(’Time (s)’);
ylabel(’Degree of Dehydration (DS)’);
title(’Degree of Dehydration (DS) vs. Time (First-Order Model)’);
legend;
grid on;

B.1.2 Double Exponential Non-Linear Regression Model
% Load data from the Excel file
data = readtable("pilot2.csv");

%% CLEANING
% Clean and convert cells to numbers
time = seconds(data.Var1); % time
Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); % initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false);
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false);
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% Convert cleaned cell arrays to numeric arrays
Mt = cell2mat(Mt);
Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

% Rescale the time if necessary
time_rescaled = time / 100000;

%% OUTLIER REMOVAL

% % TEST 3
% % Calculate Mahalanobis distance
% dataMatrix = [time_rescaled, Mt, Area_side, Area_top];
% meanData = mean(dataMatrix);
% covData = cov(dataMatrix);
% mahalDist = mahal(dataMatrix, dataMatrix);
%
% % Determine the threshold for identifying outliers
% threshold = chi2inv(0.81, size(dataMatrix, 2));
%
% % Identify outliers
% isOutlier = mahalDist > threshold;
%
% % Filter the data to remove outliers
% time_filtered = time_rescaled(~isOutlier);
% Mt_filtered = Mt(~isOutlier);
% Area_side_filtered = Area_side(~isOutlier);
% Area_top_filtered = Area_top(~isOutlier);
%
% % Display the number of outliers removed
% fprintf(’Outliers removed: %d\n’, sum(isOutlier));

% TEST 4
% Filtrar datos para excluir muestras a partir del segundo 0.48400
time_threshold = 100000 %57000 %48400; % Tiempo en segundos a partir del cual se deben excluir las muestras
valid_indices = time_rescaled <= time_threshold;

% Filtrar los datos
time_filtered = time_rescaled(valid_indices);
Mt_filtered = Mt(valid_indices);
Area_side_filtered = Area_side(valid_indices);
Area_top_filtered = Area_top(valid_indices);
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% Mostrar el número de datos eliminados
fprintf(’Muestras eliminadas (tiempo > %.3f s): %d\n’, time_threshold, sum(~valid_indices));

% Plot the data with and without outliers for verification
figure;
subplot(2,1,1);
plot(time_rescaled, Mt, ’o’);
title(’Original Data’);
xlabel(’Time (s)’);
ylabel(’Mass’);
grid on;

subplot(2,1,2);
plot(time_filtered, Mt_filtered, ’o’);
title(’Data After Outlier Removal’);
xlabel(’Time (s)’);
ylabel(’Mass’);
grid on;

%% MODEL FITTING

% Define the double exponential model
double_exp_model = @(params, t) params(1) * (params(2) * exp(-t / params(3)) + (1 - params(2)) * exp(-t / params(4)));

% Define the error function for fitting
error_function = @(params) Mt_filtered - double_exp_model(params, time_filtered);

% Initial parameter values [M_inf, A, t1, t2]
M_inf_guess = max(Mt_filtered);
A_guess = 0.5; % Initial guess for A
t1_guess = range(time_filtered) / 2000; % Estimate t1 as 1/100th of the time range
t2_guess = range(time_filtered) / 1; % Estimate t2 as 1/10th of the time range
initial_params = [M_inf_guess, A_guess, t1_guess, t2_guess];

% Fit the model using lsqcurvefit
options = optimoptions(’lsqcurvefit’, ’Display’, ’iter’, ’Algorithm’, ’trust-region-reflective’);
[params_fit, resnorm] = lsqcurvefit(double_exp_model, initial_params, time_filtered, Mt_filtered, [], [], options);

% Extract the fitted parameters
M_inf_fit = params_fit(1);
A_fit = params_fit(2);
t1_fit = params_fit(3);
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t2_fit = params_fit(4);
fprintf(’Fitted parameters with lsqcurvefit:\nM_inf = %.4f\nA = %.4f\nt1 = %.4f\nt2 = %.4f\n’, M_inf_fit, A_fit, t1_fit, t2_fit);

% Calculate fitted values with lsqcurvefit
Mt_fit_lsqcurvefit = double_exp_model(params_fit, time_filtered);

%% Define fittype for nonlinear fitting with fit
ft = fittype(’M_inf * (A * exp(-x / t1) + (1 - A) * exp(-x / t2))’, ...

’independent’, ’x’, ’coefficients’, {’M_inf’, ’A’, ’t1’, ’t2’});

% Options for nonlinear fitting with fit
opts = fitoptions(’Method’, ’NonlinearLeastSquares’, ’StartPoint’, initial_params);

% Fit the model using fit
[fit_result, gof] = fit(time_filtered, Mt_filtered, ft, opts);

% Extract the fitted parameters
M_inf_fit2 = fit_result.M_inf;
A_fit2 = fit_result.A;
t1_fit2 = fit_result.t1;
t2_fit2 = fit_result.t2;
fprintf(’Fitted parameters with fit:\nM_inf = %.4f\nA = %.4f\nt1 = %.4f\nt2 = %.4f\n’, M_inf_fit2, A_fit2, t1_fit2, t2_fit2);

% Calculate fitted values with fit
Mt_fit_fit = M_inf_fit2 * (A_fit2 * exp(-time_filtered / t1_fit2) + (1 - A_fit2) * exp(-time_filtered / t2_fit2));

%% Results Plot
figure;
plot(time_filtered, Mt_filtered, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
hold on;
plot(time_filtered, Mt_fit_lsqcurvefit, ’-’, ’LineWidth’, 2, ’DisplayName’, ’Double Exponential Fit (lsqcurvefit)’);
plot(time_filtered, Mt_fit_fit, ’--’, ’LineWidth’, 2, ’DisplayName’, ’Double Exponential Fit (fit)’);
xlabel(’Time (s)’);
ylabel(’Mass’);
title(’Double Exponential Model Fit’);
legend;
grid on;

B.1.3 Fickian Diffusion Model
% Carga los datos desde el archivo de Excel
data = readtable("test_6.csv");
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%% CLEANING
% Clean and convert cells to numbers
time = seconds(data.Var1); %time
Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); %initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false);
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false);

% Convert cleaned cell arrays to numeric arrays
Mt = cell2mat(Mt);
Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

% %% Verificar que los datos no contengan valores complejos o NaNs
% if any(~isreal(time)) || any(~isreal(Mt))
% error(’Los datos contienen valores complejos.’);
% end
%
% if any(isnan(time)) || any(isnan(Mt))
% error(’Los datos contienen valores NaN.’);
% end
%
% % Asegurarse de que el tiempo no contenga ceros
% if any(time == 0)
% error(’Los datos de tiempo contienen ceros, lo cual puede causar problemas con la raíz cuadrada en el modelo.’);
% end
%
% % Asegurarse de que los tiempos sean positivos
% if any(time < 0)
% error(’Los datos de tiempo contienen valores negativos.’);
% end

%% Definir el modelo de difusión Fickiana
model = @(params, t) params(1) * (1 - erf(params(2) ./ sqrt(4 * params(3) * t)));

% Asegurarse de que el modelo no devuelve valores complejos
time = time(:); % Asegurar que time sea un vector columna
initial_params = [max(Mt), 1, 1]; % Valores iniciales para los parámetros [M_inf, L, D]

% Reescalar el tiempo si es necesario
time_rescaled = time / 100000;

% Definir límites inferiores y superiores
LB = [0, 0, 0]; % Límite inferior
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UB = [Inf, Inf, Inf]; % Límite superior

% Definir la función de error para ajuste
error_function = @(params) Mt - model(params, time_rescaled);

% Opciones para el ajuste no lineal
options = optimoptions(’lsqcurvefit’, ’Display’, ’iter’, ’Algorithm’, ’trust-region-reflective’);

% Intentar ajustar el modelo
try

[params_fit, resnorm] = lsqcurvefit(model, initial_params, time_rescaled, Mt, LB, UB , options);
catch ME

error(’Error en lsqcurvefit: %s’, ME.message);
end

% Resultados
M_inf_fit = params_fit(1);
L_fit = params_fit(2);
D_fit = params_fit(3);
fprintf(’Parámetros ajustados:\nM_inf = %.4f\nL = %.4f\nD = %.4f\n’, M_inf_fit, L_fit, D_fit);

% Calcular los valores ajustados
Mt_fit = model(params_fit, time_rescaled);

% Gráfica de resultados
figure;
plot(time_rescaled, Mt, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
hold on;
plot(time_rescaled, Mt_fit, ’-’, ’LineWidth’, 2, ’DisplayName’, sprintf(’Fickian Diffusion Fit’));
xlabel(’Time (s)’);
ylabel(’Mass’);
title(’Fickian Diffusion Model Fit’);
legend;
grid on;

B.1.4 Non-Fickian (Anomalous) Diffusion Model
% Carga los datos desde el archivo de Excel
data = readtable("test_6.csv");

%% CLEANING
% Clean and convert cells to numbers
time = seconds(data.Var1); %time

70



B.1 MATLAB Scripts

Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); %initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false);
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false);

% Convert cleaned cell arrays to numeric arrays
Mt = cell2mat(Mt);
Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

%% Verificar que los datos no contengan valores complejos o NaNs
if any(~isreal(time)) || any(~isreal(Mt))

error(’Los datos contienen valores complejos.’);
end

if any(isnan(time)) || any(isnan(Mt))
error(’Los datos contienen valores NaN.’);

end

% Asegurarse de que el tiempo no contenga ceros
if any(time == 0)

error(’Los datos de tiempo contienen ceros, lo cual puede causar problemas en el modelo.’);
end

% Asegurarse de que los tiempos sean positivos
if any(time < 0)

error(’Los datos de tiempo contienen valores negativos.’);
end

%% Definir el modelo de difusión anómala
model = @(params, t) params(1) * (1 - exp(- (t / params(2)).^params(3)));

% Asegurarse de que el modelo no devuelve valores complejos
time = time(:); % Asegurar que time sea un vector columna
initial_params = [max(Mt), 1, 1]; % Valores iniciales para los parámetros [M_inf, tau, alpha]

% Reescalar el tiempo si es necesario
time_rescaled = time / 100000;

% Definir límites inferiores y superiores
LB = [0, 0, 0]; % Límite inferior
UB = [Inf, Inf, 2]; % Límite superior (exponente alfa generalmente se limita a un máximo de 2)

% Opciones para el ajuste no lineal
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options = optimoptions(’lsqcurvefit’, ’Display’, ’iter’, ’Algorithm’, ’trust-region-reflective’);

% Intentar ajustar el modelo
try

[params_fit, resnorm] = lsqcurvefit(model, initial_params, time_rescaled, Mt, LB, UB, options);
catch ME

error(’Error en lsqcurvefit: %s’, ME.message);
end

% Resultados
M_inf_fit = params_fit(1);
tau_fit = params_fit(2);
alpha_fit = params_fit(3);
fprintf(’Parámetros ajustados:\nM_inf = %.4f\nTau = %.4f\nAlpha = %.4f\n’, M_inf_fit, tau_fit, alpha_fit);

% Calcular los valores ajustados
Mt_fit = model(params_fit, time_rescaled);

% Gráfica de resultados
figure;
plot(time_rescaled, Mt, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
hold on;
plot(time_rescaled, Mt_fit, ’-’, ’LineWidth’, 2, ’DisplayName’, sprintf(’Non-Fickian Diffusion Fit’));
xlabel(’Time (s)’);
ylabel(’Mass’);
title(’Non-Fickian Diffusion Model Fit’);
legend;
grid on;

B.1.5 Second-Degree Polynomial Model
% Load data from the Excel file
data = readtable("test_3.csv");

%% CLEANING
% Clean and convert cells to numbers
time = seconds(data.Var1); % time
Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); % initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false);
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false);

% Convert cleaned cell arrays to numeric arrays
Mt = cell2mat(Mt);
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Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

% Rescale the time if necessary
time_rescaled = time / 100000;

%% OUTLIER REMOVAL

% TEST 3
% Calculate Mahalanobis distance
dataMatrix = [time_rescaled, Mt, Area_side, Area_top];
meanData = mean(dataMatrix);
covData = cov(dataMatrix);
mahalDist = mahal(dataMatrix, dataMatrix);

% Determine the threshold for identifying outliers
threshold = chi2inv(0.81, size(dataMatrix, 2));

% Identify outliers
isOutlier = mahalDist > threshold;

% Filter the data to remove outliers
time_filtered = time_rescaled(~isOutlier);
Mt_filtered = Mt(~isOutlier);
Area_side_filtered = Area_side(~isOutlier);
Area_top_filtered = Area_top(~isOutlier);

% Display the number of outliers removed
fprintf(’Outliers removed: %d\n’, sum(isOutlier));

% % TEST 4 i 2
% time_threshold = 1 %0.57 %0.48400; % Time in seconds after which samples are excluded
% valid_indices = time_rescaled <= time_threshold;
%
% % Filter the data
% time_filtered = time_rescaled(valid_indices);
% Mt_filtered = Mt(valid_indices);
% Area_side_filtered = Area_side(valid_indices);
% Area_top_filtered = Area_top(valid_indices);
%
% % Display the number of samples removed
% fprintf(’Samples removed (time > %.3f s): %d\n’, time_threshold, sum(~valid_indices));
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% Plot the data with and without outliers for verification
figure;
subplot(2,1,1);
plot(time_rescaled, Mt, ’o’);
title(’Original Data’, FontSize=16);
xlabel(’Time (s)’, FontSize=16);
ylabel(’Mass’, FontSize=16);
grid on;

subplot(2,1,2);
plot(time_filtered, Mt_filtered, ’o’);
title(’Data After Outlier Removal’, FontSize=16);
xlabel(’Time (s)’, FontSize=16);
ylabel(’Mass’, FontSize=16);
grid on;

%% MODEL FITTING

% Define the polynomial model (2nd degree)
poly_coeffs = polyfit(time_filtered, Mt_filtered, 2); % Fit a 2nd degree polynomial
poly_model = @(t) polyval(poly_coeffs, t); % Polynomial model as a function

% Calculate fitted values
Mt_fit_poly = poly_model(time_filtered);

% Display Model Parameters
% Extract polynomial coefficients
a2 = poly_coeffs(1); % Coefficient for the quadratic term
a1 = poly_coeffs(2); % Coefficient for the linear term
a0 = poly_coeffs(3); % Intercept

% Display the polynomial parameters
fprintf(’Polynomial Model Parameters:\n’);
fprintf(’a2 (Quadratic Coefficient) = %.4f\n’, a2);
fprintf(’a1 (Linear Coefficient) = %.4f\n’, a1);
fprintf(’a0 (Intercept) = %.4f\n’, a0);

%% Results Plot
figure;
plot(time_filtered, Mt_filtered, ’o’, ’MarkerSize’, 8, ’DisplayName’, ’Experimental Data’);
hold on;
plot(time_filtered, Mt_fit_poly, ’-’, ’LineWidth’, 2, ’DisplayName’, ’Polynomial Fit (2nd Degree)’);
xlabel(’Time (s)’, FontSize=16);
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ylabel(’Mass’);
title(’Polynomial Model Fit’, FontSize=16);
legend(FontSize=16);
grid on;

%% Evaluation of the fit quality

% Residual Analysis
residuals_poly = Mt_filtered - Mt_fit_poly;

%% Goodness-of-Fit Metrics
SSE = sum(residuals_poly.^2); % Sum of Squared Errors
RMSE = sqrt(mean(residuals_poly.^2)); % Root Mean Squared Error
MAE = mean(abs(residuals_poly)); % Mean Absolute Error
R_squared = 1 - (SSE / sum((Mt_filtered - mean(Mt_filtered)).^2)); % R-squared

fprintf(’Goodness-of-Fit Metrics for Polynomial Model:\n’);
fprintf(’SSE = %.4f\n’, SSE);
fprintf(’RMSE = %.4f\n’, RMSE);
fprintf(’MAE = %.4f\n’, MAE);
fprintf(’R_squared = %.4f\n’, R_squared);

%% Residual Plot
figure;
plot(time_filtered, residuals_poly, ’o’, ’DisplayName’, ’Residuals from Polynomial Fit’);
xlabel(’Time (s)’, FontSize=16);
ylabel(’Residuals’, FontSize=16);
title(’Residual Plot for Polynomial Fit’, FontSize=16);
legend(FontSize=16);
grid on;

B.1.6 Broken Stick Model
% Load data from the Excel file
data = readtable("test_2.csv");

%% CLEANING

% Clean and convert cells to numbers
time = seconds(data.Var1); % time
Mt = cellfun(@cleanNumeric, table2cell(data(:, 2)), ’UniformOutput’, false); % initial weight
Area_side = cellfun(@cleanNumeric, table2cell(data(:, 3)), ’UniformOutput’, false); % side area
Area_top = cellfun(@cleanNumeric, table2cell(data(:, 4)), ’UniformOutput’, false); % top area
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% Convert cleaned cell arrays to numeric matrices
Mt = cell2mat(Mt);
Area_side = cell2mat(Area_side);
Area_top = cell2mat(Area_top);

% Rescale time if necessary
time_rescaled = time / 100000;

%% OUTLIER REMOVAL

% % TEST 3: Mahalanobis distance-based outlier removal
% % Calculate Mahalanobis distance
% dataMatrix = [time_rescaled, Mt, Area_side, Area_top];
% meanData = mean(dataMatrix);
% covData = cov(dataMatrix);
% mahalDist = mahal(dataMatrix, dataMatrix);
%
% % Determine the threshold for identifying outliers
% threshold = chi2inv(0.81, size(dataMatrix, 2));
%
% % Identify outliers
% isOutlier = mahalDist > threshold;
%
% % Filter the data to remove outliers
% time_filtered = time_rescaled(~isOutlier);
% Mt_filtered = Mt(~isOutlier);
% Area_side_filtered = Area_side(~isOutlier);
% Area_top_filtered = Area_top(~isOutlier);
%
% % Display the number of outliers removed
% fprintf(’Outliers removed: %d\n’, sum(isOutlier));

% TEST 4 i 2: Time-based outlier removal
time_threshold = 0.57 %0.57; % 0.48400
valid_indices = time_rescaled <= time_threshold;

% Filter the data
time_filtered = time_rescaled(valid_indices);
Mt_filtered = Mt(valid_indices);
Area_side_filtered = Area_side(valid_indices);
Area_top_filtered = Area_top(valid_indices);
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% Display the number of samples removed
fprintf(’Samples removed (time > %.3f s): %d\n’, time_threshold, sum(~valid_indices));

% Plot the data with and without outliers for verification
figure;
subplot(2,1,1);
plot(time_rescaled, Mt, ’o’);
title(’Original Data’, FontSize=16);
xlabel(’Time (s)’,FontSize=16);
ylabel(’Mass’,FontSize=16);
grid on;

subplot(2,1,2);
plot(time_filtered, Mt_filtered, ’o’);
title(’Data After Outlier Removal’,FontSize=16);
xlabel(’Time (s)’,FontSize=16);
ylabel(’Mass’,FontSize=16);
grid on;

%% MODEL FITTING

% Normalize time to start from 0
time_filtered = time_filtered - time_filtered(1);

% Polynomial model (2nd degree)
poly_coeffs = polyfit(time_filtered, Mt_filtered, 2);
poly_model = @(t) polyval(poly_coeffs, t);

% Initial guess for the breakpoint tc (critical time)
initial_tc_guess = time_filtered(floor(length(time_filtered)/2)); % Use midpoint of time as initial guess

% Linear model Mt = a1 * t + a0 using only data after the initial tc
linear_coeffs = polyfit(time_filtered(time_filtered > initial_tc_guess), ...

Mt_filtered(time_filtered > initial_tc_guess), 1);
linear_model = @(t) polyval(linear_coeffs, t);

% Broken stick model defined as a function of tc
broken_stick_model = @(params, t) (t <= params(1)).*polyval(poly_coeffs, t) + ...

(t > params(1)).*(polyval(linear_coeffs, t) - polyval(linear_coeffs, params(1)) + polyval(poly_coeffs, params(1)));

% The term (polyval(linear_coeffs, t) - polyval(linear_coeffs, params(1)) + polyval(poly_coeffs, params(1)))
% ensures that the linear part of the model starts where the polynomial model ends
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% Bounds for tc
lower_bounds = min(time_filtered); % tc should not be less than the minimum time
upper_bounds = max(time_filtered); % tc should not be greater than the maximum time

% Optimization of tc using lsqcurvefit
options = optimset(’Display’, ’off’); % Suppress output
[optimized_params, resnorm] = lsqcurvefit(broken_stick_model, initial_tc_guess, time_filtered, Mt_filtered, lower_bounds, upper_bounds, options);

% Extraction of the optimized tc
optimized_tc = optimized_params(1);

% Optimized value of tc displayed
disp([’Optimized tc: ’, num2str(optimized_tc)]);

% Recalculation of the broken stick model using the optimized tc
optimized_broken_stick_model = @(t) broken_stick_model(optimized_params, t);

%% PLOT RESULTS

% Plot of the data, polynomial model, linear model, and optimized broken stick model on the same graph
figure;
scatter(time_filtered, Mt_filtered, ’blue’, ’DisplayName’, ’Data’);
hold on;

% Plot of the polynomial model
fplot(poly_model, [min(time_filtered), max(time_filtered)], ’black’, ’LineWidth’, 2, ’LineStyle’, ’--’, ’DisplayName’, ’Fitted Polynomial Model’);

% Plot of the linear model (only after tc)
fplot(@(t) linear_model(t), [optimized_tc, max(time_filtered)], ’green’, ’LineWidth’, 2, ’DisplayName’, ’Fitted Linear Model’);

% Plot of the optimized broken stick model
fplot(optimized_broken_stick_model, [min(time_filtered), max(time_filtered)], ’magenta’, ’LineWidth’, 2, ’DisplayName’, ’Optimized Broken Stick Model’);

xlabel(’Time (seconds)’, FontSize=16);
ylabel(’Weight (g)’, FontSize=16);
title(’Data Fitting with Polynomial, Linear, and Optimized Broken Stick Models’, FontSize=16);
legend(FontSize=16);
hold off;

%% DISPLAY FITTED PARAMETERS

% Display the coefficients of the polynomial model
disp(’Polynomial Model Coefficients:’);
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disp([’a2 (Quadratic Coefficient): ’, num2str(poly_coeffs(1))]);
disp([’a1 (Linear Coefficient): ’, num2str(poly_coeffs(2))]);
disp([’a0 (Intercept): ’, num2str(poly_coeffs(3))]);

% Display the coefficients of the linear model
disp(’Linear Model Coefficients (After tc):’);
disp([’a1 (Slope): ’, num2str(linear_coeffs(1))]);
disp([’a0 (Intercept): ’, num2str(linear_coeffs(2))]);

% Display the optimized parameters of the broken stick model
disp(’Piecewise Model Parameters:’);
disp([’tc (Optimized Critical Time): ’, num2str(optimized_tc)]);

%% Evaluation of the fit quality

% Calculation of the fitted values for both polynomial and broken stick models
Mt_fit_poly = poly_model(time_filtered); % Fitted values using the polynomial model
Mt_fit_broken_stick = optimized_broken_stick_model(time_filtered); % Fitted values using the broken stick model

% Residual Analysis
residuals_poly = Mt_filtered - Mt_fit_poly; % Residuals for the polynomial fit
residuals_broken_stick = Mt_filtered - Mt_fit_broken_stick; % Residuals for the broken stick fit

%% Goodness-of-Fit Metrics for the Polynomial Fit
SSE_poly = sum(residuals_poly.^2); % Sum of Squared Errors
RMSE_poly = sqrt(mean(residuals_poly.^2)); % Root Mean Squared Error
MAE_poly = mean(abs(residuals_poly)); % Mean Absolute Error
R_squared_poly = 1 - (SSE_poly / sum((Mt_filtered - mean(Mt_filtered)).^2)); % R-squared

fprintf(’Goodness-of-Fit Metrics for the Polynomial Model:\n’);
fprintf(’SSE (Polynomial) = %.4f\n’, SSE_poly);
fprintf(’RMSE (Polynomial) = %.4f\n’, RMSE_poly);
fprintf(’MAE (Polynomial) = %.4f\n’, MAE_poly);
fprintf(’R_squared (Polynomial) = %.4f\n’, R_squared_poly);

%% Goodness-of-Fit Metrics for the Broken Stick Model
SSE_broken_stick = sum(residuals_broken_stick.^2); % Sum of Squared Errors
RMSE_broken_stick = sqrt(mean(residuals_broken_stick.^2)); % Root Mean Squared Error
MAE_broken_stick = mean(abs(residuals_broken_stick)); % Mean Absolute Error
R_squared_broken_stick = 1 - (SSE_broken_stick / sum((Mt_filtered - mean(Mt_filtered)).^2)); % R-squared

fprintf(’\nGoodness-of-Fit Metrics for the Broken Stick Model:\n’);
fprintf(’SSE (Broken Stick) = %.4f\n’, SSE_broken_stick);
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fprintf(’RMSE (Broken Stick) = %.4f\n’, RMSE_broken_stick);
fprintf(’MAE (Broken Stick) = %.4f\n’, MAE_broken_stick);
fprintf(’R_squared (Broken Stick) = %.4f\n’, R_squared_broken_stick);

%% Residual Plot
figure;
hold on;
plot(time_filtered, residuals_poly, ’o’, ’DisplayName’, ’Residuals (Polynomial Fit)’);
plot(time_filtered, residuals_broken_stick, ’x’, ’DisplayName’, ’Residuals (Broken Stick Fit)’);
xlabel(’Time (s)’, FontSize=16);
ylabel(’Residuals’, FontSize=16);
title(’Residual Plot for Polynomial and Broken Stick Models’, FontSize=16);
legend(FontSize=16);
grid on;
hold off;
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