

Design and Manufacture of a

Fluidic Control Box for Soft

Robotics Operation in Planetary

Exploration

Toni Soler Arabí

ID 201781278

Supervisor: Ali Alazmani

Academic Year 2023-2024

University of Leeds Toni Soler Arabi ID201781278 ii

SCHOOL OF MECHANICAL

ENGINEERING

MECH3890 – Individual Engineering Project

PROJECT TITLE: Design and Manufacture of a Fluidic Control Box for Soft Robotics

Operation in Planetary Exploration

PRESENTED BY

SUPERVISED BY

If the project is industrially linked, tick this box
and provide details below

COMPANY NAME AND ADDRESS:

STUDENT DECLARATION (from the “LU Declaration of Academic Integrity”)

I am aware that the University defines plagiarism as presenting someone else’s work, in whole or
in part, as your own. Work means any intellectual output, and typically includes text, data, images,
sound or performance. I promise that in the attached submission I have not presented anyone
else’s work, in whole or in part, as my own and I have not colluded with others in the preparation
of this work. Where I have taken advantage of the work of others, I have given full
acknowledgement. I have not resubmitted my own work or part thereof without specific written
permission to do so from the University staff concerned when any of this work has been or is being
submitted for marks or credits even if in a different module or for a different qualification or
completed prior to entry to the University. I have read and understood the University’s published
rules on plagiarism and also any more detailed rules specified at School or module level. I know
that if I commit plagiarism I can be expelled from the University and that it is my responsibility to
be aware of the University’s regulations on plagiarism and their importance. I re-confirm my
consent to the University copying and distributing any or all of my work in any form and using third
parties (who may be based outside the EU/EEA) to monitor breaches of regulations, to verify
whether my work contains plagiarised material, and for quality assurance purposes. I confirm that I
have declared all mitigating circumstances that may be relevant to the assessment of this piece of
work and that I wish to have taken into account. I am aware of the University’s policy on
mitigation and the School’s procedures for the submission of statements and evidence of
mitigation. I am aware of the penalties imposed for the late submission of coursework.

Date 01/05/2024.
Signed

Toni Soler Arabi

Ali Alazmani

University of Leeds Toni Soler Arabi ID201781278 iii

Table of Content
Abstract .. iv

List of figures .. v

List of tables .. vi

Nomenclature ..vii

Chapter 1. Introduction ... 1

1.1 Introduction ... 1

1.2 Aim ... 2

1.3 Objectives .. 2

1.4 Report Layout ... 2

Chapter 2: Design and manufacture .. 3

2.1 Introduction ... 3

2.2 Methodology ... 3

2.3 Results ... 9

2.4 Discussion ... 10

Chapter 3: Arduino programming .. 11

3.1 Introduction ... 11

3.2 Methodology ... 11

3.3 Results ... 19

3.4 Discussion ... 20

Chapter 4: Soft robotics control in planetary exploration. ... 21

4.1 Introduction ... 21

4.2 Methodology ... 21

4.3 Results ... 22

4.4 Discussion ... 23

Chapter 5: Conclusion .. 24

5.1 Achievements ... 24

5.2 Discussion ... 24

5.3 Conclusions... 25

5.4 Future Work .. 25

References ... 26

Appendix: Arduino complete code. ... 29

University of Leeds Toni Soler Arabi ID201781278 iv

Abstract

Unmanned space exploration has always been tied to traditional rigid robotics. However, the

increasing tendency of soft robotics use introduces the possibility of integrating these robots

in space missions, taking advantage of their flexibility and adaptability to unknown

environments. This project describes the process of design and manufacture of a fluidic control

box to be used for the operation of soft robots in planetary exploration. The main functionalities

of the fluidic control box together with the process of creation of these operations will be

analysed, highlighting its advantages and limitations, resulting in a final discussion of the

feasibility of its use in these missions.

University of Leeds Toni Soler Arabi ID201781278 v

List of figures

Figure 1: Plug-in AC/DC Adapter 24 V DC, 3 A output [9]. .. 3

Figure 2: DFR0379 Adjustable DC to DC voltage regulator [10]. ... 3

Figure 3: Electronic breadboard [11] and male to male jumper wires [12]. 4

Figure 4: 4DSYSTEMS screen [13] (left) and Arduino adaptor [14] (right). 4

Figure 5: Main screen for the fluidic control box. ... 5

Figure 6: PWM main parameters [15]. .. 5

Figure 7: Adafruit assembled data logging shield for Arduino [16]. .. 6

Figure 8: Arduino MEGA 2560 Rev 3 [18]. ... 7

Figure 9: 4-Channel MOSFET [20]. ... 7

Figure 10: Solenoid valves mounted in a manifold [21]. ... 8

Figure 11: ITV0010-2BS Pressure regulators [23] and pneumatic lines [22]. 8

Figure 12: SSCDANN015PG2A3 Pressure transducer [24]. ... 9

Figure 13: Electronic scheme for the fluidic control box. .. 9

Figure 14: Fluidic control box system. ... 10

Figure 15: TCCR4A, TCCR4B and TCCR4C control registers [27]. .. 12

Figure 16: Phase and frequency correct PWM Mode, timing diagram [27]. 13

Figure 17: PWM/Manual operation, pressure settings and data storage screen interface. 15

Figure 18: PWM/Manual operation flow chart. ... 15

Figure 19: Data storage operation flow chart. .. 16

Figure 20: Sequential operation, duration of the experiment and scope screen interface. 17

Figure 21: Flow chart for the creation of the sequence number. .. 17

Figure 22: Sequential operation flow chart. .. 18

Figure 23: Manual operation output. .. 19

Figure 24: PWM operation parameters and output. .. 19

Figure 25: Crawling movement sequence [36]. ... 21

Figure 26: Obstacle avoidance movement sequence [36]. .. 22

Figure 27: Sequential operation parameters and output. ... 23

University of Leeds Toni Soler Arabi ID201781278 vi

List of tables

Table 1: Clock select bit configuration for 256 prescaler value [27]. .. 12

Table 2: Bit configuration for waveform generation mode 8 [27]. ... 13

Table 3: Bit configuration for non-inverting compare output mode [27]. 14

Table 4: Data storage operation output. ... 20

University of Leeds Toni Soler Arabi ID201781278 vii

Nomenclature

PWM: Pulse Width Modulation.

V: Volts.

Hz: Herz.

DC: Direct current.

MOSFET: Metal-oxide-semiconductor field-effect transistor.

A: Amperes.

𝑇: Period of the generated wave.

𝑓: Frequency of the generated wave.

TCCRnA: Timer / Counter control register A of Timer n.

CSn2:0: Clock Select bits of Timer n.

WGMn3:0: Waveform generation mode bits of Timer n.

COMnx1:0: Compare output mode bits of Timer n.

𝑇𝑐𝑙𝑘: Period of the Arduino clock, time elapsed between clocks.

𝑓𝑐𝑙𝑘: Frequency of the Arduino clock.

TCNTn: Timer counter register for timer counter n, register that counts up or down.

ICRn: Input capture register of Timer n, number of clocks to reach the top.

OCRnx: Output compare register of pin n, number of clocks before the signal changes.

freq: frequency of the whole system for PWM in Arduino.

DutyC1: Duty cycle of valve 1 for PWM in Arduino.

DutyC2: Duty cycle of valve 2 for PWM in Arduino.

DutyC3: Duty cycle of valve 3 for PWM in Arduino.

DutyC4: Duty cycle of valve 4 for PWM in Arduino.

freq: frequency of the whole system for manual operation in Arduino.

DutyC1: Duty cycle of valve 1 for manual operation in Arduino.

DutyC2: Duty cycle of valve 2 for manual operation in Arduino.

DutyC3: Duty cycle of valve 3 for manual operation in Arduino.

DutyC4: Duty cycle of valve 4 for manual operation in Arduino.

Pset: Screen-set pressure.

𝑃𝑟𝑒𝑎𝑑: Pressure read in binary.

𝑃𝑚𝑎𝑥: Maximum pressure reading limit.

𝑃𝑚𝑖𝑛: Atmospheric pressure.

𝑡𝑖: Valve opening time stored in digit i of the sequence number.

𝑡𝑠: Time set to check if the selected valve’s opening time had elapsed.

University of Leeds Toni Soler Arabi ID201781278 1

Chapter 1. Introduction

1.1 Introduction

Exploration of celestial bodies such as planets and moons is one of the most interesting

and fascinating scientific branches, as it helps to understand the cosmos and the history of life,

possibly leading to the discovery of habitable environments, or even extraterrestrial life beyond

the Earth. However, it comes with the disadvantage of the significant number of challenges

derived from these missions. These challenges require innovative solutions to make possible

the study of the different terrains, as well as the performance of demanding tasks in

environments susceptible to changes.

Historically, traditional rigid robots have been used for these purposes, such is the case

of the recent “Perseverance” rover [1] landing in Mars. While these robots have proved to be

effective in controlled environments, they often struggle in unstable or unknown conditions due

to their limited adaptability and low resilience to collisions [2].

In contrast, soft robotics is presented as a promising alternative for these missions,

through the operation of robots constructed from malleable and deformable materials allowing

safer interactions with both the environment and fragile objects. Soft robotics technology

presents the advantages derived from flexibility and adaptability, together with greater

resistance to wear and lower weight [3], making it particularly suitable for applications in

planetary exploration.

Soft robotics presents an immense potential for revolutionizing planetary exploration

through a wide range of applications in bio-inspired robots. Robotic crawlers, such as the

Softworms, [4] presenting the capability of inching, rolling or even climbing steep inclines, are

perfectly suitable for the operation in challenging terrains. Octopus-inspired manipulators such

as the Octobot which has shown remarkable displays of dexterity and strength [5], offer

versatile solutions for exploration tasks on planetary surfaces. Sample collection tasks would

be covered by soft grippers [6] which enable gentle and precise handling of fragile objects.

Even opening the frontiers of liquid environments exploration with the Soft Robotics Fish [7],

soft robots are presented as a technology offering new possibilities for the study of

extraterrestrial environments.

The effective management of these soft robots is completely dependent on the control of

fluidic systems, which are responsible for their main operations. Being the fluid the medium of

operation results in pressure control playing the most important role [8] in the performance of

these robots.

University of Leeds Toni Soler Arabi ID201781278 2

These critical needs are intended to be met by the design and manufacture of a fluidic

control box for the operation of soft robotics in planetary exploration missions. This system

would serve as the main element in charge for controlling the movements and functions of soft

robots. Through pressure control oriented to the operation of soft robotics, this project seeks

to overcome the constraints of standard rigid robots and provide new opportunities for

investigating and understanding celestial bodies beyond Earth.

1.2 Aim

The aim of the project is to design and manufacture a fluidic control box capable of

managing the operation of soft robots in extraterrestrial planets through pressure modification.

1.3 Objectives

The different objectives that need to be completed, to ensure that the aim of the project is

achieved, are listed here:

• Programming a microcontroller through Arduino to achieve the desired pressure

control, offering the possibilities of manual or PWM (Pulse Width Modulation) operation.

• Configuration of a graphical screen which allows a user-friendly interface for the use of

the device. The screen should display the necessary parameters for the operation of

the control box.

• Storage of the relevant parameters for the operation of the control box in precisely

controlled intervals of time.

• Design of a sequential pressure control for the movement of soft robots in planetary

exploration.

• Performing several tests to ensure the correct functioning of the different components

conforming the fluidic control box.

• Assembling of the components conforming the fluidic control box, considering

organization and space available.

1.4 Report Layout

Firstly, in chapter 1 an introduction is given, where the motivation and significance of

the project are described. Following with chapter 2, the design and manufacture process of the

fluidic control box is explained. This includes an analysis of the different components and its

organization inside the system. After that, chapter 3 describes the programming area of the

fluidic control box. Chapter 4 explores the possibilities for the operation of soft robot in

extraterrestrial planets using the fluidic control box. Finally, chapter 5 gives concluding

comments on the project and describes future work that could be done.

University of Leeds Toni Soler Arabi ID201781278 3

Chapter 2: Design and manufacture

2.1 Introduction

As every complex system, the fluidic control box is formed by a diverse number of

components. This chapter provides an analysis of these components, examining their

individual performance, and the connections between them. Moreover, diagrams illustrating

these connections, together with a representation of the system in real-life are displayed,

providing a better understanding of the fluidic control box operation.

2.2 Methodology

Any system including electronic components requires a power supply. For the fluidic

control box, an adapter was used to convert the alternating current given by the electrical

network, typically operating at 230 V (voltage) and 50 Hz (frequency), into a direct current of

24 V. This 24 V DC supply was essential to power the MOSFET, which will be discussed in

detail later. Figure 1 shows the adapter used in the project.

Figure 1: Plug-in AC/DC Adapter 24 V DC, 3 A output [9].

However, not all components within the system required the same electrical settings

for operation. In fact, most of them were operated at 5 V DC. Therefore, an adjustable voltage

regulator, as the one shown in Figure 2, was used to transform those 24 V DC into 5 V DC.

Figure 2: DFR0379 Adjustable DC to DC voltage regulator [10].

University of Leeds Toni Soler Arabi ID201781278 4

 Given that the system consisted of various electronic components, temporary electrical

connections between each component were established using an electronic breadboard, and

male to male jumper wires (Figure 3), thus eliminating the need for soldering. The electronic

breadboard facilitated connections by providing rails where components requiring identical

electrical settings could be linked together using the jumper wires.

Figure 3: Electronic breadboard [11] and male to male jumper wires [12].

A touchscreen served as the primary interface for inputs in the system. Users can

conveniently adjust different parameters of the fluidic control box operation by interacting with

the screen. The screen operated as a slave to the microcontroller, meaning it could not

autonomously update itself after an event like a button press. Instead, it communicated such

events to the microcontroller which then gave the appropriate commands to update the screen

accordingly.

 This communication between screen and microcontroller was facilitated by the

4DSYSTEMS Arduino Adaptor, which was connected by simply aligning the pins identifier on

the shield with those on the Arduino. The screen was powered via the white cable shown on

Figure 4 left, which was connected to both the screen and the squared adaptor. Subsequently,

the squared adaptor was linked to the Arduino adaptor via the cable shown in Figure 4 right.

Therefore, as long as the screen remained connected to the Arduino and this last one was

powered, the screen remained operational.

Figure 4: 4DSYSTEMS screen [13] (left) and Arduino adaptor [14] (right).

University of Leeds Toni Soler Arabi ID201781278 5

 The screen displayed the main operational functions for the fluidic control box, as

shown in Figure 5.

Figure 5: Main screen for the fluidic control box.

Starting with the upper section of the screen, options for manual or PWM (Pulse Width

Modulation) operation were given. In manual mode, users can manually activate individual

valves by pressing the corresponding button. PWM operation involved generating square-

wave pulses with specified widths [15], which were repeated every period 𝑇. The width of

these square waves was controlled by the duty cycle, corresponding to the percentage of time

within the period 𝑇 during which the signal was active. Users can modify both the duty cycle

and the frequency 𝑓, directly affecting the period 𝑇, as 𝑓 =
1

𝑇
 . Both parameters are shown in

Figure 6.

Figure 6: PWM main parameters [15].

Regarding the pressure settings, users can input the desired pressure to be set by

the pressure regulator, which will be analysed later. Subsequently, the pressure is measured

at the valve exits through a pressure transducer and displayed in the screen to indicate if it

matches the user-defined settings.

University of Leeds Toni Soler Arabi ID201781278 6

 The screen also offered the option for sequential valve opening, allowing users to

input a 4-digit sequence number, and subsequently set the duration for each step in the

sequence, corresponding to the opening time for each selected valve.

Additionally, a control panel including start, pause, and stop buttons was provided.

The stop button reset the control box parameters to default values (0) and ended the

experiment. Users can also set the experiment duration, displayed in the bottom right corner

of the screen, which pauses the system once the specified time has elapsed.

Furthermore, a small display positioned below the experiment duration settings allows

users to monitor the signals sent to each valve, facilitating verification of the system's

performance.

Finally, a data storage option was made available. When selected, it functioned as

follows: it created a new file in the Adafruit Data Logging Shield’s SD (Figure 7) and recorded

the values for the relevant parameters in the fluidic control box at regular intervals.

Figure 7: Adafruit assembled data logging shield for Arduino [16].

The key component of the fluidic control box is the microcontroller, in this case the

Arduino Mega 2560 Rev 3 shown in Figure 8. Operating as a small computer, users program

it to control the functions along the system [17], managing every signal sent or received

between itself and the other components. The Arduino received inputs from the screen and

executed the corresponding actions.

Pins 5 to 8, enabling the creation of PWM signals, were used for the communication

between the microcontroller and the valves. Users adjusted signal parameters and Arduino

generated those updated signals. Pin 11 controls the pressure regulator, while pins A0 to A3

served as analog inputs, monitoring signals transmitted to each valve by the Arduino. Pins 20

and 21 facilitated communications between the pressure transducer and the microcontroller.

University of Leeds Toni Soler Arabi ID201781278 7

In terms to the electrical settings, the Arduino operated on a 5 V DC input voltage, while

producing an output voltage of the same characteristics.

Figure 8: Arduino MEGA 2560 Rev 3 [18].

 The fluidic control box also included a MOSFET, one of the most used transistors

currently. MOSFETs are devices employed for signal amplification, control, or generation [19].

In the context of the fluidic control box, the MOSFET served to amplify signals received from

pins 5 to 8 from the Arduino, which operated at a voltage of 5 V DC. Since the goal was to

regulate the opening and closing of the valves, requiring a 24 V DC input, the MOSFET acted

as an amplifier of the signals generated by the Arduino. Figure 9 shows the MOSFET used.

Figure 9: 4-Channel MOSFET [20].

 In addition to the electronic components, the fluidic control box contained 4 pneumatic

components: solenoid valves, pneumatic lines, a pressure regulator, and a pressure

transducer.

 The solenoid valves, mounted in a manifold, controlled the fluid flow direction by

opening and closing accordingly. Operating at an electrical input of 24 V DC, the solenoid

valves, illustrated in Figure 10, needed the use of a MOSFET between the microcontroller and

the valves.

University of Leeds Toni Soler Arabi ID201781278 8

Figure 10: Solenoid valves mounted in a manifold [21].

The pressure regulator, displayed in Figure 11, adjusted the system pressure

accordingly to the input voltage. Operating within a range of 0 to 5 V DC, the pressure regulator

responded to signals sent from the microcontroller through Pin 11. These signals varied

between the 0 to 5 V DC range based on the pressure settings inputted in the screen. These

settings included a range of [0,15] psi. The compressed air was subsequently transported

throughout the system using flexible tubes known as pneumatic lines [22].

Figure 11: ITV0010-2BS Pressure regulators [23] and pneumatic lines [22].

The final pneumatic component is the pressure transducer. Communication between

the pressure transducer and the Arduino microcontroller was established via the SDA, SCL

pins corresponding to pins 20 and 21 in the Arduino Mega 2560 Rev 3. The Arduino initiated

the process by requesting bytes representing the pressure readings from the pressure

transducer. Subsequently, it sent commands to display these readings in the screen. The

pressure transducer used for the fluidic control box is illustrated in Figure 12.

University of Leeds Toni Soler Arabi ID201781278 9

Figure 12: SSCDANN015PG2A3 Pressure transducer [24].

2.3 Results

 After explaining the operational requirements of each component, an electronic

scheme, illustrating the connections between all components is presented in Figure 13.

Figure 13: Electronic scheme for the fluidic control box.

A visual representation of the system is shown next in Figure 14. It is worth noting

that the pressure regulator was not included in the picture since the lab presented controlled

pressure supply facilities, however, the general design of the control box incorporates it.

University of Leeds Toni Soler Arabi ID201781278 10

Figure 14: Fluidic control box system.

2.4 Discussion

 The individual performance of each component has been analysed, providing a better

understanding of their operation and contribution to the complete system of the fluidic control

box.

Moreover, the electronic scheme provided an overview of the component connections

within the system, approaching the design and layout of the fluidic control box.

Additionally, the physical implementation of these components was illustrated in the

system display. Through this representation, the interaction of the components in real-world

conditions was shown.

 Together, these results provided an overview of the structural and operational aspects

of the fluidic control box. Having understood the system’s design and functionality the coding

and software aspects of the fluidic control box are now to be analysed.

University of Leeds Toni Soler Arabi ID201781278 11

Chapter 3: Arduino programming

3.1 Introduction

 In this chapter, the technical aspects of the Arduino programming, which is responsible

for the fluidic control box operation, are explored. From managing fluid flow through

PWM/Manual operation and communicating with the screen interface, to monitoring pressure

sensors and sequencing controlled valve actuations, every aspect of the control box’s

functionalities is controlled by the Arduino code included in the microcontroller. The functions

and algorithms enabling these operations are analysed, providing insights into how the Arduino

programming facilitates pressure control and data acquisition.

3.2 Methodology

 The touchable screen served as the main source of inputs for the system. Utilizing

the 4D Workshop 4 IDE software [25] provided by the screen supplier, the screen’s working

environment was created through drag-and-drop operation, incorporating buttons, LED digits,

oscilloscopes, etc.

 To control these items, programming was performed in Arduino, with 4DSYSTEMS

offering a dedicated library [26] for screen control. Communication between the screen and

Arduino was facilitated through a function named myGenieEventHandler(), which was

included into the Arduino loop to handle screen events effectively.

Identification of screen events was achieved using the genie.EventIs(&Event,

GENIE_REPORT_EVENT, object, index) function, which detected events based on

specified criteria such as object type and index number. Each item on the screen was

assigned an object identification (e.g., button, scope, LED) and an index number ranging

from 0 to j, where j represented the number of items of the same type.

 While buttons served as inputs, other screen elements like scopes and LEDs required

dynamic updates. This was achieved using the genie.WriteObject(object, index,

data), function from the library, allowing for real-time display updates based on the input

data.

 Having explained the communication commands between the screen and the

Arduino, the focus now shifts to explaining the programming of the fluidic control box’s main

functionalities. The analysis starts with the manual and PWM operation of the valves,

focusing on the process of signal generation for these operations.

University of Leeds Toni Soler Arabi ID201781278 12

The Arduino Mega 2560 Rev 3 included the possibility of PWM signal generation via

pins 2 to 13, utilizing timers 0 to 5. These timers were used to measure time increments and

executing tasks at specific time intervals.

Pins 5 to 8, associated to timers 3 and 4, were the ones chosen for PWM signal

generation. The behaviour and operations of these timers was governed by their respective

control registers denoted as TCCRnA, TCCRnB and TCCRnC, where “n” represents the

identification for the timer.

Figure 15: TCCR4A, TCCR4B and TCCR4C control registers [27].

 The timer’s operational behaviour was defined by the bits shown in Figure 15. For PWM

signal generation, the clock select (CSn2:0), waveform generation mode (WGMn3:0), and

compare output mode (COMnx1:0) bits were involved. Here “x” represented either A or B.

 The clock select bits determined the prescaler value of the clock, affecting the time

elapsed between clock pulses, 𝑇𝑐𝑙𝑘 =
1

𝑓𝑐𝑙𝑘
. When generating signals, if 𝑇𝑐𝑙𝑘 is too small, the

system may exceed its maximum count limit. To solve this, 𝑓𝑐𝑙𝑘 was divided by a prescaler

value, decreasing it, therefore increasing 𝑇𝑐𝑙𝑘 . For optimal operation of the control box, a

prescaler value of 256 was chosen. The specific combination of Clock Select bits (CSn2:0)

required to configure this prescaler is displayed in Table 1.

Table 1: Clock select bit configuration for 256 prescaler value [27].

CSn2 CSn1 CSn0 Description

1 0 0 𝑓𝑐𝑙𝑘/256 (From prescaler)

University of Leeds Toni Soler Arabi ID201781278 13

The waveform generation mode bits affected the counting sequence of the timer,

crucial for signal generation. Among the available options for waveform generation, mode 8,

PWM, phase and frequency correct, was selected due to its capability to modify both signal

frequency and duty cycles, which was a requirement for the control box’s functionality. Table

2 shows the required bit configuration to set mode 8.

Table 2: Bit configuration for waveform generation mode 8 [27].

Mode WGMn3 WGMn2
(CTCn)

WGMn1
(PWMn1)

WGMnO
(PWMnO)

Timer/Counter
Mode of

Operation
TOP Update of

OCRnx at
TOVn Flag

Set on

8 1 0 0 0
PWM, Phase and

Frequency
Correct

ICRn BOTTOM BOTTOM

In the phase and frequency correct mode, illustrated in Figure 16, the register TCNTn

acted as a counter, incrementing with each clock pulse until reaching the maximum value

(TOP), then counting backwards to 0.

Figure 16: Phase and frequency correct PWM Mode, timing diagram [27].

In this mode, the maximum value (TOP) was determined by the ICRn, as shown in

Table 2. By manipulating this register, the period 𝑇, and thus the frequency 𝑓 of the wave were

controlled. The period 𝑇 was calculated using (3.1):

 𝑇 = 𝑇𝑐𝑙𝑘 ⋅ 2 ⋅ ICRn ⋅ 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 (3.1)

University of Leeds Toni Soler Arabi ID201781278 14

Where 𝑇𝑐𝑙𝑘 is the time between clock pulses. To set the ICRn register for a desired

frequency 𝑓, it was determined using (3.2):

𝑓 =
1

𝑇
=

1

𝑇𝑐𝑙𝑘 ⋅ 2 ⋅ 𝐼𝐶𝑅𝑛 ⋅ 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
=

𝑓𝑐𝑙𝑘

2 ⋅ 𝐼𝐶𝑅𝑛 ⋅ 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
→ 𝐼𝐶𝑅𝑛 =

𝑓𝑐𝑙𝑘

2 ⋅ 𝑓 ⋅ 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

(3.2)

Another relevant parameter to be controlled was the duty cycle of the wave. The

approach to its control depends on the user’s choice of the compare output mode bits. Out of

the available options, the non-inverting output mode was chosen as it facilitated duty cycle

control. The bit configuration for the non-inverting output mode is illustrated in Table 3.

Table 3: Bit configuration for non-inverting compare output mode [27].

COMnA1
COMnB1
COMnC1

COMnAO
COMnBO
COMnCO

Description

1 0 Clear OCnA/OCnB/OCnC on compare match when up-counting
Set OCnA/OCnB/OCnC on compare match when down counting

The OCRnx register controlled the duty cycle. In the non-inverting compare output

mode, the signal remained on until TCNTn reached the OCRnx value during upcounting,

then turned off. When TCNTn reached the TOP and started downcounting, the signal turned

on again when reaching the OCRnx value. This behaviour is depicted in Figure 16 (OCnx).

Duty cycle represents the percentage of each period where the signal is on. It can be

calculated using ICRn (the number of clocks to reach the top) and OCRnx (the number of

clocks before the signal changes). To set the desired duty cycle using ICRn, OCRnx was

configured using (3.3):

 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒(%) =
OCRnx

𝐼𝐶𝑅𝑛
⋅ 100 → OCRnx =

𝐼𝐶𝑅𝑛⋅𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒(%)

100
 (3.3)

 An Arduino function, PWMfunc(freq, DutyC1, DutyC2, DutyC3, DutyC4), was

created to generate PWM signals as explained. It adjusted ICRn and OCRnx based on the

desired system frequency and valve duty cycles.

A switch was incorporated in the screen (Figure 17) to toggle between PWM and

manual operation modes. The operation of both modes is detailed in Figure 18's flowchart,

with PWMfunc() facilitating the two of them. For manual operation, a 100% duty cycle fully

opened the valve, while 0% closed it. Separate variables (freqm and DutyCxm, with “m”

denoting manual) were employed for this operation. This approach facilitated switching

between modes while retaining settings for both, allowing parameter modifications even when

the other mode was selected.

University of Leeds Toni Soler Arabi ID201781278 15

Figure 17: PWM/Manual operation, pressure settings and data storage screen interface.

Figure 18: PWM/Manual operation flow chart.

Pressure control in the fluidic control box was managed via screen buttons (Figure 17),

translating settings to the pressure regulator using analogWrite(11, Pset) [28], being Pset

the screen-set pressure and 11 the output pin.

Pressure readings were facilitated through a pressure transducer using the I2C

communication protocol, assisted by Arduino’s Wire Library [29]. The communication line was

identified using the Honeywell Pressure Sensors data sheet [30] and data was requested using

University of Leeds Toni Soler Arabi ID201781278 16

Wire.requestFrom(0x28, 2) [31]. Pressure value was obtained with Wire.read() [32], then

scaled using Honeywell Pressure Sensors transfer function (3.4), and finally displayed on the

screen.

𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = (
𝑃𝑟𝑒𝑎𝑑

214
− 0.1) ⋅

(𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)

0.8
+ 𝑃𝑚𝑖𝑛 =

(
𝑃𝑟𝑒𝑎𝑑

214 − 0.1) ⋅ (15 − 14.696)

0.8
+ 14.696

(3.4)

Here 𝑃𝑚𝑖𝑛 represents the atmospheric pressure, and 𝑃𝑚𝑎𝑥 denotes the maximum

pressure reading limit.

The fluidic control box also included a feature to store system parameters at specific

time intervals. This process, illustrated in Figure 19’s flowchart, was made possible through

Arduino’s SD library [33], and was controlled by the data storage button shown in Figure 17.

Figure 19: Data storage operation flow chart.

YES

University of Leeds Toni Soler Arabi ID201781278 17

 Another requirement for the fluidic control box was sequential valve opening,

particularly useful for soft robot operation. A screen switch (Figure 20) activated this

functionality, subsequently using the same buttons as manual operation to set the sequence

This sequence was a 4-digit number, each digit representing a valve to open in order from left

to right. Figure 21 illustrates the creation of this sequence number in a flow chart.

Figure 20: Sequential operation, duration of the experiment and scope screen interface.

Figure 21: Flow chart for the creation of the sequence number.

It is important to emphasize that the sequence number was not restricted to

incorporate all 4 valves and could include repeated valves. This number was displayed in the

screen and served as a tool for programming sequential operation, as detailed in the

following flow chart (Figure 22).

University of Leeds Toni Soler Arabi ID201781278 18

Figure 22: Sequential operation flow chart.

In the flow chart, 𝑡𝑖 represents the valve opening time stored in digit i of the sequence

number, set by the user using the screen (Figure 20). Each time a new digit was accessed,

this time was reset as 𝑡𝑠. The loop in the lower-left corner of Figure 22 continuously checked

if the selected valve’s opening time had elapsed. It accomplished this by comparing the

elapsed time since the experiment began to the time when the valve initially opened, ensuring

that the difference exceeded 𝑡𝑠.

Additionally, the fluidic control box allows users to set the experiment duration using

the screen buttons shown in Figure 20. Once set, the programming algorithm performed the

exact same time comparison described above. However, in this case when the comparison

condition was met, the system was paused.

Finally, a scope feature was incorporated into the screen, as displayed in Figure 20,

enabling users to verify the characteristics of the generated signals. For this purpose, the

output of Pins 5 to 8 (used for PWM) was connected to analog inputs A0-A2. The signal was

processed using the analogRead(Ax) [34] command and scaled to match the scope's

dimensions through map(sensorValue,a,b,c,d) [35] where a variable ranging between

[a,b] was scaled to [c,d]. The full code that has been analysed here is included in the Appendix.

University of Leeds Toni Soler Arabi ID201781278 19

3.3 Results

After explaining the coding behind the main functionalities of the fluidic control box,

the corresponding results are presented.

In Figure 23, the screen scope illustrates a possible manual operation, where the red,

yellow, green, and pink signals corresponded to valves 1,2,3 and 4, respectively. The same

valves are shown in Figure 24 together with the parameters used for the analogous PWM

operation.

Figure 23: Manual operation output.

Figure 24: PWM operation parameters and output.

University of Leeds Toni Soler Arabi ID201781278 20

Subsequently, Table 4 displays the outcome of the data logging operation. It can be

observed that every relevant parameter was logged precisely every 1 second. It's also worth

mentioning that this data storage rate could be adjusted within the code. Additionally, the table

provides a real-time update of each parameter as time progresses.

Table 4: Data storage operation output.

3.4 Discussion

The results demonstrated how effectively the fluidic control box performs in various

operating modes. Through user adjusted non-repetitive valve opening, the manual operation

mode was presented as an adaptable tool, essential for applications such as soft robotics.

In the PWM operation mode, the precise control over valve parameters such as

frequency and duty cycle was presented as a characteristic making this mode of operation

suitable for fluidic control systems where highly controlled performance is required.

The scope included on the screen enabled users to verify the characteristics of the

generated signals, checking that they align with the desired parameters, providing validation

and verification.

When it comes to pressure control, analysing Table 4, a slight difference between the

pressure set and the one read could be observed, showing limitations in high precision. These

challenges aree due to fluids having particular characteristics like compressibility and viscosity.

Nevertheless, the ability to coarsely control pressure through settings and readings

was presented as one of the control box’s versatile characteristics. This versatility was further

improved through the data logging operation, which provided data collection for analysis and

offered the possibility to adjust the data storage rate.

 Finally, it’s worth mentioning that the results for the sequential operation mode are

detailed in the following chapter, where a movement sequence for a soft robot is replicated,

providing deeper understanding of the fluidic control box’s capabilities.

millis
(ms)

P
read
(psi)

P
set

(psi)

PWM
/

Man.

DC
1

(%)

DC
2

(%)

DC
3

(%)

DC
4

(%)

f
(Hz)

Seq.
Seq.
num.

t1
(s)

T2
(s)

T3
(s)

T4
(s)

Dur.
T

exp
(s)

83171 14.90 15 PWM 60 80 40 50 100 On 2341 9 6 5 4 Off -

84171 14.90 15 PWM 60 80 40 50 100 On 2341 9 6 5 4 Off -

85171 14.90 15 PWM 60 80 40 50 100 On 2341 9 6 5 4 On 30

86171 14.90 15 PWM 50 80 40 50 100 On 2341 9 6 5 4 On 30

87171 14.90 15 PWM 30 80 40 50 100 On 2341 9 6 5 4 On 30

88171 14.90 15 PWM 30 70 40 50 100 On 2341 9 6 5 4 On 30

University of Leeds Toni Soler Arabi ID201781278 21

Chapter 4: Soft robotics control in planetary

exploration.

4.1 Introduction

An insight into the possible applications of the fluidic control box for soft robotics

operation in planetary exploration is provided in this chapter. Based on the performance of an

existing soft robot, it is explored how the control box allows the execution of the necessary

movements for the investigation of extraterrestrial environments.

4.2 Methodology

 A crawler robot with 5 different pneumatic channels [36] served as the soft robot to

validate the fluidic control box’s functionality. While the fluidic control box included a total of 4

pneumatic channels as outputs, expanding its capacity with an extra channel would simply

implicate increasing in one unit the pneumatic components. Therefore, the explanation is

provided considering an additional channel. The pneumatic channels were assigned numerical

identifiers for clarification: being 1 and 2 the left and right front legs respectively, 3 and 4 the

left and right hind legs, and 5 the core of the robot, corresponding to the auxiliary valve.

 The main functionality of the robot was to navigate planetary terrain. To achieve this, a

sequence of valve openings resulting in a crawling movement is shown in Figure 25. In the

figures, pressurized pneumatic channels are represented while non-pressurized are shown in

red. Replicating this movement sequence would simply consist of maintaining the 5th valve

(central) open and creating a sequential number 4-1-3-2 with a time opening of approximately

0.6 seconds per valve.

Figure 25: Crawling movement sequence [36].

University of Leeds Toni Soler Arabi ID201781278 22

Additionally, manual operation of the fluidic control box offered the possibility to

overcome different obstacles being controlled by a robot operator. Figure 26 illustrates the

movement of the robot underneath an obstacle, proving its superior adaptability to challenges

compared to a traditional robot. For the considered operation, the operator would manually

open the necessary valves at the specified times. For instance, at time point C valves 1, 2 and

5 would be opened, while at time point E valves 3 and 4 would be activated.

Figure 26: Obstacle avoidance movement sequence [36].

4.3 Results

 The following Figure 27 will illustrate how the required signals to replicate the

movement sequence shown in Figure 25 were generated by the fluidic control box. It is worth

mentioning that for the fluidic control box, the time opening between valves was modified

using 1 second increments for usability, and therefore the smaller operation value is 1

second, instead of the 0.6 second intervals used in Figure 25. However, this time increment

could simply be adapted to include smaller values.

University of Leeds Toni Soler Arabi ID201781278 23

Figure 27: Sequential operation parameters and output.

4.4 Discussion

 The fluidic control box is presented as a promising alternative for the control of soft

robots in planetary exploration, demonstrating versatility and adaptability through the

combination of both sequential and manual operation.

The successful sequence movement reproduction based on a previously existing soft

robot operation showed the ability of the control box to generate motion requiring repetitive

patterns, a critical aspect in planetary exploration.

Moreover, the manual operation has shown to provide the needed adaptability to

overcome obstacles during exploration. The operators would control the robots in real-time

through valve opening, guiding them through difficult environments, taking advantage of the

flexibility offered by soft robots.

 Furthermore, the fluidic control box proved great compatibility with existing soft

robots, showing that the combination of both systems would simply require connecting the

output pneumatic lines to the robot.

University of Leeds Toni Soler Arabi ID201781278 24

Chapter 5: Conclusion

5.1 Achievements

Throughout the project, different achievements related to the main objectives have

been accomplished. Firstly, pressure control was obtained through the programming of the

Arduino Mega 2560 Rev 3 microcontroller in Arduino, also offering the alternative for both

manual and PWM operation.

Moreover, the configuration of the 4DSYSTEMS graphical screen has represented a

key component to ensure user’s accessibility and usability through the display of the different

modes of operation and the creation of a user-friendly interface.

Additionally, the controlled storage of the relevant parameters at specified time

intervals has been achieved through the data logger, offering the possibilities of data

manipulation post operation.

Finally, a sequential pressure control system together with a possible controlled

operation of a soft robot in space exploration have been provided, showing a promising

advance of fluidic control technologies.

5.2 Discussion

The findings from chapters 2, 3, and 4 were closely related to the project's aim of

designing and manufacturing a fluidic control box to manage soft robots' operation on planetary

exploration through pressure modification.

In chapter 2 the analysis of the fluidic control box's design and manufacture provided

an overview of its structural and operational aspects. Moreover, a better understanding of the

contribution to the complete system of each component was gained after their individual

explanation.

The analysis of the coding aspect in chapter 3 showed the effective performance of the

fluidic control box in different operational modes. From manual or PWM operation, to pressure

control or data storage, each mode offered advantages for the control of soft robotics and the

collection of data, both being useful for extraterrestrial exploration. However, high precision

control is still far from being reached, and is left as an aspect to be developed in the future by

the fluidic control box and soft robotics.

Finally, chapter 4 revealed the adaptability of the fluidic control box. The successful

demonstration of the sequencing operation together with the wide possibilities offered by

manual operation mode, showed a versatile system suitable for extraterrestrial exploration.

University of Leeds Toni Soler Arabi ID201781278 25

5.3 Conclusions

The analysis of the fluidic control box throughout the report has provided an exploration

of its abilities for soft robotics control on extraterrestrial environments. Its structure together

with its different functionalities were investigated, highlighting its versatility and adaptability.

The fluidic control box represents a promising solution for planetary exploration.

However, despite the characteristics making it suitable for these operations, high precision

pressure control is still an aspect to be developed.

In conclusion, the analysis of the fluidic control box deepened the understanding of its

advantages and limitations in extraterrestrial missions. Future research in the improvement of

those limitations opens the door for the use of the fluidic control box in planetary exploration.

5.4 Future Work

Soft robotics has experienced a large increase in their use across different areas

throughout the last years and it is forecasted that this expansion will be further incremented.

However, these robots currently present different limitations that need to be considered.

One significant challenge is the fact that most current soft robots rely on a continuous

external power supply, and therefore need to be connected to stationary sources, limiting

their area of influence.

Additionally, the use of soft materials and low pressure, while presenting advantages

for flexibility and adaptability, limits the construction of large, untethered robots where weight

of components can lead to collapse [3].

Another aspect lacking is the precision of soft robots, which is essential for expanding

their use in applications demanding highly precise control. Soft robotics involves dealing with

fluids, which difficult the obtention of highly accurate results due to factors such as

compressibility and thermal effects.

In summary, future work in soft robotics should focus on overcoming challenges

related to power supply, sizing design, and high precision control. This approach would result

in a diversification of their applicability in a wide range of areas.

University of Leeds Toni Soler Arabi ID201781278 26

References

[1] NASA (2019). Mars 2020 Rover. [online] Nasa.gov. Available at:

https://mars.nasa.gov/mars2020.

[2] Ng, C.S.X. and Lum, G.Z. (2021). Untethered Soft Robots for Future Planetary

Explorations? Advanced Intelligent Systems, p.2100106. doi:

https://doi.org/10.1002/aisy.202100106.

[3] Whitesides, G.M. (2018). Soft Robotics. Angewandte Chemie International Edition, 57(16),

pp.4258–4273. doi: https://doi.org/10.1002/anie.201800907.

[4] Umedachi, T., Vikas, V. and Trimmer, B.A. (2016). Softworms : the design and control of

non-pneumatic, 3D-printed, deformable robots. Bioinspiration & Biomimetics, 11(2), p.025001.

doi: https://doi.org/10.1088/1748-3190/11/2/025001.

[5] Wyss Institute. (2016). The first autonomous, entirely soft robot. [online] Available at:

https://wyss.harvard.edu/news/the-first-autonomous-entirely-soft-robot/.

[6] Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X. and Whitesides, G.M. (2011). Soft

Robotics for Chemists. Angewandte Chemie International Edition, 50(8), pp.1890–1895. doi:

https://doi.org/10.1002/anie.201006464.

[7] Marchese, A.D., Onal, C.D. and Rus, D. (2014). Autonomous Soft Robotic Fish Capable of

Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics, 1(1), pp.75–87. doi:

https://doi.org/10.1089/soro.2013.0009
[8] Xavier, M.S., Fleming, A.J. and Yong, Y.K. (2021). Design and Control of Pneumatic

Systems for Soft Robotics: A Simulation Approach. IEEE Robotics and Automation Letters,

6(3), pp.5800–5807. doi: https://doi.org/10.1109/lra.2021.3086425.

[9] uk.rs-online.com. (n.d.). RS PRO 72W Plug-In AC/DC Adapter 24V dc Output, 3A Output |

RS. [online] Available at: https://uk.rs-online.com/web/p/ac-dc-adapters/9048503.

[10] 20W Adjustable DC-DC Buck Converter. https://mou.sr/43RNOqI

[11] SparkFun (2020). How to Use a Breadboard - learn.sparkfun.com. [online] Sparkfun.com.

Available at: https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/all.

[12] Hemmings, M. (2018). What is a Jumper Wire? [online] blog.sparkfuneducation.com.

Available at: https://blog.sparkfuneducation.com/what-is-jumper-wire.

[13] 4D Systems. (n.d.). GEN4-ULCD-50DT. [online] Available at:

https://4dsystems.com.au/products/gen4-ulcd-50dt/.

[14] 4D Systems. (n.d.). 4D-ARDUINO-ADAPTOR-SHIELD-II. [online] Available at:

https://4dsystems.com.au/products/4d-arduino-adaptor-shield-ii/ .

[15] Ibrahim, D. (2014). Pulse Width Modulation - an overview | ScienceDirect Topics. [online]

www.sciencedirect.com. Available at:

https://www.sciencedirect.com/topics/engineering/pulse-width-modulation.

https://mars.nasa.gov/mars2020
https://doi.org/10.1002/aisy.202100106
https://doi.org/10.1002/anie.201800907
https://doi.org/10.1088/1748-3190/11/2/025001
https://wyss.harvard.edu/news/the-first-autonomous-entirely-soft-robot/
https://doi.org/10.1002/anie.201006464
https://doi.org/10.1089/soro.2013.0009
https://doi.org/10.1109/lra.2021.3086425
https://uk.rs-online.com/web/p/ac-dc-adapters/9048503
https://mou.sr/43RNOqI
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/all
https://blog.sparkfuneducation.com/what-is-jumper-wire
https://4dsystems.com.au/products/gen4-ulcd-50dt/
https://4dsystems.com.au/products/4d-arduino-adaptor-shield-ii/
https://www.sciencedirect.com/topics/engineering/pulse-width-modulation

University of Leeds Toni Soler Arabi ID201781278 27

[16] Industries, A. (n.d.). Adafruit Assembled Data Logging shield for Arduino. [online]

www.adafruit.com. Available at: https://www.adafruit.com/product/1141 .

[17] EIT | Engineering Institute of Technology. (n.d.). Types and Applications of

Microcontrollers. [online] Available at: https://www.eit.edu.au/resources/types-and-

applications-of-

microcontrollers/#:~:text=Microcontroller%20is%20a%20compressed%20micro.

[18] Arduino.cc. (2024). Available at: https://docs.arduino.cc/hardware/mega-2560/#features.

[19] Riordan, M. (2019). transistor | Definition & Uses. In: Encyclopædia Britannica. [online]

Available at: https://www.britannica.com/technology/transistor.

[20] www.martview.com. (n.d.). 4-Channel MOS FET PLC Amplifier Board Driver Module.

[online] Available at: https://www.martview.com/4-channel-mos-fet-plc-amplifier-board-driver-

module.html .

[21] uk.rs-online.com. (n.d.). VV100-S41-06-M5 | SMC V100 series 6 station Metric M5

Manifold | RS. [online] Available at: https://uk.rs-online.com/web/p/manifold-bases-sub-bases-

end-bases/1964442?gb=s.

[22] uk.rs-online.com. (n.d.). Air Hose | Pneumatic Tubing | RS. [online] Available at:

https://uk.rs-online.com/web/c/pneumatics-hydraulics/pneumatic-connectors-fittings-hose/air-

hoses.

[23] Automation Distribution. (n.d.). SMC ITV0010-2BS Compact Electro-Pneumatic

Regulator. [online] Available at: https://automationdistribution.com/smc-itv0010-2bs/

[Accessed 10 Apr. 2024].

[24] es.rs-online.com. (n.d.). Sensor de presión del calibrador, SSCDANN015PG2A3, DIP 8

pines 103kPa | RS. [online] Available at: https://es.rs-online.com/web/p/sensores-de-presion-

para-pcb/2119938 .

[25] 4D Systems. (n.d.). Software. [online] Available at: https://4dsystems.com.au/software/.

[26] GitHub. (2024). 4dsystems/ViSi-Genie-Arduino-Library. [online] Available at:

https://github.com/4dsystems/ViSi-Genie-Arduino-Library.

[27] Microchip Technology. ATmega640/1280/1281/2560/2561 data sheet. Available at:

https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-

atmega640-1280-1281-2560-2561_datasheet.pdf

[28] www.arduino.cc. (n.d.). analogWrite() - Guía de Referencia de Arduino. [online] Available

at: https://www.arduino.cc/reference/es/language/functions/analog-io/analogwrite/

[29] Arduino (n.d.). Wire - Arduino Reference. [online] www.arduino.cc. Available at:

https://www.arduino.cc/reference/en/language/functions/communication/wire/.

[30] Basic Board Mount Pressure Sensors. (n.d.). Available at:

https://cdn.sparkfun.com/assets/5/9/8/4/f/ABPLLNN600MGAA3.pdf.

https://www.adafruit.com/product/1141
https://www.eit.edu.au/resources/types-and-applications-of-microcontrollers/#:~:text=Microcontroller%20is%20a%20compressed%20micro
https://www.eit.edu.au/resources/types-and-applications-of-microcontrollers/#:~:text=Microcontroller%20is%20a%20compressed%20micro
https://www.eit.edu.au/resources/types-and-applications-of-microcontrollers/#:~:text=Microcontroller%20is%20a%20compressed%20micro
https://docs.arduino.cc/hardware/mega-2560/#features
https://www.britannica.com/technology/transistor
https://www.martview.com/4-channel-mos-fet-plc-amplifier-board-driver-module.html
https://www.martview.com/4-channel-mos-fet-plc-amplifier-board-driver-module.html
https://uk.rs-online.com/web/p/manifold-bases-sub-bases-end-bases/1964442?gb=s
https://uk.rs-online.com/web/p/manifold-bases-sub-bases-end-bases/1964442?gb=s
https://uk.rs-online.com/web/c/pneumatics-hydraulics/pneumatic-connectors-fittings-hose/air-hoses
https://uk.rs-online.com/web/c/pneumatics-hydraulics/pneumatic-connectors-fittings-hose/air-hoses
https://automationdistribution.com/smc-itv0010-2bs/
https://es.rs-online.com/web/p/sensores-de-presion-para-pcb/2119938
https://es.rs-online.com/web/p/sensores-de-presion-para-pcb/2119938
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://www.arduino.cc/reference/es/language/functions/analog-io/analogwrite/
https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://cdn.sparkfun.com/assets/5/9/8/4/f/ABPLLNN600MGAA3.pdf

University of Leeds Toni Soler Arabi ID201781278 28

[31] www.arduino.cc. (n.d.). requestFrom() - Arduino Reference. [online] Available at:

https://www.arduino.cc/reference/en/language/functions/communication/wire/requestfrom/

[32] www.arduino.cc. (n.d.). read() - Arduino Reference. [online] Available at:

https://www.arduino.cc/reference/en/language/functions/communication/wire/read/

[33] www.arduino.cc. (n.d.). SD - Arduino Reference. [online] Available at:

https://www.arduino.cc/reference/en/libraries/sd/.

[34] Arduino (2019). Arduino Reference. [online] Arduino.cc. Available at:

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/.

[35] Arduino (2019). Arduino Reference. [online] Arduino.cc. Available at:

https://www.arduino.cc/reference/en/language/functions/math/map/.

[36] Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X.,

Wang, M. and Whitesides, G.M. (2011). Multigait soft robot. Proceedings of the National

Academy of Sciences, 108(51), pp.20400–20403. doi:

https://doi.org/10.1073/pnas.1116564108.

https://www.arduino.cc/reference/en/language/functions/communication/wire/requestfrom/
https://www.arduino.cc/reference/en/language/functions/communication/wire/read/
https://www.arduino.cc/reference/en/libraries/sd/
https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/
https://www.arduino.cc/reference/en/language/functions/math/map/
https://doi.org/10.1073/pnas.1116564108

University of Leeds Toni Soler Arabi ID201781278 29

Appendix: Arduino complete code.

// Including the necessary libraries

#include <genieArduino.h> // Library for screen programming

#include <Wire.h>

#include "SD.h"

#include "RTClib.h"

Genie genie; // Creates a new instance named 'genie'

#define RESETLINE 4 // Change this if you are not using an Arduino Adaptor

Shield Version 2 (see code below)

///

Variables definition

//

////////

int prescaler = 256; // Definition of the prescaler value used for Timers.

Change CS in TCCRxB if changed.

// PWM-Manual operation.

int man = 0; // Definition of the manual-pwm button. 0 for manual operation 1

for PWM.

float freq = 0; // Definition of the frequency of the whole system.

int DutyC1 = 0; // Definition of the duty cycle of valve 1 for PWM.

int DutyC2 = 0; // Definition of the duty cycle of valve 2 for PWM.

int DutyC3 = 0; // Definition of the duty cycle of valve 3 for PWM.

int DutyC4 = 0; // Definition of the duty cycle of valve 4 for PWM.

int valve1 = 0; // Definition of the valve 1 button. 0 for released. 1 for

pressed.

int valve2 = 0; // Definition of the valve 2 button. 0 for released. 1 for

pressed.

int valve3 = 0; // Definition of the valve 3 button. 0 for released. 1 for

pressed.

int valve4 = 0; // Definition of the valve 4 button. 0 for released. 1 for

pressed.

int DutyC1m = 0; // Definition of the duty cycle of valve 1 for the manual

operation. It will only be 0 or 100 meaning that the valve is either open or

closed.

int DutyC2m = 0; // Definition of the duty cycle of valve 2 for the manual

operation. It will only be 0 or 100 meaning that the valve is either open or

closed.

University of Leeds Toni Soler Arabi ID201781278 30

int DutyC3m = 0; // Definition of the duty cycle of valve 3 for the manual

operation. It will only be 0 or 100 meaning that the valve is either open or

closed.

int DutyC4m = 0; // Definition of the duty cycle of valve 4 for the manual

operation. It will only be 0 or 100 meaning that the valve is either open or

closed.

float freqm = 1; // Definition of the frequency of the whole system for the

manual operation. Its value won't matter since the Duty Cycles will be 0 or

100.

// Pressure settings.

int Pset = 0; // Definition of the pressure to be set.

// Start, pause, stop.

int pause = 0; // Definition of the pause button. 0 for released. 1 for

pressed.

int start = 0; // Definition of the start button. 0 for released. 1 for

pressed.

// Sequencing operation.

int sequencing = 0; // Definition of the sequencing button variable. 0 for

released. 1 for pressed.

int order = 1; // Definition of the variable used for the order of the

sequence's digits in the LED.

int seqnum = 0; // Definition of the current valve selected for the sequence

setting. It will change as the next valve is selected and will be added to the

LED digits.

int numLED = 0; // Definition of the complete number of the sequence which is

written in the LED.

int ts1 = 0; // Definition of the time between the 1st and 2nd valve opening

in the sequence.

int ts2 = 0; // Definition of the time between the 2nd and 3rd valve opening

in the sequence.

int ts3 = 0; // Definition of the time between the 3rd and 4th valve opening

in the sequence.

int ts4 = 0; // Definition of the time between the 4th and 1st valve opening

in the sequence.

int i = 0; // Definition of the variable used to know which valve is to be

opened at the considered time.

int ts = 0; // Definition of the time used for the sequential opening

programming, changing as it goes to the next valve in the sequence (ts1, ts2,

ts3...).

unsigned long previousMillis = 0; // Definition of the variable used for the

storage of miliseconds to check if it is time to open the next

// valve in the sequence.

University of Leeds Toni Soler Arabi ID201781278 31

// Duration of the experiment operation.

int duration = 0; // Definition of the duration of the experiment button. 0

for released. 1 for pressed.

unsigned long startTime = 0; // Definition of the variable used for the

storage of miliseconds to check if it is time to stop the system.

int texp = 0; // Definition of the duration of the experiment. The system will

stop after the time is elapsed.

int n = 0; // Definition of the variable used to know if it is time to stop

the system.

// Pressure reading.

uint16_t P_bin = 0; // Definition of the variable used for reading the

pressure in 14 bits binary.

unsigned long previousMillisread = 0; // Definition of the variable used for

the storage of miliseconds to check if it is time to read the pressure.

float Pread = 0; // Definition of the variable used for reading the pressure.

// Scope display.

int traceValue1 = 0; // Definition of the mapped variable used for the 1st

signal in the scope.

int traceValue2 = 0; // Definition of the mapped variable used for the 2nd

signal in the scope.

int traceValue3 = 0; // Definition of the mapped variable used for the 3rd

signal in the scope.

int traceValue4 = 0; // Definition of the mapped variable used for the 4th

signal in the scope.

int sensorValue = 0; // Definition of the variable used for the reading of the

1st signal in the scope.

int sensorValue2 = 0; // Definition of the variable used for the reading of

the 2nd signal in the scope.

int sensorValue3 = 0; // Definition of the variable used for the reading of

the 3rd signal in the scope.

int sensorValue4 = 0; // Definition of the variable used for the reading of

the 4th signal in the scope.

// Data storage.

int datastor = 0; // Definition of the data storage button. 0 for released. 1

for pressed.

unsigned long previousMillisdatstor = 0; // Definition of the variable used

for the storage of miliseconds to check if it is time to store the data.

RTC_PCF8523 RTC; // define the Real Time Clock object

uint32_t syncTime = 0; // time of last sync()

// for the data logging shield, we use digital pin 10 for the SD cs line

const int chipSelect = 10;

University of Leeds Toni Soler Arabi ID201781278 32

 // the logging file

 File logfile;

void setup()

{

 Wire.begin(); // Join I2C bus (address is optional for

controller device)

 Serial.begin(9600); // Make sure it is the same baud rate for the screen in

ViSi Genie.

 Serial.println();

 genie.Begin(Serial); // Sets Serial0 to be used by the Genie instance

'genie'

 genie.AttachEventHandler(myGenieEventHandler); // Name of the function used

to Handle events.

 pinMode(RESETLINE, OUTPUT); // Set D4 on Arduino to Output (4D Arduino

Adaptor V2 - Display Reset)

 digitalWrite(RESETLINE, 1); // Reset the Display via D4

 delay(100);

 digitalWrite(RESETLINE, 0); // unReset the Display via D4

 delay (7000); // Let the display start up after the reset for 3.5 s.

 // Definition of output pins for PWM

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

 pinMode(7, OUTPUT);

 pinMode(8, OUTPUT);

 // Definition of output pin for Pressure Regulator.

 pinMode(11, OUTPUT);

 // Setting TCCR registers for Timer 3 and 4 to eliminate previous settings.

 TCCR3A = 0b00000000;

 TCCR3B = 0b00000000;

 TCCR4A = 0b00000000;

 TCCR4B = 0b00000000;

 // Setting WGM to PWM, Phase and Frequency correct. Clock Selector to

prescaler 256. Compare Output Mode to Non-Inverting.

 TCCR3A = _BV(COM3A1);

 TCCR3B = _BV(WGM33) | _BV(CS32);

 TCCR4A = _BV(COM4A1) | _BV(COM4B1) | _BV(COM4C1);

 TCCR4B = _BV(WGM43) | _BV(CS42);

}

University of Leeds Toni Soler Arabi ID201781278 33

void loop()

{

 genie.DoEvents(); // Receives responses from the display and then calls the

event handler function.

 if (start == 1) // If the system is operating.

 {

 if (datastor == 1) // If the data storage operation is selected.

 {

 datastorage(); // Calls the data storage function.

 }

 if (duration == 1) // If the duration of the experiment operation is

selected.

 {

 durationexp(texp); // Calls the duration function.

 }

 if (sequencing == 1) // If the sequencing operation is selected.

 {

 seqopen(numLED, ts1, ts2, ts3, ts4); // Calls the sequential opening

function.

 }

 else // If the sequencing operation is not selected.

 {

 if (man == 1) // If the PWM operation is selected.

 {

 // Generates the PWM signal for each of the valves with the

corresponding Duty Cycles and frequency.

 PWMfunc(freq, DutyC1, DutyC2, DutyC3, DutyC4);

 }

 else if (man == 0) // If the Manual operation is selected.

 {

 // Generates the full opening or closing the valves by Duty Cycles

of 0 or 100.

 PWMfunc(freqm, DutyC1m, DutyC2m, DutyC3m, DutyC4m);

 }

 }

 // Reads the pressure every 1s.

 pressurereading();

 }

 else if (start == 0) // If the system is not operating.

 {

 // No signal is sent.

 OCR3A = 0;

 OCR4A = 0;

University of Leeds Toni Soler Arabi ID201781278 34

 OCR4B = 0;

 OCR4C = 0;

 }

 sensorValue = analogRead(A0);

 traceValue1 = map(sensorValue,0,1023,0,100);

 genie.WriteObject(GENIE_OBJ_SCOPE, 0, traceValue1);

 sensorValue2 = analogRead(A1);

 traceValue2 = map(sensorValue2,0,1023,0,100);

 genie.WriteObject(GENIE_OBJ_SCOPE, 0, traceValue2);

 sensorValue3 = analogRead(A2);

 traceValue3 = map(sensorValue3,0,1023,0,100);

 genie.WriteObject(GENIE_OBJ_SCOPE, 0, traceValue3);

 sensorValue4 = analogRead(A3);

 traceValue4 = map(sensorValue4,0,1023,0,100);

 genie.WriteObject(GENIE_OBJ_SCOPE, 0, traceValue4);

 // Sets the desired pressure in the pressure regulator.

 analogWrite(11, Pset);

}

void error(char *str)

{

 Serial.print("error: ");

 Serial.println(str);

 while(1);

}

// Function to generate the PWM for each of the 4 valves considering frequency

and duty cycle for each of them.

void PWMfunc(float freq, int DutyC1, int DutyC2, int DutyC3,int DutyC4)

{

 // Sets the maximum value to be reached by the clock (top of the wave)

considering the desired frequency.

 ICR3 = F_CPU / (prescaler * freq * 2);

 ICR4 = F_CPU / (prescaler * freq * 2);

 // Sets the number of clocks to be reached before changing to LOW state,

considering the previously calculated

 // ICRx value and the desired duty cycle.

 OCR3A = (ICR4) * (DutyC1 * 0.01);

 OCR4A = (ICR4) * (DutyC2 * 0.01);

 OCR4B = (ICR4) * (DutyC3 * 0.01);

 OCR4C = (ICR4) * (DutyC4 * 0.01);

University of Leeds Toni Soler Arabi ID201781278 35

}

// Function to write the order in the sequence in the LED digits.

void seqLED(int seqNUM, int ord)

{

 if (order == 5) // Once the number of selected valves for the sequence is

bigger than the maximum.

 {

 numLED = 0; // Sets the LED number to 0 again.

 order = 1; // Sets the order of the sequence's digits to start again with

the first digit. This variable is external to the function.

 ord = 1; // Sets the order of the sequence's digits to start again with

the first digit. This variable is internal to the function and it is only set

internally

 // once the maximum number of digits has been reached, otherwise it just

takes the value of the external variable which is the input.

 }

 numLED = numLED + (seqNUM) * round(pow(10,(4 - ord))); // Sets the digits of

the sequence number by using powers of 10 starting by 10^3 for the first valve

of the sequence.

 // The previous value of numLED is added to keep the previous digits every

time a new digit of the sequence is set.

 // Write the selected sequence in LedDigits7.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, numLED);

}

// Function to open the valves in the desired order. The inputs are the

sequencing order as a number of 4 digits and the time between the opening of

each valve.

void seqopen(int numLEDo, int ts1o, int ts2o, int ts3o, int ts4o)

{

 if (i == 1) // If it is the time to open the first valve.

 {

 ts = ts1o * 1000; // Sets the time to be elapsed to ts1. Multiplied by

1000 to convert to miliseconds.

 }

 else if (i == 2) // If it is the time to open the second valve.

 {

 ts = ts2o * 1000; // Sets the time to be elapsed to ts2. Multiplied by

1000 to convert to miliseconds.

 }

 else if (i == 3) // If it is the time to open the third valve.

 {

 ts = ts3o * 1000; // Sets the time to be elapsed to ts3. Multiplied by

1000 to convert to miliseconds.

University of Leeds Toni Soler Arabi ID201781278 36

 }

 else if (i == 4) // If it is the time to open the fourth valve.

 {

 ts = ts4o * 1000; // Sets the time to be elapsed to ts4. Multiplied by

1000 to convert to miliseconds.

 }

 else if (i == 5) // If the fourth valve has finished.

 {

 i = 1; // Start with the 1st valve again.

 ts = ts1o * 1000; // Sets the time to tbe elapsed to ts1.

 }

 unsigned long currentMillis = millis(); // Stores the current value of

miliseconds since the Arduino first ran.

 if (currentMillis - previousMillis >= ts) // Checks if the considered time

has been elapsed, by comparing the current value of millis() to the value of

miliseconds that

 // was stored when the opening of the valve started.

 {

 // Saves the value of the current miliseconds so that in the future this

value can be compared to the increasing millis() and check if the desired time

has been elapsed.

 previousMillis = currentMillis;

 i = i + 1; // Increases to start the opening of the next valve in the

sequence.

 }

 String strNum = String(numLEDo); // Converts the 4 digit number that stores

the sequence to a string.

 int valve = strNum.charAt(i - 1) - '0'; // Checks the current valve to be

opened by selecting the corresponding digit on the sequence number.

 if (valve == 1) // If the valve to be opened is the 1.

 {

 PWMfunc(freq, DutyC1, 0, 0, 0); // Generates the PWM signal for valve 1

and closes the other ones.

 }

 else if (valve == 2) // If the valve to be opened is the 2.

 {

 PWMfunc(freq, 0, DutyC2, 0, 0); // Generates the PWM signal for valve 2

and closes the other ones.

 }

University of Leeds Toni Soler Arabi ID201781278 37

 else if (valve == 3) // If the valve to be opened is the 3.

 {

 PWMfunc(freq, 0, 0, DutyC3, 0); // Generates the PWM signal for valve 3

and closes the other ones.

 }

 else if (valve == 4) // If the valve to be opened is the 4.

 {

 PWMfunc(freq, 0, 0, 0, DutyC4); // Generates the PWM signal for valve 4

and closes the other ones.

 }

}

// Function to stop the system after the time set for the duration of the

experiment has been elapsed.

void durationexp(int T)

{

 unsigned long currentMillisdur = millis(); // Stores the current value of

miliseconds since the Arduino first ran.

 if (currentMillisdur - startTime >= T * 1000) // Checks if the considered

time has been elapsed, by comparing the current value of millis() to the value

of miliseconds that

 // was stored when the duration of the experiment was set. Multiplied by

1000 to convert to miliseconds.

 {

 // Save the last time the sequence was updated

 startTime = currentMillisdur;

 switch (n) // Switches n to check if the conditions below are

accomplished.

 {

 case 0: // If n is 0 it will satisfy the if condition above because

startTime = 0 and the difference between the current milliseconds and

startTime will be bigger than T.

 {

 n = n + 1; // Therefore n is increased so that the next time the if

condition is satisfied the system will actually be stopped.

 break; // Leaves the switch loop.

 }

 case 1: // If n is 1 this will mean that it is not the first access to

the if condition and now actually the duration time has been elapsed.

 {

 start = 0; // Therefore the system is stopped.

 startTime = 0; // startTime is set to 0 to allow the next countdown.

 n = 0; // n is set to 0 to allow the next countdown.

 break; // Leaves the switch loop.

University of Leeds Toni Soler Arabi ID201781278 38

 }

 }

 }

}

// Function that reads the pressure every 1s through the pressure transducer.

void pressurereading(void)

{

 unsigned long currentMillisread = millis(); // Stores the current value of

miliseconds since the Arduino first ran.

 if (currentMillisread - previousMillisread >= 1000) // Checks if the

considered time of 1s between pressure reading has been elapsed, by comparing

the current value of millis()

 // to the value of miliseconds that was stored when the duration of the

experiment was set. Multiplied by 1000 to convert to miliseconds.

 {

 // Save the last time the sequence was updated

 previousMillisread = currentMillisread;

 Wire.requestFrom(0x28, 2); // Request 2 bytes (16 bits) from the sensor

 if (Wire.available()) // Check if data is available

 {

 byte highByte = Wire.read(); // Read the high byte (most significant

bits)

 byte lowByte = Wire.read(); // Read the low byte (least significant

bits)

 // Combine the high and low bytes into a 14-bit number eliminating the

first two bits that correspond to the sensor state data.

 P_bin = ((highByte & 0x3F) << 8) | lowByte;

 // The transfer function for the Honeywell SSCDANN015PAAA5 pressure

transducer is used to calculate the pressure reading.

 // Transfer function given by Output (% of 2^14 counts) = 80%/(P_max -

P_min)*(P_read - P_min) + 10%.

 // Where P_max = 15 psi, P_min = P_atm = 14.696 psi and we want to

obtain P_applied. Rearranging and substituting:

 Pread = ((P_bin) / 16383.00 - 0.1) * (15 - 14.696) / 0.8 + 14.696;

 // Write the pressure value read in LED Digits 6.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 6, round(Pread*100));

 }

 }

}

University of Leeds Toni Soler Arabi ID201781278 39

// Function to stop the system after the time set for the duration of the

experiment has been elapsed.

void datastorage(void)

{

 unsigned long currentMillisdatstor = millis(); // Stores the current value

of miliseconds since the Arduino first ran.

 if (currentMillisdatstor - previousMillisdatstor >= 1000) // Checks if the

considered time has been elapsed, by comparing the current value of millis()

to the value of miliseconds that

 // was stored when the last data storage was produced.

 {

 // log in the SD card the the miliseconds elapsed since last data storage.

 logfile.print(currentMillisdatstor); // miliseconds elapsed since last

data storage.

 // log in the SD card the current pressure read of the system.

 logfile.print(", ");

 logfile.print(Pread);

 // log in the SD card the current pressure set of the system.

 logfile.print(", ");

 logfile.print(Pset);

 // log in the SD card if the manual or PWM parameters.

 if (man == 0) // Manual operation set.

 {

 // log in the SD card that PWM operation is set.

 logfile.print(", ");

 logfile.print("Manual");

 // log in the SD card the Duty Cycles of each valve and frequency of the

system in manual operation.

 logfile.print(", ");

 logfile.print(DutyC1m);

 logfile.print(", ");

 logfile.print(DutyC2m);

 logfile.print(", ");

 logfile.print(DutyC3m);

 logfile.print(", ");

 logfile.print(DutyC4m);

 logfile.print(", ");

 logfile.print(freqm);

 }

 else if (man == 1) // PWM operation set.

 {

 // log in the SD card that PWM operation is set.

University of Leeds Toni Soler Arabi ID201781278 40

 logfile.print(", ");

 logfile.print("PWM");

 // log in the SD card the Duty Cycles of each valve and frequency of the

system in PWM operation.

 logfile.print(", ");

 logfile.print(DutyC1);

 logfile.print(", ");

 logfile.print(DutyC2);

 logfile.print(", ");

 logfile.print(DutyC3);

 logfile.print(", ");

 logfile.print(DutyC4);

 logfile.print(", ");

 logfile.print(freq);

 }

 // log in the SD card if the sequencing operation is set.

 if (sequencing == 0) // Sequencing operation not set.

 {

 // log in the SD card if sequencing operation is set.

 logfile.print(", ");

 logfile.print("Off");

 // log in the SD card the sequence number and the time of opening for each

valve.

 logfile.print(", ");

 logfile.print("-");

 logfile.print(", ");

 logfile.print("-");

 logfile.print(", ");

 logfile.print("-");

 logfile.print(", ");

 logfile.print("-");

 logfile.print(", ");

 logfile.print("-");

 }

 else if (sequencing == 1) // sequencing operation set.

 {

 // log in the SD card if sequencing operation is set.

 logfile.print(", ");

 logfile.print("On");;

 /// log in the SD card the sequence number and the time of opening for

each valve.

 logfile.print(", ");

University of Leeds Toni Soler Arabi ID201781278 41

 logfile.print(numLED);

 logfile.print(", ");

 logfile.print(ts1);

 logfile.print(", ");

 logfile.print(ts2);

 logfile.print(", ");

 logfile.print(ts3);

 logfile.print(", ");

 logfile.print(ts4);

 }

 // log in the SD card if the duration of the experiment operation is set.

 if (duration == 0) // Duration of the experiment operation not set.

 {

 // log in the SD card if sequencing operation is set.

 logfile.print(", ");

 logfile.print("Off");

 // log in the SD card the sequence number and the time of opening for each

valve.

 logfile.print(", ");

 logfile.println("-");

 }

 else if (duration == 1) // Duration of the experiment operation set.

 {

 // log in the SD card if sequencing operation is set.

 logfile.print(", ");

 logfile.print("On");;

 /// log in the SD card the sequence number and the time of opening for

each valve.

 logfile.print(", ");

 logfile.println(texp);

 }

 // Save the last time the sequence was updated

 previousMillisdatstor = currentMillisdatstor;

 // Now we write data to disk! Don't sync too often - requires 2048 bytes

of I/O to SD card

 // which uses a bunch of power and takes time

 if ((millis() - syncTime) < 2000) return;

 syncTime = millis();

 logfile.flush();

 }

University of Leeds Toni Soler Arabi ID201781278 42

}

// Function that receives the events coming from the screen,i.e, the buttons

pressed and acts accordingly to the selected buttons.

void myGenieEventHandler(void)

{

 genieFrame Event;

 genie.DequeueEvent(&Event); // Remove the next queued event from the buffer,

and process it below.

 // Start, pause, stop

buttons //

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 10 (start button) and if the start button is released. If both are

satisfied then:

 if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 10)) &&

(start == 0))

 {

 start = 1; // Sets the variable start to 1. This represents that the

system is on.

 pause = 0; // Sets the pause button to released.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 11 (pause button) and if the system was operating.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 11))

&& (start == 1))

 {

 start = 0; // Sets the variable start to 0 to pause the system.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 12 (stop button) and if the system was operating.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 12))

&& (start == 1))

 {

 start = 0; // Sets the variable start to 0 to stop the system.

 DutyC1 = 0; // Clears Duty Cycle of Valve 1 setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, DutyC1); // Write Duty Cycle

of Valve1 value to LedDigits0.

 DutyC2 = 0; // Clears Duty Cycle of Valve 2 setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, DutyC2); // Write Duty Cycle

of Valve2 value to LedDigits1.

University of Leeds Toni Soler Arabi ID201781278 43

 DutyC3 = 0; // Clears Duty Cycle of Valve 3 setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, DutyC3); // Write Duty Cycle

of Valve3 value to LedDigits2.

 DutyC4 = 0; // Clears Duty Cycle of Valve 4 setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, DutyC4); // Write Duty Cycle

of Valve4 value to LedDigits3.

 freq = 0; // Clears frequency of all valves setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 4, freq); // Write the frequency

of all valves value to LedDigits4.

 Pset = 0; // Clears pressure of the system setting it to 0 (initial

value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 5, Pset); // Write the pressure

of the system value to LedDigits5.

 numLED = 0; // Clears the sequence number setting it to 0 (initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 7, numLED); // Write the selected

sequence in LedDigits7.

 ts1 = 0; // Clears time of opening for the 1st valve setting it to 0

(initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, ts1); // Write time of opening

for the 1st selected valve to LedDigits8.

 ts2 = 0; // Clears time of opening for the 2nd valve setting it to 0

(initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, ts2); // Write time of opening

for the 2nd selected valve to LedDigits9.

 ts3 = 0; // Clears time of opening for the 3rd valve setting it to 0

(initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, ts3); // Write time of

opening for the 3rd selected valve to LedDigits10.

 ts4 = 0; // Clears time of opening for the 4th valve setting it to 0

(initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, ts4); // Write time of

opening for the 4th selected valve to LedDigits11.

 order = 1; // Sets the variable used for the order of the sequence's

digits in the LED to 1 (initial value).

 i = 0; // Sets the variable used to know which valve is to be opened at

the considered time to 0 (initial value).

University of Leeds Toni Soler Arabi ID201781278 44

 ts = 0; // Sets the time used for the sequential opening programming,

changing as it goes to the next valve in the sequence (ts1, ts2, ts3...) to 0

(initial value).

 previousMillis = 0; // Sets the variable used for the storage of

miliseconds to check if it is time to open the next

 // valve in the sequence to 0 (initial value).

 startTime = 0; // Sets the variable used for the storage of miliseconds to

check if it is time to stop the system to 0 (initial value).

 texp = 0; // // Clears time of the duration of the experiment setting it

to 0 (initial value).

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, texp); // Write time of the

experiment to LedDigits12.

 n = 0;

 }

 //

///

 /// Pressure set button

///

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 13 (pressure setting +) and prevents the pressure from going bigger

than 15 psi.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 13))

&& (Pset <= 12))

 {

 Pset = Pset + 3; // // Change the pressure of the system by increasing it

for 3 psi.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 5, Pset); // Write the pressure

of the system value to LedDigits5.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 14 (pressure setting -) and prevents the pressure from going smaller

than 0 psi.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 14))

&& (Pset >= 3))

 {

 Pset = Pset - 3; // // Change the pressure of the system by decreasing it

for 3 psi.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 5, Pset); // Write the pressure

of the system value to LedDigits5.

University of Leeds Toni Soler Arabi ID201781278 45

 }

 //

///

 // Data Storage button

//

 if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 20))

 {

 switch (datastor) // Switches man to check if the conditions below are

accomplished.

 {

 case 0: // If data storage was not ON.

 {

 datastor = 1; // Turn it ON.

 // initialize the SD card

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 error("Card failed, or not present");

 }

 Serial.println("card initialized.");

 // create a new file

 char filename[] = "LOGGER00.CSV";

 // Changes the file name till it finds one that has not been used.

 for (uint8_t i = 0; i < 100; i++) {

 filename[6] = i/10 + '0'; // Sets the first digit of LOGGERnn

corresponding to the tens.

 filename[7] = i%10 + '0'; // Sets the second digit of LOGGERnn

corresponding to the units.

 if (! SD.exists(filename)) {

 // only open a new file if it doesn't exist

 logfile = SD.open(filename, FILE_WRITE);

 break; // leave the loop!

 }

 }

 logfile.println("millis (ms),Pread (psi),Pset (psi),PWM/Manual,Duty

Cycle 1 (%),Duty Cycle 2 (%),Duty Cycle 3 (%), \

 Duty Cycle 4 (%),frequency (Hz),Sequencing,Sequence number,Time 1st

valve (s),Time 2nd valve (s),Time 3rd valve (s), \

University of Leeds Toni Soler Arabi ID201781278 46

 Time 4th valve (s),Duration of the experiment,texp (s) "); // Logs the

variables to be stored in columns in CSV format in the SD card.

 break; // Leaves the switch loop.

 }

 case 1: // If data storage was ON.

 {

 datastor = 0; // Turn it OFF.

 break; // Leaves the switch loop.

 }

 }

 }

 //

///

 // Sequencing button

///

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 21 (Sequencing).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 21))

 {

 switch (sequencing) // Switches man to check if the conditions below are

accomplished.

 {

 case 0: // If sequencing option was not ON.

 sequencing = 1; // Turn it ON.

 break; // Leaves the switch loop.

 case 1: // If sequencing option was ON.

 sequencing = 0; // Turn it OFF.

 break; // Leaves the switch loop.

 }

 }

 //

///

 // Sequencing

Operation //

 if (sequencing == 1) // If the sequencing operation is selected.

 {

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 15 (Valve 1).

 if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 15))

University of Leeds Toni Soler Arabi ID201781278 47

 {

 seqnum = 1; // Sets the sequence digit to 1.

 seqLED(seqnum, order); // Calls the function to write the sequence order

in LED.

 order = order + 1; // Increases order variable to set the next valve in

the sequence.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 16 (Valve 2).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON,

16))

 {

 seqnum = 2; // Sets the sequence digit to 2.

 seqLED(seqnum, order); // Calls the function to write the sequence order

in LED.

 order = order + 1; // Increases order variable to set the next valve in

the sequence.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 17 (Valve 3).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON,

17))

 {

 seqnum = 3; // Sets the sequence digit to 3.

 seqLED(seqnum, order); // Calls the function to write the sequence order

in LED.

 order = order + 1; // Increases order variable to set the next valve in

the sequence.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 18 (Valve 4).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON,

18))

 {

 seqnum = 4; // Sets the sequence digit to 4.

 seqLED(seqnum, order); // Calls the function to write the sequence order

in LED.

 order = order + 1; // Increases order variable to set the next valve in

the sequence.

 }

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 22 (ts1 setting +) and prevents the time of opening for the 1st

selected valve

 // from going bigger than 10.

 if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 22)) &&

(ts1 <= 9))

University of Leeds Toni Soler Arabi ID201781278 48

 {

 ts1 = ts1 + 1; // Change the time of opening for the

1st selected valve by increasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, ts1); // Write time of opening

for the 1st selected valve to LedDigits8.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 23 (ts1 setting -) and prevents the time of opening for the 1st

selected valve

 // from going smaller than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 23))

&& (ts1 >= 1))

 {

 ts1 = ts1 - 1; // Change the time of opening for the

1st selected valve by decreasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 8, ts1); // Write time of opening

for the 1st selected valve to LedDigits8.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 24 (ts2 setting +) and prevents the time of opening for the 2nd

selected valve

 // from going bigger than 10.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 24))

&& (ts2 <= 9))

 {

 ts2 = ts2 + 1; // Change the time of opening for the

2nd selected valve by increasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, ts2); // Write time of opening

for the 2nd selected valve to LedDigits9.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 25 (ts2 setting -) and prevents the time of opening for the 2nd

selected valve

 // from going smaller than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 25))

&& (ts2 >= 1))

 {

 ts2 = ts2 - 1; // Change the time of opening for the

2nd selected valve by decreasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 9, ts2); // Write time of opening

for the 2nd selected valve to LedDigits9.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 26 (ts3 setting +) and prevents the time of opening for the 3rd

selected valve

University of Leeds Toni Soler Arabi ID201781278 49

 // from going bigger than 10.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 26))

&& (ts3 <= 9))

 {

 ts3 = ts3 + 1; // Change the time of opening for the

3rd selected valve by increasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, ts3); // Write time of

opening for the 3rd selected valve to LedDigits10.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 27 (ts3 setting -) and prevents the time of opening for the 3rd

selected valve

 // from going smaller than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 27))

&& (ts3 >= 1))

 {

 ts3 = ts3 - 1; // Change the time of opening for the

3rd selected valve by decreasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 10, ts3); // Write time of

opening for the 3rd selected valve to LedDigits10.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 28 (ts4 setting +) and prevents the time of opening for the 4th

selected valve

 // from going bigger than 10.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 28))

&& (ts4 <= 9))

 {

 ts4 = ts4 + 1; // Change the time of opening for the

4th selected valve by increasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, ts4); // Write time of

opening for the 4th selected valve to LedDigits11.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 29 (ts4 setting -) and prevents the time of opening for the 4th

selected valve

 // from going smaller than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 29))

&& (ts4 >= 1))

 {

 ts4 = ts4 - 1; // Change the time of opening for the

4th selected valve by decreasing it 1 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 11, ts4); // Write time of

opening for the 4th selected valve to LedDigits11.

 }

University of Leeds Toni Soler Arabi ID201781278 50

 //

///

 // Duration of the

experiment button //

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 31 (Duration).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 31))

 {

 switch (duration) // Switches man to check if the conditions below are

accomplished.

 {

 case 0: // If duration operation was not ON.

 duration = 1; // Turn it ON.

 break; // Leaves the switch loop.

 case 1: // If duration operation was ON.

 duration = 0; // Turn it OFF.

 break; // Leaves the switch loop.

 }

 }

 //

///

 // Duration of the

experiment Operation ///

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 30 (texp setting +) and prevents the time of the experiment

 // from going bigger than 100.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 30))

&& (texp <= 90))

 {

 texp = texp + 10; // Change the time of the

experiment by increasing it 10 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, texp); // Write time of the

experiment to LedDigits12.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 32 (texp setting -) and prevents the time of the experiment

 // from going smaller than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 32))

&& (texp >= 10))

 {

University of Leeds Toni Soler Arabi ID201781278 51

 texp = texp - 10; // Change the time of the

experiment by decreasing it 10 second.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 12, texp); // Write time of the

experiment to LedDigits12.

 }

 //

///

 // PWM / Manual Operation

button //

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 19 (PWM/Manual).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 19))

 {

 switch (man) // Switches man to check if the conditions below are

accomplished.

 {

 case 0: // If Manual operation was selected

 man = 1; // Change to PWM operation

 break; // Leaves the switch loop.

 case 1: // If PWM operation was selected

 man = 0; // Change to manual operation

 break; // Leaves the switch loop.

 }

 }

 //

///

 // PWM Operation

//

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 0 (DutyCycle1 setting +) and prevents the Duty Cycle from going bigger

than 100.

 if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 0)) &&

(DutyC1 <= 90))

 {

 DutyC1 = DutyC1 + 10; // Change the Duty Cycle of

Valve 1 by increasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, DutyC1); // Write Duty Cycle

of Valve1 value to LedDigits0.

 }

University of Leeds Toni Soler Arabi ID201781278 52

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 1 (DutyCycle1 setting -) and prevents the Duty Cycle from going smaller

than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 1))

&& (DutyC1 >= 10))

 {

 DutyC1 = DutyC1 - 10; // Change the Duty Cycle of

Valve 1 by decreasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0, DutyC1); // Write Duty Cycle

of Valve1 value to LedDigits0.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 2 (DutyCycle2 setting +) and prevents the Duty Cycle from going bigger

than 100.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 2))

&& (DutyC2 <= 90))

 {

 DutyC2 = DutyC2 + 10; // Change the Duty Cycle of

Valve 2 by increasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, DutyC2); // Write Duty Cycle

of Valve2 value to LedDigits1.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 3 (DutyCycle2 setting -) and prevents the Duty Cycle from going smaller

than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 3))

&& (DutyC2 >= 10))

 {

 DutyC2 = DutyC2 - 10; // Change the Duty Cycle of

Valve 2 by decreasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 1, DutyC2); // Write Duty Cycle

of Valve2 value to LedDigits1.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 4 (DutyCycle3 setting +) and prevents the Duty Cycle from going bigger

than 100.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 4))

&& (DutyC3 <= 90))

 {

 DutyC3 = DutyC3 + 10; // Change the Duty Cycle of

Valve 3 by increasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, DutyC3); // Write Duty Cycle

of Valve3 value to LedDigits2.

 }

University of Leeds Toni Soler Arabi ID201781278 53

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 5 (DutyCycle3 setting -) and prevents the Duty Cycle from going smaller

than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 5))

&& (DutyC3 >= 10))

 {

 DutyC3 = DutyC3 - 10; // Change the Duty Cycle of

Valve 3 by decreasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, DutyC3); // Write Duty Cycle

of Valve3 value to LedDigits2.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 6 (DutyCycle4 setting +) and prevents the Duty Cycle from going bigger

than 100.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 6))

&& (DutyC4 <= 90))

 {

 DutyC4 = DutyC4 + 10; // Change the Duty Cycle of

Valve 4 by increasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, DutyC4); // Write Duty Cycle

of Valve4 value to LedDigits3.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 7 (DutyCycle4 setting -) and prevents the Duty Cycle from going smaller

than 0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 7))

&& (DutyC4 >= 10))

 {

 DutyC4 = DutyC4 - 10; // Change the Duty Cycle of

Valve 4 by decreasing it a 10%.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, DutyC4); // Write Duty Cycle

of Valve4 value to LedDigits3.

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 8 (freq setting +) and prevents the Duty Cycle from going bigger than 2

Hz.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 8))

&& (freq <= 1.8))

 {

 freq = freq + 0.2; // Change the frequency of all

valves by increasing it for 0.2 Hz.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 4, freq * 10); // Write the

frequency of all valves value to LedDigits4.

 }

University of Leeds Toni Soler Arabi ID201781278 54

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 9 (freq setting -) and prevents the Duty Cycle from going smaller than

0.

 else if ((genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 9))

&& (freq >= 0.2))

 {

 freq = freq - 0.2; // Change the frequency of all

valves by decreasing it for 0.2 Hz.

 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 4, freq * 10); // Write the

frequency of all valves value to LedDigits4.

 }

 //

///

 // Manual Operation

///

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 15 (Valve 1).

 if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 15))

 {

 switch (valve1) // Switches valve1 to check if the conditions below are

accomplished.

 {

 case 0: // If valve 1 was not open.

 DutyC1m = 100; // Opens Valve 1.

 valve1 = 1; // Sets the Valve 1 button to pressed.

 break; // Leaves the switch loop.

 case 1: // If valve 1 was open.

 DutyC1m = 0; // Closes Valve 1.

 valve1 = 0; // Sets the Valve 1 button to released.

 break; // Leaves the switch loop.

 }

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 16 (Valve 2).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 16))

 {

 switch (valve2) // Switches valve2 to check if the conditions below are

accomplished.

 {

 case 0: // If valve 2 was not open.

 DutyC2m = 100; // Opens Valve 2.

 valve2 = 1; // Sets the Valve 2 button to pressed.

 break; // Leaves the switch loop.

University of Leeds Toni Soler Arabi ID201781278 55

 case 1: // If valve 1 was open.

 DutyC2m = 0; // Closes Valve 2.

 valve2 = 0; // Sets the Valve 2 button to released.

 break; // Leaves the switch loop.

 }

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 17 (Valve 3).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 17))

 {

 switch (valve3) // Switches valve3 to check if the conditions below are

accomplished.

 {

 case 0: // If valve 3 was not open.

 DutyC3m = 100; // Opens Valve 3.

 valve3 = 1; // Sets the Valve 3 button to pressed.

 break; // Leaves the switch loop.

 case 1: // If valve 3 was open.

 DutyC3m = 0; // Closes Valve 3.

 valve3 = 0; // Sets the Valve 3 button to released.

 break; // Leaves the switch loop.

 }

 }

 // Check if the message stored in 'Event' is a GENIE_REPORT_EVENT from

Button 18 (Valve 4).

 else if (genie.EventIs(&Event, GENIE_REPORT_EVENT, GENIE_OBJ_4DBUTTON, 18))

 {

 switch (valve4) // Switches valve4 to check if the conditions below are

accomplished.

 {

 case 0: // If valve 4 was not open.

 DutyC4m = 100; // Opens Valve 4.

 valve4 = 1; // Sets the Valve 4 button to pressed.

 break; // Leaves the switch loop.

 case 1: // If valve 4 was open.

 DutyC4m = 0; // Closes Valve 4.

 valve4 = 0; // Sets the Valve 4 button to released.

 break; // Leaves the switch loop.

 }

 }

}

