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Abstract: The main objective of this study is to assess and contrast the efficacy of distinct spatial
prediction methods in a simulation aimed at optimizing the embodied energy during the construction
of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified
crucial design parameters that directly affect the design and construction of bridge decks. This
analysis determines the critical design variables to improve the deck’s energy efficiency, providing
practical guidance for engineers and professionals in the field. The methods analyzed in this study
are ordinary Kriging and a multilayer perceptron neural network. The methodology involves
analyzing the predictive performance of both models through error analysis and assessing their
ability to identify local optima on the response surface. The results show that both models generally
overestimate the observed values. The Kriging model with second-order polynomials yields a 4%
relative error at the local optimum, while the neural network achieves lower root mean square errors
(RMSEs). Neither the Kriging model nor the neural network provides precise predictions but point
to promising solution regions. Optimizing the response surface to find a local minimum is crucial.
High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve
energy efficiency.

Keywords: bridges; embodied energy; optimization; prestressed concrete; artificial neural network;
surrogate model; Kriging; sustainability

1. Introduction

Construction accounts for 25% to 40% of global energy consumption [1]. The amount
of energy used in constructing a structure and the associated greenhouse gas emissions
are considered key indicators of its sustainability [2,3]. Therefore, interest in optimizing
environmental sustainability in the construction industry has increased significantly in
recent years [4,5].

Prestressed concrete offers many advantages, including longer spans that increase
floor space, thinner slabs for high-rise buildings, fewer joints, and reduced maintenance
costs. It offers excellent durability, crack resistance, and improved structural performance
with less deformation. In addition, prestressed concrete allows for faster construction
with better quality control and is ideal for repetitive structures. However, it requires high-
strength materials, specialized equipment, and skilled labor, making initial construction
costs higher than traditional reinforced concrete structures. Despite these disadvantages,
the long-term benefits often outweigh the initial cost. Leonhart [6] provides an overview of
the prestressing advantages of this technique. Warner et al. [7] offer a detailed discussion
of the potential challenges of prestressed concrete.
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Selecting appropriate materials and optimizing them enhances the sustainability
of structures. Some studies have used energy as a critical target in this process [8,9].
Cabeza et al. [10] conducted a comprehensive review of the literature, utilizing keyword
analysis to present an overview of embodied carbon and energy values. Miller et al. [11]
have shown that post-tensioned concrete slabs consume less embodied energy than their
reinforced concrete counterparts. However, solely reducing the structure’s weight does not
guarantee a reduction in energy consumption [12].

Nevertheless, research on optimizing embodied energy in bridges still needs to be
explored. Alcald et al. [13] found that the least-cost solution only required a 5.3% increase
in embodied energy consumption. In another study, Marti et al. [14] achieved energy
savings of 24% for a 30 m precast bridge. Minunno et al. [15] offer a regression model and
procedural guidelines for practitioners aiming to minimize the environmental impact of
buildings. Furthermore, Penadés-Pla et al. [16] presented a Kriging-based optimization
method for a three-span pedestrian bridge with lengths of 40-50-40 m. However, it is
essential to acknowledge that research addressing energy optimization in concrete slab
bridges is still scarce, indicating a clear need for more exploration.

The heuristic optimization of structures is often computationally expensive, which
has led to the development of metamodels to address this challenging problem. Among
the most effective methods is the Kriging predictor. This approach replaces a simulation
model and provides optimal interpolation based on regression against a set of observed
values from neighboring points [17]. While Kriging has yet to be widely used in the design
of real structures, there are interesting examples of its application. Martinez-Frutos and
Marti [18] used it to optimize the robust design of structures. They effectively decoupled
the uncertainty evaluation from the optimization process. More recently, it has been
employed in the optimization of structural dynamics [19], in the design of residential
building typology [20], and post-tensioned bridges [21,22]. In a related study, Zhang
and Wu [23] employed Kriging to establish structural vulnerability curves for RC bridges.
Wu et al. [24] further applied this model to optimize finite element models of bridge
structures. Cheng and Low [25] provide a new metamodel for offshore structures.

Another type of metamodel is the artificial neural network (ANN). Its structure,
resembling the human brain, is formed by a network of nodes (or neurons) and connections.
Thanks to their flexibility and ease of use, these networks find application in various
problems, from pattern recognition to function approximation. ANNs, which are a method
of machine learning, learn from training examples and provide an answer or output by
the approximation of the nonlinear functions of their inputs. ANNs have been applied to
predict structural behavior [26] or to support multiobjective bridge optimization [27].

2. Lightened Slab Bridge Deck Description

Hyperstatic post-tensioned concrete slabs are common on bridges ranging from 10 m
to 45 m in length. With a main span of more than 50 m, this structure is not competitive and
gives way to box girders. In common practice, designers typically maintain a depth/span
ratio of approximately 1/25 when designing roadway slabs with three or more spans. This
significant ratio ensures the slab’s structural integrity and load-bearing capacity. This solu-
tion competes with precast girders due to its structural advantages, which include higher
bending and torsional stiffness, greater durability, and safety attributed to hyperstatic
behavior. Nevertheless, what sets it apart is its adaptability to complex construction shapes.
This unique feature simplifies the formwork and concrete pouring processes, making the
design more efficient. In addition, there is no need for joints and there is greater flexibility
in pile placement for improved aesthetics.

This study aims to improve the design of a prestressed, lightened slab with a specific
configuration of spans: 24-34-28 m. This configuration is a standard in overpasses crossing
dual-lane, dual-track highways, making the study’s findings directly applicable to real-
world bridge construction. As shown in Figure 1, the slab has a constant depth and
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rectilinear configuration. The platform is 8.30 m wide, allowing for two lanes of 3.50 m
each, 0.65 m parapets on each side, and a concrete base (see Figure 2).

f 86.00m ¥

f 24.00 m f 34.00 m ]L

Figure 1. Longitudinal profile of the PC slab road bridge [21,22].
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Figure 2. Cross-sectional view of the lightweight PC slab bridge deck [21,22].
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This overpass is situated at kilometer 441 of the A-7 highway in Cocentaina, in the
province of Alicante. Figure 3 displays an aerial image of the overpass. The bridge was
designed with a depth of 1.35 m, a lower base of 4.00 m, and a span of 1.75 m, with the
following dimensions: a = 0.20 m, b = 0.10 m, and d = 0.40 m. The interior lighting consisted
of four circular sections with a diameter of 0.60 m. These measurements result in an internal
lighting of 0.14 m3/m? and an external lighting of 0.51 m%/m?.

Figure 3. Aerial image of the overpass at kilometer 441 of the A-7 highway in Cocentaina (Alicante).
Image: Google Maps.

Limit state theory verifies structural resistance using partial safety factors. Each
design situation ensures that no ultimate and serviceability limit states are exceeded. The
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present study used CSiBridge v.21.0.0 software to create a three-dimensional deck model,
which was subsequently analyzed and dimensioned. The assessment thoroughly examined
various alternatives to identify the acting and resisting loads represented by sectional forces.
These detailed force calculations align with those presented in the work of Yepes-Bellver
etal. [21,22].

3. Methodology

The construction of each slab deck consumes energy. Comparing different designs
involves considering various factors, such as the concrete grade, the amount of incorporated
steel, the formwork surface, and the energy required for lighting. Table 1 presents the costs
for different objectives, such as cost, emissions, and energy consumption [21,22].

Table 1. Energy cost of the deck [16].

Material kWh/kg kWh/m?3 kWh/m?
Y-1860-5S7 steel 5.64
B-500-St steel 3.03
Lighting 604.42
Slab formwork 2.24
C-30 concrete 227.01
C-35 concrete 263.96
C-40 concrete 298.57
C-45 concrete 330.25
C-50 concrete 358.97
Lighting 604.42
Slab formwork 2.24

The materials analyzed include Y-1860-57 steel, known for its high strength and dura-
bility in structural reinforcements, and B-500-St steel, which offers good ductility and tensile
strength for concrete reinforcement. Concrete types range from C-30, a medium-strength
option, to C-50, an ultra-high-strength concrete. Additionally, lighting reduces structural
weight to improve efficiency and cost-effectiveness, while slab formwork supports and
shapes the concrete, impacting surface quality and construction speed.

Our research uses two types of predictive metamodels: Kriging and neural networks.
These models are applied to 42 data points that were previously used to optimize the
proposed slab bridge [21,22]. These data points, detailed in Table 2, serve a specific purpose
in our research. The diversification phase uses the first 30 data points to optimize the
Kriging response surface. The intensification phase uses the following 10 data points. Data
number 41 represents the local optimum of the diversification phase, while number 42 is
the local optimum corresponding to the intensification phase.

Table 2. Values of design variables obtained within the specified ranges [22].

Base Concrete Energy Cost
Declk Deck Depth (m) v 4th (m) Grade (MPa) b
1 1.65 3.65 35 1149.88
2 1.70 3.80 45 1182.89
3 1.20 3.85 40 1065.87
4 1.55 3.60 45 1140.79
5 1.20 4.85 50 1170.72
6 1.15 4.50 50 1199.59
7 1.35 3.95 30 1103.18
8 1.30 445 30 1180.31
9 1.35 4.25 45 1132.71
10 1.50 4.55 30 1138.00
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Table 2. Cont.
Base Concrete Energy Cost
Deck Deck Depth (m) Width (m) Grade (MPa) (M%XI ™
11 1.60 4.20 40 1267.85
12 1.25 4.70 40 1191.65
13 1.50 4.05 45 1183.17
14 1.45 4.35 35 1119.17
15 1.65 3.45 45 1145.07
16 1.55 4.10 35 1162.92
17 1.25 3.50 45 1073.75
18 1.40 3.30 40 1152.33
19 1.45 3.90 45 1145.21
20 1.35 3.60 35 1094.86
21 1.50 3.35 45 1134.93
22 1.50 4.50 45 1189.53
23 1.55 3.20 30 1103.41
24 1.25 3.00 50 1101.04
25 1.40 3.45 45 1201.73
26 1.50 3.55 35 1105.44
27 1.70 3.85 45 1165.47
28 1.20 3.60 40 1083.41
29 1.30 4.90 40 1215.82
30 1.45 4.75 35 1163.59
31 1.20 3.40 40 1059.87
32 1.15 3.90 35 1129.22
33 1.05 3.50 35 1237.89
34 1.10 3.80 45 1178.72
35 1.15 3.35 45 1074.77
36 1.25 3.60 45 1078.71
37 1.10 3.45 40 1124.21
38 1.20 3.35 45 1065.44
39 1.25 3.40 45 1084.92
40 1.15 3.60 45 1104.77
41 1.15 3.35 40 1051.00
42 1.15 3.70 40 1038.28

Once a response surface is fitted to a surrogate model, the prediction error can be
measured using the root mean square error (RMSE), which will have the same units as the
output values of the predictive model.

RMSE =

where {; is the estimated values, y; is the observed values, and # is the number of observations.

3.1. Kriging Metamodel

The approach involves a two-phase optimization process employing a response sur-
face generated by a Kriging metamodel [21,22]. Latin hypercube sampling (LHS) selects
uniformly distributed random numbers to analyze energy in alternatives. A Kriging model
then creates and optimizes a response surface for the optimization input.

Kriging estimates an attribute’s value at a point 1 from a set of n values of z (Figure 4).
In this context, the variable of interest is the energy required to run the board. The points
from LHS sampling represent solutions. This approach predicts responses without detailed
structural analysis. The “MATLAB Kriging Toolbox” Version 2.0 (DACE) is used to build a
Kriging surrogate model from data pairs of inputs and responses from a computational
experiment [28]. The models are deterministic, producing consistent responses for the same
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Energy cost (MW-h)

inputs without random error. Kriging models can be built with polynomial regressions of
orders 0, 1, and 2, known as Kriging 1, Kriging 2, and Kriging 3.

1300
1200
1100 >0
- Concrete grade (MPa)
’ 12
14 30
16
Deck depth (m)

Figure 4. Example of response surface.

Latin hypercube sampling (LHS) is a technique that selects uniformly distributed
random numbers. In contrast to a simple random sample, the method offers a lower
variance of the sample mean [29]. This technique entails selecting a sample at random
from each interval for each variable, with the mathematical model then running repeatedly
to that of the number of intervals within the probability distribution split. This process
ensures the selection of initial values from each data range. LHS offers an enhanced grasp
of the design space compared to that afforded by simple random sampling. It is particularly
suitable for computational tests that aim to minimize systematic errors while maintaining
a uniform random sample. LHS is sufficiently flexible to adapt the number of samples
according to the specific requirements of the experiment. In addition, it is highly efficient in
generating results within a reasonable period, thus making it a practical choice for a wide
range of applications.

3.2. Artificial Neural Network

An artificial neural network (ANN) consists of neurons organized in layers (input, hid-
den, output) that detect complex relationships between variables. The input layer receives
data, the hidden layer processes it, and the model is trained by adjusting weights iteratively.
Errors are propagated backward to improve accuracy. LeCun et al. [30] thoroughly review
the fundamental concepts, advancements, and applications of ANNs. Zhang et al. [31]
provide an in-depth examination of how ANNSs are applied to forecasting, detailing their
effectiveness and methodologies in this domain.

A multilayer forward-fed network comprises a hidden layer of sigmoid neurons and
an output layer of linear neurons. The neurons in the hidden layer connect to both input
and output layers (Figure 5). The number of neurons in the input and output layers is
proportional to the number of input and output parameters. The input variables, denoted
by x;, are multiplied by the weighting coefficients, w; ;, and then combined linearly with an
independent bias term, b;. The equation governing the behavior of each hidden neuron
may be expressed as } x; - w; ; + b;. Subsequently, each neuron in the hidden layer generates
an output by employing a sigmoid tangent function to the linear combination. The output
layer employs a linear function.
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s;=f[(Zx;w;)+b]]

@

Figure 5. Example of a neural network with a hidden layer.

The multilayer perceptron (MLP) network is a widely used model that approximates
any function, even with a single hidden layer [30]. Its effectiveness stems from the backprop-
agation algorithm [32-34], which has various enhancements. This algorithm is essential
for MLP’s application in classification and regression problems, particularly when training
data with known target values are available.

In a forward-feeding neural network, the connections are unidirectional, moving from
the input to the output layer, and the learning is supervised with data that have known
responses. The data set is divided into three groups to evaluate overfitting: training data to
adjust network parameters, validation data to detect overlearning during training, and test
data used only at the end to assess performance. An “early stopping” technique prevents
overfitting by dividing data into training and validation sets. During iterative optimization,
the training and validation errors are compared. If the training error decreases while the
validation error increases, the adjustment process is terminated to prevent overfitting.

The neural network used 42 data sets: 34 for training, 4 for validation, and 4 for testing,
all chosen randomly. The network employed a five-neuron hidden layer. Performance is
assessed through simulation, where data—either from training or new data for predictions—
are input to examine the output.

The first step is cross-validation, comparing training output data with the neural
network’s simulated output. This process is key to evaluating the network’s accuracy
and detecting overfitting, where the model becomes too specialized to the training data
and performs poorly on new data. Cross-validation can be applied to training, validation,
testing, or all data to assess overfitting (Figure 6).

Input layer
Hidden layer
\I/ Update
weights
Output layer and bias
ANN output
generation Back propagation

Error acceptable

Prediction

Figure 6. ANN model flowchart.
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Figure 7 represents a network setting for the case studied, with cross-validation of
training, validation, test, and total data. It must be noted that, on each occasion that the
network is run, the data used for validation are chosen randomly, and the settings change
each time. An analysis of the plots in Figure 7 shows that training the neural network on a
random data set allows for a high correlation, which drops when the network is applied to
new test data. This effect can also be seen when the network is applied to the entire data
set used, where the R coefficient is high but lower in the training phase.

Training: R=0.93865 Validation: R=0.95326
8 N = O D
. 2 =) ata
< S 15 Fit
+ 15 + ey =T
B ]
& 1 o i
© ©
05 = 05
(2] wn
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Figure 7. Cross-validation of training data, validation, test, and total data.

4. Results and Discussion
4.1. Visualization of Observed Data

Before applying the metamodels, the observed data can be plotted on a response
surface to observe the abruptness of the response surface. Minitab v17 was used for
this purpose. Figures 4 and 8 plot the 42 observed data points (Table 2), with energy
consumption represented as the response variable. Figure 8 depicts the contour plot
corresponding to the observed data, revealing multiple local optima. Traditional linear
regression models are inadequate, and even nonlinear models may overly smooth the
response due to the surface’s abrupt nature. This complexity underscores the need for
advanced predictive and optimization models to identify the optimal solution within
this space.
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Figure 8. Response surface of the 42 observed slab bridge deck data (Table 2).

4.2. Comparison of Predictive Models

Table 3 shows the observed values, the three Kriging models used, and the average
of 16 neural network runs for the local optima obtained in the diversification (bridge #41)
and intensification (bridge #42) phases of the response surface optimization. It is noted
that Kriging predictive models are deterministic, while neural networks are not, because
each time they are run, the data used for learning and validation are chosen randomly.
Therefore, the neural network has been run 16 times to stabilize the standard deviation of
the mean values (which is divided by 4).

Table 3. Observed value and prediction for local optima in diversification (#41) and intensification
phase (#42), as well as their absolute and relative errors.

Absolute Relative Absolute Relative

#1 #42 Error #41 Error #41 Error #42 Error #42
Observed 1051.00 1038.28 0.00 0.00% 0.00 0.00%
Kriging 1 1130.68 1091.95 79.68 7.58% 53.67 5.17%
Kriging 2 1073.98 1085.84 22.98 2.19% 47.56 4.58%
Kriging 3 1060.58 1079.81 9.58 0.91% 41.53 4.00%
ANN average 1073.06 1091.85 22.06 2.10% 53.57 5.16%

4.3. Error Analysis

The predictive models show values above the observed data. The Kriging 3 model,
which uses a regression polynomial of order 2, provides the lowest error. However, the
average values predicted by 16 neural network runs give an error similar to the Kriging 2
model, which uses a regression polynomial of order 1.

However, the errors measured as mean square error (MSE) and root mean square error
(RMSE) are lower for the neural network case (Table 4). The error values for the Kriging
models’ case have been obtained for the prediction of values #31 to #42, while in the case of
the neural network, they have been obtained using all 42 cases. Therefore, this supposed
advantage of the neural networks is not homologous.
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Table 4. MSE and RMSE errors of the predictive models used.

Predictive Models MSE RMSE
Kriging 1 2212.98 47.04
Kriging 2 3923.49 62.64
Kriging 3 4976.80 70.55

ANN average 1037.22 30.95

The subsequent step comprehensively examines the neural network’s capability to
identify the optimal values. To accomplish this, we present the average values of the
predictions made, as illustrated in Figures 7-9 below.

Energy cost
(MW-h)
155 < 1050
I 1050 - 1100
M 1100 - 1150
m 1150 - 1200
B 1200 - 1250
] > 1250

1.35

Deck depth (m)

1.20

1.05
3.0 32 34 36 3.8 4.0 4.2 4.4 4.6 4.8

Base width (m)

Figure 9. Contour plot of the 42 observed slab data (Table 2).

Figure 10 illustrates the neural network’s accurate prediction of the deck depth’s
minimum value, considering a 3.70 m base and 40 MPa concrete grade. Remarkably, a
distinct minimum appears at a depth of 1.20 m, which notably aligns with the optimum
obtained by Kriging.

1200

1180
—
1160 7

1140 ”~
1120 /
1100
1080
1060
1040
1020
1000

Energy cost (MW-h)

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70
Deck depth (m)

Figure 10. ANN energy cost prediction as a function of deck depth, considering a 3.70 m base width
and 40 MPa concrete grade.
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When the depth of the deck remains at 1.20 m and the concrete grade is 40 MPa, the
neural network indicates (Figure 11) that the minimum energy cost barely changes, with
values ranging between 3.00 m and 3.50 m, and 3.35 m being the lowest.

1220
1200 /

1180 /

=
2 /
2 1160 /
P
S 1140 /
& /
2
£ 1120 /

1100 ~

1080

3.00 3.50 4.00 4.50 5,00

Desk base width (m)

Figure 11. ANN energy cost prediction as a function of deck depth width, considering a 1.20 m depth
and 40 MPa concrete grade.

Suppose a depth of the deck of 1.20 m and a base of 3.35 m are set. According to
Figure 12, the neural network indicates that the value of the characteristic resistance offering

the lowest energy cost is 41 MPa, which is close to the standardized value of 40 MPa used
for constructing the structure.

1130

1120 P~

1110 \ /
1100 \ /
1090 \ /

1080 \ ‘/
1070 \"'* /

30 35 40 45 50
Concrete grade (MPa)

Energy cost (MW:-h)

Figure 12. ANN energy cost prediction as a function of the concrete grade, considering a 1.20 m
depth and 3.35 m base width.

4.4. Practical Recommendations

The Direccion General de Carreteras (DGC) [35] suggests a slenderness ratio between
1/22 and 1/30, while the SETRA [36] recommends a ratio of 1/28 for three-span slab
decks with wide cantilevers. The outcomes of the neural network, which align with the
conclusions of Yepes-Bellver et al. [22], provide practical recommendations for reducing
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emissions in a prestressed slab bridge comprising three spans with a main span of 34 m.
These recommendations include a slenderness of about 1/28, a concrete content of between
0.55 m3/m? and 0.60 m3/m? for the deck, and a passive reinforcement content of between
100 kg/m? and 130 kg/m?, with active reinforcement around 17 kg/m? of the deck. The
characteristic compressive strength of concrete should be at least 40 MPa, the internal
lighting should not exceed 0.18 m®/m? of the deck area, and the external lighting should
be between 0.45 m®/m? and 0.55 m®/m? of the deck area.

Thus, the neural network can identify the local optimum, which is close to the value
obtained after optimizing the response surface of the Kriging surrogate model. However,
the Kriging models or neural networks must accurately determine the energy prediction.
Therefore, while the surrogate models can provide a response surface, optimizing the
response surface to find a local minimum is critical. However, these models allow for
improved design results and help to narrow the optimal design ranges for critical variables.
This proposed approach is a significant aid for structural engineers who refrain from
routinely using heuristic optimization algorithms, resulting in missed opportunities to
reduce economic and environmental costs.

5. Conclusions

This paper compares the performance of Kriging and a multilayer perceptron neural
network for optimizing energy in prestressed lightweight slab bridges. Using 42 solutions
from a real road overpass, the energy consumption required for its construction was eval-
uated using Kriging and neural network models. Verification revealed that the response
surface assessing energy consumption is complex and steep, displaying numerous local
optima, highlighting the problem’s complexity. Both Kriging models and neural networks
tend to predict values above the observed ones. Specifically, the Kriging model, which uses
polynomials of order 2, offers a relative error of 4% in the local optimum, which is lower
than that of the neural network. However, the neural network demonstrates lower root
mean square errors (RMSEs). Unlike deterministic Kriging models, neural networks require
multiple runs to stabilize their responses and determine mean values. Furthermore, verifica-
tion of this structural problem indicates that the neural network identifies the location of the
local optimum, which closely resembles the value obtained from optimizing the Kriging
response surface. However, neither the Kriging model nor the neural network achieves
accurate predictions of the objective function; instead, they guide toward promising areas
within the solution space. Therefore, while surrogate models establish a response surface,
optimizing this surface to find a local minimum remains essential.

Author Contributions: This study represents a result of teamwork. Conceptualization, L.Y.-B., A.B.-L
and V.Y,; methodology, L.Y.-B., A.B-L. and V.Y; software, L.Y.-B. and J.A.; validation, L.Y.-B., A.B.-L
and J.A.; formal analysis, L.Y.-B., A.B.-I. and J.A.; investigation, L.Y.-B., A.B.-I, ].A. and V.Y,; resources,
V.Y,; data curation, L.Y.-B. and A.B.-I.; writing—original draft preparation, L.Y.-B.; writing—review and
editing, V.Y.; visualization, L.Y.-B. and A.B.-L; supervision, J.A. and V.Y,; project administration, V.Y.;
funding acquisition, V.Y. All authors have read and agreed to the published version of the manuscript.

Funding: Grant PID2023-1500030B-100 funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors wish to thank the editor of Sustainability and the anonymous
reviewers for their valuable contributions in enhancing the earlier version of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.



Sustainability 2024, 16, 8450 13 of 14

References

1. IEA; UNEP. Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; International
Energy Agency and the United Nations Environment Programme: Paris, France, 2018.

2. Wang, T; Lee, IS,; Kendall, A.; Harvey, J.; Lee, E.B.; Kim, C. Life cycle energy consumption and GHG emission from pavement
rehabilitation with different rolling resistance. J. Clean Prod. 2012, 33, 86-96. [CrossRef]

3. Wang, E.; Shen, Z. A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex
system—Application to the whole-building embodied energy analysis. J. Clean Prod. 2013, 43, 166-173. [CrossRef]

4.  Halder, A,; Batra, S. Application of Predictive Analytics in Built Environment Research: A Comprehensive Bibliometric Study to
Explore Knowledge Domains and Future Research Agenda. Arch. Computat. Methods Eng. 2023, 30, 4299-4324. [CrossRef]

5. Opoku, D.GJ.; Agyekum, K.; Ayarkwa, ]J. Drivers of environmental sustainability of construction projects: A thematic analysis of
verbatim comments from built environment consultants. Int. . Constr. Manag. 2022, 22, 1033-1041. [CrossRef]

6.  Leonhardt, F. Prestressed Concrete: Design and Construction; Ernst & Sohn: Berlin, Germany, 1982.

7. Warner, R.F; Rangan, B.V,; Hall, A.S.; Faulkes, K.A. Concrete Structures; Longman: North Lakes, QLD, Australia, 1998.

8. Yeo, D.; Gabbai, R.D. Sustainable design of reinforced concrete structures through embodied energy optimization. Energ. Buildings
2011, 43, 2028-2033. [CrossRef]

9.  Quaglia, C.P; Yu, N; Thrall, A.P,; Paolucci, S. Balancing energy efficiency and structural performance through multi-objective
shape optimization: Case study of a rapidly deployable origami-inspired shelter. Energ. Buildings 2014, 82, 733-745. [CrossRef]

10. Cabeza, L.F; Boquera, L.; Chafer, M.; Vérez, D. Embodied energy and embodied carbon of structural building materials:
Worldwide progress and barriers through literature map analysis. Energy Build 2021, 231, 110612. [CrossRef]

11.  Miller, D.; Doh, J.H.; Mulvey, M. Concrete slab comparison and embodied energy optimisation for alternate design and
construction techniques. Constr. Build Mater. 2015, 80, 329-338. [CrossRef]

12.  Foraboschi, P.; Mercanzin, M.; Trabucco, D. Sustainable structural design of tall buildings based on embodied energy. Energ.
Buildings 2014, 68, 254-269. [CrossRef]

13. Alcald, J.; Gonzalez-Vidosa, E.; Yepes, V.; Marti, ].V. Embodied energy optimization of prestressed concrete slab bridge decks.
Technologies 2018, 6, 43. [CrossRef]

14. Marti, ].V,; Garcia-Segura, T.; Yepes, V. Structural design of prescast-prestressed concrete U-beam road bridges based on embodied
energy. J. Clean. Prod. 2016, 120, 231-240. [CrossRef]

15.  Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Investigating the embodied energy and carbon of buildings: A systematic
literature review and meta-analysis of life cycle assessments. Renew. Sustain. Energy Rev. 2021, 143, 110935. [CrossRef]

16. Penadés-Pla, V.; Garcia-Segura, T.; Yepes, V. Accelerated optimization method for low-embodied energy concrete box-girder
bridge design. Eng. Struct 2019, 179, 556-565. [CrossRef]

17.  Cressie, N. The origins of Kriging. Math. Geol. 1990, 22, 239-252. [CrossRef]

18. Martinez-Frutos, J.; Marti, P. Disefio 6ptimo robusto utilizando modelos Kriging: Aplicacion al disefio 6ptimo robusto de
estructuras articuladas. Rev. Int. Métodos Numér. Cdlc. Disefio Ing. 2014, 30, 97-105. [CrossRef]

19. YiFei, L.; MaoSen, C.; Hoa, T.N.; Khatir, S.; Minh, H.L.; SangTo, T.; Cuong-Le, T.; Wahab, M.A. Metamodel-assisted hybrid
optimization strategy for model updating using vibration response data. Adv. Eng. Softw. 2023, 185, 103515. [CrossRef]

20. Sanchez-Zabala, V.F.; Gémez-Acebo, T. Building energy performance metamodels for district energy management optimisation
platforms. Energy Convers. Manag. X 2024, 21, 100512. [CrossRef]

21. Yepes-Bellver, L.; Brun-Izquierdo, A.; Alcald, J.; Yepes, V. CO;-optimization of post-tensioned concrete slab-bridge decks using
surrogate modeling. Materials 2022, 15, 4776. [CrossRef]

22.  Yepes-Bellver, L.; Brun-Izquierdo, A.; Alcala, J.; Yepes, V. Embodied energy optimization of prestressed concrete road flyovers by
a two-phase Kriging surrogate model. Materials 2023, 16, 6767. [CrossRef]

23. Zhang, Y.; Wu, G. Seismic vulnerability analysis of RC bridges based on Kriging model. J. Earthq. Eng. 2019, 23, 242-260.
[CrossRef]

24. Wu, J,; Cheng, F; Zou, C.; Zhang, R.; Li, C.; Huang, S.; Zhou, Y. Swarm intelligent optimization conjunction with Kriging model
for bridge structure finite element model updating. Buildings 2022, 12, 504. [CrossRef]

25. Cheng, A.; Low, YM. A new metamodel for predicting the nonlinear time-domain response of offshore structures subjected to
stochastic wave current and wind loads. Comput. Struct. 2024, 297, 107340. [CrossRef]

26. Marti-Vargas, ].R.; Ferri, E].; Yepes, V. Prediction of the transfer length of prestressing strands with neural networks. Comput.
Concr. 2013, 12, 187-209. [CrossRef]

27. Hong, WK.; Nguyen, M.C.; Pham, T.D. Pre-tensioned concrete beams optimized with a unified function of objective (UFO) using
ANN-based Hong-Lagrange method. J. Asian Archit. Build Eng. 2023, 23, 1573-1595. [CrossRef]

28. Lophaven, N.S.; Nielsen, H.B.; Sondergaard, ]. MATLAB Kriging Toolbox DACE (Design and Analysis of Computer Experiments)
Version 2.0. 2002. Available online: http:/ /www2.imm.dtu.dk/pubdb/p.php?1460 (accessed on 11 July 2024).

29. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code. Technometrics 1979, 21, 239-245. [CrossRef]

30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436—444. [CrossRef]

31. Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. ]. Forecast 1998, 14, 35-62.

[CrossRef]


https://doi.org/10.1016/j.jclepro.2012.05.001
https://doi.org/10.1016/j.jclepro.2012.12.010
https://doi.org/10.1007/s11831-023-09938-5
https://doi.org/10.1080/15623599.2019.1678865
https://doi.org/10.1016/j.enbuild.2011.04.014
https://doi.org/10.1016/j.enbuild.2014.07.063
https://doi.org/10.1016/j.enbuild.2020.110612
https://doi.org/10.1016/j.conbuildmat.2015.01.071
https://doi.org/10.1016/j.enbuild.2013.09.003
https://doi.org/10.3390/technologies6020043
https://doi.org/10.1016/j.jclepro.2016.02.024
https://doi.org/10.1016/j.rser.2021.110935
https://doi.org/10.1016/j.engstruct.2018.11.015
https://doi.org/10.1007/BF00889887
https://doi.org/10.1016/j.rimni.2013.01.003
https://doi.org/10.1016/j.advengsoft.2023.103515
https://doi.org/10.1016/j.ecmx.2023.100512
https://doi.org/10.3390/ma15144776
https://doi.org/10.3390/ma16206767
https://doi.org/10.1080/13632469.2017.1323040
https://doi.org/10.3390/buildings12050504
https://doi.org/10.1016/j.compstruc.2024.107340
https://doi.org/10.12989/cac.2013.12.2.187
https://doi.org/10.1080/13467581.2023.2270028
http://www2.imm.dtu.dk/pubdb/p.php?1460
https://doi.org/10.2307/1268522
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0169-2070(97)00044-7

Sustainability 2024, 16, 8450 14 of 14

32.

33.

34.

35.

36.

Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximator. Neural Netw. 1989, 2,
359-366. [CrossRef]

Rumelhart, D.E.; McClelland, J.L.; PDP Research Group. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition; MIT Press: Cambridge, UK, 1986; Volume 1. [CrossRef]

Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533-536.
[CrossRef]

Direccién General de Carreteras. Obras de paso de Nueva Construccion: Conceptos Generales; Ministerio de Fomento, Centro de
Publicaciones: Madrid, Spain, 2000. (In Spanish)

SETRA. Ponts-Dalles. Guide de Conception; Ministere de 'Equipement, du Logement des Transports et de la Mer: Bagneux, France,
1989. (In French)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.1038/323533a0

	Introduction 
	Lightened Slab Bridge Deck Description 
	Methodology 
	Kriging Metamodel 
	Artificial Neural Network 

	Results and Discussion 
	Visualization of Observed Data 
	Comparison of Predictive Models 
	Error Analysis 
	Practical Recommendations 

	Conclusions 
	References

