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A B S T R A C T   

Human thermal comfort depends on objective variables -related to the environment- and to 
subjective variables, related to physiological conditions. While the former are relatively easy to be 
measured, the latter are difficult to be investigated since differ from person to person and they are 
characterized by sudden variations over time. The recent spread of off-the-shelf wearable devices 
for monitoring bio-signals has considerably facilitate this challenging task. The aim of this work is 
to provide a detailed framework about the use of off-the-shelf wearable devices for thermal 
comfort investigations. A systematic review of 35 scientific papers -selected over 302 results from 
the initial database query- was performed. The results highlight that wristbands (mainly, 
Empatica E4 and Fitbit), headbands (i.e., Muse 2), chest bands (mainly, BioHarness 3.0 and Polar 
H7), miniature data loggers (i.e., iButton), and activity sensors (i.e., Move 3) were the off-the- 
shelf devices whose use is predominant in thermal comfort investigations. Those devices were 
adopted for different purposes, namely finding correlations between physiological signals and 
thermal sensations, training and/or validating thermal comfort models, improving data acquisi
tion, and controlling HVAC systems. The proposed framework could represent a solid background 
for future investigations which should focus on two main research streams. The first one should 
aim at strengthening the knowledge about statistical correlations between thermal sensations and 
physiological signals, as well as defining standardized procedures for the model development and 
validation. The second research stream should aim at integrating off-the-shelf wearable devices 
and personalized thermal comfort models into HVAC control systems.  
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EEG Electroencephalogram 
GPS Global Positioning System 
HF High Frequency of heart rate variability 
HR Heart Rate 
HRV Heart Rate Variability 
HVAC Heating, Ventilation, and Air Conditioning 
LED Light-Emitting Diode 
LF Low Frequency of heart rate variability 
MET Metabolic Equivalent of Task 
ML Machine Learning 
PMV Predicted Mean Vote 
PPG Photoplethysmography 
RH Relative Humidity 
RR Respiration Rate 
SRH Skin Relative Humidity 
ST Skin Temperature  

1. Introduction 

1.1. Motivations 

The historical period we are living in sees a global effort to develop and implement new solutions in the energy field. The reduction 
of greenhouse gas emissions, the diminution of the use of fossil fuels, and a transition toward cleaner energy sources are key pillars of 
future development plans of most countries. Energy efficiency of buildings plays a key role in this framework and its goal is to minimize 
the energy consumption while maintaining high comfort levels for building occupants, to ensure their health, wellbeing, and pro
ductivity [1]. Comfort requirements affect considerably the building energy demand, as also envisioned by the latest recast of EU 
directive 844/2018 [2] which relates the energy efficiency of buildings to their ability to optimize “health, indoor air quality and 
comfort levels” while guaranteeing their cost optimality [3]. Considering that the principal purpose of a HVAC system is to provide 
indoor climate conditions that are adequate for the thermal comfort [4], therefore driving the transition from optimal design to 
operation of highly performing buildings [5], it is evident that the very own thermal comfort is the driver for space heating and cooling 
energy demands. 

Human thermal comfort is a complex “condition of mind that expresses satisfaction with the thermal environment” [6]. It is widely 
recognized that this perception process depends on objective variables -related to the environment- and to subjective variables, related 
to human physiological conditions. If the objective variables related to the indoor environment, such as air temperature and air ve
locity, are relatively easy to be measured [7], subjective variables are much more difficult to be investigated. This since the subjective 
variables differ person to person and are characterized by sudden variations over time. However, latest research has highlighted that 
studying the variations of these physiological variables could have a great potential in improving occupants’ thermal comfort [8]. To 
monitor physiological signals, specialized sensors and medical equipment can be used. Nevertheless, they are not convenient for 
longtime monitoring [9] due to, for example, their dimensions and wiring. In the very last few years, the acquisition of physiological 
signals has considerably improved because of the development and spread of various wearable devices for the measurement and 
monitoring of bio-signals. According to various definitions present in literature, wearable devices are electronics apparatuses that can 
be worn or mated with human skin (i.e., by tattooing or implanting) to monitor biometric and environmental variables continuously 
and closely, without interrupting or limiting the user’s motions [10,11]. As shown by Salamone et al. [11], Google Trends highlights a 
remarkable rise of interest for the keyword “wearable” during the last decade, especially from 2014. An exceptional push for the spread 
of wearable devices was COVID-19 pandemic that boosted the R&D of wearable devices due to the increasing awareness of personal 
health monitoring. Evidence of that is the market size of wearable medical devices that, in 2021, achieved 21.3 billion USD at a global 
level. The interest in these wearable devices does not seem to be fleeting since the global market size of those devices is expected to 
have a compound growth rate by around 28% between 2022 and 2030 [12]. Consequently, wearable devices are expected to spread 
even more in the coming feature and they can play an essential role in thermal comfort studies. These devices are currently used in 
different domains (e.g., physics, sports, and medicine), but they can be used to better characterize the indoor environment from the 
perspective of the user perception. The acquired physiological signals may be extremely useful for increasing the awareness of comfort 
of building occupants and optimizing the energy use in buildings. Thus, it appears fundamental to investigate the current state of the 
art about the use of those devices for thermal comfort investigations with the aim of providing researchers and manufacturers with a 
detailed and updated framework about this topic. Such framework could represent a solid starting point for future research, especially 
in wide-scale investigations where off-the-shelf wearable devices could be a valuable solution. 

1.2. Definition of aim and scope of the work 

The aim of this work is to provide a detailed framework about the use of off-the-shelf wearable sensing devices in thermal comfort 
studies. To this aim, a systematic and critical review is performed by considering recent scientific studies that have already 
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experimented the use of off-the-shelf wearable sensing devices for the purpose of thermal comfort investigations. Detailed information 
about obtainable physiological signals, technical features, and limitations are reported and critically compared for different devices. 
The potentialities of their adoption for advanced thermal comfort experimental studies are highlighted. 

The scope of this review is limited to “off-the-shelf” wearable devices only. Thus, only ready-to-use devices available directly on the 
market are considered in this review, while ad-hoc prototypes are excluded. This choice is since off-the-shelf wearable devices are 
considered the novel approach to thermal comfort investigations for their readiness to use and relatively low cost that allow their 
massive implementation for large-scale studies in the real world. In fact, they are ready-to-use devices characterized by a high level of 
standardization that guarantees a high replicability of the application procedures. So, off-the-shelf devices can be used without any 
additional skills and efforts needed for their design, development, and validation. Moreover, off-the-shelf devices are usually compact 
and convenient to be worn even 24/7. Including only off-the-shelf devices in the scope of this review may lead to the exclusion of 
experimental methods for thermal comfort investigations based on prototypes. Nevertheless, this exclusion is not considered a bias 
because the use of those experimental methods and prototypes cannot be suitable for large-scale studies in real world. 

1.3. Differences with previous researches and novel key contributions of this review 

This review fills a gap in literature since, according to the Authors’ knowledge, the use of off-the-shelf wearable sensing devices in 
thermal comfort investigations has ever been the target of a systematic review. By contrast, reviews about personalized comfort models 
[13] and physiological indices [14] are present in literature. It is worth to be mentioned that previous review works investigated the 
use of wearable devices for environmental monitoring, but with substantial differences. Dong et al. [15] performed a review focused on 
smart building sensing systems to explore their applications. The main difference with the present review is the scope of the work that 
is considerably broader but less detailed and not focused on thermal comfort. Dong et al. [15], in fact, analyzed a wide range of sensors, 
without a specific focus on off-the-shelf wearable devices for thermal comfort investigations. The review work of Abboushi et al. [16] 
investigated the use of wearable devices but with a different focus. That work, in fact, was targeted on the acquisition of health 
performance indicators and on the data accessibility from wearable devices. Moreover, the analysis was limited only to wristbands and 
chest bands. Wearable devices, such as headbands and miniature data loggers, were not included in that review. Finally, the systematic 
review of Salamone et al. [11] was specifically focused on the environmental monitoring in the built environment using wearable 
devices. The main difference with the present work is its broader area of interest which encompasses all the domains of the indoor 
environmental quality. Consequently, the use of wearable devices for the acquisition of thermal, air-quality, visual, and acoustic 
factors was analyzed, without a specific and detailed focus on the thermal comfort assessment. 

Given this framework, the following novel key contributions can be identified for this review:  

• A detailed view about the use of off-the-shelf wearable sensing devices in thermal comfort studies with a focus on their strengths, 
weaknesses, and technical features.  

• An analytical evaluation on the actual feasibility of using off-the-shelf wearable sensing devices for investigating, monitoring, and 
controlling the human thermal comfort in the real world and not only in small-sized controlled environments -as they are labo
ratories or test rooms- but in large-scale studies.  

• A critical discussion on the approaches adopted in thermal comfort studies that adopt off-the-shelf wearable sensing devices and on 
the possible research streams which could be expected in the coming future. 

This paper is structured as it follows. After this introductory discussion about the motivations at the basis of this work (section 1), a 
concise background about the main physiological signals obtainable through wearable devices is provided in section 2. Then, the 
methodological framework adopted in this systematic revies is described (section 3). The results of this review are presented in section 
4, where the off-the-shelf sensing wearable devices are classified according to the typology. Insights about their use in the analyzed 
papers are provided. In section 5, the obtained results are discussed and the main insights about where the current research is heading, 
which are the main issues that attract significant research, and which may be possible developments in the coming future are provided. 
The final remarks are provided in section 6. In Annex A, a comparative analysis amongst the datasheets of the mostly adopted off-the- 
shelf wearable devices is performed through summary tables. 

2. Background 

2.1. Overview on physiological signals 

Off-the-shelf wearable devices can monitor different physiological activities. A broad range of physiological signals can be acquired 
by using various sensor technologies coupled to algorithms to derive additional signals and parameters. Even though this review 
focuses on the devices, a concise background about the main physiological activities, the signals that can be monitored through these 
devices and their potential implication in thermal comfort studies is here provided.  

• Heart activity: it provides a lot of information about how heart is working and the human stress condition. Heart activity can be 
monitored in two different ways. The first way is the Electrocardiography (ECG) that provides information about the duration and 
the amount of the electrical waves passing through the heart using electrodes placed on subject’s chest and limbs. The second way is 
the optoelectronic technology of Photoplethysmography (PPG) which measures the Blood Volume Pulse (BVP) that is the volume of 
blood pushed by the heart through body tissues [17]. To do so, a light source -usually a LED- emits light and a photodetector 
registers the amount of light absorbed and reflected at the skin level [14]. Several features can be extracted from ECG and PPG 
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signals, such as the Heart Rate (HR) that is the frequency of a complete heartbeat -usually expressed in beats per minute (bpm)- and 
the Heart Rate Variability (HRV) that is related to the fluctuation of the amount of time between heartbeats.  

• Skin activity: skin is a sensory organ that works as a physiological bridge between human body and the surroundings due to the 
presence of cutaneous blood vessels and sweat glands used for thermoregulation. Two main skin parameters can be monitored, 
namely the Electrodermal Activity (EDA) and the Skin Temperature (ST). EDA is a measure of the continuous changes in the skin 
electroconductivity due to the modification of sweat gland activity. When humans are under stress, the sympathetic nerve acti
vation increases the sweat gland activity causing the increase of moisture on the skin and, consequently, its electroconductivity 
[12]. EDA, also known as Galvanic Skin Response or Skin Conductivity, is acquired by measuring the variation of a low voltage 
current applied between two electrodes and is usually expressed in μS. ST -usually expressed in ◦C- can be measured through 
various sensor technologies, such as resistance thermometers, infrared thermometers, or thermocouples [14].  

• Brain activity: during each state of human emotion, brain has a spontaneous electrical activity that can be monitored through the 
Electroencephalogram (EEG). By placing electrodes on the subject’s scalp, the voltage changes caused by the movement of ions in 
the brain’s neurons can be monitored and a raw EEG signal -in the range of μV- can be acquired. After a preprocessing, the EEG can 
be segmented into epochs and different brain waves -e.g., Alpha, Beta, Delta, Theta, and Gamma waves- can be obtained through 
specific analyses, such as spectral ones [14].  

• Respiratory activity: respiration is an essential physiological task in living organisms. In humans, it consists in the movement of 
respiratory gases into (oxygen) and out (carbon dioxide) of the lungs. The main signal related to the respiratory activity is the 
Respiration Rate (RR) expressed in breath per minute (bpm) that is often measured through the strain gauge method. In a strain 
gauge sensor, the electrical resistance of a conductor increases when the area of the conductor itself increases [18]. Thus, a strain 
gauge sensor made of extendible conducting material is embedded in a pad mounted on to a chest strap of the subject’s left-hand 
side. During the respiratory process, the thoracic expansion and contraction cause variations in pad dimensions and the area of the 
conductor, with consequent variation of its electrical resistance [19].  

• Physical activity: it is a factor that remarkably affects the subject metabolic rate, that is the rate of internal energy produced 
through the oxidation reaction of glucose molecules [20]. Physical activity can be monitored by wearable devices through different 
strategies. A first one is the monitoring of the subject’s Acceleration (ACC) –expressed in g (1 g = 9.83 m s− 1)- using a 3-axis 
accelerometer. Steps and distance are estimated through specific algorithms and with the aid of a GPS, when present. More
over, if a barometric pressure sensor is embedded in the device, the barometric pressure changes can be used in combination to the 
steps to calculate the floors climbed. Finally, if the HR -in resting condition and during the activity- and subject’s physical data -e.g., 
height, weight, gender, and age- are available, they can be used to estimate the activity level, the burnt calories, and the metabolic 
rate, also expressed as Metabolic Equivalent of Task (MET). 

2.2. Relations between physiological signals and thermal comfort assessment 

The monitoring of the above-mentioned physiological activities and the measurement of related parameters can be directly 
implemented in existing comfort models to provide accurate estimation of the different quantities involved in the thermal balance of 
human body. Parameters related to respiratory activity can be related to sensible and latent heat losses due to respiration, while 
monitoring the skin activity can be related to the estimation of evaporation and conductive, convective, and radiative heat exchanges 
between the human body and the surrounding ambient. As mentioned, parameters related to hearth and physical activities are directly 
involved in the determination of the metabolic rate, which is essential for thermal comfort assessment in the framework of existing 
models. Together with the accurate monitoring of ambient conditions (air temperature, velocity, relative humidity, and mean radiant 
temperature), a detailed estimation of such personal factors is essential for accurate thermal comfort evaluation, especially when 
conductive in-field studies aimed to evolve from the traditional PMV-based approach (estimating the average thermal sensation of a 
large samples of individuals) to advanced approaches based on individual thermal sensation and responses, for which personalized 
comfort models may be derived [21]. Monitoring parameters related to brain activity is crucial to include psychological parameters 
towards novel multi-physics and multi-domain comfort models [22]. 

Further, the great potential of large-scale monitoring of such physiological parameters through off-the-shelf devices can be seen not 

Fig. 1. Schematization of the systematic selection of the scientific papers considered within this review.  
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only in the context of validation and application of existing and new comfort models, but also in large-scale big-data gathering for the 
development of data-driven comfort models supported by artificial intelligence-based techniques [23]. 

3. Review methodology 

3.1. Definition of the literature to review 

An extensive literature research was performed through Scopus® database in September 2022 by considering the selected key
words “thermal”, “comfort”, and “wearable”. To limit the number of results to the publications in which wearable devices are used for 
studies related to thermal comfort, the three keywords were combined using the Boolean variable “AND” only. The research was 
carried out by considering titles, abstracts, and keywords. Thus, the “TITLE-ABS-KEY (thermal AND comfort AND wearable)” query 
was introduced in the database. 

This extensive literature search yielded 302 papers that were systematically selected with the PRISMA methodology, similarly to 
Song et al. (2022) [24]. The selection process is reported in Fig. 1 with a visual schematization derived from the PRISMA flowchart. 

After the identification of the papers (n = 302), a pre-screening selection was performed to exclude non-English papers and papers 
published before 2012. These criteria were adopted to focus this work only on international literature published in the last 10 years. 
This exclusion could have been integrated directly in the search query through additional Boolean operators. Nevertheless, this 
exclusion was performed in a second step (i.e., the pre-screening stage) to provide additional information about the excluded papers. 
Six papers (n = 6) were excluded since non-English ones. Twelve papers (n = 12) were excluded due their publication prior to 2012. 
Please note that 7 of the 12 papers excluded due to their publication year were published in 2009 and 2011. The provided information 
shows the recent publication years of most of all the papers and, consequently, highlights the novelty of the investigated topic. 

The third stage showed in Fig. 1 is the screening activity that was performed using the scope-deliming steps presented in Fig. 2, as 
previously done in other systematic reviews [13]. To consider a paper in this review, it has to accomplish all the four drop-down steps 
presented in Fig. 2. First, papers should be focused on thermal comfort in indoor or outdoor conditions. Thus, visual, acoustic, or 
ergonomic comfort is excluded. Second, the study should adopt wearable devices. Consequently, all the studies that adopt fixed devices 
or wearable devices connected through a wired network to acquisition or logging systems are excluded. Third, the wearable devices 
should acquire physiological parameters. Hence, papers in which devices are worn by participants to measure other parameters, such 
as the climate conditions around them, are excluded. Similarly, studies focused on wearable heating or cooling devices for improving 
thermal comfort are excluded. The last step presented in Fig. 2 regards the market availability (off-the-shelf) of the adopted devices. 
Consequently, papers in which prototypes are adopted or developed were excluded too. 

As visible in Fig. 1, the presented scope-delimiting steps are applied consecutively to the titles, the abstracts, and the entire papers. 
At the end of this screening process, 35 papers are considered suitable and included in this review. 

3.2. Included papers 

The 35 papers that are included in this work are presented in Table 1, sorted descending by year as they appear in the Scopus® 
database. Moreover, the types of wearable sensing devices that are used in each one of the considered papers are shown. As visible from 
the table, three main types of wearable sensing devices are used in the considered papers, namely wristbands, headbands, and chest 
bands. If further types of wearable sensing devices are used in the included papers, such as miniature data loggers, these devices are 
included in the “others” type. 

Wristbands are wrist-worn devices that are used to acquire physiological signals, such as HR and wrist ST, depending on the 
features of the considered off-the-shelf device. Commercially, wrist-worn devices are denominated using different terms, such as 
wristband, smartwatch, smart band, and smart bracelet, depending on their features (e.g., dimensions and functions) and manufac
turers’ commercial strategies. In the framework of this research, the term “wristband” is used to indicate all the previous mentioned 
types of wrist-worn devices. The second type of wearable sensing devices that is presented in Table 1 is the headband. This device is 

Fig. 2. Schematization of the scope-delimiting steps for screening the scientific papers considered within this work.  
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Table 1 
List of the scientific papers included in this review and type of wearable sensing devices that are adopted in each one of them.  

Paper Wristbanda Headband Chest band Othersb 

Čulić et al. (2022) [25] ✓    
Gao et al. (2022) [26] ✓    
Kim et al. (2022) [12] ✓    
Mansi et al. (2022a) [8] ✓ ✓   
Abdelrahman and Miller (2022) [27] ✓    
Mansi et al. (2022b) [28] ✓ ✓   
Barone et al. (2022) [29] ✓   ✓ 
Cosoli et al. (2022) [30] ✓ ✓   
Galarretta et al. (2022) [31] ✓    
Park and Park (2022) [32] ✓    
Morresi et al. (2021) [33] ✓    
Mansi et al. (2021) [34]  ✓   
Lee and Ham (2021) [35] ✓    
Nižetić et al. (2020) [36]    ✓ 
Alsaleem et al. (2020) [37] ✓    
Pigliautile et al. (2020) [38]   ✓  
Deng and Chen (2020) [9] ✓    
Salamone et al. (2020) [39] ✓    
Pivac et al. (2020) [40]    ✓ 
Feng et al. (2020) [41] ✓    
Razjouyan et al. (2020) [42]   ✓  
Jayathissa et al. (2019) [43] ✓    
Yoshikawa et al. (2019) [44] ✓    
Kobiela et al. (2019) [45] ✓  ✓  
Liu et al. (2019) [46]   ✓ ✓ 
Youssef et al. (2019) [47]   ✓  
Calvaresi et al. (2018) [48]   ✓  
Salamone et al. (2018a) [49] ✓    
Salamone et al. (2018b) [50] ✓    
Liu et al. (2018) [51]   ✓ ✓ 
Li et al. (2017) [52] ✓    
Hasan et al. (2016) [53] ✓    
Abdallah et al. (2016) [54] ✓    
Huang et al. (2015) [55] ✓    
Gauthier and Shipworth (2014) [56]   ✓   
a The term “wristband” includes different types of wrist-worn devices, such as smartwatches and smart bands. 
b Devices such as activity sensors and mini data loggers are included. 

Fig. 3. Analyzed papers divided per year of publication (2012–2022) and per type of wearable sensing devices adopted.  
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usually adopted to obtain the EEG of the involved participants. The chest band is the third type that is considered in Table 1. This type 
of wearable device is usually adopted to monitor the heart activity, by acquiring HR or ECG, and the respiratory activity. The “others” 
type includes all those wearable devices which use in scientific literature is minor, such as activity sensors and mini data loggers. 

From the table, it stands out that wristband is the sensing wearable device that is mainly used to acquire physiological signals in 
studies related to thermal comfort. This device is adopted alone in 20 papers and in combination with other devices in 5 more papers. 
Hence, wristbands are used in 70% (n = 25) of the analyzed papers. Another remarkable element that stands out from Table 1 is that 
chest bands were widely used mainly between 2018 and 2020. Later, their adoption considerably decreased. This decrease in the use of 
chest bands may be attributed to an increase of the reliability of wristbands in monitoring the HR, the main signal that is usually 
acquired by chest bands. Hence, wristbands have become preferred to chest bands in the last years. 

In the 3D bar chart of Fig. 3, the 35 analyzed papers are divided per year of publication and type of adopted device. While in 2012 
and 2013 no papers were published, an increasing trend of published papers can be appreciated between 2014 and 2022. The use of 
wristband in this type of study can be considered the driver of this increasing trend that reached its peak in 2022, when 10 scientific 
papers were published in literature. It is worth of mentioning that the publication trend remarkably fell in 2021, when only 3 papers 
were published. This dramatic decrease can be attributable mainly due to the spread of COVID-19 that limited considerably the 
experimental activities involving participants. 

4. Results 

In this section, the main contributions of the selected papers are analyzed according to the classification reported in the columns of 
Table 1. Each sub-section analyzes a different type of wearable devices (wristbands, headbands, chest bands, and others) by high
lighting the adopted off-the-shelf device, the acquired signals, and the main insights about their use. Moreover, the mostly adopted off- 
the-shelf devices are analyzed from a technical point of view by comparing their datasheets. The result of this comparison is sum
marized in the Annex A through summary tables that highlight their hardware features, operating conditions, data management, and 
main measured signals. 

4.1. Wristbands 

The off-the-shelf wristbands adopted in the papers considered in the framework of this review are presented in Table 2. As visible 
from the table, various off-the-shelf wristbands are used for investigations related to thermal comfort. Empatica E4 and Fitbit (different 
models) wristbands are the devices which use is mostly spread in scientific literature. Among all the listed devices, Empatica E4 is the 
only that was specifically developed for professional research applications. The other devices were developed mainly for not- 
professional usages. Table 2 also shows the physiological signals that were acquired by the considered off-the-shelf wristbands in 

Table 2 
Considered scientific papers that adopt off-the-shelf wristbands for thermal comfort studies.  

Paper Off-the-shelf 
wristband 

Acquired physiological signals 

Čulić et al. (2022) [25] E66 HR, STd 

Gao et al. (2022) [26] Empatica E4 ACC, EDA, HR, STd 

Kim et al. (2022) [12] Empatica E4 EDA, HR, STd 

Mansi et al. (2022a) [8] Empatica E4a EDA, HR, STd 

Abdelrahman and Miller (2022) [27] Fitbit Versa/Ionic HR, STd 

Mansi et al. (2022b) [28] Empatica E4a EDA, HR, STd 

Barone et al. (2022) [29] Empatica E4b HR, STd 

Cosoli et al. (2022) [30] Empatica E4a EDA, HR, STd 

Galarretta et al. (2022) [31] Huawei GT2e HR 
Park and Park (2022) [32] Empatica E4 BVP, EDA, HR, STd 

Morresi et al. (2021) [33] Galaxy Watch HR 
Lee and Ham (2021) [35] Empatica E4 ACC, EDA, HR, STd 

Alsaleem et al. (2020) [37] Microsoft Band 2 HR, MET, STd 

Deng and Chen (2020) [9] Hesvit S3 HR, SRHd,e, STd 

Salamone et al. (2020) [39] Empatica E4 ACC, EDA, HR, STd 

Feng et al. (2020) [41] Empatica E4 ACC, EDA, HR, STd 

Jayathissa et al. (2019) [43] Fitbit Versa/Ionic HR 
Yoshikawa et al. (2019) [44] Empatica E4 EDA, HR, STd 

Kobiela et al. (2019) [45] Empatica E4c BVP, STd 

Salamone et al. (2018a) [49] Empatica E4 ACC, EDA, HR, STd 

Salamone et al. (2018b) [50] Empatica E4 ACC, EDA, HR, STd 

Li et al. (2017) [52] Microsoft Band 2 Activity level, HR, STd 

Hasan et al. (2016) [53] Fitbit Charge HR MET 
Abdallah et al. (2016) [54] Basis EDA, HR, STd 

Huang et al. (2015) [55] Basis B1 EDA, MET, STd  

a Adopted in combination with a head band. 
b Adopted in combination with a miniature data logger. 
c Adopted in combination with a chest band. 
d Measured at the wrist. 
e Skin Relative Humidity. 
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the framework of the analyzed papers. As visible from the table, the considered wristbands are mainly used to acquire wrist ST, EDA, 
and HR. Please note that the third column of the table reports the signals acquired in the related work. From each signal, various 
features can be extracted to be used in the thermal comfort studies. 

In the following subsections, the use of each off-the-shelf wristband for thermal comfort studies is analyzed. 

4.1.1. Empatica E4 
Empatica E4 wristband is a wearable device specifically designed for a continuous real-time data acquisition in daily life for 

research purposes. This wristband is a class II medical device according to the FDA 21 CFR Part 860.3 regulation [49] and is equipped 
with four sensors, namely a photoplethysmogram, an EDA sensor, a 3-axis accelerometer, and an infrared thermopile. A specific 
software was developed by the manufacturer to transfer and manage the acquired data [57]. The technical features of Empatica E4 
wristband are reported in Table A1. 

Empatica E4 wristband was used in Gao et al. (2022) [26] to collect physiological signals of students and teachers in a school for 
creating a dataset useful for future studies focused on the relationships between indoor climates and students’ behaviors/mental states. 

Kim et al. (2022) [12] adopted the Empatica E4 wristband in their study aimed at proposing an advanced thermal 
comfort-prediction model that achieves an accuracy of around 68% when using nine physiological features. When blood glucose and 
salivary cortisol are added to the model, the accuracy rises at around 78%. According to the results, EDA and ST are between the 
features of the Machine Learning (ML) model that mostly contribute to the correct prediction, especially in the case of female subjects. 

Mansi et al. (2022a) [8] adopted Empatica E4 wristband in a study aimed at experimentally demonstrating the use of physiological 
measurements for thermal comfort decoding. In that study, several features were extracted from the signals retrieved through 
Empatica E4 wristband and their significant differences between different thermal sensations were statistically evaluated. The results 
show that the considered features are especially suitable to distinguish between cold and warm thermal sensations. A similar approach 
was used by Mansi et al. (2022b) [28] to evaluate the workers’ thermal comfort through a ML model based on different features 
extracted from the signal retrieved by Empatica E4 wristband. The maximum ML model accuracy was 76% achieved using a Random 
Forest classifier. 

The approach adopted in Barone et al. (2022) [29] was quite different if compared to the previous mentioned works. The signals 
monitored by Empatica E4 wristband, in fact, were used for validating a new direct thermal comfort model that discretizes the human 
body into three nodes. 

Cosoli et al. (2022) [30] adopted Empatica E4 wristband to acquire physiological signals to be used together with EEG to predict 
thermal sensations using different ML algorithms. Even though the use of all the acquired signals maximizes the prediction accuracy 
(80%), the use of EDA plus EEG or wrist ST plus EEG provides a good accuracy too, being 78% and 76% respectively. 

The signals collected by Park and Park (2022) [32] using Empatica E4 wristband were used to develop a prediction model for 
thermal comfort based on ensemble transfer learning. The proposed model was considered suitable to overcome the weak general
ization performance that occurs when the dataset of each subject is insufficient. 

Lee and Ham (2021) [35] developed a thermal comfort model using signals acquired by Empatica E4 wristband. The results 
highlighted the importance of a real-time estimation of change in activity and the issues related to the prediction of a neutral thermal 
state. This is because the Authors observed a weak predictive performance of the model when the subject’s thermal sensation is within 
a neutrality range. 

Salamone et al. (2020) [39] compared the thermal comfort perception in both real and virtual environments, even considering light 
color, using ML models. In both real and virtual reality scenarios, ST resulted to be the physiological variable that mostly contribute to 
improve the model accuracy. 

Feng et al. (2020) [41] adopted Empatica E4 wristband and other sensors to develop a framework for an individualized comfort 
monitoring system to be later integrated in the HVAC control system of healthcare facilities. No specifications about the ML model and 
the use of monitored physiological signals are provided. 

Yoshikawa et al. (2019) [44] used Empatica E4 wristband in combination with a low-cost thermal camera for estimating subjects’ 
thermal comfort. Empatica E4 wristband was used to acquire wrist ST, HR, and EDA, while the low-cost thermal camera was used to 
acquire various temperatures in different regions of the face, such as nose, lip, and cheek through a face-detector algorithm. The results 
show that the accuracy of the ML model is 73% when using the wristband-based features, while it rises up to 78% by including the 
thermal camera-based features. The combination of all the features improves the classification accuracy up to 80%. 

Kobiela et al. (2019) [45] used Empatica E4 wristband in combination with a chest band for training and validating a personal 
thermal perception model. As better described in section 4.3, the results demonstrated that ML models trained of wristband-based 
features performed worse than the ones trained with chest band-based features. 

Empatica E4 wristband is also used in the works of Salamone et al. (2018b) [50] and Salamone et al. (2018a) [49] that are strictly 
related between them because the former is propaedeutic to the latter. While in Salamone et al. (2018b) [50] the main variables for a 
ML model aimed at assessing thermal comfort are identified, in Salamone et al. (2018a) [49] the ML model is trained and validated. 
According to the results, when only physiological features are used, the accuracy achieved by the ML model ranges between 50% 
(Logistic Regression) and 81% (Classification and Regression Trees), depending on the adopted algorithm. When environmental 
features, such as operative temperature and relative humidity, are included in the model, the accuracy increases in the range between 
81% (Logistic Regression) and 99% (Classification and Regression Trees). According to the results of Salamone et al. (2018a) [49], HR 
is a feature that can be excluded from the ML models when evaluating thermal comfort in sedentary activities. 
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4.1.2. Fitbit 
Fitbit wristbands are a series of wearable devices that can be used to monitor different users’ parameters, including the metabolic 

rate which is estimated by the devices’ algorithms as a function of the basal metabolic activity and the estimated energy requirement 
[53]. The main technical features of one example of Fitbit series device (i.e., Fitbit Versa 4) are reported in Table A2. One of the main 
advantages of this series of devices is its spread. Around 25 million of Fitbit users were registered in 2019 [43], making this 
off-the-shelf device especially suitable for large and remote studies on the population, such as “The Fitbit Heart Study” that aimed at 
detecting cardiac arrhythmia among Fitbit users and, contemporarily, validating Fitbit algorithms on large scale [58]. The reliability of 
Fitbit measurements was previously evaluated by various small-scale experimental validations focused on child [59] and adult 
physical activities [60,61]. 

From the point of view of thermal comfort studies, Fitbit wristbands represent a flexible tool because they embed the possibility of 
integrating customized apps and clockfaces specifically developed for research purposes [62]. This opportunity was seized by Jaya
thissa et al. (2019) [43] who used Fitbit wristband in a different and novel way to perform thermal comfort studies if compared to the 
previously presented research works. Fitbit wristband was used in combination with cozie, an app developed for Fitbit that is available 
for download from cozie website [63]. This app is a Fitbit clockface that can collect subjective comfort feedbacks from the users. The 
default status of the clockface is a binary question to the user that could choose between two icons representing a comfort or a 
discomfort thermal sensation. By clicking on the icons, the information regarding the location, HR, steps walked since the last log and 
the comfort feedback are sent to a database. If the user is feeling discomfort, additional questions can be configured by using the mobile 
phone paired with Fitbit wristband. Using this application, the Authors of that work were able to obtain 1460 responses from 15 users 
during a month, with minimal administrative overhead. Cozie application was then used by Abdelrahman and Miller (2022) [27] in an 
investigation focused on the improvement of the subjective data sampling for thermal comfort studies. The main idea of that work is to 
perform a targeted occupant survey -a concept introduced by Duarte Roa et al. [64]- that consists in exactly determining where and 
when collecting data from occupants. Abdelrahman and Miller (2022) [27] used the HR acquired by Fitbit wristband, the outdoor 
temperature, and the personality to create triggering conditions to start the data acquisition. Thus, Fitbit is not only a passive device for 
the signal acquisition, but it also contributes to determining when that signal has to be acquired. 

Finally, Fitbit wristband was used by Hasan et al. (2016) [53] to acquire the actual metabolic rate of two users for estimating their 
Predicted Mean Vote (PMV) and comparing it to the PMV calculated assuming a constant MET value of 1.0. The results showed that 
occupants’ MET varies remarkably over time, even though they were performing comparable activities. These results highlighted that 
the assumption of a constant MET represents a limitation for the correct estimation of occupants’ thermal comfort. 

4.1.3. Other wristbands 
In addition to Empatica E4 and Fitbit, further off-the-shelf wristbands were adopted to perform thermal comfort studies. Table 2 

shows that Microsoft Band 2, Basis, E66, Huawei GT2e, Galaxy Watch, and Hesvit S3 were also adopted, although their use can be 
considered minor compared to Empatica E4 and Fitbit. 

Microsoft Band 2 -now discontinued- was a wrist-worn device equipped with various sensor for monitoring several physiological 
parameters. Alsaleem et al. (2020) [37] adopted Microsoft Band 2 to develop a wearable-based personalized thermal comfort model 
integrated in an intelligent comfort controller based on particle swarm optimization. Microsoft Band 2 was used in combination to a 
designed app to allow the user to enter the clothing conditions and feedback about the thermal sensation. The results show that 
metabolism, wrist ST, and especially the EDA are the features that mostly contribute to improve the prediction accuracy of the ML 
model. By contrast, the use of cloth insulation and HR as prediction features provides less accuracy. A similar investigation was 
performed by Li et al. (2017) [52]. They used Microsoft Band 2 to acquire physiological signals for training a ML model for developing 
a personalized HVAC control framework. The developed model integrates a decision algorithm that can switch between either the 
activation and control of the HVAC system or the window opening for natural ventilation. The results show that the inclusion of 
physiological parameters in the ML model considerably increases its accuracy. Moreover, this personalized HVAC control was esti
mated to decrease by over 50% the number of uncomfortable reports regarding discomfort conditions collected from the occupants. 

Basis is a wristband that is equipped with sensors for monitoring the triaxial acceleration and various heat-related variables, such as 
ST, ambient temperature, and EDA to estimate the energy expenditure. The accuracy of Basis B1 in the estimation of physical activity 
were evaluated by a specific study [65] that highlighted a bad accuracy of this device when compared to similar ones and a portable 
metabolic system. Basis wristband was adopted in the studies of Abdallah et al. (2016) [54] and Huang et al. (2015) [55]. Both those 
works are among the oldest ones considered in this literature review. Thus, their approach seems to be more explorative than the one 
adopted in the next works. The aim of Abdallah et al. (2016) [54] was to investigate the feasibility of adopting wearable devices to 
measure and monitor occupants’ thermal comfort by using Artificial Neural Network (ANN). Similarly, Huang et al. (2015) [55] used 
Basis B1 wristband to acquire physiological signals with the final aim of inferring thermal comfort. The results showed that the 
incorporation of physiological quantities increases considerably the prediction accuracy. Moreover, Huang et al. (2015) [55] identified 
the main situations that pose challenges for inferring occupants’ thermal comfort at home, such as local heat sources (e.g., a laptop on 
the lap), short terms effects (e.g., a cold/hot beverage), and extra covers (e.g., a puppy on the lap). 

E66 wristband was adopted by Čulić et al. (2022) [25] to investigate personal thermal comfort indicators and introduce a personal 
thermal comfort evaluation framework. The results of this work showed that thermal comfort is not very sensitive to HR and wrist ST. 

Galarretta et al. (2022) [31] designed and developed an automatic HVAC control system based on occupants’ body temperature. 
The improved performance of the proposed control system was evaluated by assessing the occupants’ thermal comfort based on the 
stress level -a function of HR- measured through a Huawei GT2e wristband. 

Galaxy Watch was the off-the-shelf wristband used by Morresi et al. (2021) [33] in their work aimed at measuring thermal comfort 
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in response to the variation of the environmental conditions using ML classifiers. The results showed that frequency-domain quantities 
of HRV are especially suitable to be used as indicators to distinguish whether a user is thermally comfortable or in discomfort. 

The last analyzed off-the-shelf wristband is Hesvit S3 that was used by Deng and Chen (2020) [9] to develop a HVAC control 
strategy for offices using an ANN model based on the use of wristbands to monitor HR. This control strategy was then validated through 
experimentations and simulations. The results show that the proposed control system improves the office thermal comfort, but it was 
not effective from an energy point of view. The control of the set point temperature using the ANN model, in fact, does not show 
remarkable differences in terms of heat load, in comparison to a HVAC control that maintains a constant set point temperature. 
Moreover, the proposed control strategy increases by 7% the cooling load compared to a control strategy based on a constant set point 
temperature. The most energy-efficient solution resulted to be coupling the wristband control using HR to an occupancy-based control 
that can be performed using the Bluetooth of the same wristbands. 

4.2. Headbands 

In Table 3, the papers in which off-the-shelf headbands were adopted to perform investigations on thermal comfort are reported. 
Moreover, the adopted off-the-shelf headbands and the acquired physiological parameters are also presented. As visible from Table 3, 
only four papers adopted headbands for performing analyses related to thermal comfort and all of them used Muse 2 devices for the 
EEG monitoring. 

4.2.1. Muse 2 
According to the manufacturer [66], the Muse series headbands are multi-sensor meditation devices that provide real-time feed

back on the user’s brain activity, HR, breathing, and body movements. These headbands are equipped with a reference electrode (FPz) 
placed on the forehead and four more input electrodes. Two of them are silver-made front electrodes (AF7 and AF8), while the 
remaining ones are posterior electrodes (TP9 and TP10) made in conductive rubber. Please note that the electrode positions and the 
nomenclature refer to the 10–20 international system for scalp electrodes for EEG [67]. Muse headband can acquire the EEG signal 
with a sampling frequency of 256 Hz [28], as reported in Table A3. 

Muse devices were primarily developed for helping the meditation practice [66]. Nevertheless, the recent rising interest for 
portable low-cost EEG devices has led to extend the use of Muse headband also for research purposes, mainly in neuroscience field. For 
example, Youssef et al. [68] used Muse headband for developing a ML-dependent lie detector, while Karydis et al. [69] adopted Muse 
to classify brain states corresponding to the experience of “pain” or “no pain” associated with cold. Muse devices, in fact, are char
acterized by a reduced time for the application to users, a minimum intrusiveness during the measurements, and a lower cost if 
compared to professional equipment. Indeed, the limited number of electrodes and their low adjustability to different head shape and 
size may question the Muse reliability for research use. Nevertheless, the experimental validation against a professional equipment for 
laboratory EEG recordings performed by Krigolson et al. [70] proved the reliability of Muse. 

A first study involving a Muse 2 headband for thermal comfort evaluation was performed by Mansi et al. (2021) [34]. This study is 
preliminary to the others presented in Table 3 because sets the data processing -noise removal and power spectrum analysis- and 
feature extraction procedures. Starting from the signal acquired through the Muse headband, the five major brain waves in the 
different frequency ranges were extracted, namely Delta, Theta, Alpha, Beta, and Gamma brain waves. The extracted features were 
then used to find statistical correlations with thermal sensations. The results showed that brain activity was altered by the occupants’ 
thermal sensation. Most of the EEG features can be used to distinguish between warm and cold thermal sensations. Nevertheless, the 
considered features cannot be used to distinguish between neutral and cold thermal sensations. Similar analyses were performed by 
Mansi et al. (2022a) [8] who used Muse 2 headband with Empatica E4 wristband. The performed analyses confirmed the results 
obtained in Mansi et al. (2021) [34], especially regarding the correlation between the increase/decrease of power of brain waves as a 
function of the user thermal sensation. 

While the previously presented two works were focused on finding correlations between thermal sensations and EEG features, the 
investigations presented in Mansi et al. (2022b) [28] and Cosoli et al. (2022) [30] adopted a different approach. This is since the signals 
acquired by Muse 2 headband and Empatica E4 wristband were adopted for developing ML models aimed at predicting the occupants’ 
thermal sensation. The work of Mansi et al. (2022b) [28] was mainly focus on workplaces and the developed ML model was char
acterize by an accuracy of 76% when the Random Forest Classifier was adopted. Moreover, a Thermal Comfort-Related index was 
developed for assessing thermal sensations based only on features extracted from physiological signals acquired by the adopted 
off-the-shelf wearable devices. Cosoli et al. (2022) [30] demonstrated that the combinations of EEG with EDA or ST provide high 
accuracies -up to 78% and 76%, respectively- for the estimation of thermal sensation through ML algorithms. 

Table 3 
Considered scientific papers that adopt off-the-shelf headbands for thermal-comfort studies.  

Paper Off-the-shelf headbands Acquired physiological signals 

Mansi et al. (2022a) [8] Muse 2a EEG 
Mansi et al. (2022b) [28] Muse 2a EEG 
Cosoli et al. (2022) [30] Muse 2a EEG 
Mansi et al. (2021) [34] Muse 2 EEG  
a Adopted in combination with a wristband. 
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4.3. Chest bands 

In Table 4, the papers in which off-the-shelf chest bands were adopted to perform investigations on thermal comfort are reported. 
As visible from the table, BioHarness 3.0 and Polar H7 are the chest bands that are mainly used in this type of investigations. The use of 
other chest bands -e.g., RespiBan- is minor. Between the considered chest bands, BioHarness 3.0, EcgMove 3, and Respiban can be 
considered as wearable devices intended for a professional use also for in- or out-of-the-lab research applications. By contrast, Polar H7 
and Kalenji CW 300 were developed mainly for not-professional sport usages. 

In the analyzed papers, the off-the-shelf wearable devices reported in Table 4 were mainly adopted to acquire HR. Nevertheless, in 
some studies, these chest bands were also used to acquire further parameters, such as ST, RR, and activity level. 

4.3.1. BioHarness 3.0 
As reported in the user manual [71], the BioHarness 3.0 chest band is a physiological monitoring telemetry device intended for 

monitoring of adults in the home workplace and alternate care settings. The chest band consists of a chest strap and an electronic 
device that allows the user to acquire five physiological and physical quantities, namely HR, RR, ACC, activity level, and body posture. 
The main technical features of this off-the-shelf wearable device are reported in Table A4. The metrological characterization performed 
by Casaccia et al. [72] highlighted a good accuracy in the estimation of HR and RR. Additional analyses regarding BioHarness validity 
and reliability were performed in the works of Johnstone et al. [73,74]. 

The HR signals acquired by BioHarness 3.0 was used by Pigliautile et al. (2020) [38] to extract features to be correlated with 
thermal comfort. The results showed a good correlation especially between Low (LF) and High Frequency (HF) components of HRV and 
indoor air temperature, Relative Humidity (RH), and CO2 concentration, in both summer and winter experiments. Lower correlations 
were also found between LF/HF and PMV. The features extracted from BioHarness 3.0 signals were used to predict the thermal 
sensation vote through ML algorithms. When LF/HF were considered together with time-domain and frequency-domain features, an 
accuracy of 84% was achieved by using the Support Vector Machine algorithm. 

In Calvaresi et al. (2018) [48], BioHarness 3.0 was adopted for a different purpose. The aim of that work was the dynamic esti
mation of the metabolic rate of users through mathematical relationships between the monitored signals, such as HR and RR. The 
proposed methodology enabled an accurate estimation of the metabolic rate with an uncertainty of ±0.2 met. Through Simulink 
simulations, the Authors demonstrated that a climate control system based on a dynamic estimation of occupants’ metabolic rate could 
save around 30% of the energy if compared to a constant value of metabolic rate during a 8-h working day in wintertime. 

4.3.2. Polar H7 
Polar H7 is a HR chest band that is used in investigations focused on thermal comfort due to is reliability in the HR signal acquisition 

when compared to ECG signal acquired through the standard electrode placement of torso-mounted limb leads [75]. The main 
technical features of Polar H7 are reported in Table A5. 

Liu et al. (2018) [51] used Polar H7 to collect HR signal to be used with other parameters to develop a ML model based on the 
Random Forest algorithm for predicting the occupants’ thermal preferences. The results showed that the model had a good average 
accuracy (74% ± 13%) that increases when occupants are satisfied with the thermal environment. This study is preliminary to the one 
of Liu et al. (2019) [46], where the same methodology was used. The results showed a low correlation between thermal sensation and 
HR (0.184). Moreover, Liu et al. (2019) [46] also pointed out useful information about the performance of Polar H7 chest band in the 
HR monitoring. The Authors, in fact, decided to adopt Polar H7 chest band after a comparison of the HR acquisition with Empatica E4 
wristband. This comparison showed a low Spearman correlation (rs = 0.242) between the signals and it was attributed to the inac
curacy of the Empatica E4. The wristband, in fact, can loosen the contact with the body, while Polar H7 chest band can be damped and 
slightly tight on the chest, increasing the reliability of the measurements. 

Polar H7 chest band was also used by Youssef et al. (2019) [47] in the development of a personalized adaptive modeling algorithm 
to predict the individuals’ thermal sensation based on features extracted from signals acquired by several sensors. The accuracy of the 
model was 57% and the confusion matrix shows that the maximum confusion is observed between adjacent classes of thermal sen
sations. The proposed solution is to reduce the number of considered classes by merging them. Different configurations were evaluated 
and the accuracy rose up to a maximum of 85%. 

Table 4 
Considered scientific papers that adopt off-the-shelf chest bands for thermal-comfort studies.  

Paper Off-the-shelf chest bands Acquired physiological signals 

Pigliautile et al. (2020) [38] BioHarness 3.0 HR 
Razjouyan et al. (2020) [42] EcgMove 3 Activity level, HR 
Kobiela et al. (2019) [45] RespiBana HR, ST 
Liu et al. (2019) [46] Polar H7b HR 
Youssef et al. (2019) [47] Polar H7 HR 
Calvaresi et al. (2018) [48] BioHarness 3.0 ACC, Activity level, Body posture, HR, RR 
Liu et al. (2018) [51] Polar H7b HR 
Gauthier and Shipworth (2014) [56] Kalenji CW 300 HR  
a Adopted in combination with a wristband. 
b Adopted in combination with miniature data loggers. 

A. Costantino et al.                                                                                                                                                                                                    



Journal of Building Engineering 70 (2023) 106379

12

4.3.3. Other chest bands 
The remaining chest bands that are reported in Table 4 are EcgMove 3, RespiBan, and Kalenji CW 300. 
EcgMove 3 is a psycho physiologic ambulatory measurement system for the assessment of ECG and physical activity [76]. The 

associated software makes it possible to calculate features such as HR, HRV, activity classes, and energy expenditure. EcgMove 3 was 
used by Razjouyan et al. (2020) [42] to analyze the role of RH in thermal comfort in the context of office workers’ health and 
wellbeing. The Authors performed this investigation because since ASHRAE 55–1989 standard [77] there has been no lower limit to 
RH in thermal comfort or ventilation standards [42]. The results suggested that a lower RH limit may contribute to improve workers’ 
wellbeing. This is because the workers that spend most of their time in environment with 30%–60% of RH show a 25% lower stress 
response compared to those who spend most of their time in drier conditions. 

Very few information is currently available in literature regarding RespiBan chest band. According to Schmidt et al. [78], RespiBan 
is a chest band that embeds sensors for measuring ACC and RR. Moreover, this device can work as a hub by using four analog ports to 
acquire ECG, EDA, electromyography, and ST with sampling frequency of 700 Hz. Kobiela et al. (2019) [45] used RespiBan together 
with Empatica E4 for investigating the feasibility of ML models to predict the individuals’ thermal sensation. This work showed that 
the ML model presented an accuracy up to 83%, using only the chest belt device, and up to 80% when only the wristband is used. 
Moreover, the investigation showed that the features related to distal ST are those that most improve the model accuracy. Thus, in the 
future, the detection of an individual’s thermal perception may be remarkably improved by using new wearable devices worn on more 
distal body regions, such as smart rings [45]. 

Finally, Gauthier and Shipworth (2014) [56] adopted Kalenji CW 300 chest belt and the Kalenji Cardio Connect logger to acquire 
HR. The aim of the work was to improve the evaluation of the metabolic rate and the clothing insulation as quantitative variables. 
Nevertheless, no information about the use of the monitored HR were provided. 

4.4. Other wearable sensing devices 

In addition to wristbands (sub-section 4.1), headbands (sub-section 4.2), and chest bands (sub-section 4.3), other off-the-shelf 
wearable devices were used in literature to perform analyses related to thermal comfort. Even though their use is minor compared 
to other devices, they are worth to be presented for highlighting the opportunities they can provide in thermal comfort studies. In 
Table 5, the works in which those devices were adopted are presented. As visible from the table, these wearable devices are classified as 
miniature data loggers and activity sensors, mainly used to acquire ST and MET, respectively. 

4.4.1. DS1923 iButton 
iButton is a small (16 × 6 mm2), rugged, self-sufficient system that measures temperature and RH and records the results in a 

protected memory section [79]. The main technical features of iButton are reported in Table A6. The main advantages of this miniature 
data logger are its small size and the absence of wiring. These features make it particularly suitable for different long-term monitoring 
activities. iButton was used in animal research through its implantation into rats to monitor their core body temperature [80]. When 
attached to clothes or accessories, iButton can be adopted to measure air temperature and RH around the individual, as done by Gnecco 
et al. (2022) [81] and Liu et al. (2019) [46] that pinned iButton to backpacks and pants, respectively. Moreover, iButton can be directly 
fixed at human epidermis using medical tapes to monitor ST for research on metabolism, circadian rhythms, and human thermal 
physiology [79]. The use of this device for the monitoring of human ST is supported by positive results obtained in experimental 
validations [79,82]. Different models of iButton are available on market, as visible from the manufacturer website [83]. The selection 
of the most adequate model depends on the necessity of including the RH in the monitoring activity and on the needed accuracy range. 
Some models, in fact, guarantee an accuracy of ±0.5 ◦C between +20 ◦C and +75 ◦C, which is adequate for ST acquisition. By contrast, 
the models that guarantee the same accuracy but in the range from − 10 ◦C to +65 ◦C can be also adopted for monitoring air 
temperature. 

iButton was used by Barone et al. (2022) [29] to acquire ST for the validation of the direct thermal comfort model previously 
mentioned in sub-section 4.1.1. To this aim, the ST was acquired by applying iButton DS1923 Hygrochron on the participants’ body 
through medical tape, according to the 10-point method [84]. 

Liu et al. (2019) [46] and Liu et al. (2018) [51] used iButton with a chest band for the purposes previously described in in 
sub-section 4.3.2. In both the works, the ST was acquired at wrist and ankle. In addition, an iButton device was pinned at the in
dividuals’ lower pant with the sensing side facing outside to monitor the air temperature of the environment. The results Liu et al. 
(2019) [46] showed that ankle ST seems more sensitive to thermal preferences than wrist ST and HR in intermediate ranges of thermal 
sensations. Finally, Liu et al. (2019) [46] also compared the accuracy of iButton with the ST measured by two wristband, one equipped 

Table 5 
The considered scientific papers that adopt other types of wearable devices.  

Paper Type of device Off-the-shelf device Acquired physiological signals 

Barone et al. (2022) [29] Miniature data logger DS1923 iButtona ST 
Nižetić et al. (2020) [36] Activity sensor Move 3 MET 
Pivac et al. (2020) [40] Activity sensor Move 3 MET 
Liu et al. (2019) [46] Miniature data logger DS1923 iButtonb ST 
Liu et al. (2018) [51] Miniature data logger DS1923 iButtonb ST  
a Adopted in combination with a wristband. 
b Adopted in combination with a chest band. 
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with a resistance thermometer and the other with an infrared thermopile (Empatica E4). The results showed a spearman correlation of 
0.918 between iButton and the resistance thermometer and of 0.572 between iButton and infrared thermopile. Hence, data acquired 
using iButton are considered more reliable because they are acquired using a device directly taped on the skin, while wristbands can 
provide inaccurate data since they loosen the skin contact. 

4.4.2. Move 3 
Move 3 is a scientific research instrument designed to capture the physical activity and other secondary parameters of a person. The 

main technical features of this device are reported in Table A7. The best fixation of this device is on chest, using a strap, or at the hip, by 
clipping it at the belt. These fixations maximize the number of obtainable outputs, but alternative fixations can be at wrist, thigh, and 
ankle. By acquiring the 3D ACC and the atmospheric air pressure, the algorithms of the software associated to Move 3 provide 
elaborated data about the individual’s physical activity, such as activity class, body position, energy expenditure, and MET [85]. 
Specific experimental validations showed a good accuracy of previous Move models in comparison with indirect calorimetry mea
surements -the gold standard- and other similar technologies [86,87]. 

Move 3 was adopted by Pivac et al. (2020) [40] to monitor the MET of four office workers during cooling periods. The results 
highlighted that the MET dynamically changes during the day, even though all the monitored participants have similar daily activities. 
This work was preliminary to the one of Nižetić et al. (2020) [36], where Move 3 was used to monitor the MET of office workers with 
the final aim of validating a new model of metabolic response based on ANN. The model provided acceptable results since the vali
dation showed an overlapping of 90%. Moreover, the analysis of the acquired MET data demonstrated the inapplicability of a static 
MET value in the calculation of PMV indexes. This is since the METs of the monitored workers dynamic change during working hours, 
with variations in the range 1.0–2.0 met. 

5. Discussion 

As just shown, off-the-shelf wearable devices provide several opportunities for performing thermal comfort investigations. From 
the analysis of the considered papers, four different approaches regarding the use of off-the-shelf wearable devices in thermal comfort 
investigations can be identified, namely:  

a) Finding correlations between physiological features and thermal sensations;  
b) Training and/or validating thermal comfort models;  
c) Controlling HVAC systems;  
d) Improving data acquisition. 

Approaches a) and b) represent the current core of the research on thermal comfort using wearable devices, being the approaches 
adopted in most of the considered works. Purpose a) is characterized by the acquisition of physiological signals and the following 
feature extraction aimed at assessing possible correlations between their variations and the subjects’ thermal sensations. The work of 
Mansi et al. [8] is an example of investigation carried out with this purpose. Purpose b) is characterized by the use of extracted features 
from physiological signals for training and validating indirect prediction models of thermal comfort, an activity that is mainly based on 
ML algorithms, as done by Kin et al. [12]. This purpose can concern direct thermal comfort models too. In this case, the acquired signals 
are used only for the model validation, as done by Barone et al. [88]. 

While purposes a) and b) are very widespread and consolidated in literature, purpose c) and d) represent novel promising per
spectives in the use of off-the-shelf wearable devices for thermal comfort investigations. Purpose c) aims at using the signals obtained 
from off-the-shelf wearable devices to develop models to be integrated in the control of HVAC systems, as done by Deng and Chen [9] 
and Alsaleem et al. [37]. This purpose originates from the previously described purpose b), but takes a step forward to the application 
of thermal comfort models in buildings by facing practical issues related to the control of HVAC systems. Finally, works focused on 
purpose d) represent a remarkable opportunity offered by wearable devices to improve the data acquisition. On the one hand, 
off-the-shelf wearable devices make it possible to define trigger conditions, that is deciding where and when data are acquired. On the 
other hand, the combination of wearable devices with apps or clockfaces (in the case of smartwatches) can facilitate the collection of 
subjects’ feedbacks, with a consequent reduction of the subjects’ survey fatigue and the increase of accuracy in their responses. Ex
amples of research working in this direction are the ones of Jayathissa et al. [43] and Abdelrahman and Miller [27]. It has to be 
remarked that the opportunity of defining trigger conditions could also represent a significant advance in studies related to the broader 
topic of indoor environmental quality, by including aspects of visual and acoustic comfort, and indoor air quality. 

From this analysis two different research streams can be expected for the future. 
The first research stream will be focused on the previously mentioned purposes a) and b). It will aim at strengthening and widening 

the current knowledge about statistical correlations between thermal sensations and physiological signals, as well as the development 
and validation of thermal comfort models. The analyzed papers, in fact, showed that there is not a common agreement on which 
physiological features are the main drivers for predicting thermal sensations, with significant uncertainties in the model development 
stage. Thus, future analyses should clearly define the most significant physiological features driving the prediction of thermal sen
sations and they must be integrated in personalized thermal comfort models. This aspect should be deepened especially considering 
that, currently, weak predictive performances were highlighted for thermal sensations within a neutrality range. This issue seems to be 
the real challenge for decoding the human thermal comfort. 

Another issue that should be faced by this research stream is the standardization of the methodology for the model development 
and validation. Currently, the models presented in the literature are characterized by a wide range of accuracies, different subject 
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samples, and different validation procedures. It is evident that strongholds in the methodology for the model development and 
validation are needed. The setting of standard procedures is an essential step toward the definition of more reliable models that are 
propaedeutic for the second research stream. 

The second research stream should be focused mostly on approach c), that is the integration of off-the-shelf wearable devices and 
personalized thermal comfort models into HVAC control systems. This integration would represent the real innovation in the control of 
HVAC systems. It has emerged that, until now, very few investigations have worked to achieve this integration and they mainly 
adopted a numerical approach, without experimental validation. For this purpose, several issues should be faced, such as the intro
duction of optimization algorithms to search for the optimal values of control parameters to maximize thermal comfort. Moreover, 
future investigations should clarify how the integration of off-the-shelf wearable devices and personalized thermal comfort models into 
HVAC control systems would actually affect the perceived occupants’ thermal comfort and, especially, its impact on energy con
sumption, mainly primary energy consumption [89]. This last issue, in fact, has not been clearly assessed until now. For example, 
Calvaresi et al. (2018) [48] estimated a reduction by about 30% in winter energy consumption by adopting a control of set-point 
temperature based on a dynamic calculation of the metabolic rate. By contrast, Deng and Chen (2020) [9] estimated an increase by 
7% of the cooling load when using an HVAC control system based on the occupants’ physiological data and an ANN model. It means 
that integrating personalized comfort models in HVAC systems may not entail an overall decrease of the energy consumption, as it was 
supposed by several works in literature. By contrast, HVAC systems based on personalized thermal comfort models may increase the 
energy consumption. This possible increase is in contrast with the goals of several national and international guidelines and directives 
-such as the previously mentioned EU directive 844/2018 [2]- which primary objective is precisely the reduction of energy con
sumption. It means that additional analyses are essential to find a trade-off between the possible increase of energy consumption, the 
improvement of thermal comfort, and positive impacts on occupants’ activities and wellbeing, such as the increased productivity in 
workplaces and improvements in patients’ health in healthcare facilities. 

Given these perspectives, insights about the use of the off-the-shelf wearable devices for future research are provided. In Table 6 the 
main off-the-shelf wearable devices for each one of the types analyzed in this review are reported together with the main physiological 
signals they can acquire. Amongst the wristbands, Empatica E4 and Fitbit Versa 4 are included in the comparison since they resulted to 
be the most adopted wristbands and the most reliable ones, as mentioned in sections 4.1.1 and 4.1.2. For the same reason, BioHarness 
3.0 and Polar H7 were selected for the comparison between chest bands. By contrast, less alternatives are currently present on the 
market for headbands, miniature data loggers, and activity sensors. Thus, Muse 2, DS1923 iButton, and Move 3 are all included in the 
comparison of Table 6. Please note, that additional off-the-shelf wearable devices are present on the market and they could be used in 
the framework of thermal comfort investigations. Nevertheless, they are not included in Table 6 since they were not present in the 
paper analyzed in this review. 

A remarkable element that stands out from Table 6 is that certain physiological signals can be acquired by different types of off-the- 
shelf wearable devices. For example, HR can be acquired by Empatica E4, BioHarness 3.0, Polar H7, and Muse 2. The main difference is 
how this signal is obtained. Empatica E4, Polar H7, and Muse 2 derive the HR from the BVP monitored through PPG. By contrast, 
BioHarness 3.0 monitors the HR through the ECG. Moreover, BioHarness 3.0 is a chest band that can be damped and tight on the chest, 
with a consequent decrease of measurement uncertainty due to the loosen of contact with the body, as pointed out by Liu et al. [46]. 

Table 6 
Main off-the-shelf wearable devices and acquirable physiological signals.  

Acquirable signals Off-the-shelf wearable devices 

Empatica E4 Fitbit Versa 4 Muse 2 BioHarness 3.0 Polar H7 DS1923 iButton Move 3 

Heart rate ✓a ✓a ✓a ✓ ✓a   

Heart rate variability  ✓a  ✓ ✓a   

Blood volume pulse ✓       
Respiration rate  ✓ ✓b ✓    
Electroencephalogram   ✓     
Electrodermal activity ✓       
Skin temperature ✓c ✓c    ✓  
Acceleration ✓  ✓ ✓   ✓ 
Activity level  ✓  ✓   ✓d 

Body posture   ✓ ✓   ✓d 

GPS  ✓  ✓e    

Steps  ✓     ✓ 
Distance  ✓      
Floors climbed  ✓      
Calories burnt  ✓      
Oxygen saturation  ✓      
Energy expenditure       ✓d 

Metabolic Equivalent of Task       ✓d  

a Derived from plethysmograph measurements. 
b Derived from plethysmograph, accelerometer, and gyroscope measurements. 
c Only wrist skin temperature is obtainable. 
d Acquisition dependent on device position on the body. 
e Available as a supplementary module. 
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Those features could make the use of BioHarness 3.0 especially suitable when the HR and the derived futures (i.e., HRV and heartbeat 
interval) are the core of the analyses. In a similar way, ST can be acquired by wristbands (i.e., Empatica E4 and Fitbit) and miniature 
data loggers (iButton). The main difference is that the measurement of wristbands is limited to the wrist ST, while iButton can be taped 
directly on the subjects’ skin and can be used to monitor ST in various body regions. Probably, if the target of the work is the acquisition 
of ST, the use of miniature data loggers is more flexible. By contrast, headbands are the only wearable devices that enhance the 
acquisition of EEG. Even though this physiological signal seems promising for decoding thermal comfort, it could be expected that head 
bands may not find a wide application in this field in the future. Despite its relevance in decoding thermal comfort, EEG is quite hard to 
be acquired in real conditions for controlling HVAC systems. This is since a tradeoff between technical aspects and wearability is 
needed. Chest bands, miniature data loggers, and headbands, in fact, are devices that subjects would not traditionally wear in their 
day-to-day life, especially in working environments [43]. A good compromise can be found considering the previously mentioned two 
research streams for future investigations. For the first research stream -the one focused on purposes a) and b)- high reliability in the 
measurements is needed to find statistical correlations and develop models. So, the use of chest bands and miniature data loggers seem 
a proper solution. By contrast, the second research stream, based on purpose c), needs devices characterized by a high wearability since 
this stream aims at practical applications in real environments. For this reason, wristbands seem more adequate for the second research 
stream. Moreover, wristbands are characterized by the acquisition of multiple parameters that could be used to define the HVAC 
control strategies. Specifically, Empatica E4 -maybe coupled with an activity sensor- could be considered a good solution for this aim. 
This is since Empatica E4 is a class II medical device that was specifically developed for research purposes. Furthermore, the main 
specifications (e.g., range, resolution, and accuracy) of the embedded sensors are provided in the datasheet of the product. By contrast, 
this information is confidential for Fitbit wristbands, as it stands out by comparing Table A1 and Table A2. This lack of sensor 
specifications is an issue that could hinder its use in future scientific investigations and makes the metrological characterization 
essential for those devices. 

Please note that all the previous considerations should be evaluated bearing in mind that the market of off-the-shelf wearable 
devices is in constant evolution. New devices may be developed, representing a further contribution in decoding the thermal comfort. 
A striking example is the smart ring, as underlined by Feng et al. [41], that may contribute to the acquisition of the ST from distal body 
regions in a simpler way if compared to skin-taped miniature data loggers. Moreover, the possible adoption of off-the-shelf wearable 
devices in scientific research could push the manufacturers to further improve their products, increasing and stating their accuracies, 
or even creating new commercial lines for this specific application. 

The last element that could be pointed out is that off-the-shelf wearable sensing devices may contribute also to assessing and 
improving the ergonomics of working environments where thermal comfort cannot be maintained. In certain workplaces, such as 
steelworks [90], cold storage warehouses [91], livestock houses [92,93], and greenhouses [94], productive requirements prevent 
workers from being in indoor climate conditions suitable for their comfort, with consequent exposure to heat or cold stress. Currently, 
the ergonomics of such workplaces and their thermal-related risks are assessed through specific indicators, as defined by international 
standards, such as ISO 11079 [95] and ISO 7933 [96]. In the coming future, a real-time thermal stress prediction for workers based on 
wearable devices -that are also compatible with their working tasks- can be expected, as highlighted by various works in literature [97, 
98]. The use of off-the-shelf wearable devices may lead to the development of more reliable indicators and predictive models that could 
help defining strategies and solutions to mitigate heat/cold stress and, thus, improving worker safety and productivity. 

6. Conclusions 

In this work, a detailed framework about the use of off-the-shelf wearable sensing devices in thermal comfort studies is provided. 
For this purpose, a systematic review of 35 scientific papers -selected out 302 resulting from the initial database query-) was performed 
considering the last ten years as time span (2012–2022). The results show that the use of off-the-shelf wearable sensing devices has 
remarkably increased in the last years and the most adopted types of devices are wristbands, headbands, chest bands, and other 
devices, such as miniature data loggers and activity sensors. Those devices are adopted in investigations related to thermal comfort 
with different purposes, that are finding correlations between physiological signals and thermal sensations, training and/or validating 
thermal comfort models, improving data acquisition, and controlling HVAC systems. Empatica E4 and Fitbit are the off-the-shelf 
wristbands that are mostly adopted for thermal comfort investigations. Those devices are mainly used to monitor the electrodermal 
activity, the heart rate, and the wrist skin temperature. Muse 2 is the off-the-shelf headband that was used in various work to acquire 
the electroencephalogram. Amongst chest bands, BioHarness 3.0 and Polar H7 are the most adopted to acquire the heart rate. Finally, 
DS1923 iButton and Move 3 are adopted to monitor the skin temperature and activity level, respectively. 

The analysis of the considered papers and the highlighted research gaps show that two main research streams can be expected for 
the coming future. On the one hand, future investigations could aim at strengthening the knowledge about statistical correlations 
between thermal sensations and physiological signals, as well as defining standardized procedures for the model development and 
validation, also supported by AI-based techniques. On the other hand, future investigations could aim at integrating of off-the-shelf 
wearable devices and personalized thermal comfort models into HVAC control systems. 
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Appendix A  

Table A1 
Technical specifications of Empatica E4 wristband.   

Empatica E4 wristband 

HARDWARE Description A wearable wireless device designed for comfortable, continuous, real-time data acquisition in daily life. 
Case dimension 44 mm, 40 mm, 16 mm 
Case weight 25 g 

OPERATING 
CONDITIONS 

Temperature − 10 ◦C — 40 ◦C 
Relative humidity 20%–95% of relative humidity 
Battery 260 mAh with 3.7V output 
Battery duration Streaming mode 20+ hours 

Recording mode 36+ hours 
Charging time <2 h 

DATA MANAGEMENT Software Empatica Manager (PC), Empatica E4 real-time app 
Data storage 60+ hours 
Data transfer The E4 wristband connects to a smartphone or desktop computer via Bluetooth, both modes upload the data 

recorded in Empatica’s secure cloud platform – Empatica Connect - which allows users to easily access their 
data. 

Data format and 
analysis 

View data and graph and download raw data in CSV format from Empatica cloud platform for analyses in third 
party applications. 

MEASURED SIGNALS Electrodermal 
activity  

• Sampling frequency: 4 Hz (Non customizable).  
• Resolution: 1 digit ~900 pS.  
• Range: 0.01 μS – 100 μS.  
• Alternating current (8 Hz frequency) with a max peak to peak value of 100 μA (at 100 μS).  
• Electrodes: Placement on the ventral (inner) wrist. Snap-on silver (Ag) plated with metallic core. Electrode 

longevity: 4–6 months 
Blood volume pulse  • PPG sensor: sampling frequency 64 Hz (Non customizable).  

• Sensor output resolution 0.9 nW/Digit.  
• The heart rate is derived from this measurement. 

Skin temperature Infrared thermopile:  
• Sampling frequency: 4 Hz (Non customizable).  
• Range: 40 ◦C–85 ◦C for ambient temperature (only available with custom engineering work), − 40 ◦C — 

115 ◦C for skin temperature.  
• Resolution: 0.02 ◦C.  
• Accuracy ±0.2 ◦C within 36 ◦C–39 ◦C. 

Acceleration Sampling frequency: 32 Hz (Non customizable).  
• High sensitivity motion detection across 3 axes: X,Y, and Z.  
• Default range ±2 g.  
• Ranges of ±4 g or ±8 g are selectable with custom firmware.  
• Resolution: 8 bits of the selected range. 

MAIN REFERENCES User manuals Empatica E4 User Manual [99] 
Product webpages Get started with your new E4 wristband [100]   
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Table A2 
Technical specifications of Fitbit Versa 4 wristband.   

Fitbit versa 4 wristband 

HARDWARE Description NA 
Bracelet Dimensions Small: 140 mm–170 mm of wrist circumference 

Large: 180 mm–220 mm of wrist circumference 
Bracelet weight NA 

OPERATING 
CONDITIONS 

Temperature − 10 ◦C — 45 ◦C 
Relative humidity NA 
Battery Rechargeable lithium-polymer battery 
Battery duration 6+ days 
Charging time 1–2 h 

DATA MANAGEMENT Software Fitbit app 
Wireless Bluetooth 5.0 and NFC chip 
Data storage 7 days 
Data transfer Data can be exported from active Fitbit accounts through the webpage. Recent data (up to 31 days) are 

immediately available, while lifetime data are available upon request. 
Data format and 
analysis 

Data can be exported in.csv format 

MEASURED SIGNALS Heart Rate NA 
Respiration rate NA 
Acceleration NA 
Skin temperature NA 
Oxygen saturation NA 

MAIN REFERENCES User manuals Fitbit Versa 4 – User Manual Version 1.1 [101] 
Product webpages How do I export my Fitbit account data? [102]   

Table A3 
Technical specifications of Muse 2 headband.   

Muse 2 headband 

HARDWARE Description A multi-sensor meditation device that provides real-time feedback on your brain activity, heart rate, 
breathing, and body movements 

Dimension Between 30 and 35 cm from ear to ear 
Weight 38.5 g 

OPERATING 
CONDITIONS 

Temperature NA 
Relative humidity NA 
Battery Rechargeable Li-ion 
Battery duration 5 h 
Charging time 3 h 

DATA MANAGEMENT Wireless Bluetooth 5.0 
Software Muse: EEG Meditation & Sleep app 
Data storage None 
Data transfer Through Bluetooth and Micro USB protocol 
Data format and analysis Data can be exported in.csv format through a third-party apps, such as Mind Monitor 

MEASURED SIGNALS Electroencephalography  • 4 EEG channels +2 amplified Aux channels  
• Sampling rate (per channel): 256 Hz  
• Resolution: 12 bits per sample 

Acceleration  • Three axes  
• Range: ±4 g  
• Sampling rate: 52 Hz  
• Resolution: 16 bits 

Photoplethysmography  • 3 LEDs: infrared, infrared, red  
• Sampling rate: 64 Hz  
• Resolution: 16 bits 

MAIN REFERENCES Product webpages Muse 2 presentation webpage [103] 
Muse 2 product comparison [104]   
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Table A4 
Technical specifications of BioHarness 3.0 chest band.   

Bioharness 3.0 chest band 

HARDWARE Description A physiological monitoring telemetry device intended for monitoring of adults in the home workplace and 
alternate care settings 

Transmitter dimension 28 mm (diameter), 7 mm (thickness) 
Transmitter weight 18 g 

OPERATING 
CONDITIONS 

Temperature − 30 ◦C–60 ◦C 
Relative humidity NA 
Battery 3.7 V lithium-polymer rechargeable battery 
Battery duration 12–28 h in active mode (logging + transmitting data), 35 h in standby mode (logging) 
Charging time 3 h 

DATA MANAGEMENT Wireless Bluetooth and 802.15.4 frequencies simultaneously 
Software Zephyr configuration tool, Zephyr’s OmniSense software, Software Developer’s Kit (SDK) provided 
Data storage 500+ hours (general), – 140 h (general + heart rate), 280 h (general + accelerometer) 
Data transfer Bluetooth, ECHO (802.15.4 transmitting mode), Configuration cradle (USB protocol). 
Data format and 
analysis  

• .csv format.  
• .dat/.hed file pairs. These are data files design for input of large data sets into a 3rd party data processing 

application.  
• .kml files, if used in conjunction with a supported Bluetooth GPS device. 

MEASURED SIGNALS Heart rate  • Range: 25–240 bpm (±1 bpm)  
• Sampling frequency: 250 Hz 

Respiration rate  • Range: 3–70 bpm (±1 bpm)  
• Sampling frequency: 25 Hz 

Acceleration  • Range: (±) 16 g on any axis  
• Sampling frequency: 100 Hz 

Activity  • Vector Magnitude Units (VMU): 16 g  
• Sampling frequency: 125 Hz 

Posture  • Dynamic range: ±180◦

• Reporting frequency: 1 Hz 
MAIN REFERENCES User manuals BioHarness 3.0 User Manual [71] 

BioHarness 3.0 Log Data Description [105]   

Table A5 
Technical specifications of Polar H7 chest band.   

Polar h7 chest band 

HARDWARE Description NA 
Dimension NA 
Weight NA 

OPERATING CONDITIONS Temperature − 10 ◦C–50 ◦C 
Relative humidity NA 
Battery CR 2025 lithium battery 
Battery duration 200 h 
Charging time Non-rechargeable battery 

DATA MANAGEMENT Wireless Bluetooth 
Software Polar Beat app 
Data storage None 
Data transfer To the Polar Beat app (smartphone or PC) via Bluetooth. 
Data format and analysis .csv and.xls formats. 

MEASURED SIGNALS Heart rate NA 
MAIN REFERENCES User manuals Polar H7 User Manual [106]   
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Table A6 
Technical specifications of iButton DS1923 miniature data logger.   

Ibutton ds1923 miniature data logger 

HARDWARE Description A rugged, self-sufficient system that measures temperature and/or humidity and records the result in a protected 
memory section. 

Dimension 17.35 mm (diameter), 5.89 mm (thickness) 
Weight 5 g 

OPERATING 
CONDITIONS 

Temperature − 20 ◦C–85 ◦C 
Relative humidity 0%–100% relative humidity 
Battery 3 V Lithium coin cell battery, size BR 1225 
Battery duration Depending on use, 8-bit logging at 20 ◦C: 300 days at 30 s interval, 5.5 years at 10 min interval 
Charging time Non-rechargeable battery, quite hard to replace 

DATA MANAGEMENT Wireless Not present 
Software Software for setup and data retrieval through the 1-Wire interface is available for free download from the iButton 

website. This software also includes drivers for the serial and USB port of a PC and routines to access the general- 
purpose memory for storing application-specific or equipment-specific data file. 

Data storage 512 Bytes. A total of 8192 8-bit readings or 4096 16-bit readings taken at equidistant intervals ranging from 1 s to 
273 h can be stored. In addition, there are 512 bytes of SRAM for storing application-specific information and 64 
bytes for calibration data. 

Data transfer The DS1923 is configured and communicates with a host-computing device through the serial 1-Wire® protocol, 
which requires only a single data lead and a ground return. 

Data format and 
analysis 

NA 

MEASURED SIGNALS Temperature  • Range: 20 ◦C — 85 ◦C  
• Accuracy: ±0.5 ◦C (in range: 10 ◦C–65 ◦C) with software correction  
• Resolution: 0.5 ◦C (8 bit), 0.0625 ◦C (11 bit)  
• Sampling rate: 1 s up to 273 h 

Relative humidity  • Range: 0–100%  
• Accuracy: ±5% with software correction  
• Resolution: 0.6% (8 bit), 0.04% (12 bit)  
• Sampling rate: 1 s up to 273 h 

MAIN REFERENCES User manuals iButton DS1923 datasheet [107] 
iButton catalogue [108] 

Product webpages iButton DS1923 webpage [109]   

Table A7 
Technical specifications of Move 3 activity sensor.   

Move 3 activity sensor 

HARDWARE Description A scientific research instrument designed to capture the physical activity and other secondary parameters of a 
person. It is designed and optimized for research applications 

Dimension 62.3 mm, 38.6 mm, 11.5 mm 
Weight 25 g 

OPERATING 
CONDITIONS 

Temperature − 20 ◦C–60 ◦C (0 ◦C–45 ◦C during charging) 
Relative humidity 0–75% 
Battery 3 V Lithium-Polymer battery 
Battery duration 9 days (recording), 2 months (maximum recording capacity with a 15-min daily charge) 
Charging time It is recommended a daily recharging of about 15 min to achieve the 2-month maximum battery duration 

DATA MANAGEMENT Wireless Bluetooth Smart 
Software SensorManager (sensor configuration), UnisensViewer (to view the stored data) 
Data storage NA 
Data transfer Micro-USB, Bluetooth Smart 
Data format and 
analysis 

.csv and unisens format (an open data format, .xml + .bin). The stored data can be analyzed through 
DataAnalyzer 

MEASURED SIGNALS Acceleration  • Range: ±16 g  
• Output rate: 64 Hz  
• Noise: 4 mg 

Barometric pressure  • Range: 300 hPa — 1000 hPa  
• Output rate: 8 Hz  
• Noise: 0.03 hPa 

MAIN REFERENCES User manuals Move 3 User Manual [110] 
Product webpages Move 3 webpage [111]  
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