
Computer Methods and Programs in Biomedicine 242 (2023) 107803

Available online 7 September 2023
0169-2607/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Extremely missing numerical data in Electronic Health Records for machine 
learning can be managed through simple imputation methods considering 
informative missingness: A comparative of solutions in a COVID-19 
mortality case study 

Pablo Ferri a,*, Nekane Romero-Garcia b, Rafael Badenes b,c,d, David Lora-Pablos e,f, 
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A B S T R A C T   

Background and objective: Reusing Electronic Health Records (EHRs) for Machine Learning (ML) leads on many 
occasions to extremely incomplete and sparse tabular datasets, which can hinder the model development pro-
cesses and limit their performance and generalization. In this study, we aimed to characterize the most effective 
data imputation techniques and ML models for dealing with highly missing numerical data in EHRs, in the case 
where only a very limited number of data are complete, as opposed to the usual case of having a reduced number 
of missing values. 
Methods: We used a case study including full blood count laboratory data, demographic and survival data in the 
context of COVID-19 hospital admissions and evaluated 30 processing pipelines combining imputation methods 
with ML classifiers. The imputation methods included missing mask, translation and encoding, mean imputation, 
k-nearest neighbors’ imputation, Bayesian ridge regression imputation and generative adversarial imputation 
networks. The classifiers included k-nearest neighbors, logistic regression, random forest, gradient boosting and 
deep multilayer perceptron. 
Results: Our results suggest that in the presence of highly missing data, combining translation and encoding 
imputation—which considers informative missingness—with tree ensemble classifiers—random forest and 
gradient boosting—is a sensible choice when aiming to maximize performance, in terms of area under curve. 
Conclusions: Based on our findings, we recommend the consideration of this imputer-classifier configuration 
when constructing models in the presence of extremely incomplete numerical data in EHR.   

1. Introduction 

Electronic Health Records (EHRs) are a rich source of data for Ma-
chine Learning (ML) algorithms, as they contain a comprehensive record 
of each patient’s medical history [1]. However, real-world data present 
huge challenges potentially limiting the successful development and 
prospective use of ML models, where incompleteness is among the most 

frequent issues [2]. Missing values in EHRs can be originated from 
human errors during the data entry process, patient reluctancy to pro-
vide specific information, the absence of results for specific tests [3], 
potential errors in complex data extraction pipelines—including map-
ping from the original EHRs vendors data models to the required format 
for data reuse—or to different patient’s clinical workflows on a wide 
casuistry from which to generate the target data. 
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The missing value challenge, pervasive in EHRs, may severely impact 
ML outcomes. If no action is taken, serious bias may be introduced, 
potentially deriving in poor model performance, which may hinder 
medical data decision processes assisted by ML models [4]. On the other 
hand, improper data imputation processes may lead to inaccurate pre-
dictions, introducing spurious patterns and compromising the model’s 
generalizability, potentially jeopardizing the safety and efficacy of 
clinical decision-making based on the ML model’s output [5]. Addi-
tionally, special warning must be put in no imputing jointly training and 
test data, since this will lead to falsely overestimated performance 
metrics. Hence, this incompleteness issue must be tackled in a proper 
way when developing ML models from EHR data. 

The nature of missing values conditions the approaches to deal with 
them. We can group these approaches into two categories: strategies 
based on discarding incomplete information and strategies focused on 
imputing the missing values [6]. Dropping either the case or the feature 
itself may be a straightforward action to handle the missing values, 
effective if there is no pattern associated with them and if the number of 
missing values is low. On the other hand, imputation techniques are 
based on filling the missing values with a value calculated from the ones 
that are complete in our data, considering univariate to multivariate 
approaches to calculate these imputed values [6,7]. 

The missing value problem becomes tougher as the incompleteness 
ratio increases. When this ratio is high, dropping rows or columns in our 
dataset may imply losing almost all the data, leading to data scarcity and 
being completely useless since novel incoming cases will present missing 
values with high probability. Thus, one must rely on data imputation 
approaches. However, the choice of a specific imputation strategy when 
data incompleteness is high is not easy, especially if one considers that 
some techniques may be more suited to specific ML predictive algo-
rithms than others. 

In the present work, we aimed to identify the most effective missing 
imputation techniques and ML models for dealing with numerical 
missing values in EHRs when data incompleteness is high. In contrast to 
using synthetic data or artificially introducing random missingness on a 
dataset, we considered a problem-representative case study of real- 
world EHR data from COVID-19 patients, with a high number of 
missing values, more realistic and potentially not-random, and the po-
tential usage of the developed ML models in medical decision-making 
pipelines. 

Although there is a vast number of studies dealing with data 
incompleteness in EHR data and COVID-19 mortality prediction [3,4, 
8-12], we aim to address an incompleteness ratio of around 95%, which 
is uncommon to find in the literature, although significantly present in 
real-world data analyses. Likewise, we have included in our study novel 
deep learning [13] approaches, including adversarial 
generation-discrimination for data imputation, and deep classifier ML 
models. Our study is unique in its challenging aim, with potentially 
useful conclusions for health artificial intelligence and ML researchers 
dealing with high incompleteness in EHR. 

2. Materials 

2.1. Dataset 

2.1.1. Overview 
We used 35 411 cases of patients at emergency admission with SARS- 

CoV2 infection from Hospital 12 de Octubre, Madrid, Spain, and Hospital 
Clínico Universitario de Valencia, Spain. The dataset comprised 22 vari-
ables including demographics, physical exploration, full blood count 
laboratory tests and patient survival. The use of data was approved by 
the Ethical Committees of the two hospitals and Universitat Politècnica de 
València. 

2.1.2. Data quality assessment 
To avoid the inclusion of potentially faulty data—besides missing 

data, the aim of our study—consistency bounds were established for 
each selected feature. Specifically, no negative values were allowed, nor 
percentage values above 100%. Those values labeled as erroneous were 
set to missing, but without dropping the entire case. 

2.1.3. Data summary 
Table 1 summarizes the numerical variables in our dataset and their 

completeness level, and Table 2 summarizes the categorical variables, 
including the target-dependent variable 30-day mortality. Data sum-
mary per hospital can be found in Supplementary material. 

Tables 1 and 2 stand out for the high overall incompleteness, with 
some variables with a completeness ratio of around 5%, as well as the 
huge class imbalance present in our target variable. 

2.2. Framework 

The implementation language was Python [14], using the libraries 
Numpy [15] and Pandas [16] for data management, Scikit-learn [17] 
and PyTorch [18] for modeling and Optuna [19] for hyperparameter 
tuning. 

3. Methods 

3.1. Data preparation 

3.1.1. Data splitting 
First, data was split using a holdout [20] methodology, with pro-

portions of 80% for training and 20% for testing. Next, k-fold 
cross-validation [20] splits were carried out over the training set, taking 
k = 4, without repetition—i.e., exhaustive evaluation—deriving in four 
data pairs each one with proportions 75% for training and 25% for 
validation. 

To avoid potential overfitting issues and truly validate imputers and 
models performances, posterior preprocessing, imputing and modeling 
operations were carried out taking into account the nature of the data 
group. Hence, no retraining of scaling bounds, imputers or models was 
conducted in the validation or test sets; the configurations used were the 
ones previously learned in their respective training sets. 

Table 1 
Numerical variables in the studied COVID-19 dataset.  

Variable name Completeness 
(%) 

5-th 
percentile 

Median 95-th 
percentile 

Age (years) 100 12.75 49.74 89.26 
Heart rate (BPM) 20.75 60 89 124 
Systolic BP (mmHg) 21.14 94 126 168 
Diastolic BP (mmHg) 21.13 48 71 97 
Temperature ( ◦C) 22.24 35.9 36.9 39 
CO2 pressure 

(mmHg) 
5.4 25 34 52 

O2 pressure (mmHg) 5.31 25 64 141 
Red blood cells 

(million/mcL) 
35.03 3.25 4.56 5.53 

Hematocrit (%) 34.03 29.7 40.8 48.8 
Hemoglobin (g/dL) 34.48 9.8 13.8 16,6 
Platelets (million/ 

mcL) 
30.83 0.12 0.23 0.43 

White blood cells 
(cells/mcL) 

35.98 3.9 7.8 17.1 

Eosinophils (%) 20.53 0.1 0.7 4.6 
Lymphocytes (%) 28.18 4.5 17.4 38.6 
Monocytes (%) 27.26 3.3 7.7 14.2 
Neutrophils (%) 29.21 48.5 72.5 89.9 
Bicarbonate (mEq/ 

L) 
5.28 18 23 32 

Chloride (mEq/L) 31.82 90 99 106 
Potassium (mmol/L) 6.21 3.42 4.14 5.22 
Sodium (mEq/L) 6.35 130 138 144  

P. Ferri et al.                                                                                                                                                                                                                                     



Computer Methods and Programs in Biomedicine 242 (2023) 107803

3

3.1.2. Data preprocessing 
Regarding categorical variables, sex was dummy encoded, dropping 

the redundant variable of each set, while the label 30-day mortality was 
one-hot encoded, creating a new variable for each label class. 

Focusing on numerical features, we scaled our data to improve 
imputers and ML models performances, reduce the effect of outliers and 
accelerate the learning processes. Specifically, we considered two ap-
proaches: robust scaling—suitable for imputers not requiring strictly 
bounded inputs—and min-max scaling—appropriate for imputers 
requiring data to strictly belong to the [0, 1] interval. 

Specifically, the equation for the robust scaling of each feature p was 
the following one: 

x(p)s =
x(p)o − q(p)

50

q(p)
75 − q(p)

25

(1)  

where x(p)
s refers to the scaled feature value, x(p)

o to the original feature 
value, q(p)

50 is the median of feature p, q(p)
75 is the third quartile of feature p 

and q(p)
25 is the first quartile of feature p. 

Likewise, the formula for min-max scaling applied over each feature 
p was: 

x(p)s =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, x(p)o < l(p)2.5

x(p)o − l(p)2.5

u(p)
97.5 − l(p)2.5

, l(p)2.5 ≤ x(p)o ≤ u(p)
97.5

1, x(p)o > u(p)
97.5,

(2)  

where x(p)
s refers to the scaled feature value, x(p)

o to the original feature 
value, l(p)2.5 to the 2.5-th percentile and u(p)

97.5 to the 97.5-th percentile. 

3.2. Imputation methods 

We have examined six different imputation techniques, which we 
will now present in order from lower to higher complexity. Among these 
techniques, some are univariate techniques, utilizing only values from 
the same feature to perform imputation. On the other hand, others are 
multivariate, taking into account information from multiple features 
simultaneously. Despite the increased complexity of the multivariate 
methods, they can offer additional benefits when there are relationships 
among features that can be leveraged for data imputation. 

The source code that has been developed to implement these stra-
tegies, along with the preceding data preparation procedures and sub-
sequent classification models, can be accessed via the following link: 
https://github.com/bdslab-upv/extremiss.git. 

3.2.1. Missing mask 
Baseline imputation technique that we consider given its simplicity. 

It consists of the replacement of the missing values by a value of zero and 
the filled values by a value of one, in those features presenting missing 
values. Hence, for each feature p in our data: 

x(p)i =

{
0, if x(p)s is missing
1, if x(p)s is not missing

(3)  

being x(p)
i the imputed value for feature p and x(p)

s the scaled value for 
feature p. 

3.2.2. Translation and encoding 
Based on the hypothesis that extremely missing data in numerical 

features may introduce noise, thus impeding the imputation process, we 
propose here an imputing approach termed translation and encoding. In 
this method, non-missing numerical data features undergo translation 
and then missing values in these numerical features are encoded. 

Specifically, this approach is a univariate imputation method, with 
the initial step involving the scaling of numerical values using a min- 
max scaling scheme—as defined in the previous section—to normalize 
them within the interval [0, 1]. Subsequently, an additive translation is 
applied, shifting all the values towards the right on the real number line. 
We defined that operation this way: 

x(p)t := x(p)s + δ, δ ∈ R ∋ 0 < δ < 1, (4)  

where x(p)
t is the translated feature value and δ is a positive real scalar, 

constrained to be below 1, that is added to execute the translation 
operation. It is worth noting that tuning this parameter δ in a validation 
set is recommended to optimize model performance. While each dataset 
may require its own tuning, we suggest initially evaluating values in the 
range of (0.1, 0.5). 

Following the translation step, missing values are encoded using the 
value 0. This choice of 0 as the encoding value is efficient for many 
models, such as neural network models, where 0 values are not 
considered in the forward pass, and they do not affect any partial de-
rivatives of the loss function with respect to the weights in the backward 
pass. As a result, this value can be reserved exclusively for encoding 
missing values. 

By using this encoding scheme, informative missingness, if present, is 
directly captured, as a specific value (0) is employed to represent 
missing values. Unlike the missing mask approach, our method pre-
serves information about the original feature domain, as we have solely 
applied linear operations in the process. This ensures that the encoded 
missing values still align with the overall characteristics of the feature 
and are distinguishable from non-missing values in subsequent model 
training and evaluation. 

3.2.3. Mean 
Univariate imputing strategy. We have considered it since it is widely 

used while its implementation is simple. For each feature p, it consists of 
replacing the missing values with the mean value along each feature. 
Hence, it can be described this way: 

x(p)i = x(p)s (5)  

being x(p)
i the imputed value for feature p and x(p)

s the sample mean of the 
non-missing values for feature p. 

3.2.4. K-nearest neighbors 
Multivariate imputation strategy consisting of finding the K-nearest 

neighbors [21] for each missing feature of a specific observation, based 
on the other observation features which are not missing, and then 
averaging the values of those neighboring points presenting a 
non-missing value in the feature we aim to fill. Hence, for each missing 
value associated to a feature p: 

x(p)i = x(p)K (6)  

being x(p)
i the imputed value, and x(p)

K the average value along feature p 
of the K nearest neighbors in terms of Euclidean distance, calculated 
using the filled values. We selected this approach due to its non- 
parametric nature, meaning it does not assume any underlying data 
distribution. Moreover, it leverages local information from the data 

Table 2 
Categorical variables in the studied COVID-19 dataset.  

Variable name Completeness 
(%) 

Category 
name 

Frequency 
(%) 

Sex 100 Male 42.3 
Female 57.7 

30-day mortality (target 
variable for prediction) 

100 Survival 94.9 
Exitus 5.1  
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rather than employing a global pattern approach, which is the case for 
the majority of imputation techniques. 

3.2.5. Bayesian ridge regression 
Bayesian ridge regression [22] is a multivariate imputation strategy 

that addresses missing values in each feature by modeling them using 
the available remaining features in a round-robin fashion [23]. Unlike 
point estimates, it employs a distributional approach—a Bayesian 
paradigm—to handle imputations. Furthermore, this method demon-
strates robustness in the face of feature multicollinearity, thanks to the 
inclusion of the ridge penalty [24]. We chose this approach because it 
provides a multivariate perspective while maintaining a relatively 
straightforward structure as a linear model, all the while effectively 
handling multicollinearity concerns. 

3.2.6. Generative adversarial imputation networks 
Generative adversarial imputation networks constitute a multivar-

iate imputation method based on generative adversarial neural net-
works [25], which are grounded in deep learning principles [13]. In this 
approach, the generator examines certain features of the input data, 
imputes the missing components based on the observed information, 
and then produces a complete observation. Conversely, the discrimi-
nator analyzes this observation and tries to distinguish between the 
features that were genuinely observed and those that were imputed 
[26]. We assessed this approach because generative adversarial impu-
tation networks possess the capability to handle complex data structures 
and effectively capture non-linear dependencies. These attributes are 
particularly valuable when aiming to achieve high-quality imputations. 

3.3. Classification 

Five machine learning classifier families were considered, each with 
increasing implementation complexity with respect the previous one: K- 
nearest neighbors [21], logistic regression [27], random forest [28], 
gradient boosting [29] models and deep multi-layer perceptron [13,30]. 

K-nearest neighbors and logistic regression models were considered 
for their simplicity of implementation, interpretability and explain-
ability capabilities, and their ability to serve as baseline references for 
performance evaluation. The random forest and gradient boosting 
models were adopted as they attain excellent results in many previous 
works within the COVID-19 triage literature [10,11,31,32]. In addition, 
they are inherently interpretable and explainable, attributes that confer 
value within the medical field, as evidenced by [11]. Lastly, despite not 
receiving as much widespread consideration as the aforementioned tree 
ensemble methods, deep multi-layer perceptrons were employed due to 
the fact that deep learning is at the forefront of numerous highly intri-
cate artificial intelligence tasks [33,34,35]. Therefore, we hypothesize 
that incorporating them could contribute additional predictive value 
compared to other methods. 

3.3.1. K-nearest neighbors 
K-nearest neighbors is a lazy and non-parametric learning approach 

that does not assume any underlying data distribution. It is capable of 
capturing complex non-linear dependencies within the data. The 
method operates by examining the K nearest instances in the training set 
to a given observation, utilizing a distance metric such as the Euclidean 
distance in our case. Subsequently, it assigns the class label to the 
observation based on the class that is most prevalent among its K nearest 
neighbors. 

3.3.2. Logistic regression 
Logistic regression is a linear and parametric model approach that is 

both efficient to train and valuable for establishing baseline perfor-
mance. The model constructs predictions by applying a sigmoid function 
to a linear combination of the features, including a bias term in the 
process. This sigmoid transformation allows logistic regression to 

predict probabilities and classify data into different classes. The 
simplicity and interpretability of logistic regression make it a widely 
used method for binary classification tasks. 

3.3.3. Random forest 
Random forest is a tree ensemble model that effectively captures 

non-linear dependencies within the data. It accomplishes this by 
combining multiple decision trees. One of the key advantages of random 
forests is their ability to reduce prediction error variance rather than 
bias [28], making them robust and less prone to overfitting. During the 
training process, particular emphasis was given to two crucial hyper-
parameters: the number of weak learners (i.e., decision trees) and the 
depth of each tree. We determined the impact of these parameters on 
model performance and selected an appropriate combination that yiel-
ded the best results, following the approach outlined in Section 3.4. 

3.3.4. Gradient boosting 
Gradient boosting is a tree ensemble model that effectively captures 

non-linear dependencies in the data. It places more emphasis on 
reducing prediction error bias rather than variance [29]. To construct 
the trees in the ensemble, we used the mean squared error with an 
improvement score as proposed by Friedman [29] as the splitting 
criteria. Similarly, we thoroughly analyzed the influence of the number 
of decision trees and tree depth, employing the hyperparameter opti-
mization strategy described in Section 3.4. 

3.3.5. Deep multi-layer perceptron 
The deep multi-layer perceptron is a differentiable model rooted in 

artificial neural networks, composed of multiple processing layers 
intended to learn data representations at various levels through an end- 
to-end approach [13]. Training of this model relies on gradient descent 
algorithms [36], where gradients are computed using backpropagation 
[37]. 

The implemented architecture was based on a multi-layer perceptron 
[30], comprising dense and output blocks. A dense block integrates a 
fully connected layer [38], a layer normalization [39] layer to manage 
internal covariate shift, a ReLU activation function to prevent exploding 
activations [40], and a dropout layer [41] to minimize neuron 
co-adaptation. An output block is composed of a fully connected layer 
and a softmax activation function, providing a normalized score ranging 
from 0 to 1 for each class within the 30-day COVID-19 mortality label. 

Regarding model training, the optimizer considered was AdamW, 
due to its learning adaptability, noisy gradients management and 
learning process stability [36,42]. We took as loss function the focal 
cross-entropy loss [43], given its smoother behavior with respect 
cross-entropy. This loss function was weighted considering class fre-
quency, to reduce the effect of class imbalance, and regularized with 
weight decay [44], to reduce the risk of overfitting. Likewise, a 
mini-batch training approach was adopted, to dispose of a trade-off 
between proper weight learning and efficiency in terms of computa-
tion time and memory. Finally, the weights of layers with a ReLU acti-
vation function were initialized with Kaiming’s initialization [45], while 
layers with a softmax activation function were initialized with Xavier’s 
initialization [46]. 

3.4. Hyperparameter tuning 

In this section, we present the hyperparameter optimization scheme 
employed to determine the optimal combinations of hyperparameters 
for imputers and classifiers that heavily rely on their values. Therefore, 
the methodology outlined here was separately applied to the translation 
and encoding imputer, the k-nearest neighbors imputer, the generative 
adversarial imputer, the k-nearest neighbors classifier, the random for-
est classifier, the gradient boosting classifier, and the deep multi-layer 
perceptron classifier. 

Imputer’s and ML models’ hyperparameters—e.g., translation scalar, 
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number of neighbors, number trees, tree depth, learning rate, batch size, 
networks architecture, etc.—were selected following an active learning 
[47] Bayesian multi-step hyperparameter optimization strategy, simi-
larly to previous works [34]. This consists in a procedure where an 
auxiliary probabilistic model—a generative model—was trained itera-
tively to 1) estimate the probability of the objective performance metric 
given a set of hyperparameters and 2) sample new hyperparameter 
values on each iteration expecting to improve the performance metric. 

Thus, multiple surrogate models, which in our work consisted of 
tree-structured Parzen estimators [48], were iteratively updated. The 

allowed sampling space was discrete, since a continuous sampling space 
may derive in overfitting issues due to the curse of dimensionality [49]. 
Likewise, the performance metric considered in our work was the area 
under curve (AUC) since it takes into account class imbalance and it is 
not dependent on a specific threshold [50]. 

Finally, it must be pointed out that the decision threshold to translate 
predicted class probabilities to a specific class was set maximizing using 
the Youden index [51]. We chose this rule to balance recall (sensitivity) 
and specificity. Likewise, to allow an unbiased evaluation, this threshold 
was calculated in the training set, without using any information from 

Fig. 1. Areas under curve for 30-day COVID-19 mortality prediction in the test set for the different imputer and classifier configurations. Confidence intervals (95%) 
obtained with bootstrap are also provided. Each imputation method is represented with a different marker while each classifier by a different color. 
Abbreviations: MM, missing mask; TE, translation and encoding; MI, mean imputation; KNN, k-nearest neighbors; BR, Bayesian regression; GAIN, generative 
adversarial imputation networks; LR, logistic regression; RF, random forest; GB, gradient boosting; MLP, multi-layer perceptron. 
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the test set to estimate it. 

3.5. Evaluation 

We calculated the AUC, recall (sensitivity) and specificity in the test 
set to assess the performance of the models developed. A total of 1000 
resampling operations based on bootstrap [52] were carried out to 
obtain non-parametric distributions for each metric value. Likewise, the 
95% confidence intervals for each metric were calculated from these 
empirical distributions. 

4. Results 

Next, we show the 30-day COVID-19 mortality prediction perfor-
mance for the different imputers and classifiers in the test set, in terms of 
AUC, recall and specificity, considering the metric values calculated as 
well as the confidence intervals obtained with bootstrap. Additional 
graphics representing these metrics can be found in Supplementary 
material. 

Fig. 1 shows that missing mask—the baseline imputation method-
—achieves reasonably good results, although is not present among the 

Fig. 2. Recalls for 30-day COVID-19 mortality prediction in the test set for the different imputer and classifier configurations. Confidence intervals (95%) obtained 
with bootstrap are also provided. Each imputation method is represented with a different marker while each classifier by a different color. 
Abbreviations: MM, missing mask; TE, translation and encoding; MI, mean imputation; KNN, k-nearest neighbors; BR, Bayesian regression; GAIN, generative 
adversarial imputation networks; LR, logistic regression; RF, random forest; GB, gradient boosting; MLP, multi-layer perceptron. 

P. Ferri et al.                                                                                                                                                                                                                                     



Computer Methods and Programs in Biomedicine 242 (2023) 107803

7

top imputer-classifier configurations. Translation and encoding—the 
imputing approach proposed in this work to consider informative 
missingness while keeping information about the original feature 
domain—attains the best results, specifically when combined with the 
ensemble tree models, getting an AUC of 0.894 with the random forest 
classifier, the highest of our work. Mean imputation, K-nearest neigh-
bors’ imputation and Bayesian regression produce better results than the 
missing mask baseline but fail to surpass the translation and encoding 
approach. Finally, the generative adversarial imputation method, the 
most complex imputation strategy, although above the missing mask 

approach, does not present imputer-classifier configurations at the top of 
the performance scale. 

Fig. 2 shows that the missing mask baseline attains better recall 
values than most other imputation methods, except mean imputation 
which offers the best recall in conjunction with the KNN classifier. 
Noteworthy, the translation encoding strategy, the Bayesian regression 
imputer and the generative adversarial imputation scheme present 
similar recall values, but the variance in them is lower for the generative 
adversarial method. Finally, the K-nearest neighbors imputer is the one 
with the worst overall recall metrics. 

Fig. 3. Specificities for 30-day COVID-19 mortality prediction in the test set for the different imputer and classifier configurations. Confidence intervals (95%) 
obtained with bootstrap are also provided. Each imputation method is represented with a different marker while each classifier by a different color. 
Abbreviations: MM, missing mask; TE, translation and encoding; MI, mean imputation; KNN, k-nearest neighbors; BR, Bayesian regression; GAIN, generative 
adversarial imputation networks; LR, logistic regression; RF, random forest; GB, gradient boosting; MLP, multi-layer perceptron. 
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Fig. 3 shows a reversed behavior respect Fig. 3, with missing mask 
offering low specificity values, followed by mean imputation. Likewise, 
translation and encoding, K-nearest neighbors, Bayesian regression and 
generative adversarial imputation provide significantly better out-
comes, especially when combined with decision tree ensemble models. 
Finally, it stands out the variability in the specificity value metrics, 
notably superior to the ones appreciated in the AUC and recall metrics. 

5. Discussion 

5.1. Relevance 

Results from our work show that is possible to deal with extremely 
missing numerical data on EHR without having to drop any case or 
column, and hence, without severely reducing the clinical applicability 
scenario to those cases presenting all feature values. This is of utmost 
importance, especially in the clinical domain, since medicine needs to 
deal with incomplete information by nature. Likewise, focusing on the 
COVID-19 context, the pipelines developed can offer a data-based sec-
ond opinion aiming to enhance the clinical decision process in the 
presence of highly sparse incoming data. 

After analyzing what the evaluated imputers and classifiers offer and 
considering AUC as reference metric—recall and specificity have more 
room for adjusting and reaching a trade-off by changing the saturation 
threshold if the AUC is higher—the simple translation and encoding 
approach stands out as the best configuration, in conjunction with tree 
ensemble classifiers, especially with the random forest classifier. 

The fact that missing mask achieves good results without considering 
the value itself may imply the presence of informative missingness, since 
patients presenting more severe clinical frameworks could require more 
tests and analysis. However, that comes at the cost of low specificities. 
On the other hand, translation and encoding performs better in respect 
this baseline because it considers this informative missingness but at the 
same time keeps the information about the feature domain, giving more 
detail to define the decision boundaries for the posterior classifiers. 

Despite the sophistication of the generative adversarial imputing 
approach, it gets the second worst results in terms of average AUC, just 
after the missing mask approach. We hypothesize that this is due to the 
extreme numerical data sparseness, which introduces noise and highly 
hinders the learning process for this imputer. Although the remaining 
methods perform better than the generative approach, they do not 
surpass the translation and encoding approach. Thus, we can state that is 
an effective and efficient strategy that should be tested when dealing 
with data of the same nature as the one presented in this work. 

Therefore, we recommend considering the evaluation of the trans-
lation and encoding approach, combined with tree ensemble models 
such as random forest or gradient boosting, when dealing with datasets 
that have highly missing data exhibiting similar characteristics. By 
similar characteristics, we mean the presence of extreme missing data in 
continuous features, without necessarily requiring explicit alignment 
with mortality prediction tasks. Conversely, datasets with different 
missing patterns, such as temporal missing data [53,54], may demand 
further investigation into the suitability of this method. 

Moreover, we encourage researchers to adhere to the data splitting 
and preprocessing steps presented in this work, since improper data 
handling during imputation would lead to misleading results, as dis-
cussed in [55]. Hence, it is vital to exercise caution when carrying out 
these operations. 

Thus, given its implementation simplicity and computational effi-
ciency, it is worth assessing the translation and encoding approach 
combined with tree ensemble models, especially before considering 
more sophisticated alternatives that might not offer significant predic-
tive value due to the extreme missing data present in the dataset. 

5.2. Limitations 

The main limitations of this work are associated with the inherent 
difficulty of predicting the 30-day COVID-19 mortality, since patients 
presenting similar feature values can derive a completely different 
outcome. Thus, this inter-patient variability, summed with the 
complexity of dealing with highly missing numerical data set bounds to 
the maximum performance attainable. However, as we aimed to 
compare different imputing and classifier approaches relatively, these 
limitations are not critical to carrying out our analyses. Lastly, we 
acknowledge that our findings are specific to our COVID-19 mortality 
prediction task, and although these could be representative enough on 
specific similar cases with extremely missing data situations, further 
experimentation would help validate the applicability of our results to 
other medical prediction scenarios. 

5.3. Future work 

As future work, we aim to extend this study to other real-world 
biomedical and EHR datasets especially those presenting similar miss-
ingness structures, to provide additional evidence of our findings. 
Likewise, we aim to study end-to-end imputation and classification 
pipelines, where the imputer and the classifier are trained synchro-
nously, and not first the imputer and then the classifier. 

6. Conclusions 

In this work, we have compared the adequateness of multiple 
imputation and classification pipelines to handle extremely missing 
numerical data in real-world Electronic Health Records (EHRs). We have 
developed 30 imputation-classifier pipelines to predict COVID-19 mor-
tality, considering features with missingness ratios up to 95%. Our re-
sults indicate that translation and encoding—univariate method that 
considers informative missingness—outperforms complex imputation 
methods especially when combined with random forest and gradient 
boosting models. Given our findings, we recommend considering 
translation with encoding when constructing models in the presence of 
extremely incomplete numerical data in EHRs. 
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