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Abstract: The food chain acts as an entry point for antibiotic resistance to reach humans and environ-
ment. Because of the importance of the poultry sector, we investigated the prevalence and evolution
of antibiotic resistance in Escherichia coli isolates from a series of 14,500 breeding hens and their farm
environment during the rearing period. Samples included meconium from one-day-old breeders and
fecal samples and boot swabs from the breeding sheds of pullets and adult hens. All E. coli isolates
from one-day-old chicks, 77% from feces and 61% from boot swabs, were resistant to at least one
antibiotic. Cefotaxime and multi-drug resistance in fecal isolates decreased during the rearing period
from 41.2% and 80.8% in one-day-old chicks to 3.8% and 33.8% in adults. All genes studied were
detected in E. coli from feces and boot swabs, the most common being blaTEM (75%), blaSHV (72%),
and qnrB (67%). blaCMY-2 was detected in 100% of one-day-old breeders. The combination of at least
one cephalosporin and one quinolone resistance gene was detected in 68.7% of fecal and boot swab
isolates. Our results highlight the need to monitor the prevalence of antibiotic resistance on farms
and to take appropriate measures to reduce the risk to public and environmental health.

Keywords: Escherichia coli; antibiotic resistance; third-generation cephalosporin resistance; poultry;
antibiotic resistance genes; ESBL; PMQR; breeding hens

1. Introduction

Antimicrobial resistance (AMR) is a rising global health threat. It is estimated that bac-
terial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed
to 4.95 million deaths. In addition, the World Bank estimates that AMR could result in USD
1 trillion to USD 3.4 trillion gross domestic product (GDP) losses per year by 2030 [1].

The survey and control of AMR from a One Health perspective are essential for
managing this public health emergency [2]. The food chain acts as a main entry point
for AMR to reach humans and re-circulate in the ecosystem. Resistant bacteria can be
transferred through the whole food chain, from primary production to consumers, via food,
the environment, and direct contact with animals [3]. Bacteria can also act as a source of
resistance genes that can be transferred to other bacteria, including human and animal
pathogens [4]. Studies around the world show an increase in the isolation of AMR bacterial
strains from food-producing animals and meat [5–7]. Specially, resistance against medically
important antibiotics, such as cephalosporins and quinolones, is critical [8]. The mandatory

Antibiotics 2024, 13, 753. https://doi.org/10.3390/antibiotics13080753 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics13080753
https://doi.org/10.3390/antibiotics13080753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-8298-102X
https://orcid.org/0000-0002-8534-8940
https://orcid.org/0000-0001-6171-5171
https://orcid.org/0000-0002-3329-7221
https://doi.org/10.3390/antibiotics13080753
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics13080753?type=check_update&version=1


Antibiotics 2024, 13, 753 2 of 17

surveillance of antimicrobial-resistant bacteria in food animals and food in the European
Union (EU) [5] demonstrates the importance of these bacteria as a public health threat.

Escherichia coli (E. coli) is a natural inhabitant of the gut in poultry and one of the
main microorganisms responsible for the spread of resistant genes among the environ-
ment, animals, and humans [9,10]. E. coli has been proposed as the main indicator of
the presence of antibiotic-resistant bacteria and clinically relevant resistance genes [4,11],
due to its presence in animal and human guts, clinical relevance, and ability to acquire
conjugative plasmids. Moreover, commensal strains of E. coli reflect population exposure to
antimicrobial selection pressure and thus can provide continuous evidence of trends [12].
E. coli is especially useful to monitor extended-spectrum β-lactamase (ESBL)-producing
bacteria, because ESBL-producing Enterobacteraceae are the major cause of resistance to
expanded-spectrum β-lactam antibiotics [4,13].

Beta-lactams account for 60% of all antibiotics used worldwide and are one of the most
widely prescribed antibiotic classes [14]. The most frequent form of resistance to β-lactam
antibiotics is the production of β-lactamases, mainly extended-spectrum β-lactamases
(ESBLs) and plasmidic AmpC (pAmpC) β-lactamases, which can hydrolyze penicillin
and cephalosporins [15]. SHV and TEM are among the most frequently found ESBL
gene types, and their presence in plasmids and other mobile genetic elements facilitates
their dissemination in all environments [16]. Concerning pAmpC, the most common β-
lactamases are the CMY-2 type, which, in contrast to ESBLs, are less affected by β-lactamase
inhibitors [17].

Th eintensive use of β-lactam antibiotics in human and veterinary medicine has led
to the spread of extended spectrum β-lactamase (ESBL)-producing resistant bacteria. The
World Health Organization (WHO) has indicated that ESBL-producing Enterobacteriaceae
are among the world’s most serious and critical threats in the 21st century [18]. Regarding
this threat, the European Food Safety Authority (EFSA) considers the presence of beta-
lactamase, especially ESBL-producing E. coli in poultry, a public health hazard [19].

On the other hand, resistance to quinolones is usually due to a chromosomal mutation
leading to reduced target susceptibility. However, some plasmids can carry genes that
confer resistance to these antibiotics, known as plasmid-mediated quinolone resistance
(PMQR) [20].

Third-generation cephalosporins and fluoroquinolones are categorized as highest-
priority critically important antimicrobials (hpCIAs), because they are commonly used in
humans [8]. In 2019, 54% of E. coli strains isolated from humans in Europe was resistant to
at least one family of antibiotics, mainly fluoroquinolones and beta-lactams [21]. In recent
years, resistance to cephalosporins and quinolones has been detected in E. coli isolated from
food-producing animals, including poultry [22–24]. Moreover, the association between
ESBL and PMQR genes is frequent in resistant bacteria [25]. This justifies the monitoring of
combined resistance to these classes of antimicrobials in food-producing animals [4].

Animal food products play an important role in the human diet, and their demand and
production are rising worldwide. Poultry meat is one of the most consumed meat products.
In 2020, poultry meat production represented almost 40% of global meat production [26]
and its consumption is projected to increase by 17.8% by 2030, according to the OECD-
FAO [27].

There is strong evidence that the use of antibiotics in poultry production has led to the
development of high resistance levels in the microbiome of animals, increasing the risk of
transfer of these resistances from poultry-associated bacteria to human pathogens, with
potentially serious consequences for public health [28]. Moreover, poultry farms have been
shown to be a source of resistance spread to the environment [29]. Despite the restrictions
on antimicrobial use in many countries, there have been multiple reports of antibiotic-
resistant bacteria associated with poultry, which present food safety concerns [30]. At
present, there is a growing interest in understanding the evolution of antibiotic resistance,
not only in broilers, but throughout the entire production pyramid [31–34], to implement
preventive measures at an early stage. Thus, in this study, we aimed to determine the



Antibiotics 2024, 13, 753 3 of 17

prevalence of antibiotic resistance in E. coli isolates obtained from a commercial-breeder
hen farm throughout different stages of production (from one-day-old breeders to adult
hens), as well as to detect cephalosporin and quinolone resistance genes in those E. coli
isolates that showed resistance to cephalosporins and/or ciprofloxacin.

2. Results
2.1. Antibiotic Resistance Prevalence

A total of 383 isolates was identified as E. coli by the API 20E system (ID > 99%) and
subsequently investigated for antibiotic resistance: 68 from one-day-old breeders; 90 from
pullets’ fecal samples, 80 from boot swabs from pullet breeding sheds, 80 from adult hens’
fecal samples, and, finally, 65 isolates from adult hens’ shed boot swabs. Table 1 and
Figure 1 show the results of the antibiotic resistance levels.

Table 1. Antibiotic resistance levels in the E. coli isolates.

Origin
No.

of Tested
Isolates

Number of Resistant Isolates (%)

AMP CTX CAZ CIP NA C CN S TE

Box bottoms
One-day old 68 68 (100) 28

(41.2) 7 (10.3) 0 0 0 39 (57.4) 45
(66.2) 67(98.5)

Feces
Pullets 90 72 (80) 0 0 0 9 (10) 0 2 (2.2) 7 (7.8) 63 (70)
Adults 80 59 (73.8) 3 (3.8) 2 (2.5) 2 (2.5) 9 (11.3) 3 (3.8) 0 36 (40) 45 (56.3)

% of resistant isolates 76.9 1.9 1.2 1.2 10.7 1.9 1.1 23.9 63.1

Boot swabs
Pullets 80 42 (52.5) 4 (5) 1 (1.3) 2 (2.5) 15 (18.8) 6 (7.5) 7 (8.8) 4 (5) 11 (13.8)
Adults 65 45 (69.2) 5 (7.7) 1 (1.5) 1 (1.5) 21(32.3) 6 (9.2) 0 13 (20) 34 (52.3)

% of resistant isolates 60.9 6.4 1.4 2.0 25.6 8.4 4.4 12.5 33.1

TOTAL % of resistant isolates 74.7 10.4 2.9 1.3 14.1 3.9 12.5 27.4 57.4

AMP—ampicillin; CTX—cefotaxime; CAZ—ceftazidime; CIP—ciprofloxacin; NA—nalidixic acid;
C—chloramphenicol; CN—gentamicin; S—streptomycin; TE—tetracycline.
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Figure 1. Resistance levels to different antibiotic categories observed among the E. coli isolates.

2.1.1. Antibiotic Resistance Prevalence in E. coli Isolated from One-Day-Old Breeders

In the isolates from one-day-old breeders, extremely high levels of resistance were
observed for ampicillin (AMP, 100% of isolates) and tetracycline (TE, 98.5%) and very
high (>50%) for both aminoglycosides, gentamycin (CN) and streptomycin (S). No isolate
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showing resistance to quinolones (nalidixic acid, NA, and ciprofloxacin, CIP) and chloram-
phenicol (C) was observed. Levels of resistance to third-generation cephalosporin (3GC)
among the isolates were 41.2% for cefotaxime (CTX) and 10.3% for ceftazidime (CAZ). In
addition, the percentage of isolates with intermediate susceptibility to both antibiotics was
69.1% for CAZ and 51.5% for CTX. All isolates resistant to CTX and/or CAZ tested positive
for the ESBL phenotype.

2.1.2. Antibiotic Resistance Prevalence in E. coli Isolated from Fecal Samples of Pullets and
Adult Hens

In E. coli isolates from the fecal samples of pullets and adult hens, extremely high re-
sistance levels were observed for AMP (76.9%) and TE (63.1%), followed by high resistance
levels for S (22.9%) and NA (10.6%). For the remaining tested antibiotics, low resistance
levels (<2%) were observed in all cases. Again, all resistant isolates to both CTX and CAZ
tested positive for the ESBL phenotype.

By age groups, in E. coli isolated from pullets, extremely high levels of resistance were
observed for AMP (80%) and TE (70%), while low levels were detected for NA (10%), S
(7.8%) and CN (2.2%). For the rest of the antibiotics, no resistant isolates were obtained. In
the case of the isolates from adult hens, resistance was extremely high for AMP (73.8%),
very high for TE (56.3%), high for CN (40%), and moderate for NA (11.3%). For the rest of
the antibiotics, the resistance level was low (below 10%). All the isolates were susceptible
to CN.

When statistical analysis was performed, isolates from one-day-old hens showed
higher levels of resistance to five antimicrobials than those from pullets and adults: CTX
(χ2 = 67.123, p = 0.000), CAZ (χ2 = 11.825, p = 0.0027), CN (χ2 = 107.643, p = 0.0000),
S (χ2 = 60.017, p = 0.0000), and TE (χ2 = 29.505, p = 0.0000). Significant lower levels were
found for AMP (χ2 = 19.865, p = 0.000) and NA (χ2 = 7.884, p = 0.0194), which were higher
in pullets and adults, respectively.

2.1.3. Antibiotic Resistance Prevalence in E. coli Isolated from Boot Swab Samples

For total boot swab isolates, the antibiotics that presented the highest resistance levels
were AMP (60.9%) and TE (33.1%). A high resistance level to NA was also observed (25.6%).
For cephalosporins, the resistance was higher for CTX (6.4%) than for CAZ (1.4%). As in
fecal samples, all isolates resistant to CTX and/or CAZ presented the ESBL phenotype.

The resistance rates detected in the E. coli from pullets and adults for AMP, S, and TE
were significantly higher for fecal samples than for boot swabs (χ2 = 10.686, p = 0.0011;
χ2 = 9.345, p = 0.0022, and χ2 = 38.012, p = 0.0000, respectively). Conversely, for CTX,
NA, and C, resistance levels were significantly higher in boot swab isolates (χ2 = 4.214,
p = 0.0401; χ2 = 11.171, p = 0.0008, and χ2 = 7.315, p = 0.0068, respectively).

2.2. Resistance Profiles and Multi-Resistance (MDR) Patterns

The resistance patterns of isolates exhibiting at least one resistance are shown in
Table 2.

Among isolates from one-day-old breeders, 12 different patterns were obtained, the
most frequent being AMP/CN/S/TE (30.9%), AMP/TE (19.1%), and AMP/CTX/CN/S/TE
(11.8%). Among isolates from pullet fecal samples, 8 profiles were observed, mainly
AMP/TE (28.2%), AMP (22.2%), and TE (14.4%), whilst in adult hen isolates, 16 profiles
were seen, AMP/S/TE (28,8%) and AMP/TE (16.3%) being the most frequently detected.
For boot swab isolates, 22 profiles were identified. Among isolates from pullets, the most
prevalent profiles were AMP (27.5%) and NA (11.3%); for isolates from adult hens, the most
common profiles were AMP/NA/TE (15.4%), AMP/NA (13.9%), and AMP/S/TE (12.3%).
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Table 2. Resistance profiles for the E. coli isolates.

Profile

No. Isolates (%)

Box Bottoms Feces Boot Swabs

One-Day-Old (n = 68) Pullets (n = 90) Adults (n = 80) Pullets (n = 80) Adults (n = 65)

AMP - 20 (22.2) 4 (5.0) 22 (27.5) 6 (9.2)
NA - - 1 (1.3) 9 (11.3) -

S - - - 1 (1.3) -
TE - 13 (14.4) 3 (3.8) 1 (1.3) 2 (3.1)

AMP/C - - 1 (1.3) - 1 (1.5)
AMP/CTX - - - - 1 (1.5)
AMP/CN - 2 (2.2) - - -
AMP/NA - 1 (1.1) 4 (5.0) 3 (3.8) 9 (13.9)

AMP/S - - 8 (10.0) 1 (1.3) -
AMP/TE 13 (19.1) 35 (38.9) 13 (16.3) 5 (6.3) 6 (9.2)
CN/TE - - - 1 (1.3) -
NA/TE - 1 (1.1) 1 (1.3) - -

S/TE - - 1 (1.3) - 1 (1.5)
AMP/NA/CIP - - 1 (1.3) 1 (1.3) -

AMP/CTX/CAZ - - 1 (1.3) 1 (1.3) 1 (1.5)
AMP/CTX/S 1 (1.5) - - - -

AMP/CTX/TE 2 (2.9) - - - 1 (1.5)
AMP/C/CN - - - 2 (2.5) -

AMP/CN/TE 2 (2.9) - - - -
AMP/S/TE 4 (5.9) 7 (7.8) 23 (28.8) 1 (1.3) 8 (12.3)

AMP/NA/TE - 7 (7.8) 1 (1.3) 1 (1.3) 10 (15.4)
C/S/TE - - - - 4 (6.2)

AMP/CTX/C/CN - - - 3 (3.8) -
AMP/CTX/C/TE - - 1 (1.3) - 1 (1.5)

AMP/CTX/CN/TE 4 (5.9) - - - -
AMP/CTX/S/TE 6 (8.8) - - - -
AMP/CN/S/TE 21 (30.9) - - - -

AMP/NA/CIP/TE - - 1 (1.3) 1 (1.3) 1 (1.5)
AMP/CTX/CAZ/C/TE - - 1 (1.3) - -
AMP/CTX/CAZ/CN/TE 2 (2.9) - - - -
AMP/CTX/CN/S/TE 8 (11.8) - - - -

AMP/CTX/CAZ/S/TE 3 (4.4) - - - -
AMP/CTX/CAZ/CN/S/TE 2 (2.9) - - - -

AMP/C/CN/S/TE - - - 1 (1.3) -

AMP—ampicillin; CTX—cefotaxime; CAZ—ceftazidime; CIP—ciprofloxacin; NA—nalidixic acid;
C—chloramphenicol; CN—gentamicin; S—streptomycin; TE—tetracycline.

Regarding the prevalence of multi-resistance (MDR) (Figure 2), a total of 80.8% of E.
coli isolated from box bottoms (one-day-old chickens), 13.5% from pullets, and 35.1% from
adult hens were multi-resistant. Nineteen MDR different profiles were observed, 11 of
them in box bottom isolates, AMP/CN/S/TE being the most frequent (21 isolates, 30.9%).
Five MDR profiles were detected in isolates from fecal samples, the most common profile
being AMP/S/TE, present in 7 pullet and 23 adult isolates (15.5% and 32.5%, respectively).
Finally, 23.4% of boot swab isolates were MDR, with 9 different profiles detected. MDR
levels were lower in pullets than in adults (11.3% and 38.5%, respectively).
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2.3. Prevalence and Profiles of Antibiotic Resistance Genes (ARGs)

DNA from 132 isolates showing resistance to cephalosporins and/or quinolones was
analyzed by PCR for the detection of β-lactam resistance and PMQR genes. This included
68 E. coli isolates from one-day-old breeders, 41 from feces, and 23 from boot swabs (Table 3).

Table 3. Frequency of ARG detection in the E. coli isolates.

Number of Isolates (%)

Origin blaTEM blaSHV blaCMY-2 qnrB qnrS

Box bottoms (n = 68) 68 (100)
Feces (n = 41) 37 (90.2) 36 (87.8) 1 (2.4) 35 (85.4) 10 (24.4)

Boot swabs (n = 23) 11 (47.8) 10 (43.5) 5 (21.7) 8 (34.8) 9 (39.1)

Total (%) 48 (36.4) 46 (34.8) 74 (56.1) 43 (32.6) 19 (14.4)

In all E. coli isolates from one-day-old breeders, only the blaCMY-2 gene was observed.
In the isolates from feces, all the studied genes were detected. The most prevalent was
blaTEM (90.2%) followed by blaSHV (87.8%), qnrB (85.4%), and qnrS (24.4%). The blaCMY-2
gene was observed at a 2.4% rate. In boot swab isolates, only 8.7% was negative for all
the genes tested. The genes with the highest rates, as in feces, were blaTEM (47.8%) and
blaSHV (43.5%). The blaCMY-2 gene was positive in 21.7% of the isolates. Figure 3 shows an
example of the detection of β-lactam resistance genes in E. coli isolates of different origins
and positive E. coli controls.

For quinolone resistance genes, the prevalence of both genes was similar in boot swab
isolates (39.1% for qnrS and 34.8% for qnrB), while, in feces, the prevalence of qnrB was
significantly higher than that of qnrS (χ2 = 84.926, p = 0.0000).

Regarding the number of resistance genes observed per isolate (Table 4), only one
gene was detected in all the one-day-old breeders isolates. In fecal samples, most isolates
carried three genes (82.9%), followed by two (12.2%) and four genes (4.9%). In boot swabs,
the presence of one gene was the most frequent (43.5%), followed by three (26.1%), and
four or five genes (4.3%).
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Regarding the number of resistance genes observed per isolate (Table 4), only one 
gene was detected in all the one-day-old breeders isolates. In fecal samples, most isolates 
carried three genes (82.9%), followed by two (12.2%) and four genes (4.9%). In boot swabs, 
the presence of one gene was the most frequent (43.5%), followed by three (26.1%), and 
four or five genes (4.3%).  

Concerning the ARG profiles, 10 different profiles were observed in fecal isolates, 
with ‘blaSHV-blaTEM-qnrB’ being the most common, present in 70.7% of isolates. In boot 
swabs isolates, nine different profiles were identified, ‘blaSHV-blaTEM-qnrB’ also being the 
most frequently detected (26.1%), followed by ‘blaCMY-2′ and ‘qnrS’ (both at 17.4%).  

Table 4. ARG profiles present in E. coli isolates. 

Origin Profile Number of Isolates (%) 
Box bottoms (n = 68) blaCMY-2 68 (100) 

Feces (n = 41) 

blaSHV-blaTEM-qnrB 29 (70.7) 
blaSHV-blaTEM-qnrB-qnrS 2 (4.9) 

blaTEM-qnrB-qnrS 2 (4.9) 
blaTEM-qnrS 2 (4.9) 

blaSHV-blaCMY-2-qnrS 1 (2.4) 
blaSHV-blaTEM-qnrS 1 (2.4) 

blaSHV-qnrB 1 (2.4) 
blaSHV-qnrB-qnrS 1 (2.4) 

blaSHV-qnrS 1 (2.4) 
blaTEM-qnrB 1 (2.4) 

Boot swabs (n = 23) 
none 2 (8.7) 

blaSHV-blaTEM-qnrB 6 (26.1) 
blaCMY-2 4 (17.4) 

Figure 3. PCR results of β-lactam resistance genes. Lanes 1 and 11: Molecular 100 bp ladder; Lane
2: blaTEM positive control; Lane 3: blaSHV positive control; Lane 4: blaCMY-2 positive control; Lane
5: Negative control; Lane 6: Sample BS15 (boot swabs, blaTEM-blaSHV-blaCMY-2); Lane 7: Sample F21
(feces, blaTEM); Lane 8: Sample BS18 (boot swabs, blaTEM-blaSHV); Lane 9: Sample F6 (feces, blaSHV);

Lane 10: Sample BB3 (one-day-old chicken, blaCMY-2).

Table 4. ARG profiles present in E. coli isolates.

Origin Profile Number of Isolates (%)

Box bottoms (n = 68) blaCMY-2 68 (100)

Feces (n = 41)

blaSHV-blaTEM-qnrB 29 (70.7)
blaSHV-blaTEM-qnrB-qnrS 2 (4.9)

blaTEM-qnrB-qnrS 2 (4.9)
blaTEM-qnrS 2 (4.9)

blaSHV-blaCMY-2-qnrS 1 (2.4)
blaSHV-blaTEM-qnrS 1 (2.4)

blaSHV-qnrB 1 (2.4)
blaSHV-qnrB-qnrS 1 (2.4)

blaSHV-qnrS 1 (2.4)
blaTEM-qnrB 1 (2.4)

Boot swabs (n = 23)

none 2 (8.7)
blaSHV-blaTEM-qnrB 6 (26.1)

blaCMY-2 4 (17.4)
qnrS 4 (17.4)

blaSHV-qnrS 2 (8.7)
blaTEM 2 (8.7)

blaSHV-blaTEM-blaCMY-2-qnrB-qnrS 1 (4.4)
blaSHV-blaTEM-qnrB-qnrS 1 (4.4)

blaTEM-qnrS 1 (4.4)

Concerning the ARG profiles, 10 different profiles were observed in fecal isolates, with
‘blaSHV-blaTEM-qnrB’ being the most common, present in 70.7% of isolates. In boot swabs
isolates, nine different profiles were identified, ‘blaSHV-blaTEM-qnrB’ also being the most
frequently detected (26.1%), followed by ‘blaCMY-2

′ and ‘qnrS’ (both at 17.4%).

3. Discussion

In this work, we investigated the levels of antimicrobial resistance in E. coli isolates
from a commercial broiler farm at different stages of production. Monitoring AMR in
commensal E. coli isolated from food-producing animals provides information on the
reservoirs of resistant bacteria that could potentially be transferred to humans and also
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provides indirect information on the presence of resistance genes that could be transferred
to bacterial pathogens. It is therefore relevant to both public and animal health [19].

When one-day old chickens fecal samples were analyzed, we found extremely or very
high levels of resistance to most of the ‘highest priority critically important’ or ‘critically
important’ antimicrobials analyzed in this work [8]. Moreover, high levels of resistance
or intermediate susceptibility to third-generation cephalosporin was detected among the
isolates. Resistance against these antibiotics has also been observed in bacteria isolated from
few-days-old chicks by other authors, what suggests that early-stage hens can be a source
of antibiotic resistance in the farm environment. In a similar study, Moreno et al. (2019) [31]
reported considerable AMR rates, but they were overall lower than those obtained in the
present study, and no resistance to CTX or CAZ was observed, although they did detect
resistance to CIP and NA. In a previous study on broilers [32], we observed high levels of
antibiotic resistance in E. coli isolated from the meconium of newly hatched chicks, the main
resistances rates being against NA (80%), AMP (70%), and TE (30%). In addition, 16.7% of
isolates was CIP-resistant. However, unlike the present study, no cephalosporin-resistant E.
coli isolate was observed.

The presence of AMR in one-day-old hens at a breeding farm is a cause for concern.
Several studies [33,34] have shown the transmission of AMR throughout the hen production
system, which may be due to two factors: (a) a possible vertical transmission from parents
to the offspring, caused by a possible infection in the hen’s uterus during egg formation,
or by fecal contamination in the cloaca during egg-laying [35]; and (b) transmission at the
hatcheries. Zurfluh et al. (2014) [33] probed the presence of genetically similar plasmids in
ESBL-producing E. coli isolated from different points of the production system. In another
study in Sweden [34], the presence of an E. coli clone in all the levels of the pyramid
production system was also detected, supporting the hypothesis that transmissions may
occur in the hatcheries due to bacteria resistant to cleaning products, which are co-selected
and transmitted to successive hatchlings and adults from one animal to another or through
environment. Our methodological approach does not allow us to identify the specific
pathways through which AMR E. coli reached and spread in the studied farm. More specific
studies, tracking different clonal E. coli populations over time, should be undertaken to
achieve this goal.

Because of their importance in human medicine [18], the high observed rates of resis-
tance and intermediate susceptibility to 3GC we found in one-day-old hens are remarkable.
Similar to us, other authors also detected high resistance levels to these antibiotics in E.
coli isolated from both one-day-old and one-week-old chicks, thus suggesting that 3GC
resistance is present in hens in their first moments of life [31,32,35]. However, most of
these studies usually looked for cephalosporin-resistant strains using selective enrichment
(generally with CTX) as a previous step to bacteria isolation. Thus, their results are not
comparable to the resistance rates obtained in ours, in which no selective step was used.
Nonetheless, it shows that 3GC resistance is more common than expected, given that their
use is not extended to the veterinary field, and suggests the possibility of the off-label
use of cephalosporin in hatcheries [36]. The EFSA indicated that there were suspicions of
off-label ceftiofur use in one-day-old chicks at the hatcheries with a prophylactic purpose,
even though the use of cephalosporin in poultry is not authorized in the EU at present [37].
Thus, it is important to take the necessary hygienic measures at the hatcheries to reduce, as
much as possible, the rates of resistance transfer and avoid using practices that may favor
the selection of resistant strains, such as the unnecessary use of antibiotics [38].

In E. coli isolates from fecal samples in pullets and adults, the overall resistance levels
were not high, except for ampicillin, tetracycline, sulfamethoxazole, and nalidixic acid.
Resistance to cephalosporins was sporadic. This result is in accordance with that obtained
by other authors [33,36] and demonstrates that, even though it is not commonly observed,
cephalosporin resistance is present in poultry. Furthermore, since resistant E. coli can
remain on the farm, there may be a risk of cross-contamination between incoming and
outgoing flocks [39].
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Comparing our AMR prevalence data with the antimicrobial resistance in commensal
E. coli in poultry reported by the EFSA and ECDC [4], we obtained different AR levels. In
Europe, most AMR is observed for quinolones (46.7% for CIP and 43.6% for NA), followed
by AMP (41.8%) and TE (30.5%). The resistance levels for C (9.6%), CN (5.1%), CTX (1.1%),
and CAZ (1.1%) are low. In Spain, however, the reported results are generally in the
European average, quinolones being the antibiotics with the highest level of resistance
(62.9% for CIP and 54.7% for NA), followed by high levels for AMP (31.8%) and TE
(30%), moderate levels for CN (7.6%) and C (8.2%), and low levels for CTX (0.6%) and
CAZ (0.6%). The main differences between our data and those reported by the EFSA are
observed in the quinolone resistance percentages. These results are not surprising. The
EFSA report highlights that resistance levels greatly differed among reporting countries
and antimicrobials, showing important variations between and within food-producing
animal populations and countries [4], due mainly to the absence of harmonized approaches
using the same methodology among countries for survey studies [40]. It should also be
considered that our study focused on breeding hens while the EFSA reported data obtained
from broilers and that the rearing process can differ among farms, thus affecting AMR
spread and levels [41,42].

In a work carried out in Spain [32] among laying hens, resistance levels similar to
those obtained in our study were observed, except for TE and AMP, for which the resistance
rates were lower. For pullets, the authors reported 21% resistant isolates for TE and
below 20% for AMP, CIP, and NA; under 10% for C; less than 5% for CN; and sporadic
resistance for CTX and CAZ (below 3% for both). In a study from Switzerland conducted
on different laying-hen farm systems [43], no resistance to cephalosporins was observed,
and the resistance rates observed were inferior to those observed in this work, except for
quinolones, for which 16.7% of the isolates was resistant. In another study from Norway,
concerning quinolone resistance [44], low levels were observed in E. coli isolated from feces
and boot swabs from broilers (3.6%) and laying hens (0.5%).

In this work, all the isolates that were resistant to CTX and CAZ showed the ESBL
phenotype. Our results are in accordance with other studies that detected isolates with
this resistance profile in broiler farms [45,46] and in parent flocks of chickens [47], where
ESBL/AmpC-producing E. coli was observed at all points of the pyramid production system
both with and without a previous selective enrichment step with cefotaxime. All these
results demonstrate that cephalosporin-resistant E. coli can be found at all stages in the farm
production system, which is a public health concern, given the clinical importance of these
antibiotics and the likelihood of their spread to consumers through the food chain [29].
Fortunately, the prevalence of resistance to cephalosporins in E. coli from adult poultry
populations is generally low, and surveillance studies from different European countries
have reported a decrease in these resistances [4,42]. However, it is important to keep
undertaking measures focused on reducing antibiotic resistance, especially cephalosporin,
in primary production.

Comparing resistance occurrence in the isolates from one-day-old breeders and from
fecal samples from pullets and adult hens, the statistical analysis showed a clear dependence
on the age of the hens, confirming a reduction in the resistance levels with increasing age
for all antimicrobials, except for AMP and NA, which were higher in pullets and adults,
respectively. As indicated in Section 4, only two antibiotic treatments were administered
to the hens during our study. This restrictive protocol aims to prevent antibiotic pressure
in the farm environment. The lack of selective pressure avoids AMR spreading among
the bacteria population. Moreover, under normal conditions, changes in the intestinal
microbiota occur during the growth of the hens, from more transient populations in early
stages of their development to more mature bacterial populations as they grow [48]. These
changes in the bacterial population and the absence of antibiotic pressure could explain the
AR reduction in one-day-old to adult hens.

By studying E. coli isolated from boot swab samples, we can estimate the resistance
levels among the bacteria population in the farm environment. Although the antibiotics
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that presented the highest resistance levels were the same (AMP and TE), in this case, a
high resistance level to NA was observed. Regarding the rest, the level of resistance was
low or moderate.

The resistance levels in the environment for most of the antibiotics, including CTX and
CAZ, remained stable during the hens’ growth, showing no statistical dependence with the
age of the animals. Moreover, for CTX, NA, and C, resistance levels were significantly higher
in boot swab isolates than in fecal samples. Given the low use of antibiotics during rearing,
this suggests that certain resistance determinants can remain in the environment, even in
the absence of selective pressure, and spread through the E. coli population of the farm in
case of favorable events, such as co-selection mediated by antibiotic treatments or exposure
to disinfectants [49]. Dame-Korevaar et al. (2017) [50] detected cephalosporin resistance
in all the farm environmental samples they analyzed. They also reported that, before
the introduction of the hens, the laying area was negative for cephalosporin resistance,
suggesting the hens as likely having introduced the resistant strains.

A decrease in resistances only to AMP or NA and increased combined profiles and
multi-resistance levels were observed in E. coli isolates from boot swabs in adults, what
suggests horizontal gene transfer events along the pyramid production system, leading to
the combination of different resistances and favoring the spreading of multiple resistances
among bacterial populations [51,52].

In all E. coli isolates from one-day-old breeders, only the blaCMY-2 gene was observed.
Other authors have reported that the increased presence of this gene in chicks occurs at an
early stage of their life [36,53]. The reduction observed in blaCMY-2 prevalence in isolates
from pullets and adults from that observed in one-day-old breeders suggests that, despite
its presence during the hens’ first moments of life, in conditions of a low use of antibiotics,
this gene did not persist in the E. coli populations from the hens in the farm environment.
Another possible reason is the use of antibiotics at early stages and the reduction in use at
later stages, which allow the susceptible strains to persist. Some authors have also reported
similar data. Apostolakos et al. (2019) [53] found a high prevalence of blaCMY-2 genes in
one-day-old chicks and a drop in the prevalence in the laying phase. In a study on parental
hens, we also observed a decrease in blaCMY-2 gene prevalence, from 91% in fecal isolates
of one-week-old chicks to 1% in adult hens, at the end of the study [32]. According to
this result, the high prevalence during the first week of life could be due to the vertical
transmission from the grandparent flock or contamination from other specific sources, such
as the hatchery and transport.

In the E. coli isolates from feces and boot swabs, all the studied genes were detected, the
most prevalent being blaTEM and blaSHV. Many other studies are in accordance with these
results [36,42]. Manageiro et al. (2017) [54] found TEM and SHV family genes in around
33% and 46%, respectively, of these isolates that were non-susceptible to cephalosporin.
Blaak et al. (2015) [55] detected blaTEM and blaSHV genes in approximately 30% of E. coli
with the ESBL phenotype.

For quinolone PMQR resistance genes (qnrB and qnrS), the prevalence of both genes
was similar (39.1% for qnrS and 34.8% for qnrB), whereas in feces, the prevalence of qnrB
was significantly higher than qnrS (χ2 = 84.926, p = 0.0000). These results differ from other
authors’: Jones-Dias et al. (2013) [56] observed less than a 3% prevalence of PMQR genes in
E. coli and Salmonella isolated from poultry and pigs in Portugal. In a longitudinal study
conducted in Sweden, PMQR genes were not observed in NA-resistant E. coli [57]. In Italy,
a prevalence of PMQR genes in E. coli strains of 5% in broilers and 4% in laying hens was
reported [58]. The differences observed between the present study and others could be
due to variations in the microbiota of the animals, which can be affected by environmental
differences, such as feed, antibiotic usage, and the hatchery of origin [48].

The presence of ARGs in isolates from the farm environment may pose a risk because
of their transmission to other bacteria, including human and animal pathogens [59,60].
Merchant et al. (2012) [61] reported the survival of E. coli in the soil even 7 months after
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fertilization with broiler manure, which confirms the risk of spreading antibiotic resistance
to the environment if proper measures are not taken.

Most of the isolates from feces shared the same ARG pattern, while the rest had a low
occurrence rate. On the contrary, in boot swabs, there was no profile with such a high rate
as the dominant one in feces. This indicates that, in practice, environmental isolates present
higher heterogenicity than fecal isolates, possibly because their contact with strains in the
environment facilitates genetic transfer and, thus, a higher diversity [58].

It is remarkable that most of the E. coli tested carried at least one of the three ESBL/AmpC
genes analyzed, and at least one of the two PMQR genes. This was especially noticed in
fecal isolates, where all of them presented a combination of ESBL and PMQR genes. Other
authors have also reported the association between ESBL and PMQR genes observed in the
present study [62,63]. These findings suggest the possibility of a co-existence in the same
genetic element of qnr and ESBL or AmpC genes [25].

Overall, our study found high levels of resistance and ARG carriages among the
tested isolates. Multi-resistant E. coli was found at every stage of hen rearing, and ARGs
were detected in all 3GC-resistant isolates. Remarkably, a decreasing trend in these three
parameters was observed throughout the hens’ rearing period. However, some limitations
of the study must be considered. Although the sampled farm represents typical conditions
in our poultry sector, resistance levels may vary among farms due to different rearing
methodologies or environmental conditions (e.g., feed, water quality, and housing condi-
tions) that could influence the results [40,41,48]. Moreover, this study focuses on specific
ARGs, potentially missing other relevant resistance genes [64].

4. Materials and Methods
4.1. Sampling and Sample Preparation

A batch of 14,500 breeding hens from a commercial breeding farm located in eastern
Spain was sampled. The hens were one-day old at the beginning of the experiment
and 28 weeks old at the end. During the study, two antibiotics were administered by
veterinarians with therapeutic purposes: tylosin was administered at week 4 for 5 days,
and amoxicillin was used at week 25 for 4 days. No more antibiotics were used throughout
the study.

The batch was sampled five times: on arrival at the farm (S1, one-day-old breeders)
and at 4 (S2), 19 (S3), 25 (S4), and 28 (S5) weeks of age, before being transferred to the
production farm. Animals from S2 and S3 samplings were considered ‘pullets’, while those
from S4 and S5 were named as ‘adult’ hens.

One-day-old breeders’ samples (S1) consisted of 25 g of transport box bottoms contain-
ing meconium droppings from one-day-old animals. For the other 4 samplings (S2 to S5),
two types of samples were analyzed: the soil residues adhered to a pair of boot swabs and
25 g of composite samples of fecal material taken from the belt collector that removed the
manure. Fecal samples were taken in duplicate, refrigerated, and processed within 24 h.

Samples were diluted in peptone water (Buffered Peptone Water (ISO), Scharlau,
Spain) and homogenized in a stomacher machine (BagMixer, Interscience, France). In
S1, 25 g of box bottoms was mixed with 225 mL of peptone water. The boot swabs were
weighed, introduced to 1:10 w/v peptone water, and mixed. From each composite fecal
sample, 25 g was taken and homogenized in 225 mL of peptone water.

4.2. Escherichia coli Isolation

Serial decimal dilutions were made and plated onto Microinstant Chromogenic Co-
liforms Agar (Scharlau, Barcelona, Spain), which is a selective and differential culture
medium for E. coli. The plates were incubated for 24 h at 37 ◦C. Typical E. coli colonies
(dark blue to violet) were randomly selected after incubation. Seventy colonies, for S1,
and 30–40 for the rest of the samples, were recovered. The selected colonies were plated
onto non-selective agar media (Plate Count Agar (PCA), Scharlau, Barcelona, Spain) and
incubated for 24 h at 37 ◦C. The isolates were identified as E. coli using the API phenotypic
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identification system (API 20E strips, BioMèriux, Marcy-l’Étoile, France). Confirmed E. coli
isolates were sub-cultivated in PCA and refrigerated at 4 ◦C until further analysis. All of
them were also frozen at −20 ◦C in cryovials (Pro-lab Diagnostics MicrobankTM, Richmond
Hill, ON, Canada).

4.3. Antimicrobial Susceptibility Testing of E. coli Isolates

Antibiotic susceptibility was tested for all E. coli isolates. For this purpose, the disk
diffusion technique was used following the Clinical and Laboratory Standards Institute
(CLSI) guidelines [65]. Briefly, a 24 h fresh culture of each isolate was collected from
plates and resuspended in Mueller–Hilton broth (Scharlab, Barcelona, Spain), adjusting the
turbidity to the 0.5 McFarland standard. The suspension was spread onto Mueller–Hinton
agar (Scharlab, Barcelona, Spain). Antibiotic disks (Antimicrobial Susceptibility Test Disc,
Thermo Fisher Scientific, Waltham, MA, EUA) were placed on the surface and the plates
were incubated at 37 ◦C for 18 h.

The recommendations of the EFSA for the monitoring of antibiotic resistance in com-
mensal E. coli isolated from animals [5] were considered for the selection of antibiotics. The
antibiotics tested (Antimicrobial Susceptibility Test Discs, OXOID Ltd., England, UK) were
ampicillin (AMP, 10 µg), cefotaxime (CTX, 30 µg), ceftazidime (CAZ, 30 µg), ciprofloxacin
(CIP, 5 µg), nalidixic acid (NA, 30 µg), chloramphenicol (C, 30 µg), gentamicin (CN, 10 µg),
streptomycin (S, 10 µg), and tetracycline (TE, 30 µg).

The extended-spectrum β-lactamase (ESBL) phenotype was checked for colonies resistant
to CTX and/or CAZ, according to the CLSI guidelines [66]: resistance to CTX + clavulanic acid
(Cefotaxime + Clavulanic acid: CTL 40 µg, Liofilchem Diagnostics, Roseto degli Abruzzi,
Italy) and CAZ + clavulanic acid (Ceftazidime + Clavulanic acid: CAL 40 µg, Liofilchem
Diagnostics, Roseto degli Abruzzi, Italy) were tested by disk diffusion. If the diameter
obtained with the antibiotic/clavulanic acid combination was 5 mm or greater than that
without clavulanic acid, the colony was considered ESBL positive.

The prevalence of resistance to each antimicrobial tested was studied and the statistical
dependence relationship between resistance, age of the hens, and origin of the samples
was assessed.

The terms used to describe the level of AMR occurrence were the same as those used
by the EFSA and the European Centre for Disease Control (ECDC) [4]: rare (<0.1%), very
low (0.1–1.0%), low (>1–10.0%), moderate (>10.0–20.0%), high (>20.0–50.0%), very high
(>50.0–70.0%), and extremely high (>70.0%).

According to Magiorakos et al. (2012) [66], isolates that showed resistance to 3 or more
antibiotics of different classes were considered as multi-resistant (MDR).

4.4. DNA Extraction

DNA extraction was performed by thermal lysis. To that purpose, 2–3 colonies from
an overnight pure culture of each isolate incubated at 37 ◦C in PCA media were suspended
in 150 µL of TE 1× buffer (TE buffer (1×) pH 7.5, Panreac-AppliChem, Barcelona, Spain) in
sterile Eppendorf tubes irradiated with UV for 15 min. The cell suspension was incubated
for 10 min at 95 ◦C in a dry bath. Afterward, the tubes were cooled down with ice for 2 min,
centrifuged at 13,000 rpm for 8 min, and the supernatant was transferred to a new sterile
and irradiated Eppendorf tube. Quantity (A260–A320) and quality (A260/A280 ratio > 1.7) of
DNA were assessed by spectrophotometry (Qubit™ 4 Fluorometer, Invitrogen, Walthman,
MA, USA) [67]. Extracted DNA was kept at −20 ◦C until use.

4.5. Detection of Antibiotic Resistance Genes (ARGs)

One mPCR for the detection of cephalosporin resistance-related genes blaSHV, blaTEM,
and blaCMY-2 was performed according to Colom et al. (2003) [68] and Kozak et al.
(2009) [69]. For the detection of PMQR genes qnrB and qnrS, the mPCR assay described by
Cattoir et al. (2007) [70,71] was used (Table 5). As positive controls, we used Escherichia coli
ATCC 35218 for blaTEM, Klebsiella pneumoniae subsp. pneumoniae ATCC 700603 for blaSHV, K.
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pneumoniae NCTC 13440 for qnrS, and two of our own positive E. coli strains for blaCMY-2 and
qnrB (M1A mec8 and M2C mec6, respectively). MilliQ water was used as a negative control.

Table 5. Primers used for the detection of antimicrobial resistance genes.

Primers Sequence Product Size (bp) Reference

blaSHV-f AGGATTGACTGCCTTTTTG
393 [68]blaSHV-r ATTTGCTGATTTCGCTCG

blaTEM-f TTAACTGGCGAACTACTTAC
247

[69]
blaTEM-r GTCTATTTCGTTCATCCATA

blaCMY-2-f GACAGCCTCTTTCTCCACA
1000blaCMY-2-r TGGACACGAAGGCTACGTA

qnrB-f GGMATHGAAATTCGCCACTG
264 [70]qnrB-r TTTGCYGYYCGCCAGTCGAA

qnrS-f GCAAGTTCATTGAACAGGGT
428 [71]qnrS-r TCTAAACCGTCGAGTTCGGCG

4.6. Statistical Analysis

Statistical analysis was performed using Statgraphics (Centurion XVII) software (Stat-
point Technologies, Inc., Warrenton, VA, USA). Antibiotic resistance and ARG detection
were analyzed via a χ2 test, using contingency tables to establish any possible dependent
correlation between the origin of samples and the age of hens. A probability value of less
than 5% was considered statistically significant.

5. Conclusions

In summary, in the present study, high rates of multi-resistant E. coli were isolated at all
phases of hen rearing. However, the prevalence of resistances decreased during the rearing
of breeder hens. We observed high rates of cephalosporin resistant E. coli isolates from
one-day-old breeders without the need for selective culturing, highlighting the suspicion of
the off-label use of these antibiotics at the hatcheries. Furthermore, resistance genes against
cephalosporin and quinolones were frequently detected in the same isolates, supporting the
co-presence of ESBL and PMQR genes in E. coli that were non-susceptible to cephalosporins.
Both the high rates of multi-resistant isolates and the presence of resistance genes to
different antibiotic classes, even in the case of not being exposed to these antibiotic families,
highlight the necessity of surveying the prevalence of antibiotic resistance in farm animals
and environments, focusing on critically important antibiotics but without neglecting non-
critical ones, due to their possible role in co-selection. This approach ensures that proper
management and prevention measures can be implemented to reduce antibiotic resistance
and its spread.
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