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In this work, we present a new family of Zone Plates (ZPs) designed using the self‑generating 
Kolakoski sequence. The focusing and imaging properties of these aperiodic diffractive lenses coined 
Kolakoski Zone Plates (KZPs) are extensively studied. It is shown that under monochromatic plane‑
wave illumination, a KZP produces two main foci of the same intensity along the axial axis. Moreover, 
one of the corresponding focal lengths is double the other, property correlated with the involved 
aperiodic sequence. This distinctive optical characteristic is experimentally confirmed. We have also 
obtained the first images provided by these bifocal new diffractive lenses.

Diffractive lenses are essential components in image-forming setups at visible wavelengths but also at other 
spectral ranges in the electromagnetic spectrum. For instance, this kind of lenses offers excellent performance 
with submillimeter wavelengths (THz frequencies)1 and with extreme-ultraviolet and X-rays2 for the observation 
of nanostructures. A Zone Plate (ZP)3,4 is the simplest diffractive lens characterized by a series of alternating 
concentric transparent and opaque annular rings distributed periodically along the square of the radial coordi-
nate, so the area of each annular zone is a constant. Under the paraxial approximation, this zone configuration 
produces a series of convergent and divergent spherical waves by diffraction when the lens is illuminated by a 
monochromatic plane wave, hence generating a series of real and virtual foci along the optical axis. To improve 
diffraction efficiency, ZPs with a binary phase distribution of  zones5,6 and ZPs with a sawtooth profile (known 
as kinoform lenses)7,8 were proposed. It was theoretically demonstrated that the latter configuration allows 
concentrating all the energy in a single focus for the design wavelength. Photon  Sieves9–11 have been proposed 
to improve the spatial resolution of ZPs. In this application, the transparent annular zones of the amplitude ZPs 
are replaced by a disjoint set of holes, apodizing in this way the higher order diffraction foci. The combination 
of Photon Sieves with intracorneal inlays generates a novel alternative for presbyopia  treatment12,13.

In this framework, we proposed the first aperiodic  ZP14 of the scientific literature characterized by a distribu-
tion of zones following the fractal structure of the Triadic Cantor Set. The resulting fractal diffractive lens pro-
duces an axial distribution of self-similar foci when illuminated with a parallel wave front. In subsequent works, 
our designs were extended to other fractal  sets15,16 and  geometries17,18. These fractal ZPs were experimentally 
characterized as image forming systems, presenting a reduced chromatic aberration and a great depth of field 
compared to conventional diffractive  lenses19,20. We have also reported the first experimental results of fractal ZPs 
focusing capabilities in the terahertz  domain21. To improve the diffraction efficiency of these fractal lenses, Fractal 
Photon  Sieves22,23 were proposed as amplitude elements. On the other hand, the so-called Devil’s  Lenses24,25 were 
designed as phase structured fractal lenses being the basis of new fractal  intraocular26,27 and  contact28,29 lenses.

Along with the fractals elements, different aperiodic  sequences30,31 have been employed to design new 
diffractive lenses with interesting focusing and imaging properties. ZPs based on the  Fibonacci32,33 and the 
m-Bonacci34,35 sequences are intrinsically bifocals, being the ratio of the two main focal distances related to the 
generalized golden mean. Thue-Morse  ZPs36,37 combine the properties of Fibonacci and fractals ZPs producing 
two main self-similar foci with extended depth of focus along the optical axis. Other aperiodic mathematical 
generators with which multifocal diffractive lenses have been designed are the he Walsh  functions38, the precious 
mean  sequence39, and the silver mean  sequence40.

In this paper, we present a new family of aperiodic ZPs arranged according to the rules of the Kolakoski 
 sequence41. This self-generating sequence has been applied in several branches of science and engineering, as 
for example in the context of  photonic42 and magneto-photonic43 crystals, polymer  science44, nanophotonic 
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 waveguides45, and applied  mathematics46, among others. Here we present the first diffractive lenses based on 
this formalism and an analytical expression for the transmittance function is derived. The focusing properties of 
Kolakoski ZPs (KZPs) are studied by computing the intensity distribution along the optical axis and the evolution 
of the diffraction patterns transversal to the propagation direction. We show that a diffractive lens constructed 
according to the Kolakoski sequence is intrinsically bifocal. The corresponding foci are located at given axial 
positions correlated with the involved self-generating aperiodic sequence. This property is experimentally verified 
obtaining a very good agreement with the theoretical prediction computed numerically. The first experimental 
images produced by this kind of aperiodic structures as bifocal diffractive lenses are also reported.

Methods
The Kolakoski sequence
In Mathematics, the so-called “run-length sequence” of a given sequence is itself the sequence formed by those 
positive integers that indicate the number of elements of equal consecutive symbols in the sequence. For example, 
the run-length sequence of ABBABBBAABAAABB is 12132132 because the first A appears once, the next B terms 
appear twice, the next A term appears once, the next B terms appear 3 times, and so on.

The Kolakoski  sequence41, which we consider here, is an aperiodic sequence, which is identical to its own run-
length sequence. In mathematical terms, this sequence can be generated from a seed K1 = {1, 2} . The successive 
elements of the sequence, KS , are obtained from the previous order, KS−1 , by applying the substitution rule to the 
j-th element of KS−1 in the flowing way: 1 → 1 and 2 → 11 if j is an odd number and 1 → 2 and 2 → 22 if j is an 
even number. Therefore, K2 = {1, 2, 2} , K3 = {1, 2, 2, 1, 1} , K4 = {1, 2, 2, 1, 1, 2, 1} , K5 = {1, 2, 2, 1, 1, 2, 1, 2, 2, 1} , 
K6 = {1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1} , etc. Note that the run-length sequence of KS is KS−1 . For instance, the 
sequence K4 = {1, 2, 2, 1, 1, 2, 1} presents 1 time 1, 2 times 2, 2 times 1, 1 time 2, and 1 time 1, so its run-length 
sequence is K3 = {1, 2, 2, 1, 1}.

The red points in Fig. 1 represent the length LS of the Kolakoski sequence of order S, i.e., the total number 
of elements of the sequence KS . These numbers grow exponentially, LS = 2, 3, 5, 7, 10, 15, 23, 34... , so have been 
represented on a logarithmic scale.

By performing a simple linear-logarithmic fitting, a very good approximation for the length of the Kolakoski 
sequence is LS ≈ 2 · 1.5S−1 (blue line in Fig. 1). Furthermore, each sequence presents approximately the same 
number of type “1” and type “2” elements, i.e., 1.5S−1 elements. On the other hand, if we determine the ratio 
between the lengths of two consecutive Kolakoski sequences (see Fig. 2), we obtain

so the length of the Kolakoski sequence of order S is approximately 50% larger than that corresponding to the 
previous order S − 1 . This value is equivalent to the golden ratio of the Fibonacci  sequence32, but in this case, 
we obtain the rational number ϕ = 3/2 . Therefore, the approximated length of the Kolakoski sequence can be 
expressed as LS ≈ 2.ϕS−1.

Kolakoski zone plate design
Based on the Kolakoski sequences, we can design new aperiodic phase binary ZPs. Each one of these sequences, 
KS , is used to define the phase transmission generating function φS(ζ ) , with compact support on the interval 
ζ ∈ [0, 1] . This interval is partitioned in LS sub-intervals of length dS = 1/LS . The phase transmittance value, 
φS,j , that takes at the j-th sub-interval is associated with the element, KS,j , being φS,j = πKS,j , so φS,j = π when 
KS,j is “1” and φS,j = 2π or, what is the same, φS,j = 0 when KS,j is “2” (see Fig. 3).

In mathematical terms, the phase transmission function, φS(ζ ) , can be written as:

(1)ϕ = lim
S→∞

LS

LS−1

= 3/2,

Figure 1.  Length LS of the Kolakoski sequence of order S (red points). The result of the linear-logarithmic fit is 
also included in the figure (blue line).
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where ζ = (r/a)2 is the normalized squared radial coordinate, r is the radial coordinate, a is the lens radius, and 
“rect” refers to the rectangular function. Figure 4 shows the corresponding phase distribution of a ZP based on 
the Kolakoski sequence of order S = 7 . Note that the number of concentric annular zones of a KZP of order S 
coincides with LS . For the case considered in Figs. 3 and 4, the number of zones is L7 = 23 with approximately 
the same number of zones with phase π (12 zones) and phase 2π or 0 (11 zones).

Focusing properties
To evaluate the focusing propierties of the Kolakoski lenses, we have computed the axial irradiance provided 
by these aperiodic zone plates under a monochromatic plane wave illumination, using the Fresnel-Kirchhoff 
diffraction theory  as47:

where u = a2

2�z is the reduced axial coordinate, z is the axial distance from the lens plane to the observation plane, 
and � is the wavelength of the incident light. If we consider the phase transmittance function given in equation 
(2), we obtain:

(2)φS(ζ ) =

LS
∑

j=1

Ks,j .rect

[

ζ − (j − 1/2).ds

ds

]

.

(3)IS(u) = 4π2u2
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Figure 2.  Ratio between the lengths of two consecutive Kolakoski sequences, LS/LS−1.

Figure 3.  Phase transmission function φS(ζ ) of the KZP of order S = 7 . The associated Kolakoski sequence is 
K7 = {1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1} . Note that the phase function takes values π or 2π 
(phase 0) at the j-th sub-intervals of K7 where K7,j is “1” or “2”, respectively.
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where eiπKS,j = (−1)KS,j is the transmittance value that takes the Kolakoski lens of order S at the j-th zone. We 
have computed the normalized axial irradiance, corresponding to the first diffraction order, provided by KZPs 
of orders S = 7, 8, and 9. The corresponding numbers of phase zones are 23, 34, and 50 for S = 7, 8, and 9, respec-
tively. As can be seen in Fig. 5, the axial irradiance distributions, represented against the reduce axial coordinate, 
u, show that the aperiodic ordering of phase zones according to the Kolakoski sequence produces two symmetri-
cal foci around the first diffraction order located at u1 = LS/2 ≈ ϕS−1 . Higher diffraction orders also appear due 
to the binary nature of the structure (not shown in Fig. 5), so these two foci are periodically replicated along the 
coordinate u with period up = 2u1 = LS ≈ 2ϕS−1 . Note that the resulting main reduced focal lengths ua and ub 
approximate to LS/3 ≈ 2ϕS−1/3 and 2LS/3 ≈ 4ϕS−1/3 , so the ratio between the focal distances is ub/ua ≈ 2 . 
Moreover, the ratios u1/ua and up/ub approximate to the rational number ϕ = 3/2 involved in the Kolakoski 
aperiodic sequence. The higher the order of the sequence, the better these approximations will be. For example, 
for S = 9, the irradiance distribution period is up = 50 , the first diffraction order is located at u1 = 25 , and the 
corresponding main focal distances are obtained numerically at ua = 16.802 and ub = 33.198 , so ub/ua = 1.976 , 
u1/ua = 1.488 , and up/ub = 1.506.

To contextualize our results within the framework of aperiodic diffractive lenses, the focusing properties of 
the KZP have been compared with those of the equivalent periodic ZP and other aperiodic intrinsically bifocal 
ZPs, such as the  Fibonacci32 ZP and the  Tribonacci34 ZP. Figure 6 shows the axial irradiance provided by the first 
40 zones of these lenses for comparison. These distributions have been normalized to the maximum intensity 

(4)IS(u) = 4π2u2dS
2sinc2[dSu]
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Figure 4.  Kolakoski diffractive lens generated from the 1-D function φ7(ζ ) . Gray and white rings correspond to 
a phase π and 0, respectively.

Figure 5.  Numerically computed normalized axial irradiances produced by KZPs of orders S = 7, 8, and 9.
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achieved by the periodic ZP. All these aperiodic lenses split the main focus into a pair of foci with the same axial 
irradiance, and their separation with respect to the main focal position depends on the properties of the aperiodic 
sequence. The maximum intensity provided by the KZP is lower compared to the Fibonacci and Tribonacci ZPs, 
but it also achieves the highest ratio between the focal lengths, with ub/ua ≈ 2 for the KZP, ub/ua ≈ 1.615 for 
the Fibonacci ZP, and ub/ua ≈ 1.189 for the Tribonacci ZP, providing more options when designing a diffractive 
lens with specific applications.

Experimental setup
The focusing properties of KZPs were tested on the experimental setup shown in Fig. 7. A collimated and lin-
early polarized beam from an He-Ne Laser ( � = 633 nm) illuminates the liquid crystal spatial light modulator 
(SLM) (Holoeye PLUTO, 1920 × 1080 pixels, pixel size 8 µ m, 8-bit gray-level) where the designed lenses were 
implemented. The SLM operates in phase-only modulation mode. A linear phase grating was added to the lens 
modulation; in this way, the addressed signal is deflected to the first diffraction order in the Fourier plane of the 

Figure 6.  Comparison between the axial irradiances distributions produced by Kolakoski, Fibonacci, 
Tribonacci and a periodic ZPs.

Figure 7.  Scheme of the experimental setup used to evaluate (a) the focusing and (b) imaging properties of the 
KZP.
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lens L3. In addition, the SLM is slightly tilted to correct the linear phase and a pinhole (PH) is positioned at the 
Fourier plane to eliminate all diffraction orders of the linear phase grating except order +1. The PH also prevents 
noise from the specular reflection (zero diffractive order) and the pixelated structure of the SLM (higher diffrac-
tion orders). Then, the SLM plane is imaged through a telescopic system (L2 and L3). In this way, the studied 
lens transmittance is projected at the exit pupil plane and its focusing binary profile can be captured along the 
axis by a camera sensor mounted on a motorized stage.

In order to evaluate the imaging properties of this lens, we modified the previous experimental setup, as 
illustrated in Fig. 7.b. As illumination source, we replaced the He-Ne laser beam by a collimated LED with a 
chromatic filter, corresponding to � = 633 nm, and a binary object with the letters DiOG (Diffractive Optics 
Group) (see the inset in Fig. 7).

Results
We assessed the focusing properties of a KZP of order S = 8 and radius a = 1.80 mm. Figure 8 shows the experi-
mental axial irradiance distribution along with the one obtained numerically using Eq. (3). Both results are in 
good agreement. It can be seen that the Kolakoski lens provides two foci with very similar intensities whose axial 
positions are za = 226.5 mm and zb = 111.7 mm. The corresponding experimental reduced axial coordinates, 
u = a2

2�z , are ua = 11.25 and ub = 22.83 , respectively. As predicted from the theoretical analysis, the ratio between 
the positions of these foci approximates to ubua = 2.03 ≈ 2 . Moreover, if we compute the ratios u1ua and upub , where 
u1 = 17 and up = 34 for the Kolakoski sequence of order 8, we can see that they both approximate to ϕ : u1ua ≈ 1.5 , 
up
ub

≈ 1.5 . To provide a more extensive study of the focusing characteristics of the KZP, the transversal irradiance 
distribution in the xz plane was also captured experimentally (Fig. 9). This result confirms the bifocal behavior 
of the lens as well as the corresponding ratio between its focal lengths.

Finally, the monochromatic images for the aforementioned wavelength provided by the KZP were captured 
at several axial positions in the range [88 mm - 288 mm] (see Supplementary video). As expected, this ZP 
produces two focused images of the object at positions 111.7 mm and 226.5 mm where the two foci are located 
(see Fig. 10). Some halos surrounding the DiOG letters in the first focus can be noticed, since the out-of focus 
images corresponding to the higher diffraction orders, are superimposed to the in-focus image. On the other 

Figure 8.  Theoretical and experimental axial irradiance profiles of the Kolakoski lens of order S = 8 . Both of 
these distributions are normalized with respect to the maximum intensity..

Figure 9.  Evolution of the transverse intensity distribution produced by a KZP of order 8.
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hand, it can be observed that the second image is double the transverse size of the first one, a property related to 
the generating aperiodic sequence. In fact, in Fig. 10, the resulting relative sizes of the segments are a = 0.452 
mm and b = 0.914 mm, satisfying ba = 2.02 ≈ 2.

Discussion
A diffractive lens based on the aperiodic Kolakoski sequence has been presented and studied both numerically 
and experimentally. It was shown that a KZP produces two foci along the optical axis being the corresponding 
focal lengths correlated with the involved aperiodic Kolakoski sequence. The image-forming capabilities of 
these bifocal lenses were also tested. We believe that the proposed aperiodic diffractive lens could be of benefit 
across a broad range of applications where conventional ZPs are currently applied, such as X-ray microscopy, 
THz imaging, and ophthalmology. Our next step is to design kinoform-type diffractive structures based on this 
sequence. This step would aim to improve the diffraction efficiency of the lens, thus extending its suitability to 
an even broader spectrum of optical applications.

Data availability
All data generated or analysed during this study are included in this article.
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