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Abstract: Bearings are the most vulnerable component in low-voltage induction motors from a
maintenance standpoint. Vibration monitoring is the benchmark technique for identifying mechanical
faults in rotating machinery, including the diagnosis of bearing defects. The study of different bearing
fault phenomena under induction motor transient conditions offers interesting capabilities to enhance
classic fault detection techniques. This study analyzes the low-frequency localized bearing fault
signatures in both the inner and outer races during the start-up and steady-state operation of inverter-
fed and line-started induction motors. For this aim, the classic vibration envelope spectrum technique
is explored in the time–frequency domain by using a simple, resampling-free, Short Time Fourier
Transform (STFT) and a band-pass filtering stage. The vibration data are acquired in the motor
housing in the radial direction for different load points. In addition, two different localized defect
sizes are considered to explore the influence of the defect width. The analysis of extracted low-
frequency characteristic frequencies conducted in this study demonstrates the feasibility of detecting
early-stage localized bearing defects in induction motors across various operating conditions and
actuation modes.

Keywords: AC machines; vibration; bearing; fault diagnosis

1. Introduction

Induction motors are widely utilized in the industry due to their well-known ad-
vantages and their outstanding economic trade off. The maintenance of such equipment
represents an economic burden, since only in North America, millions of electrical machines
must undergo repairs every year [1]. In particular, the most critical constructive elements
in low-voltage induction motors are the rolling bearings placed between the housing and
the rotating motor shaft [2]. The early diagnosis of such components is crucial for reducing
plant maintenance costs and preventing hazardous scenarios. Bearing fault diagnosis
represents a prominent research field and has attracted a vast amount of research interest
over the last years [3]. Additionally, the advent of machine learning and the availability
of numerous open-source bearing fault datasets (e.g., Case Western Reserve University
(CWRU) [4], Paderborn University dataset [5], etc.) have greatly increased the volume of
research in this area [6,7]. Nevertheless, the sole data-based identification of bearing defects
lacks the physical understanding of the failure mechanics, which hinders cross-domain
failure identification. Therefore, research exploring the effects of various bearing defects
across different applications and scenarios remains crucial in the field.

Vibration monitoring continues to be the most widespread methodology for rotating
machinery diagnosis, including electrical machines. One of the main reasons is the high
number of standards based on this physical magnitude [8]. On the other hand, vibration
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monitoring in electrical machines offers insights for both mechanical and electromagnetic
fault signatures [9]. The main drawback of vibration monitoring is the need for external
sensors (i.e., normally accelerometers) attached to accessible non-rotating parts and the
influence of different mechanical transfer paths accentuating or attenuating potential fault
signatures [10]. Other authors have explored alternative techniques for bearing diagnosis in
the field of electrical machines by utilizing less-invasive methods exploiting electromagnetic
signatures. Radial vibrations caused by bearing defects induce an air-gap variation that can
be sensed in the stator current [11]. Some works exploiting current monitoring for bearing
diagnosis can be found in [12,13]. In addition to the current monitoring, other authors
have explored the utilization of stray-flux to diagnose bearings. The literature emphasizes
the utilization of statistical indicators to identify localized bearing faults, with no evident
fault signature in induction machines for the acquired stray-flux signals [14,15]. Despite its
disadvantages, vibration monitoring remains the preferred methodology for diagnosing
bearing faults in induction machines over electromagnetic-nature techniques due to the
direct relation between the defect and the acquired signal [16].

Vibration signal processing in steady-state conditions is a broadly studied disci-
pline [17]. The literature identifies various techniques for effectively diagnosing bearing
faults, particularly in scenarios where the signals exhibit periodic and time-invariant char-
acteristics [18]. Envelope spectrum analysis is considered as the baseline frequency–domain
technique for identifying signal-modulating components. This is a simple and historically
effective technique that successfully identifies bearing localized fault signatures in the
low frequency range [19]. Other popular techniques for steady-state signal processing are
the Discrete Wavelet Transform (DWT) [20], Empirical Mode Decomposition (EMD) [21],
and cyclostationary tools [22,23], among others.

Operation at a constant speed for prolonged time is not common in all motoring
scenarios, which hinders fault detection by using the classic signal processing approaches.
For this reason, signal processing techniques under variable speed conditions have been
gaining research attention over the last years [24]. Among the most widely utilized methods
are those based on order tracking. These methods leverage the inherent periodicity of fault
components relative to the rotating frequency [18]. Consequently, all components can be
represented in both the frequency and angular domains, ensuring compliance under vari-
able speed conditions. These resampling techniques provide successful results for localized
bearing fault diagnosis, as demonstrated in works such as [25,26]. Nevertheless, the sam-
pling or estimation of the instantaneous frequency is necessary to perform the transforma-
tion into the angular domain [27], which imposes some limitations in terms of hardware
and computational burden. Resampling-free techniques overcome the limitations of order
tracking but involve a necessary post-processing step [24]. Some of the traditional methods
to analyze non-stationary signals include linear methods such as the Short Time Fourier
Transform (STFT) [28,29] the Continuous Wavelet Transform (CWT) [30], and quadratic
bi-linear methods such as Winger–Ville Distribution (WVD) [31]. Moreover, bearing fault
diagnosis triggers the application of advanced time–frequency signal processing techniques
such as various types of synchrosqueezing transformations [32–34], or Multiple Signal
Classification (MUSIC) [35,36]. These advanced techniques offer increased resolution and
enhanced energy concentration at a computational cost. The complexity and computational
requirements of such transforms represent a limitation in many diagnosis scenarios where
simpler methodologies provide an adequate solution, as demonstrated in [37].

In the field of induction machines, bearing diagnosis during different operating condi-
tions, including start-up, is identified as a research gap by many authors [38,39]. In [40],
the authors identify defect early detection and severity quantification under non-stationary
regimes and the utilization of low-computational-burden processing techniques to ease
technology implementation as future research directions. In a recent review [41], the au-
thors also highlight a research gap related to transient analysis under different operating
regimes. Moreover, induction machines can be line-started, soft-started, or inverter-fed,
which impose different mechanical and electromagnetic conditions that may affect bearing
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fault identification. Very recently, several authors focused on the vibration transient start-up
signature of induction motors to diagnose rotor dynamic defects such as misalignment
and mass unbalances [42,43]. Few authors have explored the start-up signature to detect
bearing faults. In [44], the authors utilize the CWT and feature extraction algorithms
to identify different bearing defects. Other authors have explored the transient start-up
current signal for the same purpose [45]. In [37], the authors detect characteristic bearing
fault signatures for inverter-fed machines via vibrations acquired in the bearing housing.
Thus, the detection of bearing defects under different start-up modes in induction motors
represents a research gap in the field.

This work analyzes localized bearing race defects in induction motors under vari-
ous starting modes using a resampling-free, straightforward time–frequency transforma-
tion. The utilized signal processing tool extends classic vibration signal envelope analysis
through the STFT. This paper aims to generalize the detection of incipient bearing faults via
vibration signals across different defect widths, excitation modes, and operating regimes in
low-voltage induction motors. Moreover, the transient results are analyzed along with their
steady-state counterparts. The vibration data are generated in a custom test bench where
vibrations are acquired in the Drive End (DE) of the machine housing for different constant
load points and two bearing defect widths. Two different induction motor starting modes
(i.e., line-started and scalar-controlled inverter-fed) are implemented to elucidate the main
differences between them. In addition, the obtained signature is compared with an existing
open-source dataset including inverter-fed transient vibration signals acquired in the bear-
ing surroundings. This paper is structured as follows. Section 2 presents the mechanics of
localized bearing defects and the employed time–frequency transformation tool. Section 3
describes the test bench in which the vibration data are generated and acquired. Section 4
presents the main results of the analysis and compares the obtained signature with existing
datasets. Finally, Section 5 discusses the main outcomes and limitations, and Section 6
concludes this work and defines future research steps on the topic.

2. Theoretical Background

This section aims to present the fault mechanics of localized bearing defects, thereby
enhancing the reader’s understanding of the analysis. Moreover, the basics of the utilized
signal processing pipeline are described in a comprehensive manner.

2.1. Localized Bearing Fault Mechanics

Single-row deep-groove ball bearings are extensively utilized in low-voltage electrical
machines. These are formed by inner and outer races, rolling elements (in this case,
spherical), and a cage equally spacing the rolling elements. Figure 1 shows an expanded
view of a spherical rolling element bearing and the identifications of its main components.
Other fundamental parts are the lubricants and the seals containing the lubricant.

inner race

outer race

cage

spherical rolling element

(a)

dout

din

1
2

3

4

56

7

8

9

dp

θ

db

(b)

Figure 1. (a) Expanded deep-groove ball bearings view, (b) bearing geometry including numbering
of rolling elements (i.e., 1 to 9 numbers) and main dimensions.
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Rolling bearings may suffer from a wide variety of faults of a different nature. These
faults are typically categorized into three primary groups: localized, extended, and dis-
tributed defects. Distributed bearing defects are equally spaced over the bearing circumfer-
ential space. One classic example of distributed bearing fault is race fluting due to bearing
currents [46]. On the other hand, localized and extended bearing defects are confined in
space within the different elements of the rolling bearing (i.e., races or rolling elements).
The main difference among these two defect types is the extension of the defect. The ex-
tended type may span a larger space than the localized counterpart. Some examples of
localized defects are pits and cracks, while extended defects are commonly found in the
form of fatigue spalling [47]. The present work focuses only on the localized race defect
type, which is often recognized as the most incipient type of bearing fault.

Localized bearing faults are ideally understood as repetitive shocks caused by the
contact between rolling elements and localized defects. These periodic signals are character-
ized by characteristic frequencies depending on the defect location and bearing geometry.
In the ideal case of a fixed outer ring and a rotating inner race, these frequencies are defined
as follows [48]:

fBPO =
nb
2

[
1 − dbcos(θ)

dp

]
fr (1)

fBPI =
nb
2

[
1 +

dbcos(θ)
dp

]
fr (2)

fC =
1
2

[
1 − dbcos(θ)

dp

]
fr (3)

fBS =
dp

2db

[
1 −

d2
bcos2(θ)

d2
p

]
fr (4)

where frequencies fBPO, fBPI , fC, and fBS correspond to the ball pass frequency in the outer
and inner raceways, the cage frequency, and the ball spin frequency, respectively. These are
determined by the number of rolling elements (nb), and geometric parameters, including
the pitch diameter (dp), ball diameter (db), and contact angle (θ), as shown in Figure 1b.

A more realistic scenario considers the existence of slippage between rolling elements
and the races, which causes the defect impulses to adopt a quasi-periodic behavior [49].
In this case, the periodicity of the pulses experiences some random fluctuations, slightly
affecting the characteristic fault frequency locus. The prediction of the exact amplitude
of the overall vibration signal represents a complex mechanical problem including non-
linear multi-body dynamics that requires specific and computationally expensive finite
element models [47]. Nevertheless, even if the vibration signature depends on the specific
topography and tribology of the defect, some studies relate the amplitude increase with
the defect size and the shaft speed. According to [50], the increment in vibration is related
to the defect size depending on the location and the defect size ratio (Dr), which is defined
as follows:

Dr =
θd
∆θ

=
nbθd
2πr

(5)

where θd represents the defect size, r is the bearing radius corresponding to the race
containing the defect arc, and ∆θ is the circumferential space between two rolling elements.
Figure 2 presents a graphical explanation of the defect ratio. For small defect ratio values
(i.e., Dr < 1) both inner and outer race defects present a linear relationship between
the vibration rms value and the defect size. Thus, for increased speed and defect width,
an increase in the vibration amplitude is expected.
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θd

Δθ

Figure 2. Defect ratio graphic description.

2.2. Time–Frequency Envelope Spectrum

Vibration signals caused by localized defects in bearings are characterized as amplitude-
modulated, with a high-frequency carrier signal being modulated by a lower-frequency
component. Classic signal processing tools exploit the demodulation of the vibration signal
to extract information from the quasi-periodic vibration pulses. The benchmark processing
strategy for localized bearing fault diagnosis is the envelope spectrum analysis [19]. Vi-
bration signals are first demodulated and then transformed in the frequency domain by
utilizing the Fast Fourier Transform (FFT). Demodulation is performed using the Hilbert
Transform (HT), which generates the complex analytic signal. Given a discrete, time-
dependent signal x(t) = Acos(ωt), the corresponding analytic signal is defined as follows:

HT[x(t)] = x̂(t) = A[cos(ωt) + j sin(ωt)] (6)

Note that the analytic signal is defined as a complex-valued function in which the
imaginary part is 90º shifted with respect to the real function. The envelope of the signal
x(t) is provided by the module of the analytical signal x̂(t). Figure 3 shows an example of
a quasi-periodic bearing vibration signal and its envelope.

−60

−80

−20

−40

Figure 3. Bearing defect vibration signal x(t) and its envelope.

Variable speed vibration signals are not periodic by nature. Thus, the direct application
of the FFT to non-periodic signals does not provide physically meaningful results. Time–
frequency transformations such as the STFT, DWT, or WVD overcome these limitations and
provide qualitative and quantitative information regarding signal evolutions. The utilized
signal processing method comprises several steps. First, a low-pass filter tuned at the
defined upper frequency limit (i.e., 1000 Hz in the present study) is applied to the raw
signal. Then, the envelope of the signal is obtained by utilizing the above-described
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HT. To effectively track significant bearing fault frequencies, the signal should be band-
pass filtered before applying the STFT. This process primarily serves to filter out high-
frequency components and to eliminate the DC offset from the envelope signal, which
would otherwise dominate the signal if not removed. The band-pass filter lower cut-off
frequency is defined at 5 Hz, while the upper limit is set at the highest frequency of interest.
Finally, the signal is down-sampled to match the Nyquist frequency with the highest
frequency of interest to further prevent aliasing phenomena. The present analysis utilizes
the STFT to interpret the signature of the envelope spectrum during the machine start-up,
which is a windowed version of the classic FFT. This tool is mainly selected due to its
simplicity and low computational burden. The STFT is defined as follows:

STFT[x(t)] = X(τ, f ) =
∫ ∞

−∞
x(t) w(t − τ)e−j2π f tdt (7)

where τ is the window length, and the function w(t − τ) represents a window of length τ
centered at instant t. In addition, a Hanning window is applied to each signal section to
minimize spectral leakage, and a high window overlap level is applied to improve the time–
frequency map resolution. Note that the STFT offers an adequate time–frequency resolution
for the application at hand, but it presents a limited frequency resolution depending on the
window length. Figure 4 depicts the signal processing pipeline used to achieve adequate
time–frequency representation of the transient vibration signature.

Low-pass filter Signal envelopeRaw signal

−

Band-pass filterSTFT

−

−

−

−

−

−

−

−

−

−

−

Figure 4. Signal processing pipeline graphic description with an inner race defect example.

3. Experiment Description

The proposed analysis is implemented by utilizing an induction motor test bench
internally hosting the different bearings being tested. The utilized motor is a four-pole
squirrel cage induction machine with 36 stator slots and 28 rotor bars. Figure 5 shows the
machine cross-section, and Table 1 presents its main characteristics.

The bearings under test are internally allocated within the DE plate of the induction
machine. This represents a realistic diagnosis scenario including the structural response of
the motor and not only the bearing structural elements. The induction motor is coupled to
a DC generator via flexible mechanical coupling that imposes a constant resistant torque.
The load torque is manually controlled by utilizing a variable autotrasformer connected to
the field winding. The armature winding of the DC generator is connected to a dissipation
resistance. The induction machine is either directly supplied by a 50 Hz three-phase
network or driven via a Variable Frequency Drive (VFD). The machine’s alignment is
precisely adjusted using a commercial tool that quantifies misalignment, ensuring that the
levels remain within standard limits. Figure 6 shows a schematic of the test bench.
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Figure 5. Induction motor specimen cross-section.

Table 1. Induction motor characteristics.

Number of poles 4
Rated power 1.1 kW
Rated speed 1440 rpm
Power factor 0.78
Rated voltage 230/400 V
Number of rotor bars 28
Number of stator slots 36

Non drive-end
Armature circuit

Field circuit

Single phase 
autotransformer

230 V, 50 Hz
Single phase network

1

3
2 Drive-end

Three phase 
autotransformer

400 V, 50 Hz
Three phase network

Variable Frequency Drive
Single phase rectifier

Faulty bearing location

Figure 6. Test bench graphic description. (1) Induction machine including faulty bearing, (2) DC
generator imposing constant resistant torque, (3) flexible coupling.
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The signal acquisition is performed by utilizing commercial piezoelectric unidirec-
tional accelerometers (PCB352C33). These are placed in two orthogonal circumferential
directions in the DE plane (i.e., located at 12 o’clock and 3 o’clock). In this way, the reliability
of the measurement is improved by considering slightly different structural responses.
The sensor is attached using a well-known adhesive polymer (UHU® Patafix), which offers
proper stability and attachment flexibility [51]. The sensors are connected to a signal condi-
tioning unit, and the acquisition is performed using a wave recorder (Yokogawa DL350,
Tokyo, Japan) at a sampling frequency of 20 kHz. Figure 7 shows the location description
of the accelerometers in the induction machine specimen.

z

(a) (b)

x

x

y

Figure 7. Accelerometer locus description. (a) Vertical xy-plane, (b) horizontal xz-plane.

This study includes different spherical rolling element bearings with different localized
defects in the races. The defects are artificially induced via electric discharge machining
in both the inner and outer races. Moreover, two different defect widths are implemented
within the range of Dr < 1, corresponding to widths of 0.5 and 1 mm, respectively. Figure 8
depicts the different bearings under test with the implemented race faults. Table 2 shows
the main bearing dimensions according to Figure 1b, together with the expected fault
signature in the frequency domain following Equations (1)–(4). The characteristic fault
signature is provided in terms of a coefficient k, only including geometry characteristics,
which multiplies the rotating frequency to determine the characteristic fault locus in the
frequency domain. The faulty bearings are allocated within the DE end plate, as shown in
Figure 6. Outer race defects are placed in the maximum radial load area at the 6 o’clock
circumferential position.

(a) (b) (c) (d) (e)

Figure 8. Bearing defect description. (a) Healthy, (a) 0.5 mm inner race defect, (c) 1 mm inner race
defect, (d) 0.5 mm outer race defect, (e) 1 mm outer race defect.

Table 2. Bearing dimensions with nb = 9 and characteristic frequency coefficients k assuming θ = 0.

din [mm] dout [mm] bd [mm] dp [mm]

25 52.00 7.94 38.5

BFO BFI BSF CF

3.59 5.41 2.37 0.40

The study of the bearing fault signature is performed during the machine’s transient
start-up. This strongly varies depending on the electrical actuation of the induction machine.
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The present analysis examines two of the most commonly encountered actuation scenarios,
specifically those involving VFD actuation and direct line-fed operation. The direct line-
fed induction machine at the rated line-to-line voltage produces an extremely fast start
due to the low inertia generally present in low-voltage machines. The abrupt start-up of
the machine may mask the useful transient vibration response due to a high-amplitude
initial shock. To mitigate this, a reduced voltage start-up at 50% of the rated line-to-line
voltage is additionally implemented. In this way, the motor start-up is elongated and
surpasses the duration of the acquired initial mechanical shock. Figure 9 exemplifies the
differences between the rated and 50% line-to-line voltage start-ups at the rated steady-state
slip and healthy bearing. The VFD-fed actuation is performed by utilizing a commercial
inverter featuring an open-loop scalar control. The control system progressively varies
the frequency and the supply voltage to keep a constant V/Hz ratio. This is performed at
different variation rates, which are defined by a ramp length parameter. Thus, different
transient start-up lengths are imposed to verify the behavior of faulty bearing components
at different acceleration rates. The examined VFD-fed start-up ramps are defined with
durations of 5 and 20 s, respectively.
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(b)

Figure 9. Line-fed induction machine startup vibration signal at 12 o’clock for (a) rated line-to-line
voltage, (b) 50% rated line-to-line voltage.

The experimental campaign includes the vibration signal acquisition at different
constant load points imposed by the DC generator. The machine load level is defined by the
slip at steady-state (i.e., relative difference between synchronous and shaft rotating speeds).
Note that the slip heavily swings from 1 to nearly 0 in the line-started case, while it is kept
constant during the VFD-fed startup [52]. Five load points are defined, corresponding to
the inherent slip at no-load and four points in steps of 25% of the rated slip (i.e., 1485 rpm,
1470 rpm, 1455 rpm, and 1440 rpm). Under conditions of reduced line-to-line voltage
excitation, only four load points are defined, as the available torque scales with the square
of the voltage. Additionally, no-load excitation already accounts for 25% of the rated slip.
A total of 10 startups and steady-state signals of a 30 s duration are acquired per load point,
startup type, and bearing fault topology.

4. Analysis of Results

This section presents the acquired results both in steady-state and different transient
startup signals. Moreover, the results are compared with an open-source dataset, where
faulty bearing vibration signals are directly acquired in the bearing surroundings during a
VFD-fed startup.
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4.1. Steady-State Analysis

The steady-state analysis at the rated slip of the vibration envelope spectrum eluci-
dates the different fault signatures in the acquired signals. The spectrum is obtained by
enveloping the vibration signal and further transforming it in the frequency domain though
the well-known FFT. A Hanning window is implemented to reduce spectral leakage.

Figure 10 shows the envelope spectrum for different bearing specimens, including
healthy, inner race, and outer race defects. The spectrum includes signals acquired during
line starting at rated line-to-line voltage and VFD-fed excitation. The displayed signals
are acquired at the 12 o’clock circumferential position at the rated slip (i.e., 1440 rpm
shaft rotation). An immediate observation is the clear identification of the characteristic
fault frequencies corresponding to inner and outer race-localized defects in both the line-
started and VFD-fed cases. The envelope spectrum in healthy conditions does not show
relevant information regarding bearing defects and only highlights the increased noise
for VFD-acquired signals. Note that the envelope spectrum components observed in the
healthy case corresponding to Figure 10a are not present in the faulty cases. This fact
emphasizes the absence of significant electromagnetic vibration components influencing
the bearing fault detection within the frequency range of interest when demodulation
tools are utilized. Table 3 shows quantitative data regarding the amplitude and frequency
location of characteristic faulty components for both defect sizes and actuation modes.
A first conclusion drawn from the steady-state analysis is that the fault frequencies are
independent of the actuation mode, as evidenced by the nearly identical amplitude values
observed for both the line-started and VFD-fed modes. The light changes observed in
the frequency location are derived from the manual tuning of the shaft speed by utilizing
a manual tachometer and from the expected rolling element slippage. The amplitude
comparison between 0.5 mm and 1 mm defects shows a slight decrease for the higher defect
level. This fact contrasts with the expected rms increase in the vibration signal for higher
defect sizes [50]. Nevertheless, the amplitude of the mechanical shocks follows the expected
rms vibration increase, as shown in Figure 11. This increase is better observed for inner
race defects in the present study. In addition, rotating frequency-modulated components
around fault characteristic frequencies (i.e., k fBPI ± n fr ∀ k = 1, 2, 3, . . . n = 1, 2, 3, . . .;
k fBPO ± n fr ∀ k = 1, 2, 3, . . . n = 1, 2, 3, . . .) are more prominent for reduced defect sizes.

Table 3. Characteristic frequency location and amplitudes for different faulty bearings.

Line-Started VFD-Fed

Frequency [Hz] Amplitude [dB] Frequency [Hz] Amplitude [dB]

Outer race, 0.5 mm

fBFO 86.67 −51.34 86.67 −60.21
2 fBFO 173.31 −52.82 173.31 −59.53
3 fBFO 260 −54.58 259.96 −61.24

Outer race, 1 mm

fBFO 86.44 −62.4 86.6 −60.47
2 fBFO 172.9 −63.32 173.23 −60.32
3 fBFO 259.32 −63.33 259.83 −60.32

Inner race, 0.5 mm

fBFI 129.37 −49.95 129.4 −49.81
2 fBFI 258.74 −51.12 258.8 −51.63
3 fBFI 388.1 −52.88 388.17 −52.98

Inner race, 1 mm

fBFI 129.27 −58.39 129.33 −56.15
2 fBFI 258.53 −59.52 258.67 −56.63
3 fBFI 387.8 −61.19 388 −57.96
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Figure 10. Vibration envelope spectrum analysis acquired at 12 o’clock position at rated slip,
(a) healthy, (b) 0.5 mm outer race defect, (c) 1 mm outer race defect, (d) 0.5 mm inner race de-
fect, (e) 1 mm inner race defect.
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Figure 11. Vibration amplitude comparison among two defect widths. Signals acquired at 12 o’clock
at rated slip. (a) Outer race defects, (b) inner race defects.

4.2. Transient Analysis

The present subsection describes the analysis of the induction motor vibration signals
during the studied start-up excitation modes at the rated slip. Four distinct start-up modes
were implemented, including line-started at 100% and 50% of the rated line-to-line voltage,
along with VFD-fed modes featuring ramp-up times of 20 s and 5 s. Figures 12–16 show
the results of the start-up analysis by utilizing the demodulated STFT together with the
time-domain vibration signals at both the 12 o’clock and 3 o’clock circumferential positions.
The dashed red line marks the start point of the time–frequency transformation, which is
applied to exclude the processing of blank signal intervals. The STFT time window (i.e.,
w(t − τ)) is kept at 0.3 s across the different start-up scenarios to allow for the quantitative
analysis of time–frequency amplitudes.

Figure 12 shows the vibration signature when a brand new healthy bearing is located
in the end plate. The effects of the VFD actuation are clearly identified by observing the
time–domain transient signals. The VFD-induced harmonic content in the vibration signals
is mainly located at higher frequencies, as evidenced by the steady-state comparison in
Figure 10 and Table 3 even if the noise floor in the frequency range of interest is clearly
increased. By observing the line-started signals, the overall vibration amplitude is lower
for the reduced line-to-line voltage case. This observation is aligned with the expected
electromagnetic vibration for reduced excitation levels, even if the shaft rotates at the rated
speed. Moreover, in the case of the healthy bearing in line-started conditions, a high-
amplitude starting shock is observed for both voltage levels. Sensors located at 12 o’clock
and 3 o’clock provide similar information, with some amplitude differences, mainly due to
the structural transfer function between acting forces and vibration acquisition points.

Figures 13 and 14 show the transient vibration analysis of the two studied bearings
containing outer race defects. The outer race defect signature k fBPO ∀ k = 1, 2, 3, . . . is
clearly observed in all cases. However, the outer-race 0.5 mm defect provides less-evident
signatures in both the line-started and VFD-fed excitation modes. The main reason for the
signature masking in the case of the line-started 0.5 mm defect is the presence of a high-
amplitude initial shock. In addition, the signature of this defect is not evident in the case of
the 3 o’clock position, even in the case of VFD-fed excitation. For the 1 mm outer race defect
case, the fault signature during transient evolution is much more observable. In this case,
no initial shock is observed in the case of line-started excitation, which contributes to the
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clear identification of fBPO frequencies. The fault signature is not evident at low rotating
speeds. This is clearly observed in the transient evolutions of 50% line-started and VFD-
fed excitation modes, even in the time domain signals. Moreover, the signature becomes
observable at both the 12 o’clock and 3 o’clock positions, with only slight differences
observed during long ramp excitation.
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Figure 12. Healthy bearing at rated slip, (a) line-started 100% rated voltage, (b) line-started 50% rated
voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.

Figures 15 and 16 present the transient vibration analysis for the two bearings with
inner race defects under study. Both 0.5 mm and 1 mm defects clearly provide observable
fault signatures at the characteristic frequencies k fBPI ∀ k = 1, 2, 3, . . .. Moreover, no initial
shock masking is observed in any inner race case, which allows for the clear identification
of characteristic frequencies in the line-started cases. All signatures are clearly evidenced in
both the acquisition circumferential positions. In addition, the characteristic components are
observed independently of the rotation speed for the VFD case. Under faster acceleration
at 50% of the rated line-to-line voltage, the initial portion of the signal shows no contact
shocks, making the characteristic frequencies unobservable at low speeds.

The mechanical impulses induced by race defects dominate the signal envelope spec-
trogram during the start-up for all types of actuation. The inner race is the most observ-
able race defect for both defect widths, while the outer race 0.5 mm defect provides a
less-dominant signature, even if the characteristic frequencies are clearly observed in the
envelope spectrogram. The acquisition position in the circumferential direction does not
heavily affect the bearing signature identification, which is only influenced under weaker
excitation levels (e.g., outer race 0.5 mm defect or healthy specimen). On the other hand,
the presence of initial mechanical shocks heavily hinders bearing signature identification
during machine start-up. Another observation is the low levels of the characteristic fault
frequencies for low speeds during the initial start. This initial attenuation is better observed
for 1 mm defects in outer and inner races, while smaller defect widths are evident even for
initial rotation phases.
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Figure 13. Outer race 0.5 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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Figure 14. Outer race 1 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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Figure 15. Inner race 0.5 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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Figure 16. Inner race 1 mm defect at rated slip, (a) line-started 100% rated voltage, (b) line-started
50% rated voltage, (c) VFD-fed 20 s ramp, (d) VFD-fed 5 s ramp.
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4.3. Effects of Load on the Characteristic Defect Signature

The present subsection analyzes the effects of machine load on the analytically es-
timated characteristic frequencies for both steady-state and transient conditions. This
analysis is performed to verify the presence of the bearing fault components under different
electromagnetic and speed conditions. For increased load levels, the slip slightly increases
and the induction motor absorbs higher phase current levels, which may influence the level
of electromagnetic vibration. The load variation analysis is performed for both line-started
and VFD-fed cases as well as for different bearing defect widths. Figure 17 shows the
steady-state analysis of the first two faulty components (i.e., fBFO, 2 fBFO, fBFI , 2 fBFI) for
different load points. The left side of the figure shows the amplitude trends for different
load points, while the right side shows the frequency locus of the different fault signatures
for different load points. These right-side graphs are plotted for the VFD-fed case.

The faulty bearing components are identified independently of the load. A notable
observation is the shift in frequency locus as a function of the load point. This is consistent
with the expected variation in slip due to load changes in induction machines. Consequently,
the characteristic faulty frequencies dynamically change with machine speed and the
applied load. Nevertheless, the fault frequency does not exhibit significant variations across
different load points, remaining within a maximum relative 4% deviation. By observing
the amplitude trends of the outer race fault frequencies (i.e., Figure 17a,b), the amplitude
generally decreases for increased load levels and lower speeds. On the other hand, the inner
race signature does not exhibit a clear amplitude trend. Additionally, the excitation mode
does not significantly affect the amplitude of the characteristic frequency at different load
points. The data presented in Figure 17 further support the findings of Figure 10 and
Table 3, where the defect width is not identified as a significant parameter regarding the
characteristic frequency amplitudes. The data corresponding to the line-started 0.5 mm
defect demonstrate an increased noise floor, causing the amplitudes to be at a slightly
higher level. Note that the absolute amplitude values may show slight inaccuracies due to
several phenomena such as parasitic load oscillations or bearing slippage, even if energy
leakage is minimized by utilizing signal windowing.

Figures 18 and 19 show different start-up transient evolutions for different imposed
resistant torques. The vibration signals were acquired at 12 o’clock and were plot after the
initial shock appearance to better highlight variations across faulty components. Figure 18
shows the results of the study for the line-started actuation mode at 50% of the rated
line-to-line voltage. This excitation mode is selected to avoid the fast slip swing observed at
100% of the rated line-to-line voltage. The analysis of the line-started results evidences the
presence of bearing faulty components across different resistant torque levels and speeds.
Both multiples of fBFO and fBFI are dominant for all load levels and defect widths during
the transient start-up and once steady-state conditions are reached. The only effect of the
load level is a minimal variation in the start-up duration, which is nearly imperceptible
when analyzing the time–frequency maps.

Figure 19 shows the VFD-fed load analysis during a 20 s ramp start-up. This ramp
is selected due to the increased transient signal section when compared with the 5 s start.
The figure shows the dominance of the faulty characteristic frequencies across the studied
load points. Note that even the amplitude levels are within the same ranges across all of the
different loads and defect cases. The analysis presented in both Figures 18 and 19 indicates
the load independence of the characteristic fault signature for all defect widths, load levels,
and start-up modes and durations.
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Figure 17. Load dependency steady-state analysis. (a) fBFO, (b) 2 fBFO, (c) fBFI , (d) 2 fBFI .

4.4. Comparison with HUST Dataset

The present subsection compares the acquired transient signature with a recently
published open-source dataset. This is performed to further elucidate the effects of the
mechanical transfer path and to allow for a deeper analysis of the results. The HUST
dataset [53] includes vibration data acquired on a dedicated bearing module, thus avoiding
vibrations of electromagnetic and mechanical origin from the machine itself. The dataset
contains data from different faulty bearings at different loads imposed by a controlled
powder brake. The bearings are damaged using electric discharge machining with a defect
with of 0.2 mm. The same accelerometer (i.e., PCB325C33) was utilized to acquire the
vibration data, which contains VFD-fed start-ups of a 5 s duration. Figure 20 shows the
HUST dataset experimental set-up.

The qualitative comparison between datasets was performed under the closest possible
conditions in terms of bearing dimensions and start-up duration. Thus, the inner and outer
race defect data corresponding to the HUST bearing labelled as 6205 are used, since they
possess the same number of rolling elements and similar inner, outer, and ball diameters to
the bearing studied in the custom dataset. Moreover, the maximum load point is selected
(i.e., 800 W load) in the case of the HUST dataset, providing a shaft speed of approximately
1370 rpm. The custom data are shown at the rated induction motor load point featuring a
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1440 rpm shaft speed. Figure 21 shows the different time–frequency maps for the selected
signal comparison.
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Figure 18. Load variation analysis during the line-started excitation mode at 50% rated line-to-line
voltage. Vibration signals acquired at 12 o’clock. (a) Healthy bearing, (b) outer race 0.5 mm defect,
(c) outer race 1 mm defect, (d) inner race 0.5 mm defect, (e) inner race 1 mm defect.

Figure 21 clearly shows the expected characteristic defect signatures for all the types of
studied bearing defects during both transient start-up and steady-state sections. An imme-
diate observation is the presence of increased rotating frequency modulations in Figure 21a
when compared with the signals acquired in the motor housing. This is evidenced by the
components k fBPI ± fr ∀ k = 1, 2, 3, . . ., which are not observed in Figure 21b. The com-
parison between outer race defects proves the increased difficulty to discern characteristic
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faulty components when compared to the inner race case. Moreover, Figure 21c shows
very small amplitudes in the beginning of the start-up evolution, which is in accordance
with the signals shown in Figures 14 and 18. Overall, each set-up exhibits distinct char-
acteristics; however, the studied defects are clearly identifiable during both the transient
start-up and steady-state phases. Nevertheless, the comparison demonstrates that the
mechanical transfer path plays a key role in elucidating the characteristic signature and its
rotating frequency modulations. The significance of the mechanical transfer path limits
the generalizability across different induction machine specimens with varying structural
characteristics (i.e., mass, stiffness, and damping), and power ratings.
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Figure 19. Load variation analysis during the VFD-fed excitation mode with 20 s ramp duration.
(a) Healthy, (b) outer race 0.5 mm defect, vibration signals acquired at 12 o’clock, (c) outer race 1 mm
defect, (d) inner race 0.5 mm defect, (e) inner race 1 mm defect.
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Figure 20. HUST dataset experimental test bench description [53].
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Figure 21. VFD-fed start-ups for inner and outer race defects, (a) HUST dataset inner race defect,
(b) custom dataset inner race defect, (c) HUST dataset outer race defect, (d) custom dataset outer
race defect.

5. Discussion

The analysis of low-frequency bearing defect characteristic frequencies performed in
this work supports the detection feasibility of incipient localized bearing defects across
different operating regimes and actuation modes in induction motors. These low-frequency
components are identified using a simple and linear time–frequency transformation of
the signal envelope. This indicates that the utilization of complex signal processing tools
may not represent an efficient practice when a low-frequency characteristic fault signature
is targeted. The utilized time–frequency transformation, which contains physical infor-
mation about the fault, may be of interest for physics-informed data-driven approaches,
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which typically require the preprocessing of large volumes of data. The vibration envelope
spectrum analysis of low-frequency characteristic fault components cannot properly dis-
criminate between defect widths. Different defect widths in the range of Dr < 1 provide
similar amplitudes across different load points and excitation modes. This is extended to
time–frequency analysis of variable speed vibration signals. Finally, the observability of the
characteristic frequency across different machine regimes aligns with signals from datasets
obtained under slightly different mechanical conditions, as discussed in Section 4.4.

This study presents several limitations, such as the artificial implementation of defects,
which may slightly differ from incipient naturally induced cracks. The presence and
amplitude of outer race shocks heavily depends on the defect circumferential position,
which is kept at the loaded area (i.e., 6 o’clock) for all studied faults in the present analysis.
Outer race defects are only studied when they are located in the loaded zone. Moreover,
the induction machine specimen is disassembled to change the bearing under test. This
may slightly affect the mechanical features of the test bench, even if attention is paid to keep
the assembly methodology as standard as possible. Finally, spurious mechanical shocks
of a different nature may mask the bearing defect if these are included in the analyzed
signal sections.

6. Conclusions

The present paper introduced an experimental study regarding localized bearing
fault detection across different operating regimes in induction motors. First, this work
introduced the relevant theoretical background to properly interpret the analysis and to
describe the utilized time–frequency representation tool. Next, the experimental procedure
was described in detail, including the induction motor test bench, the vibration signal acqui-
sition system, the bearing fault implementation, and the presence of spurious mechanical
shocks that may mask the characteristic fault signature. The analysis of the experimental
results is presented in several steps. First, a classic steady-state analysis at the rated slip
was conducted. Second, a broad start-up transient exploration at the rated slip, including
different excitation modes, bearing defect widths, and acquisition circumferential positions,
was performed. Third, the effects of load and thus light changes in shaft speed and imposed
constant resistant torque were studied. To conclude the analysis, the acquired data were
compared with the corresponding data from an existing open-source dataset. The utilized
time–frequency envelope spectrum was used to identify the characteristic bearing fault
signature independently of the start-up mode, defect width, and load point. This allows us
to distinguish between defect locations during start-up in an efficient and straightforward
manner across many operating scenarios. The mechanical transfer path of the induction
machine influences the bearing defect signature transmission, as demonstrated by the
comparison of signals acquired near the bearing with those measured at the motor housing.

Future research steps include the study under different lubrication states and outer race
defects locations in the circumferential position. The applicability of the detection technique
should be validated for machines with different masses, power ratings, and features in order
to further generalize it. This may include a detailed structural analysis under different
bearing defects and closely monitoring the test bench mechanical features. Moreover,
the relation between defect width and rotating frequency modulating harmonics in the
envelope spectrum should be explored in detail for both inner and outer race defects.
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