

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Aerospace Engineering and Industrial Design

Numerical study of the effect of decreasing the operational pressure on NASA-R37 axial compressor

End of Degree Project

Bachelor's Degree in Aerospace Engineering

AUTHOR: Ariño Monsec, Iñigo

Tutor: Navarro García, Roberto

ACADEMIC YEAR: 2023/2024

Universitat Politècnica de València Escuela Técnica Superior de Ingeniería Aeroespacial y Diseño Industrial Aerospace Engineering Bacherlor's Degree

Final degree project

Numerical study of the effect of decreasing the operational pressure on NASA-R37 axial compressor

Author: Íñigo Ariño Monsec Tutor: Roberto Navarro García

July 4^{st} 2024

Abstract

This document details the study of the decrease in the operational pressure using NASA's ROTOR-37 model, a 3D axial compressor with a detailed geometry. Computational Fluid Dynamics (CFD) simulations on the ROTOR-37 model are used to study the transition in operational pressure, from 100 kPa to 4 kPa. Four cases are studied, 100 kPa, 40 kPa, 10 kPa and 4 kPa, to ensure a smooth transition and study the effect of the operational pressure decrease among certain values. The numerical models and convergence methods used are described for all the cases. The different patterns, effects and differences that appear in the distinct cases are compared as the operating pressure in the compressor decreases, while maintaining the corrected mass flow rate constant in all the cases. The objective is to analyze the changes in performance that an axial compressor would experience under low operational pressure environments, which would be the case if such compressor were used for Hyperloop transportation systems. The findings offer valuable insights on the low pressure behavior for axial compressors. The presence of laminar boundary layers for low pressures of operation produces lower performances in the compressor. Therefore, the compressor requires to be optimized for low pressures uses.

KEYWORDS: CFD; axial compressor; 3D; operating pressure; ROTOR 37; Hyperloop; pressure decrease;

Resumen

Este documento detalla el estudio de la disminución de la presión de operación utilizando el modelo ROTOR-37 de la NASA, un compresor axial 3D con geometría detallada. Se utilizan simulaciones de Dinámica de Fluidos Computacional (CFD) para estudiar la transición en la presión de operación, desde 100 kPa hasta 4 kPa. Se analizan cuatro casos: 100 kPa, 40 kPa, 10 kPa y 4 kPa, para asegurar una transición suave y estudiar el efecto de la disminución de presión de operación. Se describen los modelos numéricos y métodos de convergencia utilizados para todos los casos. Se comparan los diferentes patrones, efectos y diferencias que aparecen a medida que disminuye la presión de operación en el compresor, manteniendo constante el flujo másico corregido en todos los casos. El objetivo es analizar los cambios en el rendimiento que experimentaría un compresor axial en entornos de baja presión de operación, como sería el caso si se usara dicho compresor en sistemas de transporte Hyperloop. Los hallazgos ofrecen valiosos conocimientos sobre el comportamiento de compresores axiales a baja presión. La presencia de capas límite laminares para bajas presiones de funcionamiento produce menores rendimientos en el compresor. Por lo tanto, el compresor debe optimizarse para su uso en bajas presiones.

PALABRAS CLAVE: CFD; compresor axial; 3D; presión de operación; ROTOR 37; Hyperloop; disminución de presión;

Resum

Aquest document detalla l'estudi de la disminució de la pressió d'operació utilitzant el model ROTOR-37 de la NASA, un compressor axial 3D amb geometria detallada. S'utilitzen simulacions de Dinàmica de Fluids Computacional (CFD) per a estudiar la transició en la pressió d'operació, des de 100 kPa fins a 4 kPa. S'analitzen quatre casos: 100 kPa, 40 kPa, 10 kPa i 4 kPa, per a assegurar una transició suau i estudiar l'efecte de la disminució de la pressió d'operació. Es descriuen els models numèrics i mètodes de convergència utilitzats per a tots els casos. Es comparen els diferents patrons, efectes i diferències que apareixen a mesura que disminueix la pressió d'operació en el compressor, mantenint constant el flux màssic corregit en tots els casos. L'objectiu és analitzar el canvi en el rendiment que experimentaria un compressor axial en entorns de baixa pressió d'operació, com seria el cas si s'utilitzara aquest compressor en sistemes de transport Hyperloop. Les troballes ofereixen valuosos coneixements sobre el comportament de compressors axials a baixa pressió. La presència de capes límit laminars per a baixes pressions de funcionament produïx menors rendiments en el compressor. Per tant, el compressor ha d'optimitzar-se per al seu ús en baixes pressions.

PARAULES CLAU: CFD; compressor axial; 3D; pressió d'operació; ROTOR 37; Hyperloop; disminució de pressió;

Nomenclature

The next list describes several symbols that will be later used within the body of the document:

Acronyms

- BR Bypass Ratio
- CFD Computer Fluid Dynamics
- *KL* Kantrowitz Limit
- *LE* Leading Edge
- MCA Multiple Circular Arc
- PhD Doctor of Philosophy
- *pkm* Passenger per Kilometer
- RANS Reynolds-Averaged Navier Stokes
- TE Trailing Edge

Subscripts

- in referred to the inlet
- out referred to the outlet

Symbols

- α Angle of Incidence
- β Flow angle
- η Rotor efficiency
- γ Ratio of specific heats
- λ Stagger angle
- μ Dynamic viscosity
- π_c Pressure ratio of the compressor
- τ_w Wall shear stress
- c Airfoil mean chord
- C_f Skin friction coefficient
- C_p Pressure coefficient

- $P \ or \ P_t$ Total Pressure
- P_{op} Operational Pressure
- P_{ref} Reference Pressure
- P_s Static Pressure
- R Gas constant for air
- Re_c Reynolds Number referred to the mean chord
- T or T_t Total Temperature
- T_{ref} Reference Temperature
- T_s Static Temperature
- U Air Velocity

Acknowledgments

The development of this project wouldn't have been feasible without the guidance and tutoring of Roberto Navarro and Borja Pallas. I feel really grateful to have the opportunity to work next to them and I'm pleased with all the insight that they have bring me.

A special mention to my parents, Cristina and Toño who have constantly support and guide me along this four years on my studies, and also to my girlfriend Alicia who has helped me daily with my issues.

Overall, thanks to all the supportive and resilient friends, class mates, professors... who have contributed on my education.

All the achievement and projects wouldn't have been possible without the involvement and encouragement of this people. Therefore I demonstrate my gratitude for all of them, and wish the best in their future goals.

Contents

\mathbf{Li}	st of	Figures	2
\mathbf{Li}	st of	Tables	3
1	Intr	roduction	4
	1.1	Motivation	4
	1.2	Background	4
	1.3	Objectives	7
	1.4	Methodology	8
	$1.4 \\ 1.5$	Outline	8
0	D	learn a suid	0
2			9
	2.1	Basics of axial compressors	9
		2.1.1 Compressor map	11
	2.2	Flow patterns on a transonic compressor blade	12
		2.2.1 Flow patterns	12
		2.2.2 Secondary flows	13
	2.3	NASA Rotor 37	16
		2.3.1 Blade cascade geometry	16
		2.3.2 NASA Rotor 37 performance	17
		2.3.3 NASA Rotor 37 geometry	18
		2.3.4 Experimental procedure and results	19
0	ът		
3		merical model	23
	3.1	Geometry and mesh models	23
		3.1.1 Geometry model	23
		3.1.2 Mesh model	24
		3.1.3 Derived parts	26
	3.2	Setup: computational domain and boundary conditions	28
		3.2.1 Model selection	28
		3.2.2 Boundary conditions	28
		3.2.3 Initialization techniques	29
		5.2.5 Initialization teeninques	23
4	Res		31
	4.1	Global parameters	31
	4.2	Local effects	32
		4.2.1 Flow patterns	32
		4.2.2 Differences between the models	35
	4.3	Flow coefficients	40
	4.4	Pressure losses	44
	4.5		45
	4.0	Experimental results	
		4.5.1 Global experimental data	45
		4.5.2 Local experimental data	48
5	Con	ncluding remarks	51
	5.1	Comparison with the Hyperloop geometry	51
	5.2	Conclusions	52
	5.3	Future work	53
	.		
Α		8	56 56
	A.1	Relative Mach differences	90

	A.2 Intermittency contour plots	
в	Sustainable Development Goals	64
С	Drawings C.1 Geometric parametrization of NASA Rotor 37	65 65
D	Cost Estimates	67
	D.1 Direct costs	67
	D.2 General costs	68
	D.3 Benefits	68
	D.4 Total costs	69
\mathbf{E}		70
	E.1 Legal Conditions	70
	E.1.1 Workplace conditions	70
	E.1.2 Computer resources conditions	71
	E.2 CFD Configuration	72
	E.2.1 Configuration Report of Case 1 (100 kPa) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	72

List of Figures

1.1.1:	Energy consumption histogram $[1]$
1.1.2:	Forecast of transport pkm [2]
1.2.1:	Design distribution of a Hyperloop [8]
	Aerodynamics of a Hyperloop [10]
	Compressor scheme $[15]$
	Evolution of thermodynamic variables across the rotor and the stator $\begin{bmatrix} 16 \end{bmatrix}$ 10
2.1.3:	Performance characteristic map for an axial compressor [17]
2.1.4:	Velocity triangles for axial compressor stage [17]
	Enthalpy diagram for a typical compressor stage [17]
2.2.1:	Shock wave configuration inside a transonic compressor rotor [18]
2.2.2:	General view of the secondary flow structures on a blade [19] 13
	Horseshoe vortex visualization [17] 14
2.2.4:	Passage vortex visualization [17]
2.2.5:	Tip leakage vortex $[20]$
2.3.1:	Blade cascade nomenclature for shape definition of the blade at a certain span $[21]$. 16
2.3.2:	Rear view of the NASA Rotor 37 experimental rotor [22]
2.3.3:	Front view of the NASA Rotor 37 CFD rotor 18
2.3.4:	NASA Rotor 37 lateral cut [23] 18
2.3.5:	NASA Rotor 37 lateral cut $[24]$ 19
2.3.6:	NASA Rotor 37 experimental facilities (Suder et al. [24])
2.3.7:	Aerodynamic probes [24]
2.3.8:	Schematic of Optical Components Layout in the Laser Anemometer System [24] 21
3.1.1:	Front view of the ROTOR 37 CAD model
3.1.2:	Lateral view of the ROTOR 37 CAD model 23
3.1.3:	Computational domain (Single passage of the ROTOR 37 model) 23
3.1.4:	Blade Extrados and Intrados identification
3.1.5:	Mesh section display at 50% of the span $\ldots \ldots 24$
3.1.6:	Zoom view at 50% of the span mesh section display $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 25$
3.1.7:	Front view of the mesh on the blade $\ldots \ldots 25$
	Zoomed view of the mesh on the hub and blade intersection $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 25$
3.1.9:	Span wise planes $\ldots \ldots 26$
3.1.10	Meridional plane
	Adimensional plane
	Adimensional point
	Cross-channel planes
	Initialized (Not converged) pressure on the 50% span $\ldots \ldots \ldots \ldots \ldots \ldots 29$
	Converged pressure on the 50% span $\dots \dots \dots$
3.2.3:	Differences between the not converged and converged pressure at 50% of the span 30
4.2.1:	Relative Mach on 10% span $\ldots \ldots 32$
	Relative Mach on 50% span $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 33$
	Relative Mach on 90% span $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 34$
	Relative Mach on meridional plane 34
4.2.5:	Relative Mach differences on 10% span $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 36$
	Relative Mach differences on 50% span, Case 1 and 2 (100 kPa and 40 kPa) \ldots 36
	Relative Mach differences on 50% span, Case 1 and 3 (100 kPa and 10 kPa) \ldots . 37
	Relative Mach differences on 50% span, Case 1 and 4 (100 kPa and 4 kPa) \ldots 37
	Relative Mach differences on 90% span $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 38$
	Relative Mach differences on the Meridional plane
4.3.1:	Pressure coefficient on 50% span plane respect to the adimensionalized position 40

4.3.2:	Skin friction coefficient on 50% span plane respect to the adimensionalized position .	41
4.3.3:	Intermittency on 50% span plane respect to the adimensionalized position \ldots	42
4.3.4:	Intermittency contour plot on 50% span	43
4.4.1:	Pressure loss coefficient	44
4.5.1:	NASA ROTOR-37 pressure ratio map [24]	45
4.5.2:		46
4.5.3:	Comparison of CFD and experimental adiabatic efficiency [27]	47
4.5.4:	Comparison of CFD and experimental pressure ratio [27]	47
4.5.5:	Relative Mach contour comparison at 70% span	48
4.5.6:	Relative Mach zoom contour comparison at 70% span	48
4.5.7:	Relative Mach contour comparison at the cross-channel plane on Station 1a	49
4.5.8:	Relative Mach contour comparison at the cross-channel plane on Station 3 \ldots \ldots	50
5.1.1:	Rotor efficiency for different P_{op}	51
	op	51
5.1.3:	Rotor efficiency for different $Re_c \ldots \ldots$	52
5.1.4:		52
A.1.1:	Relative Mach differences on 10% span \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	56
	I I I I I I I I I I I I I I I I I I I	57
A.1.3:	Relative Mach differences on 90% span	57
	•	58
	e i	59
		59
		60
A.3.2:	Skin friction coefficient on the span plan	61
A.3.3:		62
	1	63
C.1.1:	Multiple circular arc parameterization [29]	65

List of Tables

1.2.1: Hyperloop summary of characteristic figures [8]
2.3.1: NASA Rotor 37 design parameters $[12]$
3.2.1: Summary of the boundary conditions values for each case
3.2.2: Relative and absolute error to the targeted corrected mass flow rate
4.1.1: Summary of the compressor global parameters
4.2.1: Flow angle for all the cases $\ldots \ldots 35$
4.4.1: Pressure loss coefficients
4.5.1: Experimental global parameters comparison
B.0.1: Table for the Sustainability Development Goals
C.1.1: Multiple-circular-arc parameters for the 11 profiles of the reference blade [29] 66
D.1.1: Human resources cost estimation
D.1.2: Equipment cost estimation
D.1.3: Software and Licenses costs estimation
D.1.4: Total direct cost estimation
D.2.1: General cost estimation
D.3.1: Benefits estimation
D.4.1: General cost estimation

1 Introduction

1.1 Motivation

Climate change poses one of the most serious challenges that humanity is facing. The inherent nature of the human race to keep pushing our limits and developing new technology often collide with the preservation of our planet. The massive quantities of pollution generated by human activities are affecting globally the composition of our atmosphere and therefore threatening the natural equilibrium of life in Earth. CO_2 arises as on of the most important pollutants of the air, it's greenhouse effect heats up the Earth, altering natural habitats and ceasing the life of some of the species. This greenhouse gas is produced daily in our modern life, and has become a priority to reduce it, searching for greener technologies through new developments.

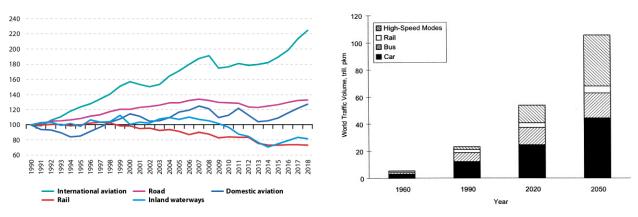


Figure 1.1.1: Energy consumption histogram [1]

Figure 1.1.2: Forecast of transport pkm [2]

30.5% of the EU production of CO_2 is emitted by the transport industry [1], which supposes around 200 millions of tones of CO_2 [3]. Due to the big carbon footprint left by this sector, important efforts have been done to implement new technologies which reduce emissions on the transport modes. Some means such as the rail sector have been able to reduce their energy consumption and therefore their pollutant emissions, whereas others such as the international and domestic aviation show a devastating upward trend, Figure 1.1.1.

This upward tendency on the aviation sector is related with the increasing overall demand on transportation, and specially of high-speed modes. High-speed modes of transport will increase up to 40% of the world market share by 2050 as forecasted in Figure 1.1.2, almost becoming one of the most used means. This upcoming scenario predicts an exponential increase in pollution, arising the need for a sustainable and fast mean of transport able to support the future demand. A mean capable to compete with the volume, speed and price of planes. Therefore, high speed trains could become a great and green alternative to aviation due to new technological advancements which provide improved speeds and lower consumption.

1.2 Background

The implementation of high-speed rail systems started in Japan in 1964, between the cities of Osaka and Tokyo as a solution to the need of a mean of transport capable of carrying a great volume of passengers in short times [4]. The evolution of this mean of transport has been characterized by the fierce competence with the airplane industry. At the current state of the art of this technology the lower speed of the trains but higher comfort makes it a fair competitor against airplane transport up to 1,000 km (620 miles) travels [4]. Nevertheless, the great investment on infrastructures needed for high-speed trains outweighs the low CO_2 emissions per pkm and other advantages of this mean, boosting the use of airplanes worldwide.

To enhance the usage of high-speed train systems this mean of transport have been put onto examinations, searching for innovations to boost comfort and speed, from a long time. Following this effort, Robert Goddard, appealed as the father of the liquid rocket motor, wrote an article in 1909 entitled 'The Limit of Rapid Transit', where he described improvements in a high-speed rail system. On the article Goddard introduced the use of levitating pods and a vacuum-sealed tube to achieve a viable connection between Boston and New York in only 12 minutes [5].

As a materialization of Goddard concepts, Hyperloop appeared in 2013 at the hand of the multimillionaire Elon Musk. This idea was not totally new for the time, but appeared as the first real application mixing the use of a vacuum tube framework to reduce the aerodynamic drag and a levitation system which reduces the mechanical friction to obtain an improved cruise speed with respect to conventional high-speed trains. Despite the immaturity of the idea, other companies jumped into the race for development giving rise to companies such as Zeleros [5].

Zeleros is a Spanish company based in Valencia, which main purpose is to impulse new and clean means of transport, including the development of Hyperloop systems [6]. Zeleros concept of Hyperloop present big similarities to the idea presented in Hyperloop Alpha, the model includes an axial compressor and levitation system which will be delved into later in the document.

Regardless of the huge technological efforts from the companies, the reality of the Hyperloop project feasibility remained unknown. NASA article [7] delves into the feasibility of the project, analyzing the commercial potential, environmental impact, safety considerations and their competence against other well established means of transport. Concluding that this high speed mean of transport "can be optimized to meet market demand without prohibitive costs to the operator". The usage of a closed capsule system requires much bigger investment compared to open systems such as the conventional high-speed train. Nevertheless, the great improvement in the aerodynamic performance outweighs the investment needed per kilometer of rail, thanks to the great achievable velocities.

Elon Musk through Tesla corporation, gave form to the concept of Hyperloop through the article Hyperloop Alpha [8], where the feasibility of this transport system for a line connecting Los Angeles and San Francisco is investigated. The proposed design includes air bearings skis for levitation with an integrated suspension, a compressor fan powered by on-board batteries to reduce the blockage and bleed air to the bearings and a linear electric motor to accelerate the pod. This last element locates on the tube the stator of the motor (weight saving) and the rotor on the pod. The disposition of the capsule seats and the previous mentioned elements are shown in Figure 1.2.1.

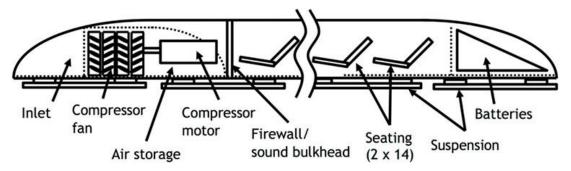


Figure 1.2.1: Design distribution of a Hyperloop [8]

For a comfortable and safe travel the Hyperloop system will operate at high subsonic speeds, avoiding blockage and excessive drag. The tube pressure will be decreased to a value where the drag is minimal but pumps are able to work in case of leakage, maintaining the system operability despite of the air spills. The capsule and tube frontal areas and dimensions are designed to reduce blockage, as well as the front axial compressor. The article Hyperloop Alpha size the aerodynamic and geometrical of the system, a summary of this figures appear on Table 1.2.1.

Aerodynamic proper	ties	Geometrical properties			
Cruise velocity, $[kph]$	1220	Capsule width, $[m]$	1.35		
Cruise Mach number, $[-]$	0.99	Capsule height, $[m]$	1.1		
Tube pressure, $[Pa]$	100	Capsule frontal area, $[m^2]$	1.4		
Capsule Drag, $[N]$	320	Capsule diameter, $[m]$	2.23		
Bearing Drag, $[N]$	140	Tube frontal area, $[m^2]$	3.91		
Fan power, $[kW]$	350	Capsule weight, $[kg]$	3100		
Compression ratio, $[-]$	20	Batteries weight, $[kg]$	1500		

Table 1.2.1: Hyperloop summary of characteristic figures [8]

The flow inside the tube is perturbed by the pod high velocity, causing the acceleration of the air around the pod, which is forced to pass between the narrow section left between the pod and the tube (see Figure 1.2.2). For a given section of the tube and the pod there will consequently exist a maximum velocity limit for which the flow around the pod becomes choke. As sonic conditions are achieved no more mass flow can be transferred between the pod and the tube, resulting in a flow blockage for higher Mach numbers. This limit due to the sonic condition is known as the Kantrowitz Limit (KL) and relates the blockage ratio (BR) with the pod Mach number (M) Equation 1, defining the blockage ratio as $BR = A_{pod}/A_{tube}$ (A_{pod} is the pod cross-section area and A_{tube} is the tube cross-section area) [9].

$$BR = 1 - M \left(\frac{1 + \frac{\gamma - 1}{2}}{1 + \frac{\gamma - 1}{2}M^2} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \tag{1}$$

Therefore above the KL, blockage of the flow will be produced, and part of the flow will be restricted to pass, the pod will start behaving like a piston and adverse increase of the pressure will be produce in the front of the vehicle, whereas the pressure will decrease at the tail of it. This effect leads to serious increase in the drag forces experienced in the pod, restricting the maximum speed achieved by the pod and boosting the energy consumption.

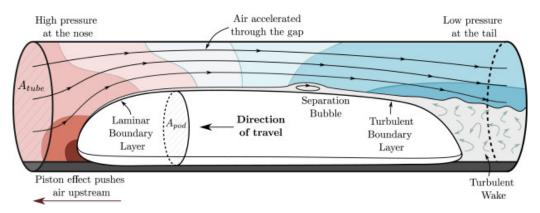


Figure 1.2.2: Aerodynamics of a Hyperloop [10]

In order to diminish the amount of blockage, decreasing the drag, the BR should be minimal, to reduce the acceleration through the gap and the piston effect depicted in Figure 1.2.2. Nevertheless, this is not an option, since it will exponentially increase the cost of rail per kilometer, boosting the infrastructure cost for the project. A real alternative is to add an axial compressor in the front of the vehicle, this compressor will remove the pressure increase upstream of the vehicle improving the aerodynamic performance and decreasing the blockage effects [8]. The compressed air will be bypassed to the rear part of the pod, where a nozzle will expand the gases to mitigate the wake drag.

Including a compressor was already part of the preliminary design introduced in the article Hyperloop Alpha. Nevertheless, there hasn't been a real will to investigate the compressor behavior under the conditions imposed in the tube, and few studies have addressed this question.

In of the latest studies, Lluesma-Rodríguez et al. [11] investigated the feasibility and performance of a Hyperloop system, focusing on the use of an axial compressor for propulsion and drag reduction within a low-pressure framework. The study employs Computational Fluid Dynamics (CFD) simulations to analyze the effect of the axial compressor on the blockage, and therefore, also in the power consumption. The article concludes the effectiveness of the aerodynamic compressor in reducing drag and enhancing propulsion efficiency, leading to 70% energy reduction under a 0.5 BR. The introduction of a compressor allows the system to operate in tunnels with blockage ratios even 2.8 times higher. The research inaugurates the effort to study the advantages of axial compressors in this system.

Whereas Bizzozero et al. [9], follow the same line of study, completing CFD simulations to explore the aerodynamic performance of a Hyperloop pod fitted with a compressor to mitigate the KL. According to the article, the performance of the compressor boosted for conditions above the KL, achieving a maximum power reduction of 47.5%.

Both models for simplification purposes used axial compressor simplified models, establishing a pressure ratio without including the axial compressor inside the CFD model. Therefore, the necessity of studying the behavior of the axial compressor within the low-pressure tube conditions arises. Becoming CFD a great tool to investigate the effects under the given conditions of operation, without the need of expensive experimental setup.

1.3 Objectives

The aim of this project is to study the performance of an axial compressor under the mentioned low-pressure conditions achieved in the tube, quite below the atmospheric one. Computational Fluid Dynamics (CFD) simulations are used to investigate the effects of the operation pressure reduction within a specific geometry, NASA ROTOR-37, experimentally tested by NASA [12]. This compressor is chosen due to the availability of geometric and experimental data provided by NASA.

Although only the experiment have been conduced under atmospheric pressure of operation, this point serve as a validated starting point. Four cases with decreasing pressures of operation are compared, under the same corrected mass flow, targeting the study of the compressor performance under different pressure points. The document includes the techniques used to achieve initialization and convergence over the required corrected mass flow.

Also as a capital objective, the results and flow patterns are compared to a real Hyperloop axial compressor CFD for similar pressures of operation. Aiming the validation of the flow patterns found under a real Hyperloop geometry proposed by Zeleros and studied in previous analyses. To sum up, the project aims to main objectives:

- Validate the CFD results of an axial compressor geometry with the experimental results obtained for the NASA R-37 compressor.
- Study the performance trend of an axial compressor with a NASA R-37 geometry, when decreasing the pressure of operation. This pressure decline will be smoothly studied through four points, reaching up to the pressure of a Hyperloop tube framework.
- Compare and validate the tendencies in performance of the NASA R-37 compressor with a real Hyperloop model studied by Galindo et al. in [13], when decreasing the pressure of operation and therefore the Reynolds number.

1.4 Methodology

Due to the lack of experimental facilities of Zeleros to test this type of compressor under the low-pressure conditions, computational fluid dynamics simulations becomes the most feasible approach to study the given objectives. Therefore, for the project development the program SIEMENS STAR CCM+ 2310 is used, a globally used software, employed in axial compressor simulations under an infinite variety of boundary conditions.

Based on the literature review the and the nature of the problem, a different approach to the conventional used in compressors studies was used. Instead of varying the operational rotational speed, changes in the operational pressure will be implemented. This pressure will be decreed until candidate operational pressures of a real Hyperloop tube system are achieved [13].

This CFD study is divided into four cases with decreasing pressures of operation to ensure a smooth study to see gradually the effects and be able to compare it to the Hyperloop case presented by Galindo et al. [13]. The four cases will have the same corrected mass flow rate, whereas their respective pressure of operation will be of 100 kPa, 40 kPa, 10 kPa and 4 kPa.

The CFD configuration will basically consist of unstructured mesh with wake refinement of around 1.5 million cells [14]. The geometry of the compressor is divided axisymmetrically so that only one blade (from 36) is analyzed, reducing the computational domain and effort. Two periodical conditions are set on the lateral walls to accomplish the symmetry respect to the rotor axis.

Regarding the simulation models as previously mentioned they will be: gas, 3D, axisymmetric... A steady model is used to further simplify the calculation efforts. Whereas the turbulence is simulated with a K-Omega turbulence model through Reynolds-Averaged Navier Stokes (RANS) equations. A Gamma-ReTheta Transition model is also employed in CFD simulation. Finally coupled equations are used to solve the cases due to the huge density gradients that appear in the shock-waves.

1.5 Outline

The document will be divided into three main parts: Memory, Budget and SDGs.

The Memory consist of 5 chapters, where the pressure of operation effects on the compressor performance results and conclusions are included. At the same time each chapter is subdivided on its correspondent sections. The first chapter includes the introduction, presenting the background and motivation for the topic of the study, methodology and main objectives followed in this work.

The second and third chapter correspond to the theoretical base needed to preform the analysis of the compressor performance. The second chapter will address the principles of axial compressors, delving into the characteristics of the used geometry (NASA R-37) and the fundamentals of compressors operating regimes. Whereas the third chapter will include the configuration used in the CFD models (mesh, boundary conditions, models selection...) and initialization and convergence techniques.

The fourth chapter the results obtained in the CFD simulations are exposed. The differences among the models and possible calculations errors are included in this chapter. Finally, the fifth chapter includes the conclusions, embracing the ideas obtained from the analysis, as well as the limitations that the computing methods have.

Furthermore, the project includes a series of different annexes, which will contain supplementary information of: the results (Appendix A), the Sustainable Development Goals (Appendix B), the parametrization of the domain (Appendix C), the overall and separated cost estimation of the project (Appendix D) and the legal and programming conditions, used in the CFD simulations (Appendix E).

2 Background

To decrease the pressure at the front of the pod a compressor is needed. In this section the basics of compressors, the selection of a proper one for a Hyperloop study application and the chosen rotor geometry for the project are explained.

2.1 Basics of axial compressors

A compressor is defined as a mechanical device used to increase the pressure of a compressible mean by reducing its volume or velocity. It operates on the principle of thermodynamics, where energy is added to a gas to compress it. In Hyperloop applications the become an essential part to decrease the drag, while bleeding pressurized air for levitation purposes. The most general classification divides this machines into two:

- Positive displacement compressors: their operation consist on trapping a fixed amount of gas and then mechanically reducing its volume to increase its pressure, through a mechanism. At the same time they are subdivided into:
 - Reciprocating compressors: are a type of positive displacement compressor where gas is compressed by a piston back and forth movement inside a cylinder.
 - Rotary compressors: are a type of positive displacement compressor that use rotating elements to compress gas, such as a screw or vane mechanism.
- Dynamic compressors: increase the pressure of fluid by transmitting velocity (kinetic energy), which is then converted into pressure energy. At the same time they are subdivided into:
 - Centrifugal compressors: are a type of dynamic compressor that use a rotating impeller to impart radial velocity to a fluid, which is transformed into pressure in the diffuser.
 - Axial compressors: are a type of dynamic compressor where the rotor blades accelerates the flow and the stator blades transform the kinetic energy into pressure.

For this project only dynamic compressors are feasible for transport applications, since the can handle high flow rates, produce continuous operation and their efficiency in converting kinetic energy into pressure is superior to the other compressor type. Inside dynamic compressors, centrifugal achieve greater pressure ratios but cannot sustain big mass flows. Therefore, the most feasible option to compress the air in from of the pod is to implement an axial compressor. It's easier integration and high mass flows handling, makes the axial compressor the focus of this work.

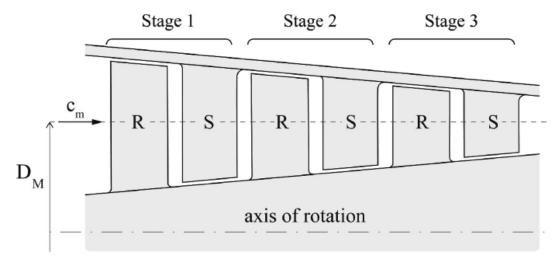


Figure 2.1.1: Compressor scheme [15]

In an axial compressor the gas will always move axially, parallel to the axis of rotation. The fluid will be compressed by a series of stages, which consist of one rotor that rotates transmitting high relative velocities to the flow and a stator that is fixed to the hub and decelerates the flow converting kinetic energy into pressure. A compressor is formed by many stages, see Figure 2.1.1, to achieve a constant pressure raise without excessive flow detachment or stall. Depending on the total pressure ratio needed for the application more or less stages will be implemented. The raise on pressure is thermodinamically related with the raise of temperature, which is a problem in Hyperloop applications. Therefore, the flow needs to be refrigerated before being used in cabin bleeding.

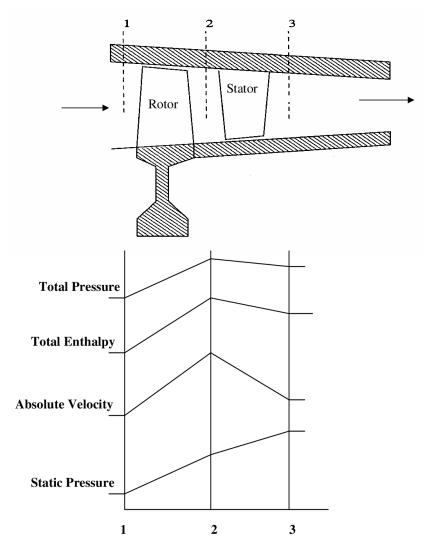


Figure 2.1.2: Evolution of thermodynamic variables across the rotor and the stator [16]

Figure 2.1.2 depicts how the thermodynamic variables evolve during one stage of the compressor. Total pressure and enthalpy will increase in the rotor. This is due to the increase in absolute velocity generated on the rotor, which causes higher dynamic pressures. In the stator the static pressure and enthalpy will slightly decrease. The stator decreases the absolute velocity, diminishing the dynamic pressure. The static pressure will grow similarly in both the rotor and the stator. Is important to note that the rotor in a compressor stage always precedes the stator.

This section will focus in the future on rotor basics since they are more important for the CFD analysis. However, it is important to know the background and overall performance of compressors in first instance.

2.1.1 Compressor map

One of the most representative figures when talking about compressors are compressor maps. This graphical representations are used in turbo-machinery, to describe the performance characteristics of a compressor. Particularly Figure 2.1.3 shows a compressor map for an axial compressor.

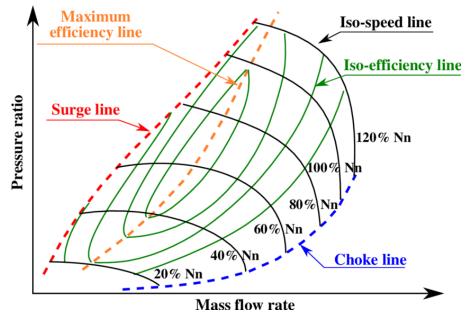


Figure 2.1.3: Performance characteristic map for an axial compressor [17]

The performance compressor map shows the performance of an axial compressor when varying the mass flow rate and the pressure ratio (Equation 20). The graph illustrate a series of iso-efficiency lines that form islands that enclose all the operation points with a higher efficiency to a certain value. The operational regime is characterized by the speed lines, for which the rotor carries the same rotational velocity. This line show a maximum efficiency for a certain mass flow, which is depicted by the maximum efficiency line. On the other hand, there are two limits of operation, where surge or choke are produce. Surge or stall is produced by an excessive incidence angle and therefore a huge work load on the blade. This effect directly leads to a complete loss of the compressor performance and sudden decline on the pressure ratio. Near the surge line, the pressure ratio will almost remain constant despite decreasing the flow rate. Choke will be caused by sonic conditions at the throat of the passage between the blades, therefore no more mass flow will be admitted to pass. Near the choke line despite decreasing the pressure ratio abruptly there isn't an increase in the mass flow rate.

At this moment is worthy to define two coefficients, important in turbo-machinery flow analysis. The flow coefficient, ϕ , and the work coefficient, φ , are defined in Equation 2 and Equation 3. Where U equals the rotational velocity at a certain span.

$$\phi = \frac{V_x}{U} \tag{2}$$

$$\varphi = \frac{\Delta h_0}{U^2} = \frac{V_{\theta 2} - V_{\theta 1}}{U} = \frac{V_x \cdot (\tan \alpha_2 - \tan \alpha_1)}{U} = \phi \cdot (\tan \alpha_2 - \tan \alpha_1) \tag{3}$$

The flow coefficient is parameter that determines the efficiency at which the rotating shaft transfer energy into the fluid. Whereas, the flow coefficient determines the amount of work done on the fluid by the rotor.

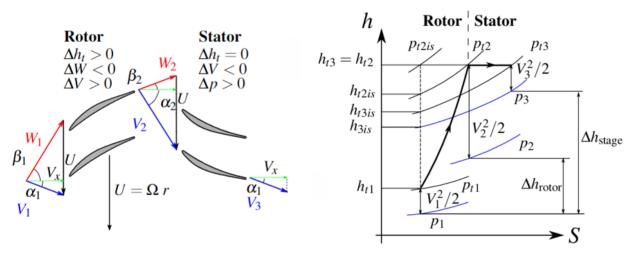


Figure 2.1.4: Velocity triangles for axial compressor stage [17]

Figure 2.1.5: Enthalpy diagram for a typical compressor stage [17]

Figure 2.1.4 illustrates the effects on the absolute velocity, represented by the angle α and the relative velocity, represented by the angle β . As stated, the rotor will turn the flow away from axial, meaning that the absolute velocity increases, α increases. On the stator, the flow is turned towards axial, meaning that the relative velocity increases, β increases. The axial velocity, V_x , can be considered constant along the stage. Note that the flow is not completely axial at the entrance of the stage, unlike in the CFD case.

Figure 2.1.5 shows the enthalpy-entropy diagram for an axial compressor. The absolute enthalpy variation between the rotor and stage, which is traduced into the work done in each step, is the same (reaction degree of 0.5). Whereas the relative enthalpy will be the constant among the stator, since no work is done on the flow (the stator is fixed). The absolute enthalpy variation across the stage is measured as the difference in kinetic energy between the inlet and the outlet. Note that due to frictional losses the relative pressure on the rotor and absolute pressure on the stator decrease.

2.2 Flow patterns on a transonic compressor blade

Prior to the CFD analysis, the main characteristics of the flow will be commented. Is important to characterize the flow patterns inside the rotor of the compressor. Therefore, in this section all the flow interactions with a blade from the compressor will be studied. First of all, secondary flows will be addressed, then other flow patterns around the blade, will be explained, including shock waves under the different flow regimes.

2.2.1 Flow patterns

This subsection addresses the generalities of the flow contour around the blade. Specially, the flow patterns around different mass flow conditions are studied, and bring a grateful insight for the future analysis.

As seen in Figure 2.1.3, there are three main regions on a iso-speed line (stall, operating point and choke). Figure 2.2.1 shows the disposition of the shock waves for different mass flow conditions, from near stall to choke conditions, for a constant wheel speed. As a generality for all the conditions, in transonic rotors an oblique shock wave will be placed upstream of the leading edge, due to the high wheel speeds. For low mass flow rates, near stall operating condition, the shock wave will become normal to the incoming flow flow and will be displaced upstream of the leading edge. Under this conditions the shock wave will reassemble more to a bow shock.

As the mass flow rate grows up to the chocking operating conditions, the shock wave principle will collapse with the leading edge. Moreover, the shock wave will be straight and the passage flow will be accelerated up to Mach 1. Therefore a normal shock wave will appear at the passage throat. Finally is worthy commenting that the design operating condition will reassemble to the choking condition. The shock wave will be straight and it's principle will collapse with the leading edge. However, the passage flow will not be supersonic and therefore no shock wave will appear on the throat.

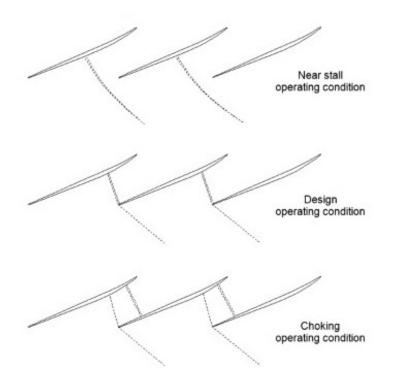


Figure 2.2.1: Shock wave configuration inside a transonic compressor rotor [18]

2.2.2 Secondary flows

Secondary flows are defined as the flow of particles in a different direction to the free stream. In this section the different vortexes generated by this effects will be exposed and discussed.

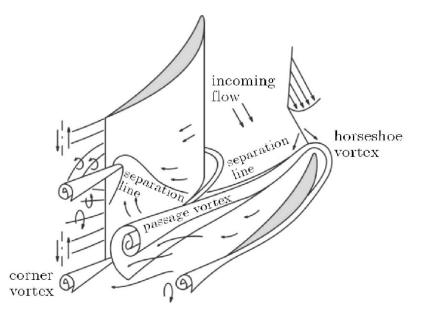


Figure 2.2.2: General view of the secondary flow structures on a blade [19]

First of all, Figure 2.2.2 shows a general image where all the secondary flow effects around the blade are depicted. It is important to note the three main vortexes which will be further discussed in detail are: the passage vortex, the horseshoe vortex and the tip clearance vortex. Moreover, there are three minor effects presented on the image. The first of them is the concentrated shed vortex and is generated by the separation at mid-span of the flow in the suction face. The second one is the trailing edge vortex, generated by the difference of radial velocities between the suction and pressure side. Finally the effect to the corner vortex, due to a minor interaction between the hub and the extrados.

Horseshoe vortex and corner separation

The upstream boundary layer to the blade, will interact with the boundary layer generated by the body, increasing therefore in thickness specially on the corner of the junction. At this point, where the trailing edge intersect the hub, the pressure gradients will produce a 3D flow separation. Except for very low Reynolds numbers, associated to laminar flow nature, the flow will show high-intensity unsteady structures of the flow within the turbulent boundary layer. This vortex will be affected by the intensity of adverse pressure gradient on the suction side.

Regarding horseshoe vortexes, the presence of an obstacle and it's blockage on the flow causes the boundary layer to form this kind of vortexes. The stagnation point at the leading edge becomes the separation of the two lines of the vortex, towards the pressure and suction faces of the blade, traveling downstream. On the suction side the adverse pressure gradient will cause the separation of the flow.

In the particular rotor framework, the blade will be thinner, whereas the adverse pressure ratio on the blades will be higher. Therefore, the importance of the horseshoe vortex will be smaller than the one of the corner separation vortex. Especially for low Reynolds numbers the corner separation will cause a bigger wake for the lower span regions.

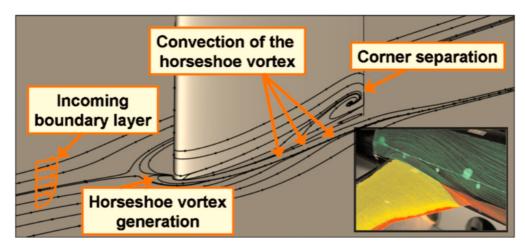


Figure 2.2.3: Horseshoe vortex visualization [17]

Passage vortex

The passage vortex or the cross flow is depicted in Figure 2.2.4. This effect consist on the span-wise rotation of the flow due to frictional effects.

The flow is considered as totally axial, with a non-uniform velocity profile as a result of the boundary layer formation in the hub. The fluid in the boundary layer (particle A) will have a lower axial velocity (V_A) than the fluid in the free stream outside this viscous layer (particle B), which will have a higher axial velocity (V_B) . It is assumed the same pressure field in the span wise direction across the passage. The particle B will follow the blade shape, as the centrifugal force is balanced with the transverse pressure gradient force. Whereas, particle A, as it has a lower momentum, it will

need to have a smaller radius of curvature to achieve the same centrifugal force to compensate the transverse pressure gradient force [17]. As a result the curvature near the hub will be smaller, leading to a cross-passage motion and lower total pressure near the corner between the suction side and the wall. Consequently, the re-circulation pattern shown in Figure 2.2.4 will occur inside the passage.

$$\frac{V^2}{r} = \frac{1}{\rho} \frac{\partial p}{\partial r} \tag{4}$$

The equilibrium equation can be written in a cylindrical reference frame (r, θ, x) , in the radial direction as Equation 4. Relates the above the above particle momentum with the pressure gradient.

Figure 2.2.4: Passage vortex visualization [17]

Tip leakage vortex

Finally Figure 2.2.5 shows the last relevant secondary effect, the tip clearance vortex. Tip leakage consist on the flow movement from the pressure to suction side of the blade. As it is logical, the flow will move towards the lower pressure zones, generating the leakage vortex. Moreover other effects can be seen, a separation bubble (b1) is shown on the blade tip, accompanied usually there is a second recirculation zone (b2) on the shroud. The leakage vortex will depend on the distance between the blade end and the shroud and also on the flow Reynolds number (nature of the boundary layers).

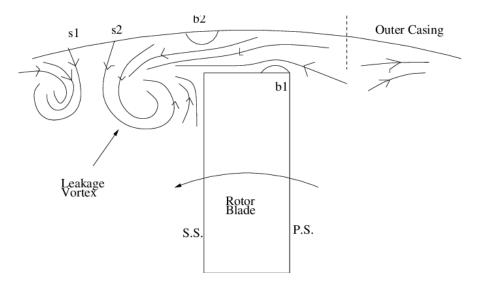


Figure 2.2.5: Tip leakage vortex [20]

2.3 NASA Rotor 37

NASA ROTOR-37 has been the chosen geometry for this analysis, for two main purposes. The experimental results conduced by NASA, bring a great insight into the analysis and serve as a validate tool for the ambient pressure case. Moreover, the facility to obtain an accurate CAD model to the reality makes more feasible this analysis.

2.3.1 Blade cascade geometry

First of all, this section will inquire in the blade cascade geometry basics, to bring an important insight previous to the geometry analysis. The blade cascade consist of a 2D iso-span representation of the blades. The circumferential section at a certain radius is displayed, aiming a 2D and perpendicular representation which help understanding the geometry. On this section some of the most relevant parameters and nomenclature used on defining the shape of the blade at a certain span are used.

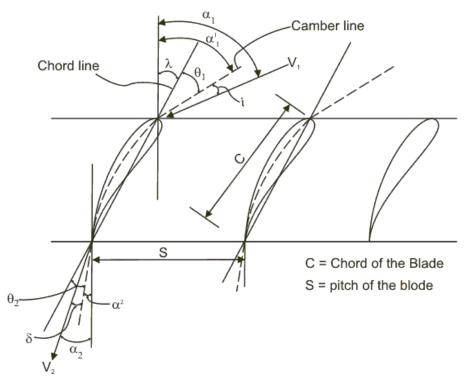


Figure 2.3.1: Blade cascade nomenclature for shape definition of the blade at a certain span [21]

Figure 2.3.1 shows the nomenclature on the blade cascade configuration for a compressor stage. The chord of the airfoil is defined as C, and corresponds to the distance between the leading and trailing edge. The pitch of the blade corresponds to the circumferential distance between the trailing edges of two consecutive blades. This parameters define the solidity (σ), as seen in Equation 5. The solidity will determine if the passage is width or narrow, affecting to the flow patterns across it.

$$Solidity = \sigma = \frac{C}{S} \tag{5}$$

On the figure the camber line is defined as the dashed line and is asymmetric between the two surfaces of the blade. This line defines the metal angle α' in the image, which equals to β , across this work. The chord line is depicted as a solid line, and passes through the trailing and leading edges. This line defines the stagger angle (λ) , which determines the twist of the blade with respect axial direction. The camber angle (θ) will be defined as the angle between the camber mean line and the chord line at the trailing edge.

The velocity angle with respect to the axial direction will be defined as the angle of attack (α). Furthermore, the inlet velocity angle with respect to the mean camber line at the leading edge defines the incidence angle, see Equation 6. The deviation angle corresponds to the he outlet velocity angle with respect to the mean camber line at the trailing edge, see Equation 7.

$$Incidence = i = \alpha_1 - \beta_1 \tag{6}$$

$$Deviation = \delta = \alpha_2 - \beta_2 \tag{7}$$

2.3.2 NASA Rotor 37 performance

NASA Rotor 37 is a widely studied transmic axial compressor rotor, which enhanced the understanding of high-speed axial compressor performance. Reid and Moore conducted experimental research on it [12]. Despite the age of the study, the performance levels and the geometry of this rotor reassemble to the most advanced one, having serve as a cornerstone in the study of axial compressors.

The compressor consists of a 36 multiple-circular-arc (MCA) blades. The geometric parameters consist on: a inlet hub-tip radius ratio of 0.7, a blade aspect ratio of 1.19, a solidity of 1.29 and a tip clearance of 0.0356 cm. The low solidity determines that the transonic rotor, is design to avoid blockage, maintaining a high mass flow rate, while achieving a lower pressure ratio. In fact the performance parameters are: a total pressure ratio of 2.106, a total temperature ratio of 1.27, an adiabatic efficiency of 0.877, a rotor head rise coefficient of 0.333, a flow coefficient of 0.453 and a mass flow rate of 20.188 kg/s.

The experiments are performed under a wheel speed of 17188.7 rpm which correspond to a supersonic tip speed of 454.14 m/s. The experimental conditions where based on ISO standards, where the temperature was 288.15 K and the pressure was 101325 Pa. The maximum mass flow rate at the given wheel speed was measured to be 20.93 kg/s at chocking conditions.

All the mentioned performance parameters for NASA Rotor 37 are summed up in Table 2.3.1. The parameters are obtained at the design point, achieving supersonic inlet conditions. The geometric parameters are obtained at the mean span, which correspond to 50%.

PARAMETER	DESIGN VALUE
Rotor Total Pressure Ratio	2.106
Rotor Total Temperature Ratio	1.270
Rotor Adiabatic Efficiency	0.877
Rotor Head Rise Coefficient	0.333
Flow Coefficient	0.453
Mass Flow [kg/s]	20.188
Rotor Wheel Speed [rpm]	17188.7
Rotor Tip Speed [m/s]	454.14
Hub / Tip Radius Ratio	0.70
Rotor Aspect Ratio	1.19
Number of Rotor Blades	36
Blading Type	Multiple Circular Arc (MCA)

Table 2.3.1: NASA Rotor 37 design parameters [12]

2.3.3 NASA Rotor 37 geometry

Figure 2.3.2 shows the experimental rotor used by NASA on the experiments, whereas Figure 2.3.3, depicts the CAD model used in the CFD simulations. Note that the views are not equal, being one taken from the rear and the other from the front.

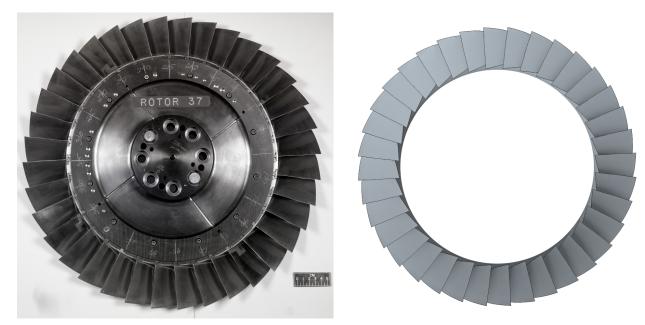


Figure 2.3.2: Rear view of the NASA Rotor 37 experimental rotor [22]

Figure 2.3.3: Front view of the NASA Rotor 37 CFD rotor

Both images show evident similarities with respect to the geometry, in fact the CAD model is accurate to reality in terms shape and dimensions. However, the CAD model does not include some of the tiny protuberances on the hub and the shroud, for the aim of simplicity. As it will be analyzed in the future one of this small gaps will cause numerical discrepancies between the CFD simulations and the experimental results.

Figure 2.3.4: NASA Rotor 37 lateral cut [23]

The geometry of NASA Rotor 37 blade is a finely tuned design that addresses the challenges of transonic flow within an axial compressor. Despite the already commented features, such as the MCA blade profile, aspect ratio, tip solidity, and precise clearances, they are other features which also define it's geometry. Blade twist and varied blade section profiles to handle the complex flow patterns at high speeds, are another of the geometric characteristics of the rotor. Figure 3.1.4 shows that the blade will decrease in chord length when increasing the span, due to the higher velocities of the tip. Furthermore, the blade will be more twisted showing a higher inlet metal angle (β_1), but maintaining the same outlet metal angle (β_2). Is also noticeable that due to the decline in the chord length the leading and trailing edges will be tilted downstream and upstream, respectively.

On Figure 2.3.5 the domain of the rotor is parameterized in a series of spanwise and cross-channel planes. This planes will serve for future analysis of the contour of velocities and pressures. Is worthy to note that span is divided in percentage from the hub to the shroud, becoming higher as it approaches the tip of the blade. Furthermore, the axis direction is divided into different stations, where experimental data is obtained as explained in the next section.

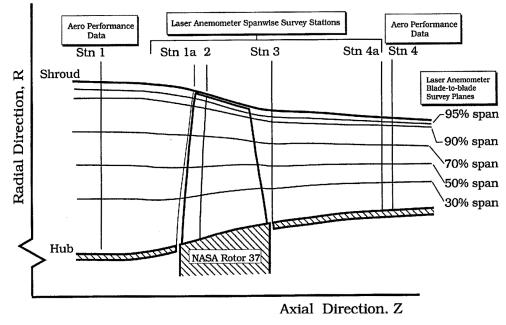


Figure 2.3.5: NASA Rotor 37 lateral cut [24]

2.3.4 Experimental procedure and results

On this section the experimental procedure undertaken by Suder et al [24] is reviewed, investigating in the experimental facilities and techniques.

The Rotor 37 and Stator 37, both forming Stage 37, were designed as the inlet stage of a eight-stage axial compressor. This axial compressor was design to achieve a 20:1 pressure ratio. The rotor was tested isolated to avoid the interference on the flow produced by upstream inlet guide vane or a downstream stator blades. The rotor was representative of the flight hardware at the time, employing multiple circular arc blades, low aspect ratio and a high solidity. The experiments undertaken at the Glenn Research Center were used to study the blockage and losses in an axial compressor. However, huge number of studies have delved into the validation of CFD models through the experimental results obtained in the article.

Figure 2.3.6, depicts the experimental facility used to test Rotor 37. The system is open loop with atmospheric inlet and outlet conditions. The rotor is driven by DC motor. The rotor exit pressure and mass flow is varied using a sleeve-type throttle valve downstream of it.

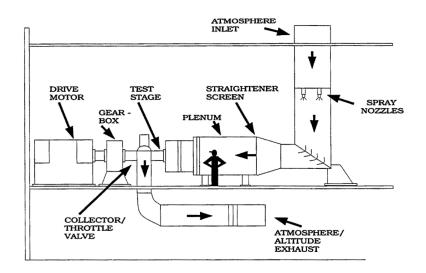


Figure 2.3.6: NASA Rotor 37 experimental facilities (Suder et al. [24])

Probes

A series of probes of two types were used: aerodynamic probes and laser anemometric probes.

The aerodynamic probes were placed in eighteen radial locations (5%, 10%, 15%, 20%, 25%, 30%, 37%, 44%, 51%, 58%, 65%, 70%, 75%, 80%, 85%, 90%, 94%, and 97% span from the hub) at a constant axial location. The axial location of the probes were upstream, station 1, and downstream, station 3, both depicted in Figure 2.3.5.

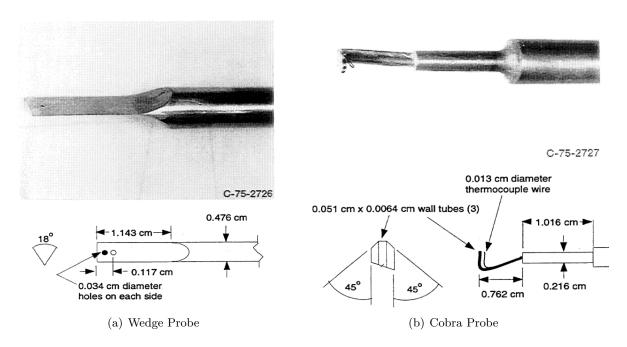


Figure 2.3.7: Aerodynamic probes [24]

Figure 2.3.7 shows the two types of aerodynamic probes. The first one correspond to wedge probe and measures the average static pressure and flow angle. The second is the cobra probe and measures average total pressure, total temperature, and flow angle.

A laser anemometer system is used to measure upstream and downstream velocities, acquiring the tangential and axial components of the velocity. A schematic representation of the optical components of the laser anemometer system is provided in Figure 2.3.8. Basically the system allow velocity measurements, through an optical system formed by the mirror, optical devices and a laser beam. This laser beam measures the velocity of seed particles introduced to the flow, which consist on polystyrene latex particles.

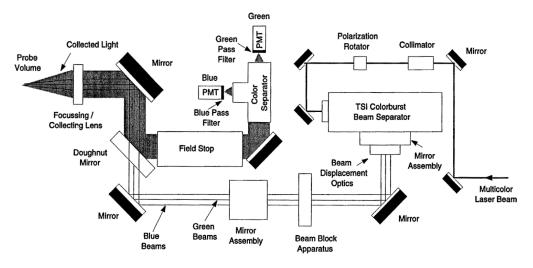


Figure 2.3.8: Schematic of Optical Components Layout in the Laser Anemometer System [24]

The laser anemometer system was used to collect data on two directions: the cross-channel and the laser anemometer stream surface. In both surveys data was acquired across the 36 blade passages at points circumferential resolution of 184 points. Approximately 60000-100000 measurements were taken at each axial/radial location.

The cross-channel survey indicates the flow features in the circumferential and radial direction for a constant axial location (Stations 1a and 3 for velocity). Measurements were taken between 20% and 98% of the span, with a 5% span spacing between points. A lower spacing of 2% was employed near the tip.

The streamsurface survey data is acquired at various axial and circumferential locations at a constant span. The data was obtained for the 30%, 50%, 70%, 90%, and 95% span planes. The axial spacing between points was approximately 5% of the rotor chord.

The static pressure, total pressure, and total temperature measured with the aerodynamic survey probes at stations 1 and 4 are averaged. Pressure is energy averaged in Equation 8 and temperature is mass averaged across the annulus in Equation 9.

$$\frac{\overline{P_j}}{P_{ref}} = \left[\frac{\sum_{i=1}^{nrp} \left(\frac{P_j}{P_{ref}}\right)^{\left(\frac{\gamma-1}{\gamma}\right)} \rho_{j,i} \left(V_z \,\Delta A_{an}\right)_{j,i}}{\sum_{i=1}^{nrp} \rho_{j,i} \left(V_z \,\Delta A_{an}\right)_{j,i}}\right]^{\left(\frac{\gamma-1}{\gamma}\right)}$$
(8)

$$T_{j} = \frac{\sum_{i=1}^{nrp} T_{j,i}\rho_{j,i} (V_{z} \Delta A_{an})_{j,i}}{\sum_{i=1}^{nrp} \rho_{j,i} (V_{z} \Delta A_{an})_{j,i}}$$
(9)

Note that the subscript j refers to the probe axial location and i to the radial location.

Results

A series of experimental results arise from the rotor tests. The experiments information is principally summed up into Performance Maps, Radial Distributions, Blade-to-Blade flow field contour plots and Cross-Channel flow field contour plots.

On the performance maps the efficiency is computed using Equation 10. In this equation the averaged pressure and temperature at the upstream and downstream stations of the rotor are used (stations 1 and 4 respectively). Moreover, the pressure ratio is also displayed on this maps and computed on Equation 11, averaging the pressure at the given stations.

$$\eta_{ad} = \frac{\left(\frac{\overline{P_4}}{P_1}\right)^{\left(\frac{\gamma-1}{\gamma}\right)} - 1}{\frac{\overline{T_4}}{\overline{T_1}} - 1} \tag{10}$$

$$\Pi = \frac{\overline{P_4}}{\overline{P_1}} \tag{11}$$

The Radial Distributions analyze the distribution of pressure, temperature, adiabatic efficiency and blade loading across different spans the radius at the design speed. Throughout the testing program which lasted several years the Radial Distributions where compared, showing a decline in efficiency.

Blade-to-Blade flow field contour plots shows the Mach number contours at the 70% span plane. Generally a blockage occurs on the intrados (pressure surface) near the leading and on the extrados (suction face) near the trailing edge.

Finally the Cross-Channel flow field contour plots, show the circumferential Mach number contours upstream (Station 1a) and downstream (Station 3) of the rotor. Moreover, the flow angle is depicted for these planes, a comparison of this parameter on this project is not interesting and consequently not included.

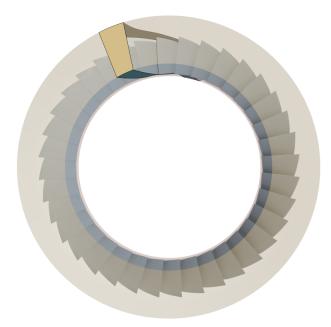
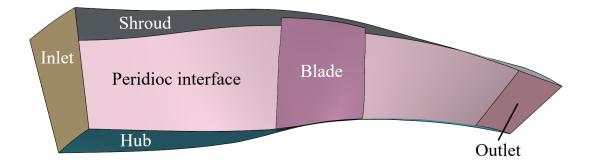
For the CFD and experimental results comparison the Performance Maps, Blade-to-Blade flow field contour plots and Cross-Channel flow field contour plots are used. This comparison allow an accurate validation of the CFD models. The results figures obtained by Suder et al. are showed in future sections and therefore are not included here.

3 Numerical model

3.1 Geometry and mesh models

3.1.1 Geometry model

The numerical models used in the CFD analysis uses a 3D CAD model of the NASA ROTOR 37 introduced in subsection 2.3. The global domain is depicted in Figure 3.1.1 and Figure 3.1.2. On this figure the walls of the computational domain of the CFD simulation is shown, this walls enclose 1 of the 36 blades disposed axisymmetrically through the rotor.

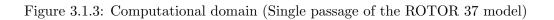


Figure 3.1.1: Front view of the ROTOR 37 CAD model

Figure 3.1.2: Lateral view of the ROTOR 37 CAD model

As a previously explained, for a reduction of the CFD computational effort the compressor domain is dived into 1 of the 36 blades that the NASA ROTOR 37 model has. Therefore the computational domain of the CFD model will consist of a single passage of the compressor, the periodic interference will be established between the two walls on the rotational direction (setting up periodic flow fields). The computational domain will consist of 8 surfaces: the Inlet, the Outlet, the Hub, the Shroud, 2 lateral walls (Periodic Interface) and 2 Blade surfaces (Extrados and Intrados), all of them depicted in Figure 3.1.3. The Shroud and the Hub will be rigid walls as the Blade surfaces, whereas the Inlet and Outlet will be crossed by the flow.

The geometrical model has been provided by [12], this 3D model represents with a high fidelity the geometry of the NASA axial compressor. The lateral walls (Periodic interference) are streamline shaped, so that the domain contains a high percentage of the streamlines. Sufficient distance has been left between the Inlet and the Blade to make sure that the flow fully develops and between the Blade and the Outlet to keep the wake inside the domain.

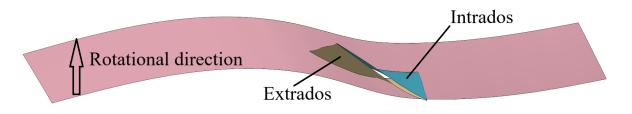


Figure 3.1.4: Blade Extrados and Intrados identification

Finally on Figure 3.1.4 the direction of rotation of the axial compressor is depicted. The Extrados and Intrados faces are therefore known and showed in the figure, they will be important for the future analysis of different coefficients above the blade.

3.1.2 Mesh model

The mesh strategy used in the CFD simulation is unstructured. The choice of the mesh has been done following the conclusions of Segarra's articles [14]. On this document the author concludes that the unstructured mesh results are more precise to the experimental data of NASA ROTOR-37. Succeeding with Segarra's work, the unstructured mesh used in this project contains 1.53 million elements. This base size is employed due to the high accuracy of the results and mesh independence achieved in [14]. Furthermore, base size and wall refinement is used among the domain to enclose huge pressure gradients among the domain due to shear effects.

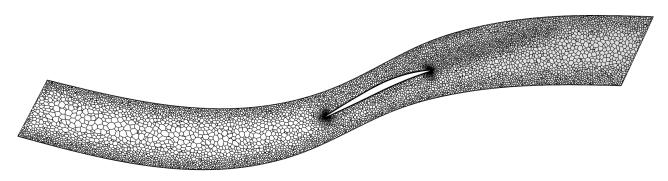


Figure 3.1.5: Mesh section display at 50% of the span

On Figure 3.1.5 the mesh at the 50% of the span is depicted. The base size of the grid is 0.018m, which corresponds to 3% of the rotor mean chord. This size has been chose since it presents a good trade-off between the accuracy of the mesh and the computational effort. The volume-growth rate is set to 1.15, whereas the surface growth rate is set to be 1.35 for a good quality of the mesh. Other details include a target surface size of 0.0012m and a minimum surface size of 10% of the base size.

Several local refinements have been done in order to achieve a higher accuracy in the results. Subsequently the base size of the wake is shown in Figure 3.1.6 to be smaller, a local refinement is used to enclose the pressure gradients produced by the wake. The base size on the wake is reduced to 25% of the global base size to capture the turbulent wake. Furthermore, on the leading and trailing edge, the cell size has been reduced to 5.4E-5 m, to capture the curvature of this sharp edges.

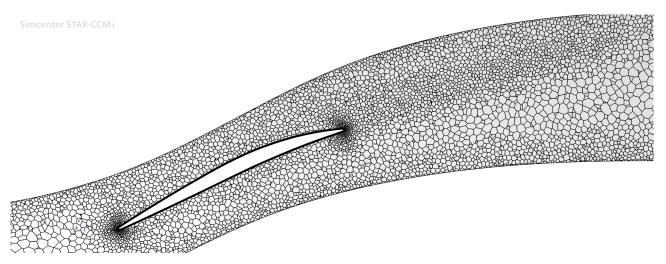
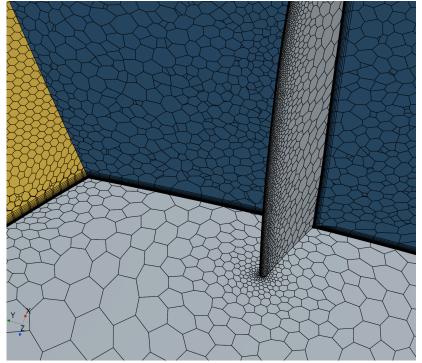


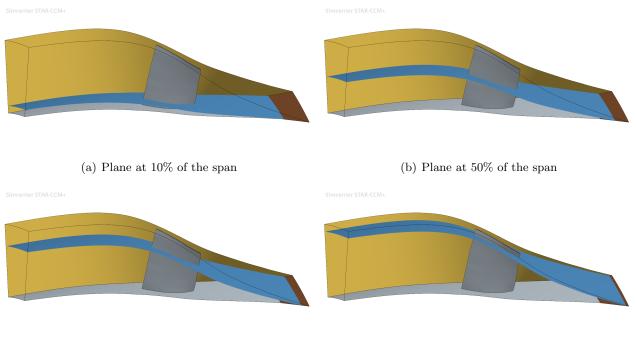
Figure 3.1.6: Zoom view at 50% of the span mesh section display

On the lateral walls where the periodic interference takes place the size of the surface mesh elements is also reduced to 35% of the global base size, for a higher fidelity. On the blade a surface mesh of 50% of the global base size is implemented. Whereas the hub and shroud surface meshes have a 200% and 25% of the global base size respectively.



Figure 3.1.7: Front view of the mesh on the blade



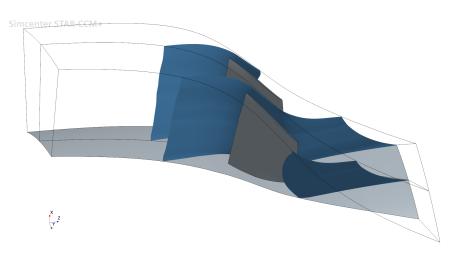

Figure 3.1.8: Zoomed view of the mesh on the hub and blade intersection

Furthermore, a prism layer is added in the hub, shroud and the blade surfaces, in order to precisely compute the boundary layer generated over this rigid walls. The prism layer is defined through three parameters: an element size of 7.2E-4 m, 13 number of element layers and a stretching factor of 1.25. The objective of this parameters id to ensure a gradual transition from polyhedral to cubic cells, while achieving the lowest values of y^+ . The distribution of prism layer and the mesh refinement on the leading edge can be seen in Figure 3.1.7 and Figure 3.1.8.

3.1.3 Derived parts

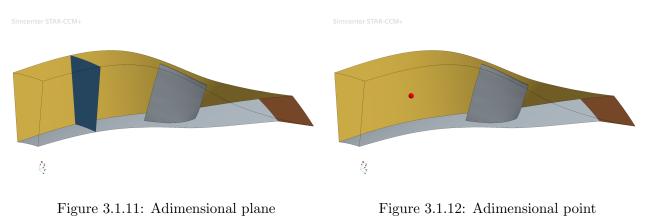
To show the results and mesh parts a series of surfaces and points have been developed to show and plot the data. The computational domain has been parameterized in order to obtain this planes for a better understanding of the results.

The span-wise planes correspond to the a series of planes at a relative distance between the hub and the shroud. To compute these surfaces the domain is parameterized, the planes at 10%, 50%, 70% and 90% of the rotor span are used for further comparisons, see Figure 3.1.9.

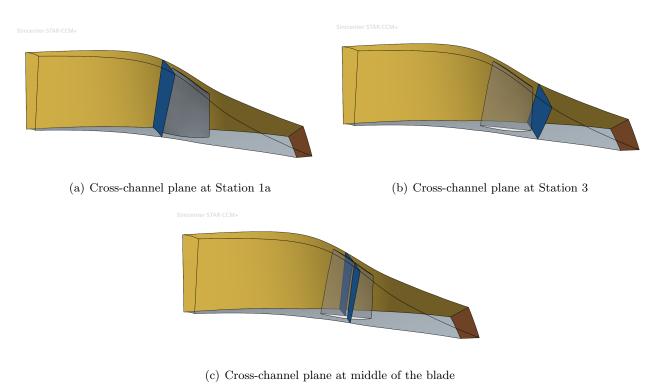


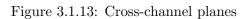
(c) Plane at 70% of the span

(d) Plane at 90% of the span


Figure 3.1.9: Span wise planes

The Meridional plane correspond to a plane at the same distance between the Extrados and the Intrados of two contiguous blades. To compute this surface a function in STAR CMM+ is used to compute the plane at the same distance between the contiguous blades inside the computational domain, see Figure 3.1.10.





Furthermore, the adimensional plane and point are computed at a one chord distance upstream of the leading edge. The flow properties will be evaluated here to obtain the adimensional pressure, density and velocity, needed to adimensionalized certain coefficients used in future sections, see Figure 3.1.11 and Figure 3.1.12.

Finally a set of cross-channel planes are computed in Figure 3.1.13. The purpose of the two of the two first planes is to serve a section for comparisons against the experimental results from NASA ROTOR 37. Station 1a and 3 have been already depicted in Figure 2.3.5. Note that Station 1a is 5% the chord distance upstream of the leading edge, whereas Station 3 is a normal plane, parallel to the inlet, immediately downstream of the blade. The third plane is computed at the middle of the blade with mesh visualization purposes.

3.2 Setup: computational domain and boundary conditions

3.2.1 Model selection

The problem can be considered as steady, the domain will rotate at a constant speed of 1800 rad/s. Therefore, in the CFD simulation a moving reference frame is established in the axial direction. The domain will be 3D and axisymmetrical as established in subsubsection 3.1.1. In order to solve the problem, a pressure-based, coupled equation method is used to solve the Reynolds-Averaged-Navier-Stokes (RANS) equations. The flow is assumed turbulent, as seen on the Reynolds number computed on Equation 12, which correspond to the 50% span, taking the mean chord of the blade. This turbulence is modeled using a k – omega (k - ω) shear-stress-transport (SST) model. The SST model is used due to the huge accuracy on the boundary layer computation for turbomachinery cases.

$$Re_{c} = \frac{c \cdot U \cdot \rho}{\mu} = \frac{0.0555 \ [m] \cdot 425.4 \ [m/s] \cdot 1.085 \ [kg/m^{3}]}{1.855 \cdot 10^{-5} \ [Pa \cdot s]} = 1.381 \cdot 10^{6}$$
(12)

The Gamma ReTheta Transition model is implemented due to it's capacity to determine the turbulence intermittency and the transition momentum thickness Reynolds number. This model is able to predict the start of the transition from a turbulent to a laminar boundary layer.

3.2.2 Boundary conditions

As previously mentioned during the work four different cases with the same corrected mass flow, but decreasing pressure of operation are computed. All the cases will target a corrected mass flow of 20.2 kg/s. Regarding the boundary conditions, the inlet is established as a mass flow inlet boundary, whereas the outlet is established as a pressure outlet. The purpose of this election is to establish a certain mass flow rate, for which it's corrected mass flow will be the target one when the inlet pressure equals the pressure of operation of the case. This mass flow rate is computed with the corrected mass flow rate reordered formula shown in Equation 13. The purpose is to vary the outlet pressure until the inlet pressure equals the target one for the given case, and therefore the corrected mass flow will be the targeted (20.2 kg/s). This iterative process of the pressure outlet value is manually changed in the simulation once convergence is obtained, seeking for simplicity.

$$\dot{m} = \dot{m}_c \cdot \frac{\delta}{\sqrt{\theta}} = \dot{m}_c \cdot \frac{\frac{P}{P_{ref}}}{\sqrt{\frac{T}{T_{ref}}}} = 20.2 \ [kg/s] \cdot \frac{\frac{P_{op}(kPa)}{101.325 \ kPa}}{\sqrt{\frac{288.15 \ K}{273.15 \ K}}} = 0.18898 \cdot P_{op} \ [kg/s]$$
(13)

Where the reference pressure and temperature are set to be: $T_{ref} = 273.15 \ K$, $P_{ref} = 1 \ atm$. P_{op} should be introduced using kPa units. The boundary values used on the inlet and outlet, including pressure, temperature, and turbulence parameters are tabulated in the following Table 3.2.1. The inlet and outlet temperature will be the same for all the cases, as well as the turbulence parameters.

	Case 1	Case 2	Case 3	Case 4
	(100 kPa)	(40 kPa)	(10 kPa)	(4 kPa)
Inlet mass flow, $\dot{m} [Kg/s]$	0.54631	0.21853	0.05463	0.02185
Inlet temperature, T_{in} [K]	288.15	288.15	288.15	288.15
Outlet pressure, P _{out} [Pa]	126680	49545	11300	4190
Outlet temperature, T_{out} [K]	300	300	300	300
Turbulence intensity, [-]	0.01	0.01	0.01	0.01
Turbulence viscosity ratio, [-]	10	10	10	10

Table $3.2.1$:	Summary	of the	boundary	conditions	values	for each	case

The converged corrected mass flow rate is assumed to have an error due to the manual iterative process followed. Therefore, Table 3.2.2 shows the converged corrected mass flow rate and the numerical error absolute and relative to the targeted corrected mass flow rate. This errors are computed according to the Equation 14 and Equation 15.

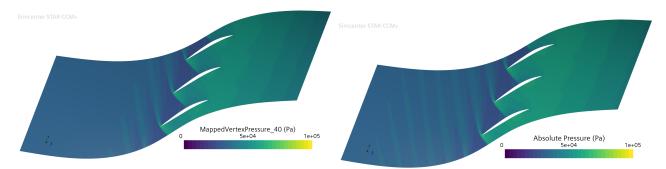
	Case 1	Case 2	Case 3	Case 4
	(100 kPa)	(40 kPa)	(10 kPa)	(4 kPa)
Corrected mass flow rate, $\dot{m}_c \ [kg/s]$	20.191	20.199	20.243	20.205
Absolute error, $ABS. ERR. [kg/s]$	0.009	0.001	0.043	0.005
Relative error, REL. ERR. [-]	0.045%	0.005%	0.213%	0.025%

Table 3.2.2: Relative and absolute error to the targeted corrected mass flow rate

$$Error_{abs} = |\dot{m}_{c,CFD} - \dot{m}_{c,target}| \tag{14}$$

$$Error_{rel} = \frac{|\dot{m}_{c,CFD} - \dot{m}_{c,target}|}{\dot{m}_{c,target}}$$
(15)

As the table above shows both kind of errors are minimal. The maximum relative error represents just a 0.243% and is achieved in the case 3. Therefore, the simulations corrected mass flow can be assumed to be the same for the four cases, despite the small errors.


3.2.3 Initialization techniques

To initialize the simulation, seeking for a rapid convergence the pressure data is tabulated from a previously converged case and used in the initialization of an not converged case. The data is first tabulated from the converged case and conditioned in accordance with the operational pressure ratio between the converged and not converged case, as see in Equation 16. Once extracted from the case, the data file is imported to the not converged case where is used for the initialization. The imported approximated case serve to a more quicker converge rate, reducing the computational effort for each of the simulated cases.

$$P_{ini}[x, y, z] = P_o[x, y, z] \cdot \frac{P_{op, ini}}{P_{op, o}}$$

$$\tag{16}$$

Where $P_o[x, y, z]$ corresponds to the pressure of the converged case in the hole domain, $P_{ini}[x, y, z]$ is the pressure on the domain which will be used in the initialization and $P_{op,x}$ matches the pressure of operation of the given case.

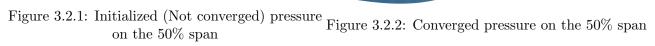


Figure 3.2.1 is obtained with the data of the closest case (Case 3, 10 kPa), the plotted pressure has been conditioned and imported to the Case 2 (40 kPa). Once the case is converged the Figure 3.2.2 is obtained. To compare both pressure maps, the pressure is plotted in the 50% span plane, since it is the most representative because it illustrates the average field. The differences between the initialized model and the converged one seems minimal, on both figures. The only visible effect appears on the shock waves angle and length, which is different for the different cases as it will be shown in future chapter. 5000 less iterations are estimated to be required for complete converge of the case from the starting not converged point.

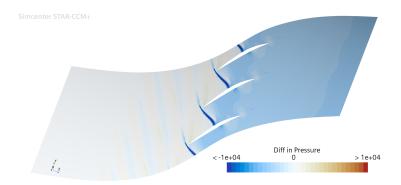


Figure 3.2.3: Differences between the not converged and converged pressure at 50% of the span

The differences between the initialized data minus the converged is shown in Figure 3.2.3. This figure bring insight on the main differences between the converged and not converged pressure maps. As already mentioned, the shock waves show an angular displacement and a higher pressure in the converged case. The back pressure of the initialized model is lower, some other minor effects are regarded in the airfoil boundary layer. Note that the highest differences in the color bar are of 10000 Pa, which correspond of a 25% relative difference with respect to pressure of operation. This maximum difference is only found in the shock wave and drop to 12.5% for the back-pressure, denoting small errors between both models.

The usage of this technique initializes the model with a reliable and accurate pressure map, similar to the converged case. This technique has therefore demonstrated a huge decrease on the computational effort, and a secure initialization to achieve convergence.

4 Results and discussion

During the results discussion a specif order will be followed, starting with the discussion of the global parameters across the cases. Continuing with the local effects and the flow coefficient effects on the compressor performance and ending with the pressure losses and the experimental results comparison.

4.1 Global parameters

Reducing the operational pressure in the system, consequently results in a decreased drag. However, this reduction is often related with a lower compressor performance and higher demand of energy to achieve this pressure in the tube. Since currently their is no possibility to completely simulate the Hyperloop system, the aim of this study is to analyze the compressor limitations at low pressures of operation. The approach followed in this work, ensures similar incidence angles by achieving the same corrected mass flow rates in the different cases.

$$Drag = \frac{1}{2} \cdot A \cdot \rho \cdot U^2 \cdot C_d = \frac{1}{2} \cdot \frac{P_{op}}{R \cdot T} \cdot A \cdot U^2 \cdot C_d \tag{17}$$

Based on the literature review, to study the low pressure effects and compare them to the cases simulated by Galindo et al. [13], a 100 kPa (ambient pressure), 10 kPa and 4 kPa cases are computed. Additionally a 40 kPa case is evaluated to ensure a smaller step between the 100 kPa a 10 kPa cases.

$$Re_c = \frac{c \cdot U \cdot \rho}{\mu} = \frac{c \cdot U \cdot P}{\mu \cdot R \cdot T} , \quad (c = 0.0555 \ m)$$
(18)

$$\dot{m}_c = \dot{m} \cdot \frac{\sqrt{\theta}}{\delta} = \dot{m} \cdot \frac{\sqrt{\frac{T}{T_{ref}}}}{\frac{P}{P_{ref}}} , \quad (T_{ref} = 273.15 \ K, \ P_{ref} = 1 \ atm)$$
(19)

$$\pi_c = \frac{P_{t,out}}{P_{t,in}} \tag{20}$$

$$\eta = \frac{\pi_c^{\frac{\gamma-1}{\gamma}} - 1}{\frac{T_{t,out}}{T_{t,in}} - 1}$$
(21)

	Case 1	Case 2	Case 3	Case 4
	(100 kPa)	(40 kPa)	(10 kPa)	(4 kPa)
Reynolds number, Re_c	1,379,700	551,568	137,190	54,827
Corrected mass flow, \dot{m}_c [m/s]	20.191	20.199	20.243	20.205
Pressure ratio , π_c	2.1127	2.0769	1.9499	1.8825
Rotor efficiency , η_r	0.8328	0.8266	0.8075	0.7823

Table 4.1.1: Summary of the compressor global parameters

Table 4.1.1 has been obtained following the definitions on: Equation 18, Equation 19, Equation 20 and Equation 21. Is evident that the differences between the cases 1 and 2 are relatively smaller than between case 2 and 3, and cases 3 and 4. As the operational pressure decreases, so does the efficiency and therefore the pressure ratio. Is important to note that this axial rotor hasn't been optimized for low pressure conditions.

Regarding the pressure ratio, π_c , the operational pressure decrease from 100 kPa to 40 kPa supposes an small jump on this parameter, just 1.71%. This percentage goes up to 6.31% between 40 kPa and 10 kPa, and decreases a bit to 3.52% between 10 kPa and 4 kPa. This similarity between the first cases and discrepancy between the three others, as expected on the literature, could occur due to the flow separation of the blades at small Reynolds numbers. This hypothesis will subsequently discussed on the flow patterns of the different cases.

The rotor efficiency, η_r , shows a similar trend to the one depicted by the pressure ratio. The efficiency between the both first cases (100 kPa and 40 kPa) is minimal, just a 0.75%. Similarly this gap increases between 40 kPa and 10 kPa to a 2.34%, probably due to the flow separation. However, the decrease is even higher between 10 kPa and 4 kPa, where the percentage is 3.17%. This further decrease for the lowest pressures of operation could probably be reasoned with an increase of secondary losses, such as the tip leakage.

4.2 Local effects

In order to reinforce these ideas, a complete analysis of the local effects have been conducted, including the flow patterns and their differences among the cases. For several spans sections (10%, 50% and 90% spanwise planes), the relative Mach number, pressure coefficient, friction coefficient and intermittency have been studied. Nevertheless, since not all the sections provide relevant and unique information, a special focus has been given to the rotor 50% spanwise plane. Since this plane represents the mean flow, the local effects displayed on them have a big importance on the analysis.

4.2.1 Flow patterns

In this section the results of the simulations are assessed focusing in the impact of the pressure reduction and consequent decreases in Reynolds number effects. Especially the patterns on the relative Mach number fields are the study purpose of this section. To aim for brevity some of the figures are omitted and included in Appendix A.

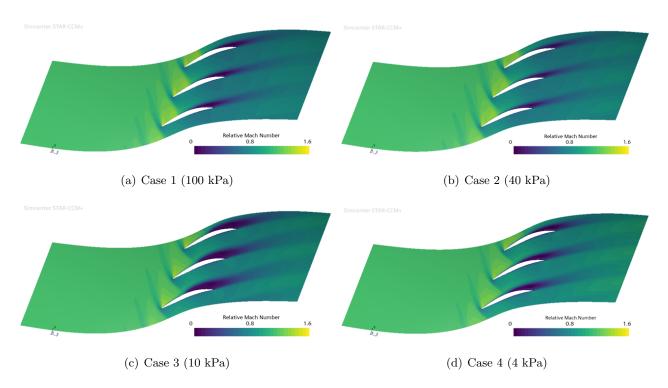


Figure 4.2.1: Relative Mach on 10% span

Figure 4.2.1 shows the relative Mach number for the 10% span plane. As already shown in the global parameters, cases 1 and 2 are nearly identical, the shock wave position and the blade wake are indistinguishable. On contrary, the breadth and length of the wake grows for case 3, where it's the biggest, and case 4. On this two cases the flow exhibits a larger separation in the suction face of the blade. Similarly, case 3 and 4 shock angle differs from the first case, being moved towards the trailing edge (lower shock angle). The shock-shape also changes in case 3 and 4, evolving from a straight shock to a more curved bow-shock type.

As a consequence of the low operational pressure flow detachment and boundary layer thickening appear. This effect enhance the partial choke of the passage, decreasing the performance of the axial rotor. Also, the leading edge shock wave gradient is weaker on cases 3 and 4, causing higher velocities inside the passage. Furthermore, the cases with lower operational pressures, show higher relative Mach numbers at the output, which denote lower pressure ratio as it has already been mentioned in subsection 4.1.

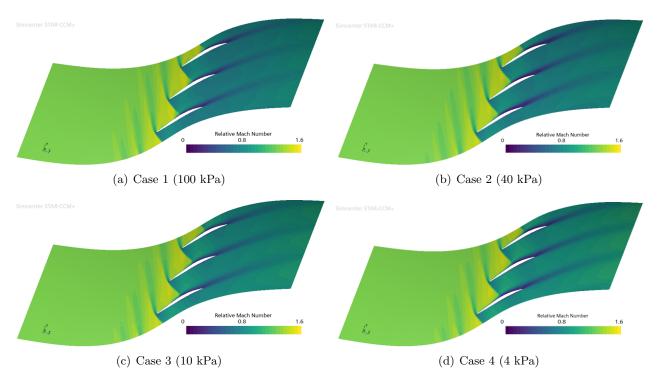


Figure 4.2.2: Relative Mach on 50% span

Figure 4.2.2 shows the relative Mach number for the 50% span plane. This plane represents the average flow behavior, being of great importance for the analysis. Similarly to the 10% span figures, cases 1 and 2 doesn't represent big differences with the exception of the wake. Which is more breadth in the second case. Cases 3 and 4, again diverge slightly in the angle and shape of the shock wave. However, the wake for case 3 is relatively smaller, but bigger for case 4 with respect to the first case. The relative Mach number at the exit are again bigger for lower operational pressures.

Figure 4.2.3 shows the relative Mach number for the 90% span plane. Similar effects are appreciated in this figure with respect to the already mentioned. On this plane the shock waves become stronger, whereas the variations between the models are less appreciable. This span section the tip clearance effects, detailed on further sections, become more important.

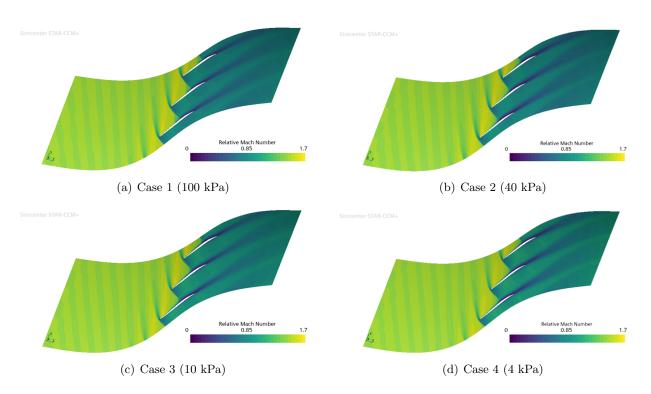


Figure 4.2.3: Relative Mach on 90% span

Figure 4.2.4 shows the relative Mach number at the meridional plane between the blades. First of all, a zone with lower relative Mach number can be observed in the lower left corner due to the boundary layer thickening of the rotor hub. The effect of the shock of the adjacent blade is observed on the left, before the main shock. Furthermore, the meridional plane shows the effect of the tip clearance at the right top of the passage. The high-pressure flow from the pressure face try to cross the tip clearance gap circulating towards the suction face.

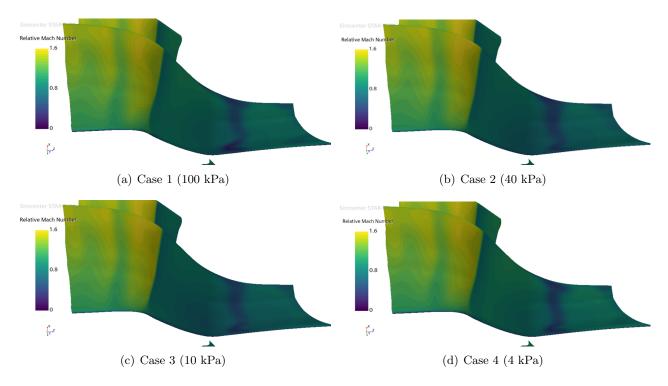


Figure 4.2.4: Relative Mach on meridional plane

Furthermore, the differences between the meridional plane models serve to bring greater insight. Despite, the repeated trends, the spanwise variation of the shock wave varies evidently between models. The wake produced by the blade is also illustrated to increase while the operational pressure decreases, although this variation change on the span. The tip clearance effect on the wake is also appreciated downstream the wake, becoming more present for lower pressure cases.

Table 4.2.1 show the differences in the flow angle. The flow angle is illustrated and not the metal one, because the metal flow angle is constant. Therefore, for the seek of comparison, the differences on the incidence angle equals the flow angle ones. Shows Equation 22 the calculation of the incidence angle, i, and the velocity components involved in the flow angle calculation, β_{flow} .

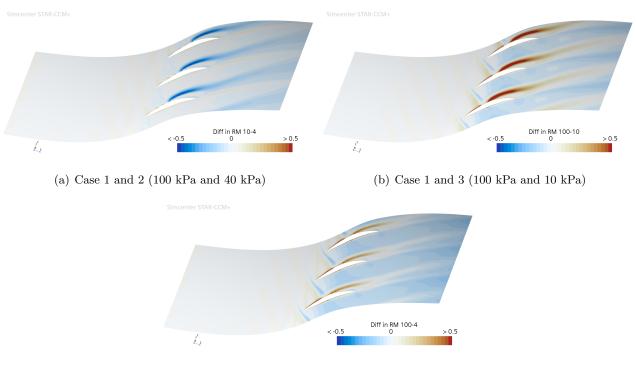
$$i = \beta_{flow} - \beta_{metal} = \arctan\left(\frac{V_{tg}}{V_{ax}}\right) - \beta_{metal}$$
 (22)

Is essential to have similar angles of incidence to achieve a correct comparison between cases. The flow angle in calculated both at point at 50% of the rotor span and one chord distance upstream of the leading edge, and at a cross-channel plane also one chord distance upstream of the leading edge. Both values are compared to avoid possible effects of the shock waves in the evaluations. The differences in flow angles on the table result minimal, accounting for a 0.48% difference on the point and 0.52% on the plane. The highest discrepancy is given between cases 2 and 3, and could be reasoned by the mass flow differences.

Flow angle, β_{flow} [°]	Case 1 (100 kPa)	Case 2 (40 kPa)	Case 3 (10 kPa)	Case 4 (4 kPa)
On a point	66.86	66.95	66.63	66.85
Averaged on the plane	66.94	67.06	66.71	66.9

Table 4.2.1: Flow angle for all the cases

4.2.2 Differences between the models


In order to get a clear image of the differences between the models, the differences in relative Mach number are computed. For this purpose, case 1, of 100 kPa, is used as the reference case to get compared between the rest of the models. The differences are obtained by subtracting to the relative Mach number of case 1, the one in case 2, 3 or 4 (40 kPa, 10 kPa or 4 kPa). In the color bar of Figure 4.2.5, Figure 4.2.8, Figure 4.2.9, Figure 4.2.10..., blue tones will correspond to a lower relative Mach in case 1 and a red color to higher relative Mach. Always case 1 is being compared to the other cases. Is also important to note that figures are clipped and therefore, the color bar is not representative of the real maximum or minimum but only of the zones where differences appear with more or less intensity.

$$RM_{diff} = RM_{100\ kPa} - RM_{x\ kPa} \tag{23}$$

All the rest other possible combinations of differences and extra local effect figures are displayed in Appendix A.

Figure 4.2.5 shows the relative Mach number differences taking case 1 as reference in the 10% span plane. The differences between cases 1 and 2 are slight, the breadth and length of the wake are smaller in case 2, since the relative Mach is higher in a part of the wake region. Cases 1 and 3 so a great differences in the wake, which hugely increases for case 2. Furthermore, the shock waves are

curved backwards as shown by the blue colors on it and the passage shows higher relative velocities for case 3. On the suction side near the leading edge and the middle of the pressure side of the blade the boundary layer is thicker in case 3. Finally case 1 and 4 show similarities to the previous comparison, the shock waves are tilted backwards in case 4, the passage speed is even higher for this case and the boundary layer is even thicker. However, the breadth is higher in case 4, but not as much as in case 3.

(c) Case 1 and 4 (100 kPa and 4 kPa)

Figure 4.2.5: Relative Mach differences on 10% span

Figure 4.2.8, Figure 4.2.6 and Figure 4.2.7 shows the relative Mach number differences taking case 1 as reference in the 50% span plane. The greater size of the figure account for the importance in the analysis due to its characteristic resemblance to the mean flow.

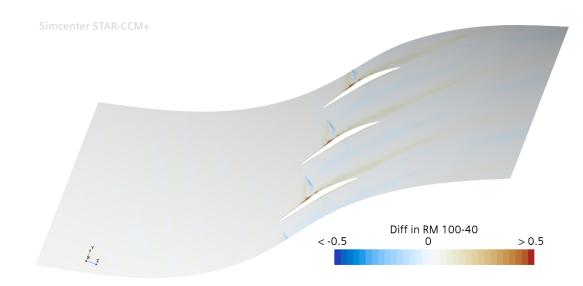


Figure 4.2.6: Relative Mach differences on 50% span, Case 1 and 2 (100 kPa and 40 kPa)

Figure 4.2.8 compares cases 1 and 2. The similarity between both simulations is evident. However minimal differences are appreciated in the shock wave position, tilted backwards, and in the wake, which becomes wider in the 40 kPa case. The boundary layer is specially thicker in the suction side of case 2, producing a earlier detachment of the flow which contributes to the breadth of the wake. The velocity of in the passage of the second case is slightly bigger.

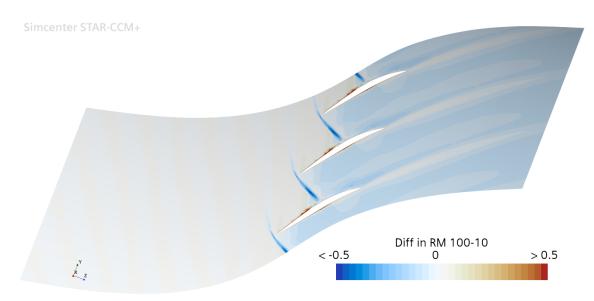


Figure 4.2.7: Relative Mach differences on 50% span, Case 1 and 3 (100 kPa and 10 kPa)

Figure 4.2.8 compares cases 1 and 3. Differences are widely appreciable between this models, consolidating the big step hypothesis between this two models seen in the global parameters comparison. First of all, the shock wave is even more backwards displaced, getting the mentioned bow shock shape. The boundary layer due to its laminar nature (less energetic) becomes wider at the beginning of the suction side and on the middle of the pressure side. The wake detaches earlier, closer to the leading edge, in the first case. The wake length is also, slightly smaller in case 2. These effects on the wake could be a consequence of the weaker shock waves and therefore, higher passage velocities achieved for lower pressures.

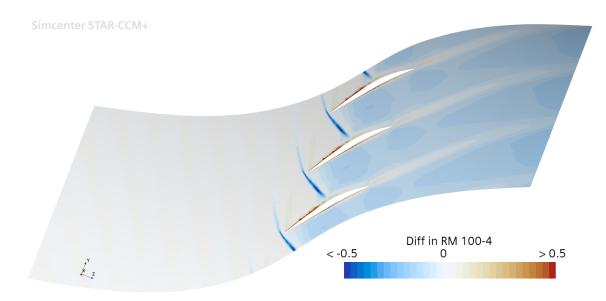
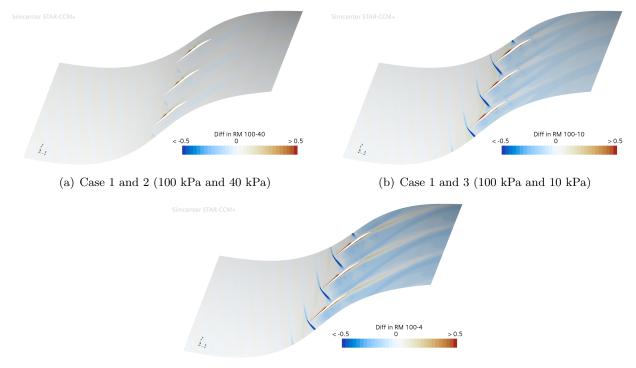



Figure 4.2.8: Relative Mach differences on 50% span, Case 1 and 4 (100 kPa and 4 kPa)

Figure 4.2.7 compares cases 1 and 4. The differences commented in the previous image, become even more noticeable in this figure. The boundary layer increases in thickness specially at the beginning of the suction face. The shock wave is similarly displaced, as in the previous figure. Whereas, the wake is more intense in the fourth case, the relative mach number is lower immediately behind the trailing edge, despite the lower length presented. The flow detachment is more violent in the 4 kPa case after the shock wave, producing a higher passage velocity and partial choking.

Figure 4.2.9 shows the relative Mach number differences taking case 1 as reference in the 90% span plane. This section further emphasizes the changes already mentioned. The differences from case 1 and 2, become less noticeable and is only the thicker boundary layer of the suction side in case 2, the only noticeable effect. When lowering more the operational pressure the relative Mach number effects become more similar. Therefore the differences between cases 1 and 3 and cases 1 and 4 reassemble in many aspects, although being more quantitative in the last figure. For this two images the wake is more intense, lower relative Mach, despite being a little bit shorter. Furthermore, the boundary layer becomes even thicker, whereas flow detachment is more relevant. The shock waves and the passage flow follow the same tendency as in Figure 4.2.6 and Figure 4.2.7.

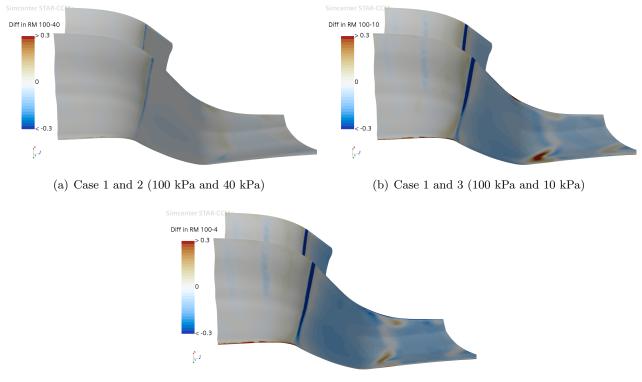

(c) Case 1 and 4 (100 kPa and 4 kPa) $\,$

Figure 4.2.9: Relative Mach differences on 90% span

Figure 4.2.10 shows the relative Mach number differences taking case 1 as reference in the Meridional plane. The differences in relative Mach number between cases 1 and 2 are none, despite the slight variation in the shock wave position. Cases 1 and 3 shows a greater difference in the shock wave position. The relevant differences points to the boundary layer in the hub which becomes thicker in the third case. The wake also presents important variations through the span. Increasing in intensity and length in the lower half of the span, whereas slightly shrinking on the upper half. Tip clearance effects are also higher, as the relative Mach is considerable smaller in the 10 kPa, specially in the shroud near the blade. The passage velocity boosts with respect to the first case.

Finally the differences between cases 1 and 4, present similarity between cases 1 and 3 differences in the hub boundary layer, shock wave and passage velocity, although with a higher intensity. The focus is put onto the wake, which increases with less intensity with respect to the previous comparison. The lower span half shows a higher wake intensity, with respect to the first case, although this difference in higher on the third case. The upper span shows a bigger wake difference, which is even higher than in the 10 kPa case. This wake increase for higher spans could be due to the higher tip clearance effects for lower pressures.

It is also mentioned that the boundary layer in the shroud is thicker for the first case. This fact could be due to the higher relative Mach achieved in the passage for lower pressure and therefore more energetic and turbulent boundary layers.

(c) Case 1 and 4 (100 kPa and 4 kPa) $\,$

Figure 4.2.10: Relative Mach differences on the Meridional plane

To sum up, the differences between cases 1 and 2, are almost negligible compared to the ones present between cases 1 and 3, and cases 1 and 4. When decreasing the operational pressure one order of magnitude from 100 kPa to 10 kPa, the effects become really noticeable. However this big differences doesn't increase when decreasing even more the operational pressure to 4 kPa, showing similar flow patters to the third case.

More comparisons between the cases are presented in Appendix A. Specially differences between cases 2 and 3, 2 and 4, and 3 and 4 are included.

4.3 Flow coefficients

To compare the low pressure effects on the compressor, some relevant flow parameters, such as the pressure coefficient, the skin friction coefficient and the intermittency, are used to study the flow behavior around the blade under different conditions. The following plots show the evolution of the mentioned parameters, differentiating the intrados and extrados for the different pressures cases.

To compute the indicated flow parameters the following formulas are used. Note that position is a dimensionalized using the chord at 50% span.

$$C_p = \frac{P - P_{op}}{\frac{1}{2} \cdot \rho \cdot U^2} , \quad (P_{op} \ depends \ on \ the \ case)$$
(24)

$$C_f = \frac{\tau_w}{\frac{1}{2} \cdot \rho \cdot U^2} \tag{25}$$

$$In = f(Re_c) \tag{26}$$

Is important to mention that the wall shear stress, τ_w , is compute in STAR CMM+ is computed creating a special laboratory reference system for each span. This reference system will have its origin in the leading edge and its Y component in the direction of the trailing edge, so that the wall shear stress is computed in the direction parallel to the the blade surface.

The Intermittency is a parameter that depends on the turbulence model, k - ω SST, and the transition model used, γ - $Re_{\theta t}$ Gamma ReTheta model, the intermittency represents the flow regime. Values close to 0 correspond to near laminar flow, while fully turbulent flow correspond to an intermittency near 1. Therefore, those parts parts with a intermittency close to 0 will be more prone to boundary layer detachment when encountering a adverse pressure gradient.

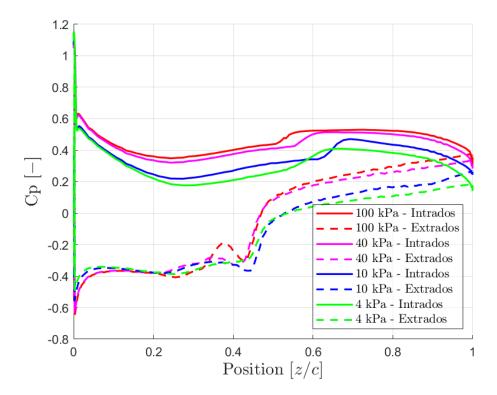


Figure 4.3.1: Pressure coefficient on 50% span plane respect to the adimensionalized position

Figure 4.3.1 shows the pressure coefficient around the extrados and intrados. In suction face (extrados) flow separation is noticeable around z = 0.02 m, which correspond to the middle of the blade chord. The flow is accelerated until a point where the pressure coefficient abruptly decreases. This sudden shrink is due to the boundary layer detachment. As the flow is separated, the velocity around the airfoil decreases, which is traduced into a pressure increase and thus, a pressure coefficient boost [25]. The relative Mach decrease due to flow detachment is an effect present in Figure 4.2.2. The detachment of the boundary layer is similar for all the operational pressures, however in case 1, a slight detachment and reattachment is produced immediately after the main flow separation. Moreover, a small plateau on the extrados is shown near the leading edge, where the four cases collapse mainly due to the flow similarities at the first stages.

The pressure face (intrados), shows a smother evolution with respect to the suction face. As the boundary layer evolves and gets thicker (already seen in the flow patters), the velocity around the blade decreases, and therefore an increase in the pressure coefficient is produced. An abrupt increase is produced near the middle of the blade, probably due to the transition to a totally laminar and wider boundary layer, as it will be corroborated in Figure 4.3.4. At the end of the pressure face the flow is re-accelerated, showing higher pressure coefficient losses for lower pressures of operation, due to frictional losses that are more present in laminar boundary layers.

For lower pressures of operation the greater passage velocities produce higher relative velocities around the blade, which are traduced to lower pressure coefficients. This higher velocities and the laminar boundary layers nature produce a lower static pressure recovery specially for low pressures of operation. As it will be corroborated in the future in subsection 4.4, the cases 1 and 2 have similar static pressure recovery at the trailing edge, whereas case 3 and 4 diverge more as the pressure is further decreased. Furthermore, in the suction side the first peak, which indicates the blade lift generated, decreases with the pressure of operation, showing a worse performance because the flow becomes more unstable at low pressures. Consequently the pressure ratio and adiabatic efficiency become worse.

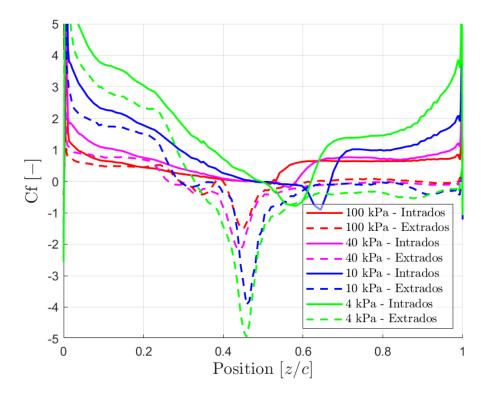


Figure 4.3.2: Skin friction coefficient on 50% span plane respect to the adimensionalized position

Figure A.3.2 shows the skin friction coefficient around the extrados and intrados. As the friction coefficient is positive the flow is moving forward in the vicinity of the wall, however, as soon as this value is negative the flow will be traveling backwards (reference frame fixed on the blade LE-TE direction). Again the suction face (extrados) denotes that the flow separation occurs at the middle of the airfoil, around z = 0.02 m. In this region the friction coefficient falls below positive, which means that a re-circulation of the flow is occurring, caused by the detachment of the flow. This re-circulation is higher for lower pressures of operation and is associated with laminar boundary layers. From the detachment region, friction coefficient values will remain negative, denoting that no flow reattachment occur. Moreover, in the extrados prior to the main flow separation, C_f oscillate from positive to negative and back to positive values, this is produced by the impact of the shock wave and the production of re-circulation. This effect is relevant specially for cases 1, 2 and 3, where reattachment occurs, in case 4 the flow will directly separate after the shockwave.

At the pressure side (intrados) the skin friction decreases and so does the pressure around the blade until the middle of the blade. As negative values are reached for the smaller pressures of operation, it could be suggested that re-circulation exits at the middle of the airfoil due to the large thickness of the laminar boundary layers and a possible flow separation. Immediately downstream an abrupt increase in friction coefficient is produced, as the flow is re-attached. The C_f keeps increasing until the trailing edge, specially at low pressures.

Lower pressures are related in both faces with higher frictional coefficients at both faces, the extrados and the intrados. Which cause a lower recovery of static pressure at the trailing edge and therefore worse performances. Near the leading and trailing edge, where the relative velocities of the flow around the airfoil are substantially higher, bigger differences of C_f are appreciated for lower operational pressures. Whereas cases 1 and 2 show flat trends, cases 3 and 4 display huge evolution's at those regions. Despite the lower frictional coefficient produced by laminar boundary layers with respect to turbulent [26], the lower density and higher velocities near the wall (higher stresses) produce the increase of the C_f , specially for lower pressure of operation, see Equation 24.

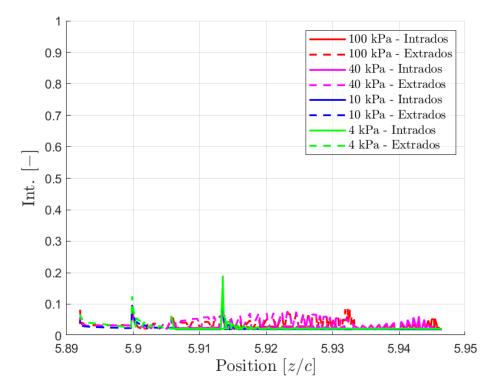


Figure 4.3.3: Intermittency on 50% span plane respect to the adimensionalized position

Figure 4.3.3 shows a really low intermittency for all the cases. Since the extrados and intrados derived parts are attached to the wall, the intermittency evaluated on the Gamma ReThetat transition model, used won't bring relevant. Due to the closeness between both derived parts to the wall, is logical to think that the intermittency should be 0, for all the cases. Therefore to analysis this parameter Intermittency contour plots are added for the four cases. This figures will help understanding the intermittency distribution around the blade.

Figure 4.3.4 shows the intermittency contour plot on the 50% span section. On the suction side (extrados) the tendency is to evolve from a turbulent boundary layer into a more laminar one. However, after the shock, flow detachment occurs and the boundary layer recovers its turbulent nature, specially for cases 1 and 2. Cases 3 and 4, show a huge difference in their boundary layer nature. Despite following a similar tendency the laminar layer shrinks in thickness after the shock wave but does not disappear. As it is evidently seen, lower pressures of operation are directly related to huge decreases in intermittency, achieving complete laminar boundary layers for case 4 and almost complete for case 3.

On the pressure side (intrados) intermittency grows in the first two cases, despite this evolution the boundary layers will remain turbulent in both cases. The intermittency will grow and become 0 specially at the trailing edge of the last two cases. The abrupt increase in the pressure coefficient is due to the transition into a wider a completely laminar boundary layer which takes place at the middle of the intrados. Further downstream the boundary layer is totally laminar and increases in thickness. This effects are slightly bigger in case 4 compared to case 3.

Is also noticeable that although the wake always remains turbulent, the passage flow evolves to more laminar state when decreasing the pressure of operation.

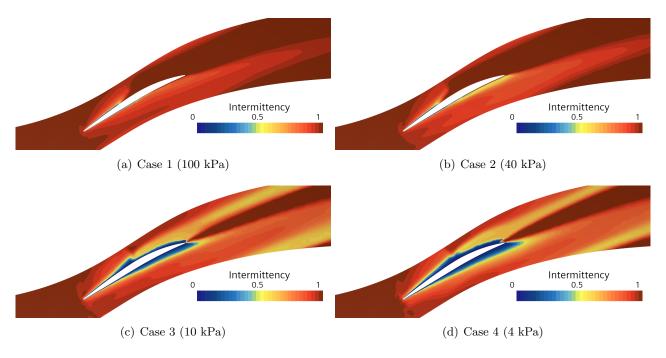


Figure 4.3.4: Intermittency contour plot on 50% span

Note that only the 50% span plane is used in this analysis. The reason is already mentioned, and is based on the similarities of this section and the mean flow and also the lack of information contributed by the 10% and 90% span planes. Despite bringing less insight, the rest of the plots for the different flow in different span sections can be compared in Figure A.3.1, Figure A.3.2 and Figure A.3.3.

4.4 Pressure losses

In order to compute the total pressure losses among the compressor, the pressure coefficient is employed. The pressure coefficient in an axial compressor is a dimensionless parameter that represents the ratio of the pressure difference across it to the dynamic pressure of the inlet. It provides insight into the compressor's performance and efficiency. The Equation 27 shows the formula of the mentioned coefficient.

$$C_{p,loss} = \frac{P_{1tr} - P_{2tr}}{P_{1tr} - P_1} \tag{27}$$

On Table 4.4.1 the pressure loss coefficients are shown for the four cases. As it can be seen the decrease in the operational pressure is directly related to a increase in the pressure loss coefficient, and therefore a worse performance. The reason for the shrinking in this parameter is the greater friction losses, generated due to the laminar behavior of the boundary layer under low pressures.

	Case 1 (100 kPa)	Case 2 (40 kPa)	Case 3 (10 kPa)	Case 4 (4 kPa)
Pressure loss coefficient, $C_{p,loss}$	24.503%	24.824%	25.314%	27.1704%
Difference to the previous case, $\delta C_{p,loss}$	-	0.321%	0.49%	1.856%

Table 4.4.1: Pressure loss coefficients

Figure 4.4.1 shows the tendency on the pressure loss coefficients as the pressure of operation is decreased. The coefficient tendency is to exponentially increase as the pressure of operation decreases. The low pressure conditions promote the appearance of a laminar boundary layer, increasing the friction and losses across the blade exponentially as the pressure becomes lower. The huge difference between Case 3 (10 kPa) and Case 4 (4 kPa) depicts this effect.

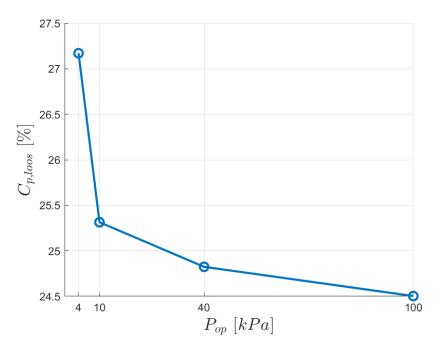


Figure 4.4.1: Pressure loss coefficient

This hypothesis is corroborated on the previous sections, where the global parameters, flow patters and flow coefficients show worse performance when decreasing the operational pressure.

4.5 Experimental results

The main purpose of studying specifically NASA ROTOR-37 geometry becomes the possibility of comparing the results from the CFD simulations with the experimental results. Allowing the validation of the CFD models and bringing insight on their accuracy.

However, the experiments carry out on this geometry where performed under ambient pressure and therefore, case 1, with a pressure of operation of 100 kPa, is the only case which can be compared. Yet they are no test facilities able to experiment which such low pressures as the ones used in a Hyperloop tube. Comparisons among all the cases is done graphically for the global parameters only, to compare the distance between the models and the experimental design point. Comparisons among local effects are only done for the first case.

In order to asses a complete comparison of the CFD results with the experimental results of the NASA ROTOR-37 model [24], a particular order is followed. First, the global data in compared, after that the local effects, specially on the flow patterns, are addressed.

4.5.1 Global experimental data

The main global parameters discussed across the article consist of the pressure ratio, adiabatic efficiency and the corrected mass flow. The first two are graphed into speed lines. Since the CFD simulations are performed at the design speed (1800 rad/s) and with a constant corrected mass flow (20.2 kg/s), the comparison of the cases will be done for the Design Intent point.

On both Figure 4.5.1 and Figure 4.5.2 a constant corrected mass flow line is drawn where the global CFD results are drawn. It is worthy mentioning that in the experimental conditions where carried under reference temperature and pressure and therefore the corrected mass flow is equivalent to the mass flow. Note that both figures are manually drawn, and therefore the representation is not completely accurate when representing the values of pressure ratio and adiabatic efficiency.

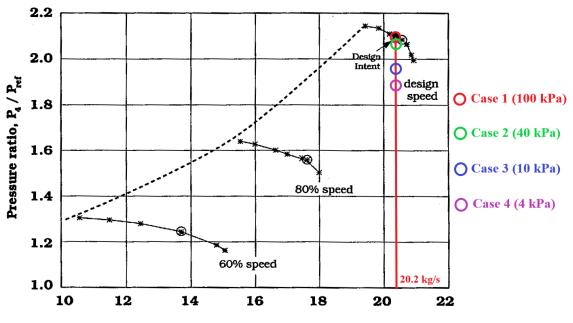


Figure 4.5.1: NASA ROTOR-37 pressure ratio map [24]

Figure 4.5.1 displays the pressure ratio lines for different speeds. The Design Intent point almost collapse with the case 1 point. The distribution of the pressure ratio for the rest of the cases follows an already mentioned tendency. Whereas case 1 and therefore case 2, are really closed to the Design Intent point, a big steps separates case 3 and 4. Those case show lower pressure ratio as a consequence

of the bigger losses in static pressure, presented in subsection 4.4. Case 4 is even further away from the reference point, since it has the biggest pressure losses. However, the pressure ratio obtained for the last two cases, is clearly above the pressure ratio line of 80% speed. This indicates that despite the worse performance and higher energy consumption for lower speeds the differences between pressure ratios does not suppose an extreme effect.

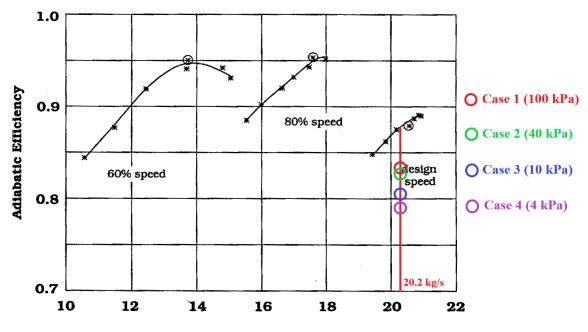


Figure 4.5.2: NASA ROTOR-37 compressor efficiency map [24]

Figure 4.5.2 displays the adiabatic efficiency lines for different speeds. In this case the adiabatic efficiency of case 1 is clearly lower than the Design Intent point. This divergence could probably be due to the CFD models errors an is further discussed in detail. Again the tendency between cases is similar showing close efficiencies for the first two cases and bigger discrepancies between the two others. It is important to note that because of the CFD inaccuracy and the low pressures of operation the adiabatic efficiency is far lower in the simulations than in the experimental design points. The illustration shows a good efficiency for the 60% and 80% speeds lines, where the efficiency reaches up 0.95. Respect to the Design Intent point, where efficiency reaches 0.9, the difference is considerable between the CFD models with values of 0.83-0.79. As already explained friction losses, due to the laminar nature of the boundary layer contribute to a worse performance.

	Experimental	Case 1	
	$\mathbf{results}$	(100 kPa)	
Corrected mass flow, \dot{m}_c [m/s]	20.188	20.191	
Corrected mass flow difference, $\delta \dot{m}_c$	+0.0149~%		
Pressure ratio, π_c	2.106	2.1127	
Pressure ratio difference, $\delta \pi_c$	+0.3176~%		
Rotor efficiency, η	0.877	0.8328	
Rotor efficiency difference , $\delta\eta$	-5.1702 %		

 Table 4.5.1: Experimental global parameters comparison

It is important to note that the relative differences are computed between the experimental and CFD result using the following equation, Equation 28. Where X_{EXP} and X_{CFD} correspond respectively, to the experimental and CFD values from case 1 (100 kPa).

$$\delta = \frac{X_{CFD} - X_{EXP}}{\frac{X_{EXP} + X_{CFD}}{2}} \tag{28}$$

Table 4.5.1 summarize the comparison between the experimental results published in [24] and the CFD results for case 1. Regarding the corrected mass flow the difference is minimal and could be negligible, this tiny error arise from the manual iterative process to achieve the given corrected mass flow rate. The pressure ratio difference is also small, lower than 1%. In this case the CFD model obtain higher values with great accuracy. Finally the rotor adiabatic efficiency is the main source of concern due to the big relative difference of about 5%. Looking into the definition of the adiabatic efficiency, Equation 21, and knowing that the pressure ratio in for both cases is similar, the only discrepancy arise on the temperature ratio. Several effects regarding friction losses, could be the reason for this difference which provoke a larger temperature ratio and therefore lower efficiency.

Regarding literature review a huge portion of the comparisons showed similar trends. On the one hand the pressure ratio tended to be over-predicted by the CFD codes. Whereas, the adiabatic efficiency tended to be lower in the CFD cases. Figure 4.5.3 and Figure 4.5.4 compare the algebraic/mixing length turbulence models and experimental data. Both parameters are represents in function of the normalized mass flow, which represents: \dot{m}/\dot{m}_{max} .

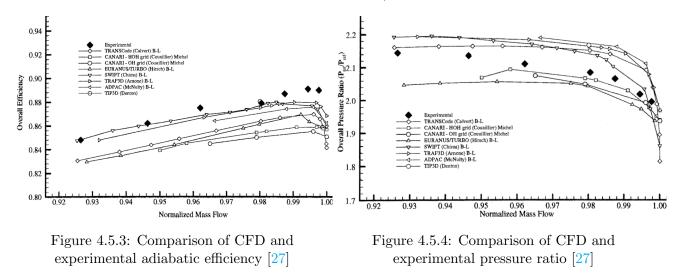


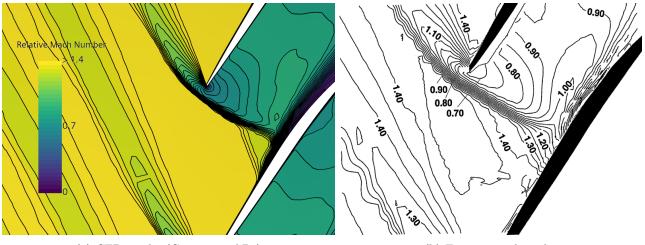
Figure 4.5.3 compares the adiabatic efficiency of the CFD models and the experimental results. All the models show a lower adiabatic prediction, as in this case, which is caused by the over estimation of the frictional losses. [27] points that the losses are specially over-estimated in the tip wall region, due to the tip clearance. The article also points out that the losses near the side walls are also higher in the CFD models.

Figure 4.5.4 compares the pressure ratio of the CFD models and the experimental results. The majority of the models show a higher pressure ratio, as in this case, which is caused by corner stall. Corner stall is observed at the hub of Rotor 37, which was affected by the presence of a small axial gap in the hub annulus line just upstream of the rotor. Most of the codes didn't implement that gap and therefore they over-predicted the pressure ratio.

4.5.2 Local experimental data

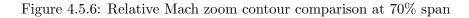
This section will be divided into two parts, in the first one the blade-to-blade effects will be studied, the second one, focus on the cross-channel planes from two different stations of the rotor.

Blade-to-Blade Relative Mach contour


(a) CFD results (Case 1, 100 kPa)

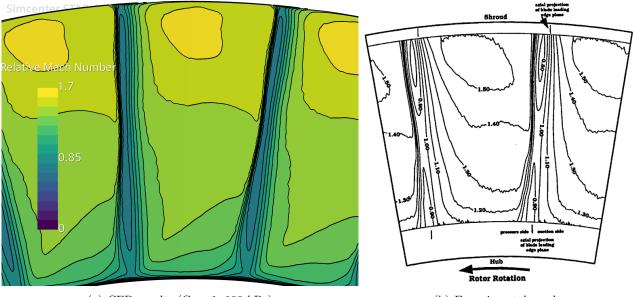
(b) Experimental results

Figure 4.5.5: Relative Mach contour comparison at 70% span


Figure 4.5.5 show a global picture of the relative Mach contour along three rows of blades. Overall, both the experimental and CFD cases show evident similarities in the Relative Mach. The bow shaped shock wave and it's interaction with the blade below show indistinguishable differences in the contour. The wake breadth and lenght and the flow detachment also dentes huge similarity. Despite, the slight differences in the passage flow across the channel and the pressure side boundary layer, the figures could be considered identical.

It must be noted, that the shape of the contour lines highly depends on the scale resolution, number of lines, maximums and minimums... and therefore some differences arise. Moreover, the erratic shape of the experimental lines differ from the CFD ones as a RANS model is used where the turbulence is time-averaged and therefore the lines are smooth.

(a) CFD results (Case 1, 100 kPa) $\,$


(b) Experimental results

On Figure 4.5.6 a closer look to the passage is taken. Again, clear similarities are found in the shock wave, passage flow in the channel, interaction between the shock wave and the lower blade boundary layer, and the boundary layer detachment. Slight differences occur in the pressure peak, at the from of the shock wave where lower relative Mach is expected and at the pressure side boundary layer. Again lines seen more erratic than in CFD due to the usage of a RANS model of turbulence.

Cross-channel Relative Mach contour

Finally the cross-channel relative Mach contour will compare the relative Mach number in the circumferential region in station 1a (immediately upstream of the rotor) and station 3 (downstream of the rotor), both parameterized in Figure 2.3.5. The plots try to achieve maximum similarity to the ones provided in the article [24].

(a) CFD results (Case 1, 100 kPa)

(b) Experimental results

Figure 4.5.7: Relative Mach contour comparison at the cross-channel plane on Station 1a

Figure 4.5.7 depicts the relative Mach contour in station 1a which is 5% a chord distance from the leading edge and parallel to it. The passage flow and shock waves show general similarities. However, a higher relative Mach is predicted at the middle of the blade perturbation. While decline on velocity should occur on the perturbation near the shroud and the hub. Regarding the passage flow, the lower section shows a different shape, with higher velocities in the lower left corner.

Regarding Figure 4.5.8, relative Mach contour is depicted for station 3. This station is parallel to the inlet and outlet, radial-circumferential plane, and is located just before the trailing edge intersection with the shroud. Again general similarities are present, depicting similar contour lines for the wake and the flow passage. This figure shows a relevant different on the wake, which is more pronounced near the shroud and with lower relative Mach numbers. Similarly to the previous image at the middle of the wake the velocity is also slightly higher, over-predicting the wake intensity in both regions.

Is important to note that the cross-channel plots are only showed between the a 15% and 97% and therefore the effects related to the hub and the shroud, are not included. This directly affects the tip clearance comparison which can not be done.

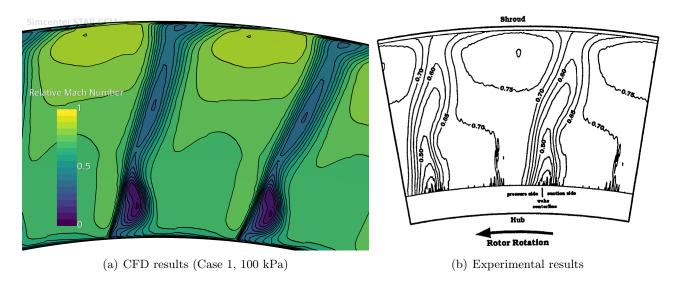
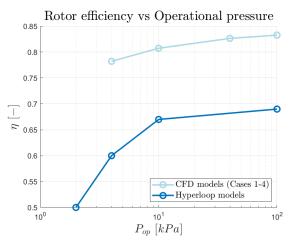


Figure 4.5.8: Relative Mach contour comparison at the cross-channel plane on Station 3

As a conclusion of this section, despite in global terms efficiency is under-estimated, literature shows that is a normal effect on CFD and that the rest of terms are accurate to experimental results. Moreover, the flow patterns are really similar and figures resemble to experimental results, despite the different layout. All this validates case 1 accuracy, proving the fidelity of the used models in the rest of the cases and their accuracy. Furthermore, the results on this section are akin to the ones shown in Segarra's work [14].

5 Concluding remarks

5.1 Comparison with the Hyperloop geometry


Finally the CFD cases tendencies from NASA ROTOR 37 are compared against the data obtained in the article of Galindo et al. [13]. The graphs serve to validate the evolution of the efficiency and the pressure ratio when decreasing the pressure of operation or Reynolds number.

Is important to note that the data extracted from the Hyperloop article is collected at the same corrected mass flow, 53 kg/s, which diverges from the NASA R-37 corrected mass flow, 20.2 kg/s. Therefore, some of flow patterns effects are not similar between the cases, as the incidence angle is different. This fact could lead into discrepancies in the trends.

Pressure of operation tendencies

First the efficiency and the pressure ratio of the rotor is depicted in function of the pressure of operation. The ROTOR 37 geometry has a bigger efficiency than the Hyperloop one. As the pressure of operation decreases and evident decrease in the efficiency is observed in Figure 5.1.1. For both the CFD results and Hyperloop data the tendency is similar and smooth decline in efficiency is produce, for a P_{op} between 100 kPa and 10 kPa. As the pressure reaches 4 kPa, the Hyperloop geometry shows a bigger diminish in the studied parameter. The decrease is even more pronounced for lower pressures, denoting that the blade shape is not clearly optimized for conditions close to vacuum.

Similarly, the pressure ratio is considerably higher for the ROTOR 37 geometry. Regarding this parameter, Figure 5.1.1 shows that while pressure ratio remains constant from 100 kPa to 10 kPa P_{op} on the Hyperloop, a pronounced decrease occurs for the ROTOR 37 geometry. Between 10 kPa dn 4 kPa the pressure decrease in similar manners, keeping this trend until 2 kPa in the Hyperloop case. The huge differences in pressure ratio could be caused by the differences in the flow behavior when decreasing the operational pressure, which reflects differences between both geometries.

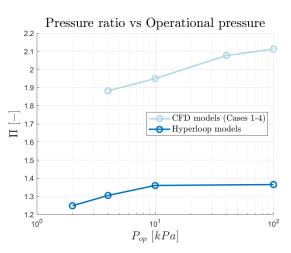


Figure 5.1.2: Pressure ratio for different P_{op}

Reynolds number tendencies

As the Reynolds number is clearly related to the pressure of operation through Equation 18, where density is dependent on the pressure, similar tendencies to the previous comparisons are depicted. Contrary to pressure of operation, the Reynolds number is not coincident between the different cases of the two geometries. When comparing in function of the Reynolds number, the ROTOR 37 curve moves leftwards, since it shows lower Reynolds than the Hyperloop geometry. Again for high Reynolds both cases show similarity, but for lower ones the abrupt decrease in efficiency occurs in the Hyperloop case but is not visible in ROTOR 37, see Figure 5.1.4.

Regarding efficiency, Figure 5.1.3 shows closer tendencies between the two geometries when switching leftwards the curve. However, similarly to the previous graph, similarity only occurs for lower Reynolds numbers.

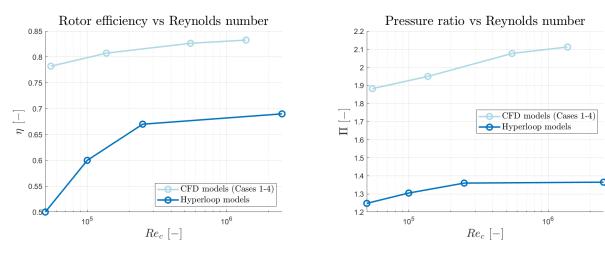


Figure 5.1.3: Rotor efficiency for different Re_c

Figure 5.1.4: Pressure ratio for different Re_c

In general terms the tendency in efficiency for high pressures of operation and Reynolds numbers is similar, while becoming more abrupt in the Hyperloop case for low values of P_{op} and Re_c . The pressure ratio, shows the opposite, for high values of pressures of operation and Reynolds numbers both cases tendencies diverge (constant π_c in the Hyperloop case), while for low π_c they resemble.

5.2 Conclusions

This project conducts a study of the performance of an axial compressor for a decreasing pressure of operation and thus, a dramatically reduction of Reynolds number. In the framework of Hyperloop operating pressure, the performance of a turbomachinery-based propulsive system should be studied. Therefore, the ROTOR-37 performance is simulated under low Reynolds, at which no study has been conducted.

Regarding global parameters, pressure ratio and efficiency, similar trends are observed to the ones in the literature. From 100 kPa to 40 kPa (case 1 to 2), the differences are small, lower than 2%. However, when decreasing even more the pressure of operation, to values of about 10 kPa (case 3) the differences start to be more noticeable. For even lower pressures, 4 kPa (case 4), this tendency becomes even sharper.

Flow velocity contours show that the flow separation is aggravated by the pressure of operation decrease, totally damaging the performance of the compressor. The pressure of operation reduction causes the boundary layer to be less energetic, becoming a laminar boundary layer. This type of boundary layers are more prone to detach under adverse pressure gradients and are thicker. Consequently, the pressure decrease is also attached to a higher total pressure loss across the rotor, due to the nature of the boundary layer, causing higher frictional losses.

The differences in velocity contours show how the thicker boundary layers and weaker shock wave under lower pressures, provoke a higher blockage. Therefore, higher velocities are achieved at the blade passages arising as another symptom of the performance decline. The decrease of operational pressure also increases the intensity of the passage and tip clearance vortexes. This effect is inflicted by the increased thickness of the boundary layer at the hub, blade and shroud and it's tendency to easily detach. It is also noticeable that the passage vortex achieves it maximum intensity at 10 kPa, while tip clearance effect is bigger at 4 kPa.

As a consequence of the higher passage velocity, flow detachment and vortexes intensity, provoked by the laminarity of the boundary layer, the performance shrinks. As the global parameters forecasted, the contour differences in relative Mach numbers are small for cases 1 and 2 and clearly diverge for cases 1 and 3 and even more for cases 1 and 4.

The results comparison show high fidelity between the CFD and experimental results, especially in the Blade-to-Blade plane. Slight differences are seen on the cross-channels as a consequence of the viscous effects. Furthermore, the pressure ratio is slightly overestimated, whereas the efficiency is moderately underestimated. Literature review suggest that for the majority of the turbulence models, that the overestimation of tip clearance vortexes decreases the CFD efficiency. Whereas, corner stall due to a small axial gap not included in the CFD is the cause of the overestimation of the pressure ratio. Despite this the slight differences is some results, the CFD results and models are be validated for ambient conditions, due to the major similarities on the great part of results.

On this analysis, is of great importance to capture the nature of the boundary layer. The RANS (steady), $k - \omega$ SST model with $\gamma - Re_{\theta t}$ transition turbulence model, seems to properly predict the flow behavior, as demonstrated on the experimental results and literature review. However, the transient nature of the rotor, arise as one of the constant error causes during our analysis.

Finally regarding the Hyperloop comparison, similar tendencies are achieved, specially when comparing the Reynolds number. However, the discrepancies in flow conditions and geometry provoke trend differences. Despite this, the trends and differences in global and local parameters suggest a clear validation of the tendencies studied by Galiendo et al. [13].

All this insight has a direct impact on the Hyperloop system development. The study has demonstrated that low Reynolds numbers negatively affect the overall performance of an aircraft inlet compressor (decreasing up to $\eta_{min} = 0.78$). The design of an compressor capable of dealing with low-pressure effects, such as laminar boundary layer detachment, could positively increase the propulsive efficiency and feasibility on Hyperloop transportation systems.

5.3 Future work

Despite the great insight contributed by this project, the lack of time and computational resources have limited the number of CFD cases calculated. The four cases shared the same corrected mass flow, however, Galindo et al. performed a parametric study, varying the mass flow rate. Therefore for a correct comparison, it will be interesting to vary the corrected mass flow rate under a similar parametric study, obtaining the maximum efficiency points.

Moreover, it will be interesting the study of an unsteady CFD simulation of the rotor. The use of a steady problem is used for simplicity purposes, giving the hole fluid a relative velocity with respect to the blade. The unsteady problem will reassemble more to the reality, being the blade with the hub the only moving parts, increasing the results accuracy despite a higher computational cost.

Also, during this project the lack of experimental results for the cases with lower pressures of operation than atmospheric, does not allow validation. The creation of experimental facilities able to perform analysis of compressors under the Hyperloop tube conditions will solve part of the uncertainty generated by the CFD model.

For future projects the analysis of a complete stage, including a rotor and a stator will enormously contribute to the Hyperloop development. The interaction between the rotor wake and vortexes with the stator under low pressures is a non-explored field important for this mean of transport.

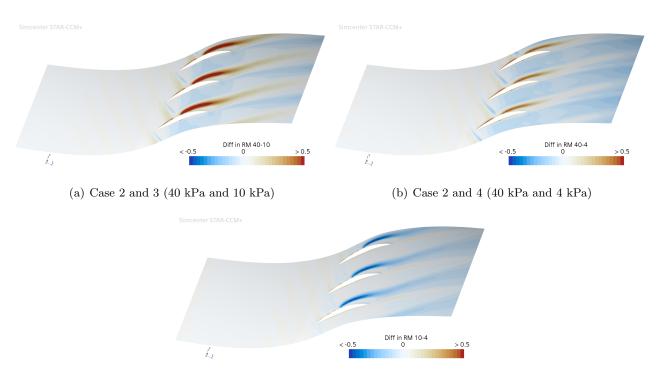
Finally, as demonstrated in this project, rotors show a great loss of performance under low pressures of operation. Therefore, is essential the development of a blade optimized for low pressure for the Hyperloop evolution.

References

- [1] European Commission and Eurostat. "Energy, transport and environment statistics 2020 Edition". In: (2020). DOI: doi:10.2785/522192.
- Ken'etsu Uchida and Nao Sugiki. "Travel demand estimation risk for high-speed railway transport considering travel price competition". In: *Journal of advanced transportation* 47 (Dec. 2013), pp. 737-750. DOI: 10.1002/atr.194.
- [3] European Commission and Eurostat. "Key figures on European transport 2022 Edition". In: (2022). DOI: doi:10.2785/322262.
- [4] F. Frommer. "High-speed rail". In: (May 2024). URL: https://www.britannica.com/ technology/high-speed-rail.
- [5] Ilaria Grasso Macola. "Timeline: tracing the evolution of hyperloop rail technology". In: (May 2024). URL: https://www.railway-technology.com/features/timeline-tracing-evolution-hyperloop-rail-technology/.
- [6] Rescale and AWS HPC. "Zeleros Bolsters Engineering Productivity with Rescale on AWS HPC". In: (2022). URL: https://about.rescale.com/rs/285-WFD-495/images/Rescale_AWS_Zeleros_Case_Study.pdf.
- [7] Ilaria Grasso Macola. "Conceptual Feasibility Study of the Hyperloop Vehicle for Next-Generation Transport". In: (May 2017). URL: https://ntrs.nasa.gov/api/citations/20170001624/ downloads/20170001624.pdf.
- [8] Tesla Coorporation. "Hyperloop Alpha". In: (2013). URL: https://www.tesla.com/sites/ default/files/blog_images/hyperloop-alpha.pdf.
- [9] Maurice Bizzozero, Yohei Sato, and Mohamed Aly Sayed. "Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit". In: *Journal of Wind Engineering* and Industrial Aerodynamics 218 (2021), p. 104784. ISSN: 0167-6105. DOI: https://doi.org/ 10.1016/j.jweia.2021.104784.
- [10] Alex J. Lang et al. "A review of Hyperloop aerodynamics". In: Computers & Fluids 273 (2024), p. 106202. ISSN: 0045-7930. DOI: https://doi.org/10.1016/j.compfluid.2024.106202.
- [11] Federico Rodríguez, Temoatzin González, and Sergio Hoyas. "CFD Simulation of a Hyperloop Capsule Inside a Low-Pressure Environment Using an Aerodynamic Compressor as Propulsion and Drag Reduction Method". In: Applied Sciences 11 (Apr. 2021), p. 3934. DOI: 10.3390/ app11093934.
- [12] Duvid C. Junetzke Jumes E. Crouse and Ricrhurd E. Schwiriun. "A computer program for composing compressor blading from simulated circular-arc elements on conical surfaces". In: NASA-TN-D-5437 (1969).
- [13] José Galindo et al. "Effect of Operational Pressure Reduction on Axial Compressor Performance by Means of 3D CFD Modeling at Nominal Operating Speeds". In: GT2024-124093 (June 2024).
- [14] Miguel Segarra López. "Analysis of the predictive capability of numerical configurations of 3D CFD axial compressor models". In: NASA-TN-D-5437 (Mar. 2024).
- [15] Marco Gambini and Michela Vellini. "Preliminary Design of Axial Flow Compressors". In: *Turbomachinery: Fundamentals, Selection and Preliminary Design.* Cham: Springer International Publishing, 2021, pp. 155–197. ISBN: 978-3-030-51299-6. URL: https://doi.org/10.1007/978-3-030-51299-6_4.
- [16] Vishwas Iyengar, Lakshmi N. Sankar, and Russell K. Denney. "A First-Principles Based Methodology for Design of Axial Compressor Configurations". In: (2012). URL: https://api.semanticscholar. org/CorpusID:108519458.

- [17] Gherardo Zambonini. "Unsteady dynamics of corner separation in a linear compressor cascade". In: (Dec. 2016).
- [18] Roberto Biollo and Ernesto Benini. "Recent advances in transonic axial compressor aerodynamics". In: Progress in Aerospace Sciences 56 (2013), pp. 1–18. ISSN: 0376-0421. URL: https://www.sciencedirect.com/science/article/pii/S0376042112000528.
- [19] Robert Meyer et al. "A Parameter study on the influence of fillets on the compressor cascade performance". In: *Journal of Theoretical and Applied Mechanics (JTAM)* Vol 50 (Jan. 2012).
- [20] Debashis Dey and Cengiz Camci. "Development of tip clearance flow downstream of a rotor blade with coolant injection from a tip trench". In: (Jan. 2000).
- [21] Fluid Machinery. Accessed: 2024-06-24. URL: https://archive.nptel.ac.in/content/ storage2/courses/112104117/chapter_5/4_16.html.
- [22] Donald Huebler. Rotor 37 and stator 37 assembly. 1977. URL: https://catalog.archives. gov/id/17468361.
- [23] Jan Kamenik et al. "Application of sweep to transonic compressor rotor blades for low-order statistical moment averaging in robust design". In: Oct. 2016.
- [24] Kenneth L. Suder. "Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor with Respect to the Development of Blockage and Loss". In: (2013). URL: https: //api.semanticscholar.org/CorpusID:107474184.
- [25] Radoslav Bozinoski and Roger Davis. "A DES Procedure Applied to a Wall-Mounted Hump". In: International Journal of Aerospace Engineering 2012 (Aug. 2012). DOI: 10.2514/6.2009-3667.
- [26] Duncan Ohno, Jonas Romblad, and Ulrich Rist. "Laminar to Turbulent Transition at Unsteady Inflow Conditions: Direct Numerical Simulations with Small Scale Free-Stream Turbulence". In: (Jan. 2020), pp. 214–224. DOI: 10.1007/978-3-030-25253-3_21.
- [27] J. Dunham. "CFD Validation for Propulsion System Components". In: (May 1998). DOI: 10. 1007/978-3-030-25253-3_21.
- [28] James E. Crouse, David C. Janetzke, and Richard Earl Schwirian. "A computer program for composing compressor blading from simulated circular-arc elements on conical surfaces". In: 1969. URL: https://api.semanticscholar.org/CorpusID:107427969.
- [29] Elsa Piollet, Florence Nyssen, and Alain Batailly. "Blade/casing rubbing interactions in aircraft engines: Numerical benchmark and design guidelines based on NASA rotor 37". In: *Journal of Sound and Vibration* 460 (2019), p. 114878. ISSN: 0022-460X. URL: https://www.sciencedirect. com/science/article/pii/S0022460X19304407.
- [30] Salario medio para Ingeniero Junior en España, 2024. Accessed: 2024-06-24. URL: https://es.talent.com/salary?job=ingeniero+junior.
- [31] Salario medio para Ingeniero Senior en España, 2024. Accessed: 2024-06-24. URL: https://es.talent.com/salary?job=ingeniero+senior.
- [32] What is the Average Lifespan of a Computer? Accessed: 2024-06-25. URL: https://www.hp. com/in-en/shop/tech-takes/post/average-computer-lifespan.
- [33] Electricity usage of a Desktop Computer. Accessed: 2024-06-25. URL: https://energyusecalculator. com/electricity_computer.htm.
- [34] Costs Of Electricity In Spain. Accessed: 2024-06-25. URL: https://electricityinspain. com/electricity-prices-in-spain/#:~:text=Currently%2C%20the%20price%20for% 20electricity,29.66%20per%20100%20kilowatt%2Dhour..
- [35] CFDDFC on AWS: Pricing of Computing Resources. Accessed: 2024-06-25. URL: https://cfd. direct/cloud/aws/pricing/.

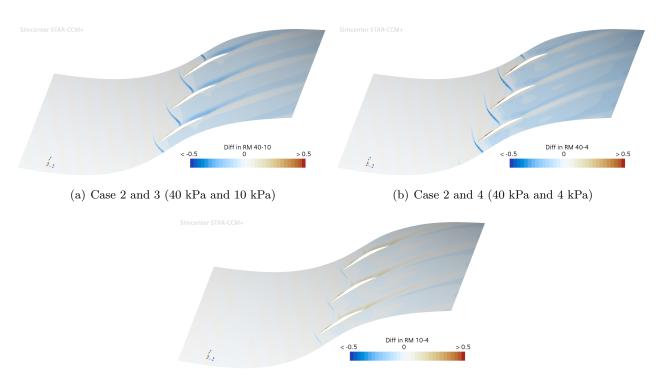
Appendices


A Extra Results Figures

On this Appendix extra result analysis are included, which are not consider essential, but increase the insight of the compressor performance under the different operational pressures. For this reason figures which compare relative mach between the rest of the cases, intermittency contour plots and coefficients plots for different span sections are depicted among this section.

A.1 Relative Mach differences

On this subsection, the relative Mach number difference is computed for the rest of possible combinations between cases. The figures agree with the hypothesis already figured in section 4.


The differences between the cases 2 and 3; 2 and 4; 3 and 4, in relative Mach number for the 10% span plane, are depicted in Figure A.3.4.

(c) Case 3 and 4 (10 kPa and 4 kPa)

Figure A.1.1: Relative Mach differences on 10% span

The differences between the cases 2 and 3; 2 and 4; 3 and 4, in relative Mach number for the 50% span plane, are depicted in Figure A.1.2.

(c) Case 3 and 4 (10 kPa and 4 kPa)

Figure A.1.2: Relative Mach differences on 50% span

The differences between the cases 2 and 3; 2 and 4; 3 and 4, in relative Mach number for the 90% span plane, are depicted in Figure A.1.3.

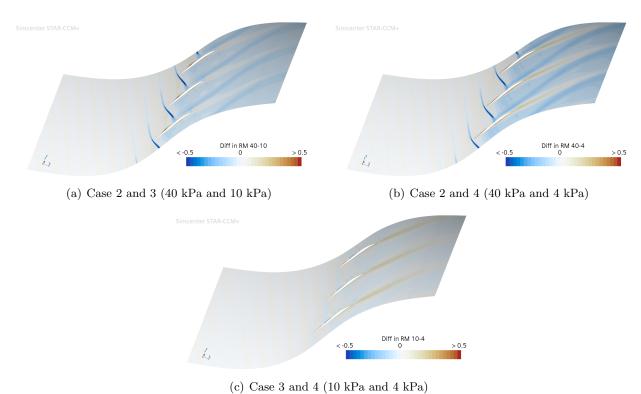


Figure A.1.3: Relative Mach differences on 90% span

The differences between the cases 2 and 3; 2 and 4; 3 and 4, in relative Mach number for the Meridional plane, are depicted in Figure A.1.4.

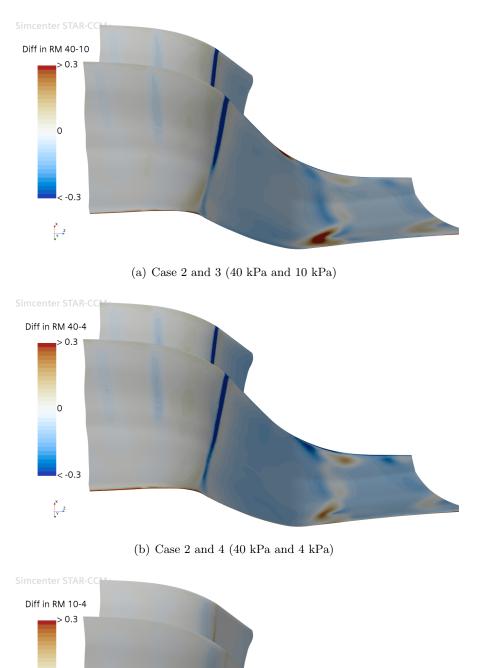


Figure A.1.4: Relative Mach differences on the Meridional plane

(c) Case 3 and 4 (10 kPa and 4 kPa)

0

< -0.3

x y

A.2 Intermittency contour plots

As previously explained the intermittency contour depends on the turbulence model, $k - \omega$ SST, and the transition model used, $\gamma - Re_{\theta t}$ Gamma ReTheta model. The intermittency represents the flow regime, values close to 0 correspond to near laminar flow, while fully turbulent flow correspond to an intermittency near 1. This extra figures are of relevance to understand the flow regime evolution across the span. The contour plots of intermittency are obtained for the four operational pressure cases, in order to quantify the nature of the boundary layer around the blade. First the intermittency is shown for the 10% span plane in Figure A.2.1 and for the 90% span plane in Figure A.2.2.

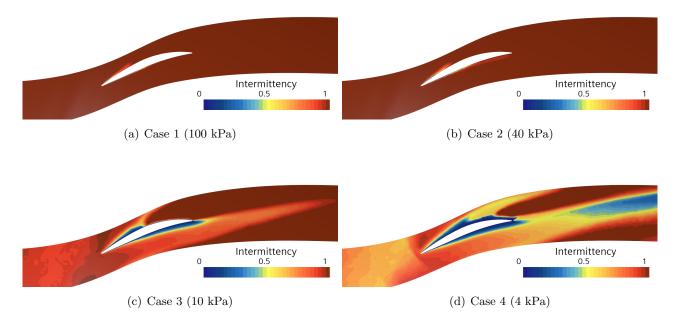


Figure A.2.1: Intermittency on 10% span

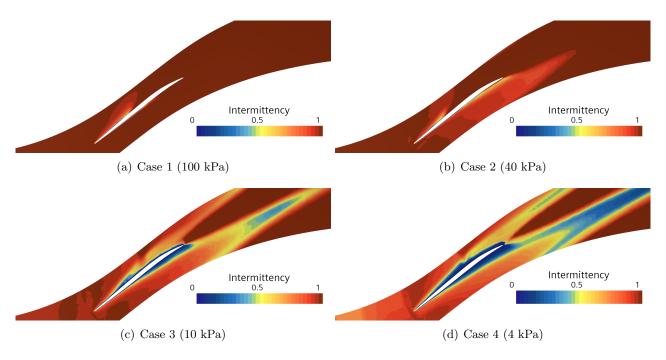
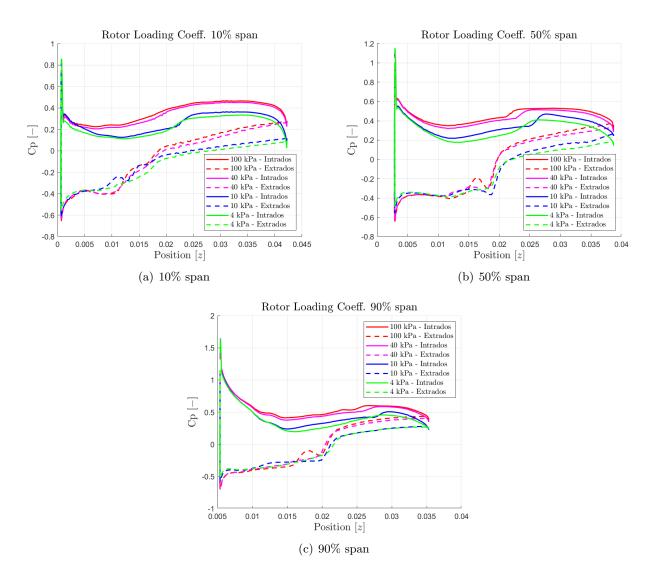



Figure A.2.2: Intermittency on 90% span

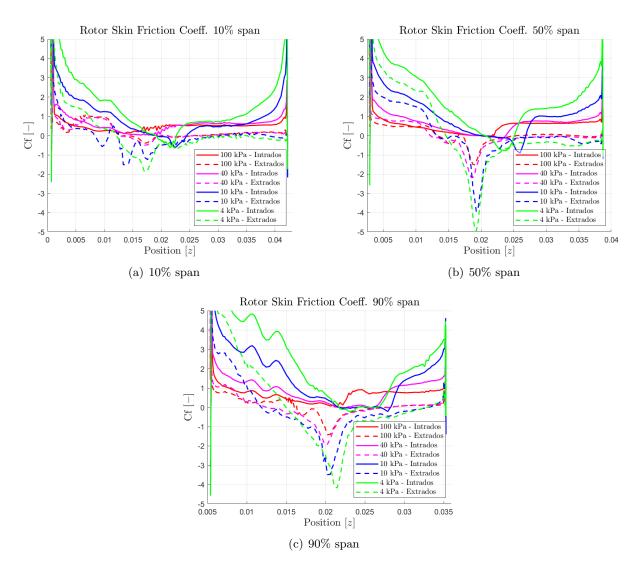
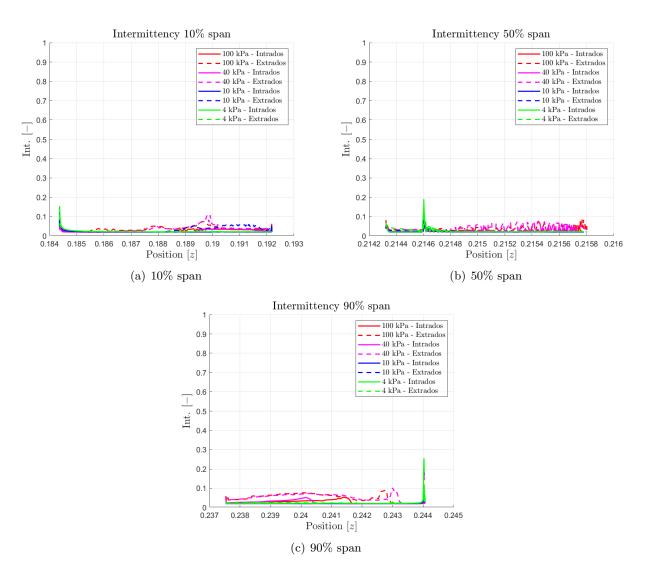
A.3 Flow coefficient parameters

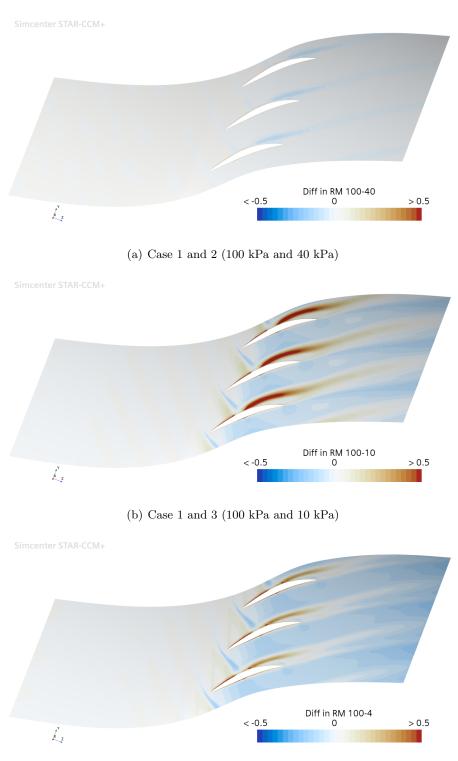
Now the different flow coefficients are depicted together for all the possible span sections (10%, 50% and 90%). The the joint display allows a qualitative comparison between the sections, which wasn't possible in section 4.

First the pressure coefficient is depicted for all the different blade spans in Figure A.3.1.

Figure A.3.1: Pressure coefficient on the span plane

Now the plots of the skin friction coefficient are shown for all the different blade spans in Figure A.3.2.


Figure A.3.2: Skin friction coefficient on the span plan

Finally, the plots of the intermittency are shown for all the different blade spans in Figure A.3.3.

Figure A.3.3: Intermittency on the span planes

To complete this section Figure A.3.4 shows the hole Mach differences figures together, to be able to make an easier analysis between them.

(c) Case 1 and 4 (100 kPa and 4 kPa) $\,$

Figure A.3.4: Relative Mach differences on 50% span

B Sustainable Development Goals

The following appendix section sum ups the alignment between the project and the Sustainable Development Goals (SDGs):

The initiative presented in this project demonstrates a significant connection with the SDGs outlined in the Agenda 2030. Specifically on the following goals: SDG 9 (Industry, Innovation, and Infrastructure), SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action). Medium connection is consider with: SDG 8 (Decent Work and Economic Growth). Lower connection is consider with: SDG 3 (Good Health and well-living).

The project focus on the development of an efficient, non pollutant, and economic mean of transport, which aligns with innovation and industry evolution. Promoting sustainability inside the cities and communities, industrial innovation and a solution to mitigate climate change.

Additionally, it is expected to create numerous occupations, thereby boosting economy, while also improving the well-living and connectivity of people. Therefore, the project has links with creating decent jobs and economic growth, and also with enhancing the health and well-living in the society.

The development of the mean of transport introduced in this project, main objective is to become a feasible initiative to tackle one of the biggest challenges which humanity faces, climate change.

Sustainability Development Goals	High	Medium	Low	N/A
SDG 1. No poverty.				X
SDG 2. Zero hunger.				X
SDG 3. Good Health and well-living.			X	
SDG 4. Quality Education.				X
SDG 5. Gender equality.				X
SDG 6. Clean water and sanitation.				X
SDG 7. Affordable and clean energy.				X
SDG 8. Decent work and economic growth.		X		
SDG 9. Industry, innovation, and infrastructures.	X			
SDG 10. Reduced inequalities.				X
SDG 11. Sustainable cities and communities.	X			
SDG 12. Responsible consumption and production				X
SDG 13. Climate action.	X			
SDG 14. Life below water.				X
SDG 15. Life on land.				X
SDG 16. Peace, justice, and strong institutions.				X
SDG 17. Partnership for the goals.				X

Table B.0.1 sum up the level of connection between the project and the Sustainable Development Goals (SDGs):

Table B.0.1: Table for the Sustainability Development Goals

C Drawings

Since the geometry is already explained in subsubsection 3.1.1, no drawings are included in this project. Furthermore, the complex geometry used to build NASA Rotor 37 requires the use MCA parameters through a complex algorithm. Therefore, it's shape can not accurately be outlined in a drawing. This algorithm is printed using Fortran IV program, where it is implemented. The parametrization and algorithm implementation is described by James E. Crouse et al. in [28].

The blade geometry is then obtained by a series of blade sections at different spans and positions. Consequently a drawing won't be effective when representing the blade geometry, whereas a parametrization yes. Therefore the parameters used to create the MCA blade sections are depicted in the succeeding section.

C.1 Geometric parametrization of NASA Rotor 37

Figure C.1.1 shows the an axial cut of the blade, including the position and length of the blade sections and the parameters used on the algorithm for their generation. The parameter used are:

- r_{ic} : radial distance to the leading edge point.
- r_{oc} : radial distance to the trailing edge point.
- κ_{ic} : camber angle at the leading edge point^{*}.
- κ_{tc} : camber angle at the transition point^{*}.
- κ_{oc} : camber angle at the trailing edge point^{*}.
- t_i : blade thickness at the leading edge point.
- t_m : blade thickness at the maximum thickness point.
- t_o : blade thickness at the trailing edge point.
- z_{ic} : axial distance to the leading edge point.
- z_{mc} : axial distance to the maximum thickness point.
- z_{tc} : axial distance to the transition point.
- z_{oc} : axial distance to the trailing edge point.

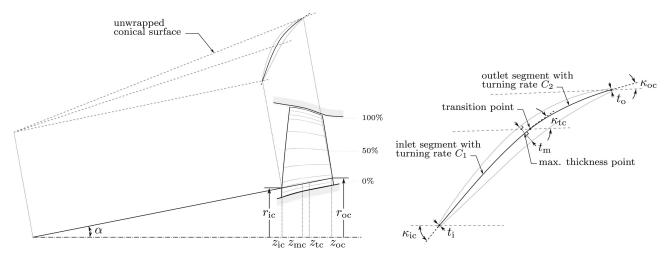


Figure C.1.1: Multiple circular arc parameterization [29]

*Note that the angles are measured with respect to the axis of rotation direction.

Table C.1.1 shows the values that the parameters previously explained take on the different spans of the rotor. This spans are closer near the hub and the shroud, to have a higher resolution on those points, where the blade has greater shape gradients. Whereas, the span is distant at the half of the blade, where lower resolution is needed.

% span	r_{ic}	r_{oc}	κ_{ic}	κ_{tc}	κ_{oc}	t_i	t_m	t_o	$z_{mc} - z_{ic}$	$z_{tc} - z_{ic}$	$z_{oc} - z_{ic}$
70 span	(cm)	(cm)	(deg)	(deg)	(deg)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
100	25.230	24.502	62.246	62.480	50.008	0.025	0.175	0.025	1.719	1.725	2.672
95	24.935	24.218	61.651	61.861	49.100	0.026	0.186	0.026	1.721	1.705	2.759
90	24.597	23.932	60.988	61.162	48.180	0.027	0.199	0.028	1.726	1.687	2.846
85	24.254	23.644	60.334	60.421	47.242	0.029	0.211	0.029	1.734	1.672	2.933
70	23.211	22.774	58.470	57.953	44.176	0.032	0.250	0.033	1.769	1.643	3.187
50	21.761	21.622	56.190	54.212	39.090	0.037	0.303	0.038	1.834	1.631	3.517
30	20.246	20.468	54.204	50.406	32.168	0.042	0.360	0.043	1.899	1.627	3.836
15	19.030	19.602	52.910	47.831	25.329	0.047	0.407	0.047	1.932	1.608	4.068
10	18.603	19.313	52.520	47.061	22.666	0.048	0.424	0.049	1.936	1.594	4.143
5	18.161	19.026	52.152	46.367	19.805	0.050	0.442	0.050	1.936	1.575	4.218
0	17.780	18.740	51.864	45.837	16.726	0.051	0.459	0.051	1.932	1.553	4.292

Table C.1.1: Multiple-circular-arc parameters for the 11 profiles of the reference blade [29]

 $z_{mc} - z_{ic}$ correspond to the axial distance between the leading edge and the maximum thickness points. Whereas, $z_{tc} - z_{ic}$ correspond to the axial distance between the leading edge and the transition points and $z_{oc} - z_{ic}$ correspond to the axial distance between the leading edge and the trailing edge points.

D Cost Estimates

On this section the approximated cost estimates for the project development are exposed. The accounts will be subdivided into the following sections: direct costs, general costs, benefits and the total cost estimate, where the VAT is added.

D.1 Direct costs

The direct cost can be subdivided at the same time into human resources, equipment costs and software and licenses costs.

Human resources costs

On this calculation people involved in this project and their respective salaries are accounted. The author of the project, the student, is considered as a Junior Engineer. According to [30] the mean net salary for a junior engineer in Spain in the year 2024 is $12.82 \in$ /hour. On the other hand, the cost related to the Tutor and Co-Tutor, is considered the net salary of a senior engineer [31], which is around $19.23 \in$ /hour. To obtain the gross salary from the net salary a 30% should be added, and to get the direct company cost an extra 40% is added. Therefore the approximated final salaries that the company pays are shown in Table D.1.1.

Costs description	Time [h]	Salary [€/hour]	Cost [€]
Student	300	23.33	7000
Tutor	20	35.00	700
Co-Tutor	20	35.00	700
L		Total	8400

Table D.1.1: Human resources cost estimation

Equipment costs

On this account related to the equipment costs three items are exposed. The laptop is a HP Pavilion Gaming Laptop 15-ec2xxx, with a cost an approximated cost of $800 \in$. Expecting a mean lifespan of 4 years [32], with a mean usage of 5 daily hours, the total lifespan of the computer in hours will be of 7200 hours. Diving the cost by the lifespan in hours the cost per hour is obtained. The consumption of a laptop is estimated to be $0.0208 \in /h$ [33], assuming an energy cost of $0.2966 \in /kWh$ [34]. Finally the cluster cost is estimated to be around $0.1 \in /(\text{Core} \cdot \text{Hour})$ [35], and 20 cores are assumed to be used. With this insight the equipment cost are computed in Table D.1.2.

Costs description	Time [h]	Price [€/hour]	Cost [€]
Laptop	500	0.111	55.6
Laptop consume	500	0.021	10.4
Cluster cost	200	2	400.0
t.		Total	466

Table D.1.2:	Equipment	cost	estimation
--------------	-----------	-----------------------	------------

Software and Licenses costs

In this account the software's and licenses required are exposed. The STAR CCM+ license is estimated to have a cost of $0.1 \in /(h \cdot CPU)$, this cost is private and depends on the customer needs. Assuming that 8 CPUs are used on the simulations a cost of $0.8 \in /h$ is estimated. Matlab license for student has a cost of $262 \in /year$, the Microsoft Office Package has an cost of $69 \in /year$ and Overleaf cost for students is $79 \in /year$. Note than some units of Table D.1.3 are in hours and others in years.

Costs description	Time	Price	Cost [€]
STAR CCM+	200 hours	$0.8 \in /hour$	160.0
Matlab License	0.5 years	262 €/year	131.0
Microsoft Office Package	0.5 years	69 €/year	34.5
Overleaf	0.5 years	79 €/year	39.5
		Total	365

Table D.1.3: Software and Licenses costs estimation

Total direct cost

Finally the totality of the direct cost are summed up in Table D.1.4.

Costs description	Cost [€]
Human resources	8400
Equipment	466
Software and Licenses	365
Total	9231

Table D.1.4: Total direct cost estimation

D.2 General costs

On this section the indirect costs related to the project are exposed. As human resources have been already accounted in the previous section, on this one the only the cost related to the workplace will be accounted. For the indirect costs 20% overheads coefficient is estimated over the direct costs, this percentage is estimated for a engineering company. Table D.2.1 sums up the accounts related to the indirect costs.

Costs description	Cost [€]
Direct costs	9231
Overheads Coefficient	+20%
Total	11077

Table D.2.1: General cost estimation

D.3 Benefits

Furthermore, a benefit percentage must be set in order to provide and appeal for the company owner or project investors. There is no reason to invest, assuming a risk, without a benefit. Therefore a benefit of 7% is established over the general costs. Table D.3.1 sums up the benefits costs for this project.

Costs description	Cost [€]
General costs	11077
Benefit percentage	+7%
Total	11853

Table D.3.1: Benefits estimation

D.4 Total costs

Finally the total project costs for the customer are showed in Table D.4.1, where all the cost are broke down. On this table a 21% VAT tax is added to the final price. Is worthy to note that this cost estimation is focused towards the client final price, accounting for every type of needed resource. Note that the extra money that the percentage represents is shown at the right of it in brackets.

Costs description	Cost [€]
Human resources	8400
Equipment	466
Software and Licenses	365
Direct costs	9231
Overheads Coefficient	+20% (1846 €)
General costs	11077
Benefit percentage	+7% (775 €)
Total income	11853
VAT	+21% (2489 €)
Quotation	14342

Table D.4.1: General cost estimation

The final total cost for the client after taxation will be: $14342 \in$.

E Articles and Conditions

This section describes the technical and operative specifications needed to study the performance of the NASA Rotor 37 under different pressures of operation using CFD simulations. This Final Degree Project will focus on the on the validation and comparison of the flow patterns and effects that appear at low pressure of operation. The final objective is to bring insight into the development of a Hyperloop transportation system. On this section the legal conditions will be exposed, before each article a brief explanation of the accomplishment of the legislation will be included. Note that this work was conducted on the CMT installations on building 6D, inside the UPV.

E.1 Legal Conditions

It is legally required to follow the conditions specified in the Real Decreto 486/1997, where the minimum requisites for security and healthiness are accomplished. It is required a proper workplace where the security and comfort conditions are meet to achieve a good performance.

Furthermore, since the project requires the use of informatics equipment, the Real Decreto 488/1997 should be enforced, ensuring that the minimum security and healthy conditions are accomplished, in a work that requires the use of visualization screens. Also the minimum hardware and software requirements for this project will be specified.

E.1.1 Workplace conditions

The legislation regarding the workplaces is regulated in the Real Decreto 486/1997 of the 14th of April, where the minimum health and security conditions are stipulated. The Real Decreto 488/1997, specifies the legislation regarding the work with screens.

Workplace conditions

Regarding the workplace, sufficient space should provided to ensure the comfort and productivity of the worker. The workplace should ensure the following minimum conditions.

- Three meters high from floor to ceiling.
- Two square meters of workplace.
- Ten cubic meters of workplace.

Security conditions

The implementation of evacuation paths on the workplace should be implemented in the workplace, including emergency routes and exits. It is important to communicate the evacuation plans to the workers.

With respect to the fire security, the competent body should authorize companies for the design, implementation and maintenance of the fire extinction installations on the workplace. This prevention will be combined with the general protection provided by the public fire extinguish services.

Regarding the electric installation on the workplace, it should be designed and maintained by an authorized company, accomplishing with the current electricity regulations.

All the permanent or provisional buildings, will be of firm and secure construction, avoiding structural collapse under extreme atmospheric conditions. The maximum allowable weight supported will be indicated among the building, being strictly prohibited to overload the structure.

The security conditions are accomplished in the building 6D, regarding both evacuation routes and fire and electric installations.

Ambient conditions

The Real Decreto 488/1997 establishes that the following ambient conditions to guarantee a correct thermal sensation for workers: a temperature between $23^{\circ}C$ and $26^{\circ}C$ in summer and between $20^{\circ}C$ and $24^{\circ}C$ in winter. Moreover, the relative humidity of the air should be between 45% and 65%.

The environmental carbon dioxide, should overpass the 50/10000 proportion, and the carbon monoxide should be lower to 1/10000 proportion. Moreover, a proper ventilation should be accomplish, with at least 30 cubic meters of air ventilated in during an hour.

Regarding the illumination it can be natural or artificial, although is recommended natural light. Natural illumination should be accompanied with artificial light to avoid glare and excessive contrasts. Also, the location of the screens should avoid reflects and glare on the workplace.

The building 6D provides the sufficient ambient comfort and illumination for a correct work development.

Ergonomics: Workplace design

The workplace should be properly conditioned to avoid posture problems due to the use of screens during work.

- Seat: Adjustable seat height, with a proper backrest. Is recommended the use of a wheelchair.
- Table: A sufficiently wide and conditioned table without reflexes.
- Screen position: optimal distance of 45-75 cm at a correct angle.
- Screen: Stable image, with the proper luminosity and contrast.
- Keyboard: Proper size for the project drafting.
- Individual protection equipment: Screen protectors are recommended.

The building 6D provides the proper equipment for a correct posture while working making use of screens.

Noise

Regarding the noise, certain noise levels should be accomplish as established in the Real Decreto 1316/1989. The noise level should as low as possible not exceeding 55 dB, for work that requires concentration.

On the building 6D, the noise levels where proper for the correct development of the project, ensuring a good concentration.

E.1.2 Computer resources conditions

For the CFD simulations and configuration, the use of high performance computer resources is needed and regulated on the Decreto Real 488/1997. The computer resources divided into hardware and software.

Hardware conditions

High performance computer equipment is required for the calculation of the CFD simulations, in this case the laptop model is: HP Pavilion Gaming Laptop 15-ec2xxx. Therefore, the hardware should include a proper calculation tool with sufficient memory and a decent maintenance. The hardware details are specified below.

- Laptop model: HP Pavilion Gaming Laptop 15-ec2xxx
- Processor: AMD Ryzen 7 5800H, 3201 MHz, 8 cores, 16 logical processes
- RAM memory: 16 GB
- Graphic card: NVIDIA GeForce GTX 1650, 12 GB
- Memory: SSD, 500 GB
- Operative system: W/indows 11 Home 64 bits

Software conditions

The following software is used in the calculations, edition and presentation of the project:

- CFD Software: Simcenter STAR-CCM+ 2310 (18.06.006-R8)
- Post-processing Software: MATLAB R2023b
- Report Software: Overleaf
- Report and Post-processing Software: Microsoft Office Package (Excel and PowerPoint)

E.2 CFD Configuration

Finally on the following pages the report of the CFD configuration is showed. Just one of the four cases configuration is exposed, since the boundary conditions, models and scenes are similar across all the cases. Case 1, 100 kPa, configuration is displayed, since is considered as the first and reference case, and it includes the biggest part of post-processing.

E.2.1 Configuratio Report of Case 1 (100 kPa)

Summary Report: F3-Rotor37_100_Des_GTLowMachRefp100

Session Summary	
File size	1,4e+03 MB
Number of Partitions	2
Number of Restored Partitions	7
Software Summary	
Version	BuildArch: win64
	BuildEnv: clang15.0vc14.2-r8
	PresentationVersion: 2310
	ReleaseDate: Wed Oct 4 13:05:35 UTC 2023
	ReleaseNumber: 18.06.006
MPI Version	MS MPI-10.1.12498.16
Hardware Summary	
Hosts	Number Processes: 2
	Rank[0]: LAPTOP-VEU67S9V
	Rank[1]: LAPTOP-VEU67S9V

Simulation Properties

1 F3-		
Rotor37_100_Des_GTLowMachRefp100		
+-1 Continua	Continua	1
-1 Physics 1		[R37_SI]
	Interfaces	[Interface 1]
	Point Sets	
	Active	true
	Motion Always	false
	Active	
	Tags	0
+-1 Models		
+-1 All y+ Wall Treatment	Iterative Ustar	false
+-2 Coupled Energy	Enthalpy	false
	Formulation	
	Flow Boundary	true
	Diffusion	
+-3 Coupled Flow		IMPLICIT
	Positivity Rate	0.2
	Limit	
		true
	Enabled	
	Unsteady Low-	true
	Mach	
	Preconditioning	
	Unsteady	0.95
	Preconditioning	
	Max Factor	
	Pressure	2.0
	Difference Scale	
	Factor	
		1.0E-10 m/s
	Reference	
	Velocity	1000000 0 m/c
	Maximum Reference	1000000.0 m/s
	Velocity	
		true
	Diffusion	
	Secondary	On
	Gradients	
	Coupled Inviscid	Roe FDS
	Flux	
		2nd-order
+-4 Gamma-ReTheta	Sigma_f	1.0
Transition		
		0.06
	ce2	50.0
	Intermittency	1.0E-10
	Minimum	
	Secondary	On
	Gradients	
	Convection	2nd-order
	Cross-Flow Term	false
	Correlation	Suluksna-Juntasaro
	Method	
	Sigma_ReTheta	2.0
	ca1	2.0
	ce1	1.0
		0.03
	s1	2.0
	Conset1	2.193
	ReThetaT	20.0
	Minimum	
+-5 Gas `-1 Air	Databasa	Air (Air) [Standard/Cases]
	Database Material	Air (Air) [Standard/Gases]
	Tage	n
-1 Material Properties	Tags	0

	+-1 Dynamic	Method	Constant
Viscosity	-1 Constant	Value	1.85508E-5 Pa-s
	+-2 Molecular Weight		Constant
	`-1 Constant	Value	28.9664 kg/kmol
	+-3 Specific Heat	Method Value	Constant 1003.62 J/kg-K
Conductivit	+-4 Thermal	Method	Constant
	`-1 Constant	Value	0.0260305 W/m-К
1	-5 Turbulent Prandtl		Constant
Number	-1 Constant	Value	0.9
	+-6 Gradients	Value Boundary Cell	0.06
		Eigenvalues Ratio Tolerance	
		Limit GradVar By Beta	true
		Limiter Method	Venkatakrishnan
1 1	I	Custom Accuracy Level Selector	2.0
		Maximum	1.0
		Reconstruction Coefficient	
		Two Pass	false
	1	Velocity Gradient	
	I	Use TVB Gradient Limiting	false
		Acceptable Field Variation	0.05
		(Factor)	
	+-7 Ideal Gas		false false
	+-8 K-Omega Turbulence		
 Navier-Stol	+-9 Reynolds-Averaged		
	+-10 Solution Interpolation	Per Part	false
		Mapping Interpolation	Nearest neighbor
	1	Method	-
		Legacy Method Conservation	false Disable
1 1	1	Correction	
·	+-11 SST (Menter) K-Omega	Curvature Correction	Off
		Option Realizability	Durbin Scale Limiter
			true
		Correction Low Re	false
		Damping Modification	
		Convection	2nd-order
		Normal Stress Term	false
		Tke Minimum	1.0E-10
		Sdr Minimum Secondary	1.0E-10 On
		Gradients	
		Kappa BetaStar	0.41 0.09
		Beta1	0.075
		Sigma_k1	0.85
			0.5 0.0828
		Sigma_k2	1.0
		Sigma_w2	0.856
		Constitutive Option	Linear
		al	0.31
 Parameters	+-1 Compressibility s	Zeta_Star	1.5
	-2 Realizability Coefficient	Realizability Coefficient	0.6
	+-12 Steady	Continuum	189481
	+-13 Three Dimensional	Iteration	
.	+-14 Turbulent `-15 Wall Distance	Wall Distance	Implicit Tree
		Wall Distance Method	Implicit Tree
	2 Reference Values +-1 Reference Pressure	Value	0.0 Pa
	+-1 Reference Pressure +-2 Minimum Allowable Wall	Value Value	0.0 Pa 1.0E-6 m
Distance	+-3 Maximum Allowable		
Absolute P	Pressure	Value	1.0E8 Pa
Temperatur		Value	100.0 K
Absolute P	+-5 Minimum Allowable Pressure	Value	1000.0 Pa
	-6 Maximum Allowable	Value	5000.0 K
	3 Initial Conditions		
	+-1 Intermittency	Method	Constant
	-1 Constant+-2 Pressure	Value Method	1.0 Constant
	`-1 Constant	Value	120000.0 Pa

+ 2 Static Temperature	Mathad	Constant
+-3 Static Temperature	Method Value	Constant 288.15 K
+-4 Turbulence Intensity	Method	Constant
-1 Constant	Value	0.01
+-5 Turbulence Specification		Intensity + Viscosity Ratio
+-6 Turbulent Velocity Scale	Method	Constant
`-1 Constant	Value	1.0 m/s
+-7 Turbulent Viscosity Ratio	Method	Constant
] -1 Constant	Value	10.0
-8 Velocity	Method	Constant
	Coordinate	Laboratory
-1 Constant	System Value	[0.0, 0.0, 10.0] m/s
+-2 Interfaces	Debug Obj Files	
	Multithreading	Automatic
i i	Verbosity	false
		[Interface 1]
	Selection Priority	
	Overset	0
	Hierarchy	1
	Interfaces Direct	1 Geometry-Based (Legacy)
1 1	Intersector	Geometry-Dased (Legacy)
` −1 Interface 1		false
	Side	
	Geometry	Boundaries
		R37_SI: R37.Per2
		R37_SI: R37.Per1
	Contacts	Internal Interface
	Type Topology	Periodic
	Connectivity	Imprinted
	Allow Per-	false
	Contact Values	
	Close Adjacent	false
	Cells	
	Reset on	false
	Relative Motion	Π
+-1 Periodic Transformation	Tags Periodicity	[] Rotational+Translational
		Use region's reference axis
	Specification	
		10.00006132595436
	(deg)	
		[0.0, 0.0, 0.0]
	Locked	false
-2 Physics Values	Specify by Part	falco
	Subgroup	false
1 Intersection tolerance	Match Outer	false
	Boundary	
		0.2
	Tolerance	
	Angle Threshold	
I	Conformal Tolerance	0.01
		0.01
	Tolerance	
	Geometric	0.05
a Devie	Tolerance	
+-3 Regions	Part Selection	[R37_SI]
	Priority Regions	1
-1 R37_SI	Index	8
		false
	Values	
	Physics	[Physics 1]
	Continuum	
	Parts	[R37] Eluid Pagian
	Type Topology	Fluid Region VOLUME
	Tags	
+-1 Boundaries		u [R37_SI: R37.Per2, R37_SI: R37.Per1, R37_SI: R37.Outlet, R37_SI: R37.Shroud, R37_SI: R37.Inlet, R37_SI: R37.Hub,
	Selection Priority	R37_SI: R37.Blade_Intrados, R37_SI: R37.Blade_Extrados, R37_SI: R37.Per2 [Interface 1], R37_SI: R37.Per1 [Interface
		1]]
	Boundaries	10
+-1 R37.Blade_Extrados	Index	73
	Interfaces Part Surfaces	[R37.Blade_Extrados]
	Type	Wall
	Allow Per-	false
	Surface Values	
	Topology	SURFACE
+-1 Physics Conditions	Tags	0
+-1 Reference Frame	Option	Region Reference Frame
Specification	opuon	August Autorotototo Franto
+-2 Shear Stress	Method	No-Slip
Specification		
+-3 Tangential Velocity	Method	Fixed
Specification	Condition	Adiabatia
+-4 Thermal Specification	Condition	Adiabatic
+-5 User Wall Heat Flux	Method	None
Coefficient Specification		
^-6 Wall Surface	Method	Smooth
Specification		
`-2 Physics Values		

Function	-1 Blended Wall	E	9.0
Function		Карра	0.42
+-2	R37.Blade_Intrados	Index	72
		Interfaces Part Surfaces	[R37.Blade_Intrados]
		Туре	Wall
		Allow Per- Surface Values	false
		Topology	SURFACE
	-1 Physics Conditions	Tags	0
Specification	+-1 Reference Frame	Option	Region Reference Frame
Specification	+-2 Shear Stress	Method	No-Slip
	+-3 Tangential Velocity	Method	Fixed
Specification	+-4 Thermal	Condition	Adiabatic
Coefficient Spe	+-5 User Wall Heat Flux		None
Specification	-6 Wall Surface	Method	Smooth
	-2 Physics Values -1 Blended Wall	E	9.0
Function		L	3.0
	D27 Hub	Kappa	0.42
+-3	R37.Hub	Index Interfaces	71
		Part Surfaces	[R37.Hub]
		Туре	Wall
		Allow Per- Surface Values	false
		Topology	SURFACE
	1 Division Operativity	Tags	0
	-1 Physics Conditions +-1 Reference Frame	Option	Region Reference Frame
Specification	⊥ 2 Shoar Stross		
Specification	+-2 Shear Stress	Method	No-Slip
Specification	+-3 Tangential Velocity	Method	Fixed
Specification	+-4 Thermal	Condition	Adiabatic
Coefficient Spe	+-5 User Wall Heat Flux	Method	None
Specification	-6 Wall Surface	Method	Smooth
	 2 Physics Values 1 Blended Wall 	E	9.0
Function			
	R37.Inlet	Kappa	0.42 70
	K37.IIIICt	Index	10
		Interfaces	
		Interfaces Part Surfaces	[R37.Inlet]
		Part Surfaces Type	Mass Flow Inlet
		Part Surfaces Type Allow Per-	
		Part Surfaces Type	Mass Flow Inlet
	1 Dhysics Conditions	Part Surfaces Type Allow Per- Surface Values	Mass Flow Inlet false
	-1 Physics Conditions +-1 Flow Direction	Part Surfaces Type Allow Per- Surface Values Topology	Mass Flow Inlet false SURFACE
Specification		Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification	Mass Flow Inlet false SURFACE
Specification	+-1 Flow Direction	Part Surfaces Type Allow Per- Surface Values Topology Tags Method	Mass Flow Inlet false SURFACE [] Boundary-Normal
Specification	+-1 Flow Direction +-2 Mass Flow Option	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate
Specification Specification Specification Specification	 +-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame 	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Option Method Value Method Value	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \${Inte_temp}
Specification Specification Specification Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant
Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame `-4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-3 Total Temperature `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value Method Value Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant S(Inlet_temp) Constant
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant 0.0 Pa Constant S{Inlet_temp} Constant 0.01 Constant 10.0
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \${Inlet_temp} Constant 0.0 Inconstant Stant
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \${Inlet_temp} Constant \${Inlet_temp} Constant 0.0 Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant 0.0 Inlet Constant 0.0 Inlet Co
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Option Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Part Surfaces Type	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant State Constant (0.0 Pa Constant State Constant State Constant Stat
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Nethod Value Method Value Nethod Value Value Nethod Va	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \${Inlet_temp} Constant \${Inlet_temp} Constant 0.01 Constant 10.0 68 [R37.Outlet]
Specification Specification Specification Specification Pressure	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant -5 Turbulent Viscosity `-1 Constant	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Option Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Method Value Part Surfaces Type	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant State Constant (0.0 Pa Constant State Constant State Constant Stat
Specification Specification Specification Specification Specification Pressure Image: Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant `-5 Turbulent Viscosity `-1 Constant R37.Outlet	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Not Value Not Value Not Value Not Value Not Value Not Value Not Value Not Value Not Value Not Value Not Value V	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant \${Inlet_temp} Constant Constant
Specification Specification Specification Specification Specification Pressure I <td>+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate -1 Constant +-2 Supersonic Static -1 Constant +-3 Total Temperature -1 Constant -5 Turbulence Intensity -1 Constant -5 Turbulent Viscosity -1 Constant R37.Outlet</td> <td>Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Norfaces Type Allow Per- Surfaces Topology Tags</td> <td>Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant SURFACE [R37.Outlet] Pressure Outlet false SURFACE []</td>	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate -1 Constant +-2 Supersonic Static -1 Constant +-3 Total Temperature -1 Constant -5 Turbulence Intensity -1 Constant -5 Turbulent Viscosity -1 Constant R37.Outlet	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Norfaces Type Allow Per- Surfaces Topology Tags	Mass Flow Inlet false SURFACE [] Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant SURFACE [R37.Outlet] Pressure Outlet false SURFACE []
Specification Specification Specification Specification Specification Pressure Image: Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate `-1 Constant +-2 Supersonic Static `-1 Constant +-3 Total Temperature `-1 Constant +-4 Turbulence Intensity `-1 Constant `-5 Turbulent Viscosity `-1 Constant R37.Outlet	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Differes Type Allow Per- Surfaces Topology Tags	Mass Flow Inlet false SURFACE U Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \$(Inlet_temp) Constant \$(Inlet_temp) Constant 10.0 68 [R37.Outlet] Pressure Outlet false SURFACE U Extrapolated
Specification Specification Specification Specification Pressure Pressure Ratio Ratio H - 5 H	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate -1 Constant +-2 Supersonic Static -1 Constant +-3 Total Temperature -1 Constant -5 Turbulence Intensity -1 Constant -5 Turbulent Viscosity -1 Constant R37.Outlet	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Value Valu	Mass Flow Inlet false SURFACE [Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.6 Pa Constant \$(Inlet_temp) Constant \$(Inlet_temp) Constant 0.0 In Constant \$(Inlet_temp) Constant 0.0 A Constant \$(Inlet_temp) Constant 0.0 A Constant \$(Inlet_temp) Constant 0.0 A Constant 0.0 A Const
Specification Specification Specification Specification Specification Pressure Image: Specification	+-1 Flow Direction +-2 Mass Flow Option +-3 Reference Frame -4 Turbulence -2 Physics Values +-1 Mass Flow Rate -1 Constant +-2 Supersonic Static -1 Constant +-3 Total Temperature -1 Constant -5 Turbulence Intensity -1 Constant -5 Turbulent Viscosity -1 Constant R37.Outlet	Part Surfaces Type Allow Per- Surface Values Topology Tags Method Specification Option Option Method Value Differes Type Allow Per- Surfaces Topology Tags	Mass Flow Inlet false SURFACE U Boundary-Normal Mass Flow Rate Lab Frame Intensity + Viscosity Ratio Constant 0.546311 kg/s Constant 0.0 Pa Constant \$(Inlet_temp) Constant \$(Inlet_temp) Constant 10.0 68 [R37.Outlet] Pressure Outlet false SURFACE U Extrapolated

Specification	-3 Turbulence	Method	Intensity + Viscosity Ratio
	-2 Physics Values		
	+-1 Pressure	Method	Constant
	-1 Constant	Value	126680.0 Pa
	+-2 Static Temperature	Method	Constant
	+-3 Turbulence Intensity	Value Method	300.0 K Constant
	-1 Constant	Value	0.01
i i i	-4 Turbulent Viscosity	Method	Constant
Ratio) 1. Constant) (also	
+-6	`-1 Constant R37.Per1	Value Index	10.0 67
		Interfaces	Interface 1
		Part Surfaces	[R37.Per1]
		Туре	Wall
		Allow Per- Surface Values	false
		Topology	SURFACE
i i i i		Tags	
	-1 Physics Conditions	_	
	+-1 Reference Frame	Option	Lab Frame
Specification	+-2 Shear Stress	Method	No-Slip
Specification		Wethou	
	+-3 Tangential Velocity	Method	Fixed
Specification	+-4 Thermal	Condition	Adiobatio
Specification	+-4 mermai	Condition	Adiabatic
	+-5 User Wall Heat Flux	Method	None
Coefficient Spe		0	
Averaging Opti	+-6 Wall Energy	Circumferential Averaging of	false
πνειαγιτής Ορί		Energy	
	-7 Wall Surface	Method	Smooth
Specification	2 Dhucios Malues		
	-2 Physics Values -1 Blended Wall	E	9.0
Function		-	
		Карра	0.42
+-7	R37.Per1 [Interface 1]	Index	75
		Interfaces	n
		Part Surfaces Type	Internal Interface Boundary
		Allow Per-	false
		Contact Values	
		Topology	SURFACE
		Parent Interface Tags	
+-8	R37.Per2	Index	66
i i l l		Interfaces	Interface 1
		Part Surfaces	[R37.Per2]
		Type Allow Per-	Wall false
1 1 1 1		Surface Values	laise
		Topology	SURFACE
	d Dhuaisa Qaadiitiaaa	Tags	0
	 1 Physics Conditions +-1 Reference Frame 	Option	Lab Frame
Specification		Option	
	+-2 Shear Stress	Method	No-Slip
Specification	Tongontial Valacity		
Specification	+-3 Tangential Velocity	Method	Fixed
	+-4 Thermal	Condition	Adiabatic
Specification			
	+-5 User Wall Heat Flux	Method	None
Coefficient Spe	+-6 Wall Energy	Circumferential	false
Averaging Opti		Averaging of	
		Energy	Owenth
Specification	-7 Wall Surface	Method	Smooth
	-2 Physics Values		
	`-1 Blended Wall	E	9.0
Function		Kanad	0.40
+-0	R37.Per2 [Interface 1]	Kappa Index	0.42 74
		Interfaces	
		Part Surfaces	0
		Type	Internal Interface Boundary
1		Allow Per- Contact Values	false
		Topology	SURFACE
		Parent Interface	
	0 R37.Shroud	Tags	0 69
		Index Interfaces	00
		Part Surfaces	[R37.Shroud]
		Туре	Wall
		Allow Per- Surface Values	false
		Topology	SURFACE
		Tags	
	-1 Physics Conditions	_	
	+-1 Reference Frame	Option	Local Reference Frame
Specification	+-2 Shear Stress	Method	No-Slip
Specification			

+-3 Tangential Velocity Specification	Method	Fixed
+-4 Thermal	Condition	Adiabatic
Specification	Method	None
Coefficient Specification	Circumferential	false
Averaging Option	Averaging of Energy	
^-7 Wall Surface	Method	Smooth
Specification		
+-1 Blended Wall Function	E	9.0
-2 Boundary Reference	Kappa Reference	0.42 Lab Reference Frame
Frame Specification +-2 Physics Conditions	Frame	
+-1 Energy Source Option	Energy Source	None
+-2 Initial Condition Option	Option Option	Use Continuum Values
+-3 Mass Source Option	Mass Source Option	false
+-4 Momentum Source	Momentum	None
Option +-5 Motion Specification	Source Option Option	Motion Specification
Option Uption Option Op	Turbulence	None
Option -3 Physics Values	Source Option	
-1 Motion Specification	Motion	Stationary
	Reference Frame	Rotating
+-4 Representations +-1 Latest Surface/Volume	Representation	Volume Mesh
+-2 Geometry	Tags	0
+-1 Rotor Mesh copy.Remesh	Tags Tags	
`-2 Latest Surface `-3 Volume Mesh	Tags Cells	[] 1534517
	Interior Faces Vertices	8289147 6263553
	Tags	0
+-1 Finite Volume Regions	Cells	1534517
	Interior Faces Vertices	8289147 6263553
	Edges	0
Boundaries	-	40000
+-1 R37.Blade_Extrados +-2 R37.Blade_Intrados	Faces	19869 19826
+-3 R37.Hub +-4 R37.Inlet	Faces Faces	6690 4067
+-5 R37.Outlet +-6 R37.Per1	Faces Faces	2864 0
+-7 R37.Per1 [Interface	Faces	97320
1] +-8 R37.Per2	Faces	0
+-9 R37.Per2 [Interface 1]	Faces	97320
-10 R37.Shroud	Faces	11997
+-5 Contacts +-6 Parts		
+-1 Extrados	Metadata	0
	Index Color	5 java.awt.Color[r=112,g=128,b=144]
	Is Shell Region	false
	Contacts	0
	Descriptions Face Count	[Root] 6966
+-1 Surfaces	Tags	0
`-1 Blade_Extrados	Index Metadata	29 {}
	Boundary	0
	Color Tags	java.awt.Color[r=112,g=128,b=144]
`-2 Curves +-1 Default	Index	11
+-2 Leading_edge	Tags Index	D 13
	Tags	0
`-3 Trailing_edge	Index Tags	12 0
+-2 Intrados	Metadata Index	0 6
	Color	java.awt.Color[r=112,g=128,b=144]
	Is Shell Region	false
	Contacts Descriptions	[] [Root]
	Face Count Tags	9648 I
+-1 Surfaces	_	-
`-1 Blade_Intrados	Index	30

		Metadata	0
i i		Boundary	
	1		[] inverse out Calaria 112 a 120 h 144]
		Color	java.awt.Color[r=112,g=128,b=144]
		Tags	
	-2 Curves		
	+-1 Default	Index	16
		Tags	0
	+-2 Leading_edge	Index	15
i i	0_ 0	Tags	0
i i	-3 Trailing_edge	Index	14
	o maning_eage		
	0. 507	Tags	D
	-3 R37	Metadata	{}
		Index	4
		Color	java.awt.Color[r=112,g=128,b=144]
		Is Shell	false
		Region	[R37_SI]
i	i	Contacts	
i		Descriptions	Root, Rotor Mesh copy.Remesh]
i i	1		
		Face Count	29504
		Tags	0
	+-1 Surfaces		
	+-1 Blade_Extrados	Index	28
		Metadata	0
		Boundary	[R37_SI: R37.Blade_Extrados]
i i		Color	java.awt.Color[r=135,g=206,b=250]
i i			
		Tags	
	+-2 Blade_Intrados	Index	27
		Metadata	0
		Boundary	[R37_SI: R37.Blade_Intrados]
		Color	java.awt.Color[r=135,g=206,b=250]
		Tags	
	+-3 Hub	Index	25
i		Metadata	{} {}
i i			
		Boundary	[R37_SI: R37.Hub]
		Color	java.awt.Color[r=135,g=206,b=250]
		Tags	0
	+-4 Inlet	Index	24
i		Metadata	8
i	i i	Boundary	[R37_SI: R37.Inlet]
		Color	java.awt.Color[r=135,g=206,b=250]
		Tags	
	+-5 Outlet	Index	22
		Metadata	0
		Boundary	[R37_SI: R37.Outlet]
		Color	java.awt.Color[r=135,g=206,b=250]
i	i i	Tags	
i i	+-6 Per1	Index	21
		Metadata	
		Boundary	[R37_SI: R37.Per1]
		Color	java.awt.Color[r=135,g=206,b=250]
		Tags	0
	+-7 Per2	Index	20
		Metadata	0
i	i i	Boundary	[R37_SI: R37.Per2]
i i		Color	java.awt.Color[r=135,g=206,b=250]
i i			
		Tags	
	-8 Shroud	Index	23
		Metadata	0
		Boundary	[R37_SI: R37.Shroud]
		Color	java.awt.Color[r=135,g=206,b=250]
i	i	Tags	
	-2 Curves	lugo	U .
		Indays	
	+-1 Default	Index	4
		Tags	0
	+-2 Leading_edge	Index	10
		Tags	0
	+-3 Per1_Hub	Index	7
		Tags	0
	+-4 Per1_Shroud	Index	8
i		Tags	
	+-5 Per2_Hub	Index	5
	Ferz_nus		
		Tags	
	+-6 Per2_Shroud	Index	6
		Tags	0
	-7 Trailing_edge	Index	9
i		Tags	0
+-7	3D-CAD Models		
	-1 3D-CAD Model 1	Distinguish	High Contrast Color Palette
	-1 3D-CAD Model 1	Bodies Color	
		Palette	
		Part Update	UPDATE_GEOMETRY
		Method	
		Tags	0
	+-1 Body Groups		
	+-1 Blade	Name	Blade
		Color	java.awt.Color[r=128,g=128,b=128]
		Opacity	
	1 1	Display	VERY_COARSE
		Resolution	
		Tags	0
	`-2 R37	Name	R37
İ		Color	java.awt.Color[r=128,g=128,b=128]
i		Opacity	1.0
		Display	
I	1		VERY_COARSE
I	I	Resolution	
		Tags	0
	+-2 Features		

	+-1	XY	Error Message	
			Origin	[0.0, 0.0, 0.0] m
			X-Axis	
			Y-Axis	[0.0, 1.0, 0.0]
	 +-2	V7	Tags Error Message	0
		12	Origin	[0.0, 0.0, 0.0] m
			X-Axis	[0.0, 1.0, 0.0]
	i i		Y-Axis	[0.0, 0.0, 1.0]
	ii		Tags	
	+-3	ZX	Error Message	
İ	İ I		Origin	[0.0, 0.0, 0.0] m
			X-Axis	[0.0, 0.0, 1.0]
			Y-Axis	[1.0, 0.0, 0.0]
			Tags	0
	+-4	Global Origin	Error Message	
			Position	[0.0, 0.0, 0.0]
		Lab Coordinate System	Tags Error Message	0
	+=3	Lab Coordinate System	Origin	[0.0, 0.0, 0.0]
				[1.0, 0.0, 0.0]
i i	ii			[0.0, 1.0, 0.0]
i	ii		Tags	
		Importa alabe	Tags	Ö
	+	-1 Sketch3D 1	Error Message	
			Coordinate	Laboratory
			System	
			Tags	0
		-2 Sketch3D 2	Error Message	Laboratory (
			Coordinate System	Laboratory
			Tags	0
	+	-3 Sketch3D 3	Error Message	u
	i i i		Coordinate	Laboratory
			System	
			Tags	0
	+	-4 Sketch3D 4	Error Message	
			Coordinate	Laboratory
			System	
			Tags	0
	+	-5 Sketch3D 5	Error Message	
1			Coordinate	Laboratory
1			System Tags	0
	 +	- 6 Sketch3D 6	Error Message	
			Coordinate	Laboratory
1			System	Labolatory
			Tags	0
	+	-7 Sketch3D 7	Error Message	
			Coordinate	Laboratory
			System	
			Tags	0
	+	-8 Sketch3D 8	Error Message	
I			Coordinate System	Laboratory
1			Tags	0
	+	-9 Sketch3D 9	Error Message	U
i i	ίίι		Coordinate	Laboratory
			System	
			Tags	0
	+	-10 Sketch3D 10	Error Message	
			Coordinate	Laboratory
			System	Π
		-11 Sketch3D 11	Tags Error Message	0
			Coordinate	Laboratory
1			System	
			Tags	0
	+	-12 Sketch3D 12	Error Message	
			Coordinate	Laboratory
			System	
		10 Chataboo 40	Tags	0
		-13 Sketch3D 13	Error Message	
			Coordinate	Laboratory
1			System Tags	Π
	· · · ·	-14 Sketch3D 14	Error Message	0
			Coordinate	Laboratory
			System	
			Tags	0
	+	-15 Sketch3D 15	Error Message	
			Coordinate	Laboratory
			System	
		16 Chatabab 40	Tags	0
		-16 Sketch3D 16	Error Message	Laboratory (
			Coordinate	Laboratory
			System Tags	Π
		-17 Sketch3D 17	Tags Error Message	0
			Coordinate	Laboratory
1			System	
			Tags	0
	+	-18 Sketch3D 18	Error Message	
			Coordinate	Laboratory
			System	
			Tags	0
	+	-19 Sketch3D 19	Error Message	

			Coordinate System	Laboratory
			Tags	0
	+-20	Sketch3D 20	Error Message	
			Coordinate	Laboratory
			System Tags	0
	+-21	Sketch3D 21	Error Message	
			Coordinate	Laboratory
			System	
	+-22	Sketch3D 22	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-23	Sketch3D 23	Tags Error Message	0
			Coordinate	Laboratory
			System	
		Sketch3D 24	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-25	Sketch3D 25	Tags Error Message	
			Coordinate	Laboratory
			System	
	+-26	Sketch3D 26	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-27	Sketch3D 27	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-28	Sketch3D 28	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-29	Sketch3D 29	Tags Error Message	
			Coordinate	Laboratory
			System	
	+-3(Sketch3D 30	Tags Error Message	0
			Coordinate	Laboratory
			System	
	+-3:	Sketch3D 31	Tags Error Message	
			Coordinate	Laboratory
			System	
	+-32	2 Sketch3D 32	Tags Error Message	0
	İ		Coordinate	Laboratory
			System Tags	0
	+-33	Sketch3D 33	Error Message	
			Coordinate System	Laboratory
			Tags	0
	+-34	Sketch3D 34	Error Message	
			Coordinate System	Laboratory
			Tags	0
	+-35	5 Sketch3D 35	Error Message	
			Coordinate System	Laboratory
			Tags	0
	+-36	Sketch3D 36	Error Message	
			Coordinate System	Laboratory
			Tags	0
	+-37	Sketch3D 37	Error Message Coordinate	Laboratory
	1 1		System	
		Ckatabab co	Tags	0
	+-38	Sketch3D 38	Error Message Coordinate	Laboratory
	1 1		System	
		ChatabaD 20	Tags	
	+-3	Sketch3D 39	Error Message Coordinate	Laboratory
			System	
	+ 40	Sketch3D 40	Tags	0
	+-40	Skelch3D 40	Error Message Coordinate	Laboratory
			System	
	 +- <i>A</i> *	Sketch3D 41	Tags Error Message	0
			Coordinate	Laboratory
			System	
	 +-4'	Sketch3D 42	Tags Error Message	0
		Shotohob 42	Coordinate	Laboratory
			System	
	+-∆*	Sketch3D 43	Tags Error Message	
			Coordinate	Laboratory
1 1	1 1		System	
			Tags	0

	·	+ - 11	Sketch3D 44	Error Moccogo	
	1			Error Message Coordinate	Laboratory
1 1	1	1		System	Laboratory
I I	1	1		Tags	0
	1	+-45	Sketch3D 45	Error Message	u
	ł		Sketchibb 45	Coordinate	Laboratory
1 1	1	1		System	Labolatory
I I	1	1		Tags	0
1 1	i.	+-46	Sketch3D 46	Error Message	u
i i	i i			Coordinate	Laboratory
				System	
				Tags	0
	·	+-47	Sketch3D 47	Error Message	
i i	i i			Coordinate	Laboratory
				System	
				Tags	0
	·	+-48	Sketch3D 48	Error Message	
				Coordinate	Laboratory
				System	
			01 1 1 05 10	Tags	0
	1	+-49	Sketch3D 49	Error Message	
	1			Coordinate	Laboratory
	1	1		System Tags	
	1	1 +-50	Sketch3D 50	Error Message	0
	ł	1	Sketchibb 50	Coordinate	Laboratory
1 1	1	1		System	Laboratory
I I	1	1		Tags	0
	i -	+-51	Sketch3D 51	Error Message	u
j i	i i			Coordinate	Laboratory
				System	
				Tags	0
		+-52	Sketch3D 52	Error Message	
I İ				Coordinate	Laboratory
				System	
				Tags	0
	·	+-53	Sketch3D 53	Error Message	
				Coordinate	Laboratory
				System	
	1			Tags	0
	1	+-54	Sketch3D 54	Error Message	
	1			Coordinate System	Laboratory
I I	1	1		Tags	0
	1	+-55		Error Message	u
	i i			Trim Guide	true
				Curves	
				Closed	false
i i	İ.	İ		Alignment Type	KeepParameterization
				Start Contact	None
				Туре	
				End Contact	None
				Туре	
				Remove	DeleteEdges
				Redundancies	
				Body Type	Sheet
	<u>.</u>			Body Interaction	
	1			Interacting	All
	1	1		Bodies Tags	
	1	+-56		Error Message	0
1	i i			Trim Guide	true
				Curves	
	1			Closed	false
				Alignment Type	KeepParameterization
				Start Contact	None
				Туре	
				End Contact	None
				Туре	
				Remove	DeleteEdges
				Redundancies	Shoot
	1			Body Type Body Interaction	Sheet Merce
	1	1		Interacting	All
	1			Bodies	FM
				Tags	0
	1	+-57	Fill Surface 1	Error Message	u
i i	i i	1		Set Tangency at	false
				all Edges	
				Tolerance	1.0E-6 m
				Tags	0
		+-58	Fill Surface 2	Error Message	
				Set Tangency at	false
				all Edges	
				Tolerance	1.0E-6 m
		1		Tags Error Mossago	0
	ŀ	- 59		Error Message	10E 6 m
i I	I			Sewing Tolerance	1.0E-6 m
				Attempt to Form	true
. 1	1			Solid	
				Sew Bodies	false
				Independently	
				Tags	0
	+ - '	7 Ske		Error Message	
	1		value 1	Tags	0
	+-:	ة Re		Error Message	Clustel
	1			Input Type	Sketch
				Sketch	Sketch 1

			DirectionAxis	[0.0, 0.0, 1.0] m,m,m
i i	i		DirectionAxis	[0.0, 0.0, 0.0] m,m,m
i i	i		Direction	Normal
				TwoWaySymmetric
			Angle	50.0 deg
			Asymmetric	90.0 deg
1 1	1		Angle	solo deg
I I	1		Axis Type	Specified
			Body Type	Sheet
			Body Interaction	
			Bodies to	All
1 1	1		Interact	All
I I	1		Tags	n
	- 0 C	ketch3D 55	Error Message	0
	1-5 2	Retchibe 35	Coordinate	Laboratory
1 1	1		System	Laboratory
I I	1		Tags	0
	+-10	Sketch3D 56	Error Message	u
	1		Coordinate	Laboratory
	1		System	Labolatory
I I	1		Tags	0
i i	+-11	DeleteBody 1	Error Message	
i i	1	2	Delete Mode	Manual
i i	i		Solids	None
i i	i		Minimum	0.001 m^3
	1		Volume	
	1		Maximum	0.002 m^3
			Volume	
			Sheets	None
			Minimum Area	0.001 m^2
			Maximum Area	0.002 m^2
			Tags	0
	+-12	Loft 3	Error Message	
ı i			Trim Guide	true
			Curves	
			Closed	false
			Alignment Type	KeepParameterization
			Start Contact	None
			Туре	
			End Contact	None
			Туре	
			Remove	DeleteEdges
			Redundancies	
			Body Type	Sheet
			Body Interaction	
			Interacting	All
			Bodies	
			Tags	0
	+-13	RotateBody 1	Error Message	
			Axis Type	Specified
			Axis Direction	[0.0, 0.0, 1.0] m,m,m
			Axis Position	[0.0, 0.0, 0.0] m,m,m
			Angle	5.0 deg
			Action	Сору
			Body Group	false
			Tags	0
	+-14	RotateBody 2	Error Message	
			Axis Type	Specified
			Axis Direction	[0.0, 0.0, 1.0] m,m,m
			Axis Position	[0.0, 0.0, 0.0] m,m,m
			Angle	-5.0 deg
			Action	Rotate
ļ ļ	1		Body Group	false
		Describe D	Tags	0
	+-15	Revolve 2	Error Message	
			Input Type	Edges
			Sketch	
			DirectionAxis	[0.0, 0.0, 1.0] m,m,m
			DirectionAxis	[0.0, 0.0, 0.0] m,m,m
			Direction	Normal
			Revolve Options	
			Angle	-10.0 deg
			Asymmetric	90.0 deg
			Angle	Spacified
			Axis Type	Specified
			Body Type	Sheet
			Body Interaction	
	1		Bodies to	All
			Interact	n
	+.16	SewSheetBodies 2	Tags Error Mossago	0
	TO	Semanceldoules 2	Error Message	1056m
1	1		Sewing	1.0E-6 m
I			Tolerance	true
			Tolerance Attempt to Form	true
			Tolerance Attempt to Form Solid	
	 		Tolerance Attempt to Form Solid Sew Bodies	true false
			Tolerance Attempt to Form Solid Sew Bodies Independently	false
		ScaleBody 1	Tolerance Attempt to Form Solid Sew Bodies Independently Tags	
		ScaleBody 1	Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message	false
		ScaleBody 1	Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all	false
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions	false
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly	false [true
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly X	false I U U U U U U U U U U U U U U U U U U
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly X Y	false
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly X	false
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly X X Y Z Action	false [] true 0.001 0.001 0.001 0.001 Scale
			Tolerance Attempt to Form Solid Sew Bodies Independently Tags Error Message Scale all Dimensions Uniformly X Y Z	false

<pre> i</pre>	L		
Notes Notes Notes Notes Notes Notes <td< th=""><th>+-18 SubtractBodies 1</th><th>Error Message</th><th></th></td<>	+-18 SubtractBodies 1	Error Message	
I I Implete Marce I I Implete Marce I I Implete Marce I I Implete Marce I Implete Marce Marce Implete Marce Marce Marce Implete			
I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I I Prediction lyse Prediction lyse I Prediction lyse Prediction lyse Prediction lyse I Prediction lyse Prediction lyse Prediction lyse I Prediction lyse Prediction lyse Prediction lyse I			false
Image: Province of the second secon			
Image: Section of the sectio			
I			true
Image: App of the second of the sec			true
Autom Bartice Borgoop I 10 Trickentoois 1 Error Massao Borgoop I 10 Trickentoois 2 Error Massao Incom I 10 Trickentoois 2 Incom Incom I 10 Trickentois 2 Incom Incom	1 1 1		
Image: Proceedings of the process			false
I I 10 Trackentodies 1 Trackentodies 2 Trackentodies 2 I I 10 Trackentodies 2 Trackentodies 2 I I 10 Trackentodies 2 Trackentodies 2 I I 10 Trackentodies 2 Trackentodies 2 I I 10 10 Trackentodies 2 I I 10 10 I I 10			
Image: Proceedings 1 Prof Metages 2 Image: Prof Metages 2 Prof Metages 2 Im			
I - 30 TrickenBodie 2 Prototion Prototion I - 30 TrickenBodie 2 Image 1 Image 1 I - 30 TrickenBodie 2 TrickenBodie 2 Image 1 I - 31 ScaleBody 2 TrickenBodie 2 Image 1 I - 31 ScaleBody 2 TrickenBodie 2 Image 1 I - 3 Dotign Filmers Image 1 Image 1 I - 3 Dotign Filmers Image 1 Image 1 I - 3 Dotign Filmers Image 1 Image 1 I - 3 Dotign Filmers Image 1 Image 1 I - 3 Dotign Filmers Image 1 Image 1 I - 1 Dotign Filmers Image 1 Image 1 I - 1 Dotign Filmers Image 1 Image 1 I - 1 Dotign Filmers Image 1 Image 1 I - 1 Dotign Filmers Image 1 Image 1 I - 1 Dotign Filmers Image 1 Image 1 I - 1 Polyters Image 1 Image 1 Image 1	+-19 ThickenBodies 1		
1 20 Trickness 0.025 m. 2 20 Trickness 0.025 m. 1 20 Satebory 0.025 m. 1 20 Satebory 0.025 m. 1 20 Satebory 0.025 m. 1 20 m. 20 m. 0.01 2 Doragi Flaza Task 0.01 2 Doragi Flaza Task 0.01 2 Doragi Flaza Task 0.02 2 Doragi Flaza Task 0.02 2 Doragi Flaza Task 0.02 2 Doragi Flaza Task Pacinital 3 Doragi Flaza Task Pacinital 4 Doragi Flaza Task Pacinital 4 Doragi Flaza Pacinital Pacinital			FrontSide
Image: Provide for the section of the sectin of the section of the sectin of the section of the section of th	i ii		
 30 TuckonBodie 2 Find Ansage - Dutckon -20 ScaleBody 2 -2 ScaleBody 2 -2 ScaleBody 2 -2 ScaleBody 2 -2 ScaleBody 2 -3 ScaleBody 2 -4 Majors 1 -4 Majors 1 -4 Majors 1 -4 Majors 1 -4 Prior Layer Master -5 Order Mathematics -5 Order Mathematics -5 Order Mathematics -6 Order Mathematics -7 Majors 1 -7 Majors 1 -8 Majors 1 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point Flors 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2 -9 Point 2<		Tolerance	
- 1 Medine Profitsion - 2.1 Scale Bloy 2 Control Message - 3 Draign Flats Traffic Message - 3 Draign Flats Traffic Message - 3 Draign Flats Traffic Message - 4 Draign Flats Traffic Message - 5 Draign Flats Traffic Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Draign Flats Face Message - 7 Profits Face Message - 7 Profits Face Message - 7 Profi			0
Image: Product of the section of t	+-20 InickenBodies 2		Front Olda
Image series Teamson 10: F/m Image series Teamson 2000 Image series Teamson 2000 <t< th=""><th></th><th></th><th></th></t<>			
Image: Proceedings of the second s			
Image: Processing in the state in the st			
Image: Superson	Contraction 2 Co		
utational Utational 100			true
Image: space of the s			
1			10.0
- 2 0.0 - 3 Design Filters - 4 Design Filters - 5 Design Filters - 7 Roter Mesh copy Mailing Mailing Mailing Parallel - 7 Roter Mesh copy Mailing Mailing Mailing Parallel - 8 Parallel Parallel - 10 Mainers None - 10 Mainers None - 10 Mainers None - 10 Mainers None - 10 Mainers Mainers - 10 Mainers Mainers <t< th=""><th></th><th>Y</th><th>10.0</th></t<>		Y	10.0
Body Group Table - 2 Design Planements - 2 Design Planements - 3 Design Planements - 2 Design Planements - 4 Design Planements - 2 Design Planements - 5 Design Planements - 2 Design Planements - 1 Design Planements - 2 Design Planements - 2 Design Planements Par Part - 2 Design Planements Part Part - 2 Design Planements Part Part - 2 Design Planements Part Part Part - 2 Design Planements Part Part Part Part Part Part Part Part		Z	10.0
-1.3 Design Filters -2.3 Design Filters -2.3 Rotor Mesh copy -3.4 Design Filters -3.5 Rotor Mesh copy Meshing Parallel Meshing			
	+-3 Design Filters	lays	U
i i <th>+-8 Operations</th> <th></th> <th></th>	+-8 Operations		
Image: Provide and Provide And Prov	│ `-1 Rotor Mesh copy		false
I Imput Parts Partorn Local Pase I Pase Pase Pase Pase Pase			Parallal
input Parts Fa37 Perform Local False Meshing Preserve None Description Preserve None Description Tage Image Image Image Imagee			
I Perform Local fiele Meshing None Preserve None Perform Perform Vertose Output false I			[R37]
Image: Preserve Surface Permeters None Surface Permeters Perform Image: Perform Trage Image: Perform Trage Image: Perform Truge Perform None Surface Repair Orde Surface Count		Perform Local	
Image: surface surfac			
Perimeters Verbase Output Perimeters I 1. Meshers Weshing Method Triangle I 1. Meshers Meshing Method Durnature Triangle 1. Meshers Meshing Method Triangle 1. Meshers True			None
Image: Proceedings Previous Output Inside Image: Proceedings Image: Proceedings Image: Proceedings Meshing Method Image: Proceedings Trangle Image: Proceedings Proceedings			
+-1 Meshing Method Triangle +<1 Surface Remesher Meshing Method Triangle - Felrom true Curvature Relinement Perform False Compatbility Relinement Perform Relinement Compatbility False Compatbility Relinement Create Aligned I Minimum Face 0.05 Quality Fald Function Ince I +-2 Automatic Surface Repair Connected Surface Size Surface Court Imit Connected Minimum Face 0.05 Quality I +-2 Automatic Surface Repair Connected Minimum Face 0.05 Quality I Imit Connected None Surface Size Limit (5) Imit I Polyhedral Mesher Field Function Mesh Refinement) Perform Stretching Geometric Progression I +-3 Polyhedral Controls			false
Image: Product of the second of the secon		Tags	0
Image: Surface Repair Perform rue Image: Surface Repair Perform rue Image: Surface Repair Craate Aligned rue Image: Surface Repair Connected None Image: Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected None Image: Surface Surface Repair Connected Surface Surface Image: Surface Surface Repair Field Function Geometric Progression Image: Surface Surface Surface Surface Surface Surface Surface		Machine Mathed	Trianela
Curvature Refinement Curvature Refinement true Perform true Proximity Refinement Perform false Compatibility Refinement Perform false Compatibility Refinement Meshes 0.05 Quality 0.05 Quality Immon Perform Field Function Refinement Refinement Visition Connected Surface State None Unit Connected Surface State None Quality Field Function Partice Surface State Quality Field Function Mesh Refinement Partice Quality Imit Refinement Run Post Meshe Field Function Mesh Refinement Partice Stetching Geometric Progression Imit Polyhedral Mesher Field Function Partice Base Stree Stetching Imit Destribution Stetching Paret Sturedo Stetching			-
Image: Signal			
Image: Section of the sectin the sectin the secting of the secting of the sectin			
Refinement False Image: Compatibility Refinement Refin			true
Image: State Size Size Size Size Size Size Size Siz			
Image: state of the state			false
I I Create Aligned Minimum Face Quality I.ue I I Quality Field Function Based I.ue I I Enement Connected Umit None I I Connected Connected Umit None I I Connected Connected Umit None I I Connected Connected Umit None I I One Second Connected None I I One Second Umit Inimum Face Connected O.S I I Minimum Face Umit O.S Inimum Face Connected Inimum Face Connected I I Minimum Face Umit O.S Inimum Face Connected Inimum Face Connected Inimum Face Connected I I Minimum Face Umit O.S Inimum Face Connected			
Meshes		Refinement	
Image: Strate			true
I I Field Function [] I I Field Function [] I I			0.05
Image: Surface Surface Repair Connected Refinement None Image: Surface Surface Count Limit None Image: Surface Surface Size Limit(s) None Image: Surface Size Limit(s) None Image: Surface Size Limit(s) 0.05 Image: Surface Size Limit(s) Field Function Mesh Refinement] Image: Surface Size Limit(s) Surface Size Limit(s) Image: Surface Size Limit(s) Field Function Mesh Refinement] Image: Size Size Size Size Size Size Size Size			
based Refinement None I +-2 Automatic Surface Repai None Surface Count Limit Connected Surface Size None I I Connected Surface Size None I I Connected Surface Size None I I Connected Surface Size None I I Minimum Face Quality 0.05 Quality Field Function Based Field Function Mesh Refinement] I I Refinement Refinement Refinement Runpost Mesher Stretching Geometric Progression Function I I Base Size I I Size Type I I Absolute Size I I Absolute Size I I I I I I I I I I I I I I I I I I I I I I		Field Function	0
+-2 Automatic Surface Repair Connected None Surface Count Emit None Limit Connected None Surface Size Surface Size None Limit(s) Gonnected None Minimum Face 0.05 Quality Field Function Field Function Refinement Refinement Refinement Run Post Mesh Geometric Progression Purction Stretch Factor Mode Stretch Stretch Factor +-2 CAD Projection Project to CAD +-3 Target Surface Size Sige Size Sime Size Sige Side Size Size Type Absolute Size ++4 Minimum Surface Size Size Type Relative to base Percentage of Base Absolute Size 1.7999999999999998E-4 m +-5 <th></th> <th></th> <th></th>			
Image: Surface Count Limit Image: Surface Size None Image: Surface Size None Image: Surface Size O.5 Quality O.5 Quality Field Function Assed Field Function Assed Refinement Run Post Mesh Field Function Mesh Refinement] Data Ann Post Mesh Image: Surface Curvature Stretching Geometric Progression Function Distribution Stretch Factor Mode Mode Image: Size Stretch Factor Mode Base Size Image: Size Size Stretch Factor Image: Size Size Stretch Pacesize} Image: Size Size Size Size Size Stretch Pacesize} Image: Size Size Size Size Size Size Size Size	+-2 Automatic Surface Pope		None
Imit Imit Imit Imit Connected Surface Size Imit Imit Surface Size Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit Imit <td< th=""><th></th><th></th><th></th></td<>			
Surface Size Surface Size I I I O.05 Quality Field Function Based Refinement Refinement Field Function Name Polyhedral Mesher Field Function V -4 Prism Layer Mesher Stretching V -4 Stretching Geometric Progression V -4 -4 Stret Pisce		Limit	
Limit(s) Limit(s) 0.05 Minimum Face 0.05 Quality Field Function Status Field Function Name Refinement Run Post Mesh rue Optimizer Geometric Progression Function Stretching Function Stretch Factor Mode Stretch Factor Mode Stretch Factor H + -1 Base Size Base Size \${Mesh_basesize}} H + -2 Default Controls Stretch True H + -3 Target Surface Size Size Type Absolute H + -3 Target Surface Size Size Type Absolute H + -4 Minimum Surface Size \${Mesh_targetsurface} Size Type Relative to base Absolute H + -4 Minimum Surface Size \${Kesh_targetsurface} 10.0 Base Size Type Relative to base 10.0 <t< th=""><th></th><th></th><th>None</th></t<>			None
Minimum Face Quality 0.05 I +-3 Polyhedral Mesher Field Function Based Refinement [Field Function Mesh Refinement] Refinement Run Post Mesh Optimizer true Optimizer Geometric Progression Distribution Stretching Function Geometric Progression I +-2 Default Controls Stretch Factor I +-2 Default Controls Stretch pasesize} I +-2 CAD Projection Project to CAD Project to CAD I +-3 Target Surface Size Size Type Absolute I +-4 Minimum Surface Size \$(Mesh_targetsurface) I +-4 Minimum Surface Size \$(Mesh_targetsurface) I +-5 Surface Curvature 1.0999999999988E-4 m			
Quality [Field Function based Refinement] Field Function based Refinement [Field Function Mesh Refinement] Refinement Run Post Mesh Optimizer Optimizer Geometric Progression Distribution Mode Stretching Function Distribution Mesh Percentage of Projection +-2 Default Controls Stretch Factor +-2 Default Controls Stretch Strets +-2 CAD Projection Project to CAD +-3 Target Surface Size Size Type Absolute Size Size Type Absolute Size Size Type Refinement Absolute Size I +-4 Minimum Surface Size Size Type Refinement Refinement I +-5 Surface Curvature Label ture			0.05
+-3 Polyhedral Mesher Field Function based Refinement] -4 Prism Layer Mesher Field Function Distribution Base Size -4 Prism Layer Mesher Stretching Geometric Progression +-2 Default Controls Stretch Factor +-2 Default Controls Stretch Factor +-2 CAD Projection Project to CAD +-2 CAD Projection Project to CAD +-3 Target Surface Size Size Type Absolute Size Type Absolute +-4 Minimum Surface Size Size Type Percentage of Base Size Type Relative to base Percentage of Base Size Type Size Type Absolute Size 1.7999999999999988E-4 m		Quality	
Refinement Run Post Mesh true Optimizer Optimizer I '-4 Prism Layer Mesher Stretching Function Edemetric Progression Function Stretch Factor Node Mode +-2 Default Controls Stretch Factor +-1 Base Size Base Size \${Mesh_basesize} I +-2 CAD Projection Project to CAD I +-3 Target Surface Size Size Type Absolute Size \${Mesh_targetsurface} I +-4 Minimum Surface Size \${Mesh_targetsurface} I +-4 Minimum Surface Size \${Intertor true Absolute Size \${Mesh_targetsurface} I I Absolute Size I I I I I I I I I I I I <tr< th=""><th> +-3 Polyhedral Mesher</th><th>Field Function</th><th>[Field Function Mesh Refinement]</th></tr<>	+-3 Polyhedral Mesher	Field Function	[Field Function Mesh Refinement]
Run Post Mesh Optimizer true Prism Layer Mesher Stretching Function Geometric Progression Distribution Mode Stretch Factor +-2 Default Controls Stretch Factor +-1 Base Size Base Size \${Mesh_basesize} +-2 CAD Projection Project to CAD true +-3 Target Surface Size Size Type Absolute Percentage of Base 66.6666666666666666666666666666666666			
Optimizer Optimizer I -4 Prism Layer Mesher Stretching Function Geometric Progression I Distribution Mode Stretch Factor I +-2 Default Controls Stretch Factor I +-1 Base Size Base Size \${Mesh_basesize} I I Base Size \${Mesh_basesize} I I Base Size \${Mesh_basesize} I I Base Size \${Mesh_basesize} I I Projection Project to CAD I I -3 Target Surface Size Size Type Absolute Percentage of Base 66.6666666666666666666666666666666666			true
Image: Prism Layer Mesher Stretching Geometric Progression Image: Prism Layer Mesher Function Stretch Factor Image: Prism Layer Mesher Distribution Stretch Factor Image: Prism Layer Mesher Mode Stretch Factor Image: Prism Layer Mesher Base Size \${Mesh_basesize} Image: Prism Layer Mesher Prism Layer Mesher \${Mesh_basesize} Image: Prism Layer Mesher Prism Layer Mesher \${Mesh_basesize} Image: Prism Layer Mesher Size Type Absolute Image: Prism Layer Mesher Prism Layer Mesher \${Mesh_basesize} Image: Prism Layer Mesher Size Type Relative to base Image: Prism Layer Mesher Size Type Relative to base Image: Prism Layer Mesher Prism Layer Mesher 1.0.0 Image: Prism Layer Mesher Absolute Size 1.799999999999999998E-4 m <td< th=""><th></th><th></th><th></th></td<>			
Function Distribution Mode Stretch Factor +-2 Default Controls *-2 Default Controls +-1 Base Size Base Size \${Mesh_basesize} +-1 CAD Projection Project to CAD true +-3 Target Surface Size Size Type Absolute +-3 Target Surface Size Size Type 66.6666666666666666666666666666666666	-4 Prism Layer Mesher	Stretching	Geometric Progression
Mode Mode +-2 Default Controls #+-2 Default Controls +-1 Base Size Base Size \${Mesh_basesize} Base Size \${Mesh_basesize} +-2 CAD Projection Project to CAD true +-3 Target Surface Size Size Type Absolute Percentage of Base 66.6666666666666666666666666666666666			
+-2 Default Controls +-2 Default Controls +-1 Base Size Base Size \${Mesh_basesize} Base Size \${Mesh_basesize} H-2 CAD Projection Project to CAD H-3 Target Surface Size Size Type Absolute Size \${Mesh_targetsurface} H-4 Minimum Surface Size Size Type Relative to base Percentage of Base H-4 Surface Curvature Size Type H+-5 Surface Curvature Enable	1 1		Stretch Factor
+-1 Base Size Base Size \${Mesh_basesize} Base Size Size \${Mesh_basesize} +-2 CAD Projection Project to CAD true +-3 Target Surface Size Size Type Absolute Percentage of Base 66.6666666666666666666666666666666666	+-2 Default Controls	woue	
Image: Suppose to CAD Projection Base Size \$(Mesh_basesize) Image: H-2 CAD Projection Project to CAD true Image: H-3 Target Surface Size Size Type Absolute Image: H-4 Minimum Surface Size Size Type Relative to base Image: H-4 Minimum Surface Size Size Type Relative to base Image: H-4 Minimum Surface Size Size Type Relative to base Image: H-4 Minimum Surface Size Size Type Relative to base Image: H-4 Minimum Surface Size Size Type Relative to base Image: H-5 Surface Curvature Image: H-5 Surface Curvature Image: H-5 Surface Curvature Image: H-5 Surface Curvature		Base Size	\${Mesh basesize}
+-2 CAD Projection Project to CAD true +-3 Target Surface Size Size Type Absolute Percentage of Base 66.6666666666666666666666666666666666	i i l	Base Size	\${Mesh_basesize}
Percentage of Base 66.6666666666666666 Absolute Size Absolute Size +-4 Minimum Surface Size Size Type Percentage of Base Relative to base Percentage of Base No.0 Percentage of Base 1.00 Base No.0 Percentage of Base 1.79999999999998E-4 m +-5 Surface Curvature Enable true			true
Base Absolute Size \${Mesh_targetsurface} +-4 Minimum Surface Size Size Type Relative to base +-4 Minimum Surface Size Size Type Relative to base Percentage of Base 10.0 +-5 Surface Curvature Enable true	+-3 Target Surface Size		
Absolute Size \${Mesh_targetsurface} +-4 Minimum Surface Size Size Type Relative to base Percentage of Base 10.0 +-5 Surface Curvature 1.7999999999998E-4 m +-5 Surface Curvature true			/ 0000000000000/
+-4 Minimum Surface Size Size Type Relative to base Percentage of Base 10.0 Absolute Size 1.7999999999998E-4 m +-5 Surface Curvature Enable			\${Mesh targetsurface}
Percentage of Base 10.0 Absolute Size 1.799999999998E-4 m +-5 Surface Curvature Enable true	+-4 Minimum Surface Size		
Absolute Size 1.7999999999998E-4 m +-5 Surface Curvature Enable true		Percentage of	
+-5 Surface Curvature Enable true			
		Enable	uuc l
	+-5 Surface Curvature		
	+-5 Surrace Curvature		

		Deviation	
		Distance # Pts/circle	10.0
		Max # Pts/circle	35.0
	1	Curvature Deviation Distance	\${Mesh_basesize}
	+-6 Surface Proximity	Search Floor	0.0 m
		# Points in gap Enable Search	2.0 false
1 1	1	Ceiling	
			1.0E10 m
	+-7 Surface Growth Rate	Search Direction Surface Growth	
	1	Rate	
		User Specified Value	1.3
	+-8 Auto-Repair Minimum	Minimum	0.01
Proximity	+-9 Volume Growth Rate	Proximity Volume Growth	1.15
	+-10 Maximum Tet Size	Rate	
		Size Type Percentage of	Relative to base 10000.0
	I	Base Absolute Size	0.18 m
	+-11 Core Mesh Optimization	Optimization	1
	1	Cycles Quality	0.4
1 1	1	Threshold	0.4
	-12 Post Mesh Optimization	Optimize Boundary	false
		Vertices	
		Optimize Cell Topology	false
	3 Custom Controls		
	+-1 Blade Surface Control	Enable Control Controls Display	true All
		Mode	
		Part Surfaces Apply Only to	[R37.Blade_Extrados, R37.Blade_Intrados] false
1	1 1	Contacting Area	
	+-1 Controls	Tags	
	+-1 Target Surface Size	Target Surface Size	Custom
	+-2 Minimum Surface	Minimum	Parent
Size	+-3 Surface Curvature	Surface Size Curvature	Custom
	+-4 Surface Proximity	Proximity	Parent
	+-5 Edge Proximity	Proximity	Parent
Rate	+-6 Surface Growth	Surface Growth Rate	Parent
	+-7 Surface Remeshing	Surface Remeshing	Parent
	+-8 Meshing Method	Meshing Method	
	<pre> +-9 Prism Layers `-1 Customize</pre>	Prism Layers Customize	Custom true
I	1 1 1	Number of	
		Layers Customize Total	true
1		Thickness	
		Customize Distribution	true
		Override Boundary	false
		Defaults	
		Customize Minimum	false
		Thickness	
		Percentage Customize	false
		Boundary March Angle	
		Customize	false
		Concave Angle Limit	
		Customize	false
		Convex Angle Limit	
	`-10 Wake Refinement	Specify wake refinement	false
		options	
	 -2 Values +-1 Target Surface Size 	Size Type	Relative to base
		Percentage of	50.0
		Base Absolute Size	9.0E-4 m
Values	+-2 Custom Prism		
Values	+-1 Number of Prism		\${Mesh_numprismlayer}
Layers	+-2 Prism Layer	Layers Prism Layer	1.25
Stretching		Stretching	
Thickness	`-3 Prism Layer Total	Size Type	Relative to base
		Percentage of	20.0
		Base Absolute Size	3.599999999999997E-4 m
	-3 Surface Curvature	Enable	true
		Curvature	

		Deviation	
1 1		Distance	
		# Pts/circle Max # Pts/circle	20.0 30.0
İ I		Curvature Deviation	\${Mesh_basesize}/10000
+-	-2 Blade tip	Distance Enable Control	true
i I		Controls Display Mode	All
		Part Surfaces Apply Only to Contacting Area	[] false
		Tags	0
	+-1 Controls	_	
	+-1 Target Surface Size	Target Surface Size	Custom
	+-2 Minimum Surface	Minimum	Parent
Size	+-3 Surface Curvature	Surface Size Curvature	Parent
	+-4 Surface Proximity	Proximity	Parent
	+-5 Edge Proximity+-6 Surface Growth	Proximity Surface Growth	Parent Parent
Rate	+-7 Surface Remeshing	Rate Surface	Parent
		Remeshing	
	+-8 Meshing Method +-9 Prism Layers	Meshing Method Prism Layers	Parent Parent
	-10 Wake Refinement	Specify wake refinement	false
	-2 Values	options	
		Size Type	Relative to base
		Percentage of Base	25.0
	-3 Carcasa-Hub	Absolute Size	4.5E-4 m
		Enable Control Controls Display	All
	I	Mode Part Surfaces	[R37.Hub]
		Apply Only to	false
		Contacting Area Tags	0
	+-1 Controls	_	
	+-1 Target Surface Size	Target Surface Size	Custom
	+-2 Minimum Surface	Minimum	Parent
Size	+-3 Surface Curvature	Surface Size Curvature	Parent
	+-4 Surface Proximity	Proximity	Parent
	+-5 Edge Proximity +-6 Surface Growth	Proximity Surface Growth	Parent Parent
Rate	+-7 Surface Remeshing	Rate Surface	Parent
	+-8 Meshing Method	Remeshing Meshing Method	
	+-9 Prism Layers	Prism Layers	Parent
	-10 Wake Refinement	Specify wake refinement options	false
	`-2 Values `-1 Target Surface Size		
	-1 Target Surface Size	Percentage of Base	Relative to base 200.0
		Absolute Size	0.0036 m
	4 Carcasa-Shroud	Enable Control Controls Display	true All
		Mode Part Surfaces	[R37.Shroud]
	l	Apply Only to	false
	I	Contacting Area Tags	0
	+-1 Controls +-1 Target Surface Size	-	Custom
		Size	
Size	+-2 Minimum Surface	Minimum Surface Size	Parent
	+-3 Surface Curvature +-4 Surface Proximity	Curvature Proximity	Parent Parent
	+-5 Edge Proximity	Proximity	Parent
Rate	+-6 Surface Growth	Surface Growth Rate	Parent
	+-7 Surface Remeshing	Surface Remeshing	Parent
	+-8 Meshing Method	Meshing Method	
	+-9 Prism Layers	Prism Layers Specify wake	Parent false
1 1		refinement options	
	-2 Values		
	`-1 Target Surface Size	Size Type Percentage of	Relative to base 75.0
		Base	
	5 Curve Leading Edge	Absolute Size Enable Control	0.00135 m true
İ I		Controls Display	
	1	Mode Part Curves	[R37.Leading_edge]
		Tags	

	+-1 Controls		
İ	+-1 Target Surface Size		Custom
I	+-2 Minimum Surface	Size Minimum	Parent
Size	+-3 Anisotropic Surface	Surface Size Specify	false
Size		anisotropic surface size settings	
		Specify anisotropic mesh distribution between close Part Curves	false
I	`-4 Wake Refinement	Specify wake refinement options	false
	-2 Values	options	
	-1 Target Surface Size	Size Type Percentage of	Relative to base 3.0
		Base	
	+-6 Curve Trailing Edge		5.400000000005E-5 m true
İ		Controls Display	
		Mode Part Curves	[R37.Trailing edge]
	 +-1 Controls	Tags	
		Target Surface	Custom
		Size	
Size		Minimum Surface Size	Parent
Size	+-3 Anisotropic Surface	Specify anisotropic	false
0120		surface size	
		settings Specify	false
		anisotropic mesh	
		distribution between close	
	`-4 Wake Refinement	Part Curves Specify wake	false
I		refinement	
	-2 Values	options	
		Size Type	Relative to base
		Percentage of Base	3.0
I		Absolute Size	5.400000000005E-5 m
	-7 Periodic Control	Enable Control Controls Display	true All
		Mode	
		Part Surfaces Apply Only to	[R37.Per1, R37.Per2] false
1	I	Contacting Area Tags	п
	+-1 Controls		
	+-1 Target Surface Size	Target Surface Size	Custom
 Cizo	+-2 Minimum Surface	Minimum Surface Size	Parent
Size	+-3 Surface Curvature	Curvature	Parent
	+-4 Surface Proximity +-5 Edge Proximity	Proximity Proximity	Parent Parent
	+-6 Surface Growth	Surface Growth	Parent
Rate	+-7 Surface Remeshing	Rate Surface	Parent
1	+-8 Meshing Method	Remeshing Meshing Method	
	+-9 Prism Layers	Prism Layers	Disable
	`-10 Wake Refinement	Specify wake refinement	false
		options	
	-2 Values -1 Target Surface Size	Size Type	Relative to base
		Percentage of	35.0
I		Base Absolute Size	6.3E-4 m
+-9 D	Descriptions	Number of	4
+-1	Root	Children Described Parts	[R37, Extrados, Intrados]
+-2	Rotor Mesh copy.Remesh		[R37] 25 405 2
		Faces Vertices	354952 177476
+-3	Latest Surface	Described Parts Faces	[R37, Extrados, Intrados] 371566
		Vertices	186521
		Preview Mesh Operation Parts	false
	Latest Surface/Volume		[R37, Extrados, Intrados]
	Coordinate Systems Laboratory	Tags	0
	-1 Local Coordinate Systems		
Parametr	+-1 Cylindrical- rization	Radial Axis Input	[1.0, 0.0, 0.0]
I		Vector on R- Theta Plane	[0.0, 1.0, 0.0]
		Input	
I		Radial Axis Direction	[1.0, 0.0, 0.0]

	Tangential Axis Direction	[0.0, 1.0, 0.0]
	Axial Axis	[0.0, 0.0, 1.0]
	Direction Origin	[0.0, 0.0, 0.0] m,m,m
	Reference	Laboratory
	System Tags	
-1 Local Coordinate	Tays	0
Systems +-2 Isospan 10%	X Axis Input	[1.0, 0.0, 0.0]
	Vector on X-Y	[0.0, 0.0132, 0.010971]
	Plane Input	
		[1.0, 0.0, 0.0] [0.0, 0.7690515749340064, 0.6391867294394685]
		[0.0, -0.6391867294394685, 0.7690515749340064]
	Origin Reference	[0.18429, -0.021395, 4.6703E-4] m,m,m Laboratory
	System	
Local Coordinate	Tags	0
Systems	V Avia Input	
+-3 Isospan 50% 	X Axis Input Vector on X-Y	[1.0, 0.0, 0.0] [0.0, 0.019162, 0.013261]
	Plane Input	
	X Axis Direction Y Axis Direction	[1.0, 0.0, 0.0] [0.0, 0.8222925944991922, 0.5690649251463202]
		[0.0, -0.5690649251463202, 0.8222925944991922]
	Origin Reference	[0.21459, -0.023181, 0.0028962] m,m,m Laboratory
	System	
-1 Local Coordinate	Tags	0
Systems	V Avia Innut	
- 4 Isospan 90%	X Axis Input Vector on X-Y	[1.0, 0.0, 0.0] [0.0, 0.017118, 0.0097611]
	Plane Input	
	X Axis Direction Y Axis Direction	[1.0, 0.0, 0.0] [0.0, 0.8686934205953355, 0.49535011962689146]
		[0.0, -0.49535011962689146, 0.8686934205953355]
	Origin Reference	[0.24402, -0.024331, 0.0054204] m,m,m Laboratory
	System	
-1 Local Coordinate	Tags	0
Systems +-11 Parameterizations		
+-1 Axisymmetric Complete	Cylindrical	[Laboratory->Cylindrical-Parametrization]
Domain	coordinate system	
	Geometry	[R37]
	Computation mesh resolution	[512, 512]
	Tags	0
+-1 Meridional	Min Max	[R37.Inlet] [R37.Outlet]
	Interfaces	
+-1 Parts +-2 Parts		
`-3 Parts		
+-2 Spanwise	Min Max	[R37.Hub] [R37.Shroud]
+-1 Parts		
) Dorto		
`-2 Parts `-3 Circumferential	Min	[R37.Per1]
`-3 Circumferential	Min Max	
		[R37.Per1]
<pre> `-3 Circumferential +-1 Parts</pre>	Max Pressure-side	[R37.Per1]
<pre> `-3 Circumferential </pre>	Max	[R37.Per1] [R37.Per2]
<pre> `-3 Circumferential </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados]
<pre> `-3 Circumferential </pre>	Max Pressure-side Blade Surfaces Suction-side	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain]
<pre> `-3 Circumferential </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge]
<pre> `-3 Circumferential +-1 Parts `-2 Parts `-2 Blade 1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge]
<pre>-3 Circumferential +-1 Parts `-2 Parts `-2 Blade 1 +-12 Tables</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge]
<pre> `-3 Circumferential +-1 Parts `-2 Parts `-2 Blade 1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge]
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [B35.Traili
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [R37.Leading_edge] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [] 5
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import +-1 Relative_Mach_4 </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [] 5 [[R4tive Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false []
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [R37.Leading_edge] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [] 5
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import +-1 Relative_Mach_4 </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [S [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [Relative Mach Number, X, Y, Z]
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-1 Relative Mach Import +-1 Relative Mach Import +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [] 5 [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false []
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Blade 1 +-12 Tables +-12 Tables +-1 Relative Mach Import +-1 Relative_Mach_4 </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [] [R4ative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-1 Relative Mach Import +-1 Relative Mach Import +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [] 5 [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false []
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-1 Relative Mach Import +-1 Relative Mach Import +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload	[R37.Per1] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [R4tive Mach Number, X, Y, Z] C:UserslinigolOneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [Relative Mach Number, X, Y, Z] C:UserslinigolOneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_40.csv false
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-1 Relative Mach Import +-1 Relative Mach Import +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-1</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [] [R1.Trailing_edge] [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-12 Tables +12 Tables +1 Relative Mach Import +-1 Relative_Mach_4 +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-3 Relative_Mach_40 +-3 Relative_Mach_40 +-4 Relative_Mach_40 +-</pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Scalars	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Leading_edge] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [] 5 [[Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [] [Relative Mach Number, X, Y, Z] C:\Users\inigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [] [Pressure, X, Y, Z] [Pressure, X, Y, Z]
<pre>-3 Circumferential +-1 Parts -2 Parts -2 Parts -2 Blade 1 +-1 Relative Mach Import +-1 Relative Mach_4 +-1 Relative_Mach_4 +-1 Relative_Mach_10 +-2 Relative_Mach_10 +-3 Relative_Mach_40 </pre>	Max Pressure-side Blade Surfaces Suction-side Blade Surfaces Axisymmetric Parameterization Leading Edge Trailing Edge Trailing Edge Tags Tables Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted Path Keep Internal Units on Reload Tags Extracted	[R37.Per1] [R37.Per2] [R37.Blade_Extrados] [R37.Blade_Intrados] [Axisymmetric Complete Domain] [R37.Leading_edge] [R37.Trailing_edge] [R37.Trailing_edge] [I] 5 [Relative Mach Number, X, Y, Z] C:UsersLinigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_4.csv false [] [Relative Mach Number, X, Y, Z] C:UsersLinigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [] [Relative Mach Number, X, Y, Z] C:UsersLinigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_10.csv false [] [Relative Mach Number, X, Y, Z] C:UsersLinigo\OneDrive\Escritorio\TFG\CFD Cases\Case 1\Relative Mach Tables\Relative_Mach_40.csv false

	Data on Vertices	false
	Representation	Volume Mesh
		[] true
		false
ii	Trigger	None
	Save To File Output Directory	false
		table
	Append Tag	
`-3 Pressure_10		[Pressure_10, X, Y, Z] [Pressure_10]
		[Piessule_10] [R37_SI]
	Coordinate	Laboratory
	System Data on Vertices	false
	Representation	Volume Mesh
-1 Update		[] true
	Auto Extract	false
	00	None
	Save To File Output Directory	false
	Base Filename	table
+-13 Units	Append Tag Preferred	Systeme International
	System	
+-14 Custom Trees +-15 Volume Shapes	Initial Tree View	0
+-16 Idealizations	Region selection	[Interface 1 Periodic Interface Idealization 1]
1 1	priority	
-1 Interface 1 Periodic Interface		1 [R37_SI]
Idealization 1	regione	
	Periodic Interface	[Interface 1]
1		0
+-17 Color Palettes	Number of	00
	Number of Colors	28
		[java.awt.Color[r=255,g=0,b=0], java.awt.Color[r=0,g=255,b=0], java.awt.Color[r=0,g=0,b=255],
		java.awt.Color[r=255,g=255,b=0], java.awt.Color[r=255,g=128,b=0], java.awt.Color[r=160,g=32,b=240], java.awt.Color[r=255,g=255,b=255], java.awt.Color[r=255,g=192,b=203], java.awt.Color[r=189,g=252,b=201],
		java.awt.Color[r=175,g=238,b=238], java.awt.Color[r=240,g=230,b=140], java.awt.Color[r=255,g=228,b=181],
		java.awt.Color[r=221,g=160,b=221], java.awt.Color[r=192,g=192,b=192], java.awt.Color[r=219,g=112,b=147], java.awt.Color[r=0,g=201,b=87], java.awt.Color[r=0,g=255,b=255], java.awt.Color[r=255,g=227,b=3],
		java.awt.Color[r=255,g=176,b=15], java.awt.Color[r=186,g=85,b=211], java.awt.Color[r=128,g=128,b=105],
		java.awt.Color[r=176,g=48,b=96], java.awt.Color[r=34,g=139,b=34], java.awt.Color[r=95,g=158,b=160], java.awt.Color[r=255,g=215,b=0], java.awt.Color[r=255,g=97,b=3], java.awt.Color[r=143,g=94,b=153],
		java.awt.Color[r=115,g=74,b=18]]
+-2 Legacy Plot Color Palette		13
	Colors	
		[java.awt.Color[r=255,g=0,b=0], java.awt.Color[r=0,g=255,b=0], java.awt.Color[r=0,g=0,b=255], java.awt.Color[r=255,g=200,b=0], java.awt.Color[r=0,g=255,b=255], java.awt.Color[r=0,g=0,b=0],
		java.awt.Color[r=178,g=0,b=0], java.awt.Color[r=0,g=178,b=0], java.awt.Color[r=0,g=0,b=178],
		java.awt.Color[r=8,g=46,b=84], java.awt.Color[r=178,g=140,b=0], java.awt.Color[r=160,g=32,b=240], java.awt.Color[r=92,g=36,b=110]]
		Java.awt.Color[r=92,g=36,0=110]]
`-3 Siemens Color Palette	Number of	30
	Colors Swatches	[java.awt.Color[r=15,g=120,b=155], java.awt.Color[r=229,g=192,b=76], java.awt.Color[r=219,g=83,b=90],
		java.awt.Color[r=96,g=106,b=117], java.awt.Color[r=226,g=137,b=77], java.awt.Color[r=127,g=70,b=100],
		java.awt.Color[r=104,g=153,b=98], java.awt.Color[r=232,g=170,b=184], java.awt.Color[r=165,g=143,b=111], java.awt.Color[r=127,g=178,b=172], java.awt.Color[r=0,g=85,b=125], java.awt.Color[r=168,g=133,b=45],
		java.awt.Color[r=153,g=49,b=64], java.awt.Color[r=50,g=57,b=63], java.awt.Color[r=170,g=97,b=48],
		java.awt.Color[r=81,g=45,b=67], java.awt.Color[r=71,g=102,b=66], java.awt.Color[r=173,g=104,b=127], java.awt.Color[r=112,g=94,b=75], java.awt.Color[r=77,g=124,b=115], java.awt.Color[r=70,g=170,b=193],
		java.awt.Color[r=234,g=208,b=150], java.awt.Color[r=234,g=172,b=185], java.awt.Color[r=170,g=180,b=188],
		java.awt.Color[r=239,g=194,b=163], java.awt.Color[r=186,g=131,b=165], java.awt.Color[r=165,g=198,b=158], java.awt.Color[r=239,g=203,b=217], java.awt.Color[r=204,g=188,b=168], java.awt.Color[r=180,g=214,b=208]]
		Java.awt.Color[1-259,9-205,0-217], Java.awt.Color[1-204,9-106,0-106], Java.awt.Color[1-100,9-214,0-206]]
+-18 Data Set Functions		function_data
1	In-core surface FFTs	false
+-19 User Code		
+-20 Data Focus +-21 Layouts		
-1 default		
-1 Mode 1		Mode 1 anonymousMode 1
	Name	anonymousmoue_r
		[0.0, 1.0, 0.5, 1.0, 0.0, 0.3357329842931937, 0.0, 0.0, 0.98005698005698, 0.0, 1.0, 0.09057971014492754, 1.0, 0.0, 0.3370418848167539, 1.0, 1.0, 0.7238219895287958, 0.0, 0.0, 0.9172714078374455]
		[0.0, 0.0, 0.0, 0.0]
		0 Diff 40.10 DM Maridianal
+-1 Tab 1		Diff 40-10 RM Meridional
+-2 Tab 2	Scene or Plot	Diff 40-4 RM Meridional
+-3 Tab 3	Tags Scene or Plot	Diff 100-10 RM Meridional
i I	Tags	0
+-4 Tab 4		Diff 10-4 RM Meridional
+-5 Tab 5	Tags Scene or Plot	Diff 100-40 RM Meridional
i I	Tags	0
) -6 Tab 6		Diff 100-4 RM Meridional
	Tays	0

+ -	22	Data Mappers	Use Legacy Volume Mapper	false
	+-:	1 Tabular Data Mapper p4	Mapped Names	{'Surface 1': {'Relative Mach Number': 'MappedVertexRelative Mach Number p4'}, 'Volume 1': {'Relative Mach Number': 'MappedVertexRelative Mach Number p4'}
ļ			Source Table	Relative_Mach_4
1			Source: X- Coordinate	X
			Source: Y-	Υ
I		I	Coordinate Source: Z-	Z
			Coordinate	2
ł	-	1	Source: Data	[Relative Mach Number]
ì	i.		Verbosity Tags	
		+-1 Target Specifications		
I		+-1 Surface 1	Compute Nodal Forces Target	false
Ļ	ļ.		HTC Target	false
ł	ł		Representation Target Source	Volume Mesh Identity Transform
			Transform	
			Interpolation Method	Least Squares
			Limiter	STENCIL
			Target Entities	[R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados, R37_SI: R37.Hub, R37_SI: R37.Inlet, R37_SI: R37.Outlet, R37_SI: R37.Per1, R37_SI: R37.Per1 [Interface 1], R37_SI: R37.Per2, R37_SI: R37.Per2 [Interface 1], R37_SI: R37.Shroud]
			Use Original	false
			Mesh Target Stencil	VERTEX
			Target Grouping	500000
L			Threshold Tags	Ο
į	1	-1 Proximity Constraint	Enable	false
1			Use Absolute Tolerance	false
			Relative	1.0
1	I		Proximity Tolerance Absolute	0.0 m
) - 2 Volume 1	Proximity Tolerance Representation	Volume Mesh
i	i.		Target Source	Identity Transform
I	1		Transform Interpolation	Least Squares
			Method	
ł	ł		Limiter Target Entities	STENCIL [R37_SI]
i	İ.		Use Original	false
		1 1	Mesh	VERTEX
i	i		Target Stencil Boundary Map Option	Do Not Map To Boundaries
ï	1	-1 Proximity Constraint	Tags Enable	[] false
İ	İ.		Use Absolute	false
ī			Tolerance Relative	1.0
1	1	1	Proximity	1.0
I		I	Tolerance Absolute	0.0 m
1	1	1	Proximity	
1	1		Tolerance	falsa
		-2 Update	Enabled Trigger	false Iteration
		-1 Iteration Frequency	Iteration	1
I			Frequency Start Iteration	0
ļ	ļ.		Enable Stop	false
	 +-:	2 Tabular Data Mapper p10	Stop Iteration Mapped Names	0 {'Surface 1': {'Relative Mach Number': 'MappedVertexRelative Mach Number p10'}, 'Volume 1': {'Relative Mach Number':
ļ			Source Table	'MappedVertexRelative Mach Number p10'}} Relative_Mach_10
1			Source: X- Coordinate Source: Y-	X Y
			Coordinate	
1			Source: Z- Coordinate	Z
ļ	!		Source: Data	[Relative Mach Number]
			Verbosity Tags	
İ	ŀ	+-1 Target Specifications	lago	
		+-1 Surface 1	Compute Nodal Forces Target	false
			HTC Target	false
			Representation Target Source	Volume Mesh Identity Transform
			Transform	
			Interpolation Method	Least Squares
			Limiter	
1	1		Target Entities	[R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados, R37_SI: R37.Hub, R37_SI: R37.Inlet, R37_SI: R37.Outlet, R37_SI: R37.Per1, R37_SI: R37.Per1 [Interface 1], R37_SI: R37.Per2, R37_SI: R37.Per2 [Interface 1], R37_SI: R37.Shroud]
1	I		Use Original Mesh	false
L	1		Target Stencil	VERTEX

				Target Grouping Threshold	500000
				Tags	0
		`-	-1 Proximity Constraint	Enable Use Absolute Tolerance	false
				Relative Proximity Tolerance	1.0
				Absolute Proximity Tolerance	0.0 m
		<u></u> -2	Volume 1	Representation	Volume Mesh
				Target Source Transform	Identity Transform
				Interpolation Method	Least Squares
				Limiter	STENCIL ID27_SIL
				Target Entities Use Original Mesh	[R37_SI] false
				Target Stencil	VERTEX
				Boundary Map Option Tags	Do Not Map To Boundaries
		`-	1 Proximity Constraint	Enable	false
I				Use Absolute Tolerance	false
				Relative	1.0
				Proximity Tolerance Absolute	0.0 m
ſ		2.11-	ndato	Proximity Tolerance	
		-2 Up		Enabled Trigger	false Iteration
	İ	-1	Iteration Frequency	Iteration	1
I	1			Frequency Start Itoration	0
				Start Iteration Enable Stop	0 false
İ	i			Stop Iteration	0
	`-3	Tabu	ılar Data Mapper p40	Mapped Names Source Table	{'Surface 1': {'Relative Mach Number': 'MappedVertexRelative Mach Number p40'}, 'Volume 1': {'Relative Mach Number': 'MappedVertexRelative Mach Number p40'}} Relative_Mach_40
İ	i			Source: X-	X
I	1			Coordinate Source: Y-	Υ
I	1			Coordinate	T
				Source: Z-	Z
				Coordinate Source: Data	[Relative Mach Number]
ĺ	i			Verbosity	true
	+		arget Specifications	Tags	0
			Surface 1	Compute Nodal	false
1				Forces Target	feler.
				HTC Target Representation	false Volume Mesh
Ì	İ	ii		Target Source	Identity Transform
				Transform Interpolation	Least Squares
I	1	1 1		Method	STENCI
				Limiter Target Entities	STENCIL [R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados, R37_SI: R37.Hub, R37_SI: R37.Inlet, R37_SI: R37.Outlet, R37_SI: R37.Per1, R37_SI: R37.Per2, R37_SI: R37.Shroud, R37_SI: R37.Per1 [Interface 1], R37_SI: R37.Per2 [Interface
				Use Original Mesh	1]] false
				Target Stencil	VERTEX
I				Target Grouping Threshold Tags	500000
		`-	1 Proximity Constraint	Enable	l false
				Use Absolute	false
				Tolerance Relative Proximity	1.0
I	1	I		Tolerance	0.0 m
I		I		Absolute Proximity Tolerance	0.0 m
		`-2	Volume 1	Representation	Volume Mesh
	1			Target Source Transform	Identity Transform
				Interpolation Method	Least Squares
				Limiter Target Entities	STENCIL [R37_SI]
	İ			Use Original	false
				Mesh Target Stencil	VERTEX
ļ	İ	ĺ		Boundary Map	Do Not Map To Boundaries
				Option Tags	0
		`-	1 Proximity Constraint	Enable	false
				Use Absolute Tolerance	false
				Relative Proximity	1.0
				Tolerance	

		Absolute	0.0 m
		Proximity Tolerance	
	-2 Update	Enabled	false Iteration
	-1 Iteration Frequency	Trigger Iteration	1
1		Frequency	-
		Start Iteration	0
		Enable Stop	false
	Mationa	Stop Iteration	0
+-23	Motions	Motion Preview Time	0.0 s
		Visual Motion Transforms	0
			0
`-:	1 Stationary	Tags	0
	Reference Frames		
	1 Lab Reference Frame	Tags	
	2 Rotating	Axis Direction Axis Origin	[0.0, 0.0, 1.0] [0.0, 0.0, 0.0] m
	i i i i i i i i i i i i i i i i i i i	Rotation Rate	\${w (rad/s)}
		Coordinate	Laboratory
	1	System	
	-1 Relative Reference Frames	Tags	0
+-25	Screenplays		
+-26	Derived Parts	Derived Parts	30
+-	1 10% Span	Parts	[R37_SI]
		Scalar Field Mode	Axisymmetric Complete Domain S Normalized
		Mode Tags	ISOVALUE_SINGLE []
	-1 Value	Isovalue	0.1
+-	2 10% Span - extrados	Parts	[R37_SI: R37.Blade_Extrados]
		Scalar Field	Axisymmetric Complete Domain S Normalized
		Mode Tags	ISOVALUE_SINGLE []
	-1 Value	Isovalue	0.1
+ -	3 10% Span - intrados	Parts	[R37_SI: R37.Blade_Intrados]
		Scalar Field	Axisymmetric Complete Domain S Normalized
	1	Mode Tags	ISOVALUE_SINGLE
	-1 Value	Isovalue	[] 0.1
+	4 10% Span projection	Parts	[10% Span]
		Coordinate	Laboratory
		System	
		Rotation Origin Rotation Axis	[0.0, 0.0, 0.0] m,m,m [1.0, 0.0, 0.0] m,m,m
ii		Tangential Axis	[.0, 0, 0, 0, 0] m,m,m
		Tags	0
+	5 50% Span	Parts Scalar Field	[R37_SI] Axisymmetric Complete Domain S Normalized
		Mode	ISOVALUE SINGLE
ii	i	Tags	
	-1 Value	Isovalue	0.5
+-	6 50% Span - extrados	Parts Scolar Field	[R37_SI: R37.Blade_Extrados]
		Scalar Field Mode	Axisymmetric Complete Domain S Normalized ISOVALUE_SINGLE
i i	i	Tags	
	-1 Value	Isovalue	0.5
+-	7 50% Span - intrados	Parts	[R37_SI: R37.Blade_Intrados] Axisymmetric Complete Domain S Normalized
		Scalar Field Mode	ISOVALUE_SINGLE
ii	i	Tags	
	-1 Value	Isovalue	0.5
+-	8 50% Span projection	Parts	
		Coordinate System	Laboratory
		Rotation Origin	[0.0, 0.0, 0.0] m,m,m
		Rotation Axis	[1.0, 0.0, 0.0] m,m,m
		Tangential Axis	[0.0, 1.0, 0.0] m,m,m
+-	9 70% Span	Tags Parts	[] [R37_SI]
		Scalar Field	Axisymmetric Complete Domain S Normalized
		Mode	ISOVALUE_SINGLE
) -1 Value	Tags	
+-	10 90% Span	Isovalue Parts	0.7 [R37_SI]
		Scalar Field	Axisymmetric Complete Domain S Normalized
		Mode	ISOVALUE_SINGLE
) -1 Value	Tags Isovalue	0.9
+ -	11 90% Span - extrados	Parts	[R37_SI: R37.Blade_Extrados]
i I		Scalar Field	Axisymmetric Complete Domain S Normalized
		Mode	ISOVALUE_SINGLE
) -1 Value	Tags	
+ -	12 90% Span - intrados	Isovalue Parts	0.9 [R37_SI: R37.Blade_Intrados]
		Scalar Field	Axisymmetric Complete Domain S Normalized
		Mode	ISOVALUE_SINGLE
	1 Value	Tags	
	`-1 Value 13 90% Span projection	Isovalue Parts	0.9 [90% Span]
		Coordinate	Laboratory
		System	-
		Rotation Origin	[0.0, 0.0, 0.0] m,m,m
		Rotation Axis Tangential Axis	[1.0, 0.0, 0.0] m,m,m [0.0, 1.0, 0.0] m,m,m
		rangentiai Axis	fore, and unitin

+-14 Adimensional plane Tags [] +-14 Adimensional plane Parts [R37_S]] Scalar Field Axisymmetric Complete Domain M Mode ISOVALUE_SINGLE +-15 Aux Asimensional plane Barts ++15 Aux Asimensional plane Parts ++15 Aux Asimensional plane Parts ++16 Line at Chord Distance 50% Parts +-16 Line at Chord Distance 50% Parts ++16 Line at Chord Distance 1 F02 Point 1 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 2 0.216987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 2 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 1 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 2 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 2 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 2 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Point 1 0.2156987775950527, 5.85, -0.057774259852175956 [m,radian,m Parts FR37_S]] Tags [+-17			+-14 Adimensional plane
I I Mode ISOVALUE_SINGLE Tags I Tags I I I I value Isovalue 0.070477 m I I Scalar Field Distance2/Inlet Image: Scalar Field Image: Scalar Field I I Mode ISOVALUE_SINGLE Image: Scalar Field Distance2/Inlet I I Tags Image: Scalar Field Distance2/Inlet Image: Scalar Field Distance2/Inlet I I Tags Image: Scalar Field Distance2/Inlet Image: Scalar Field Distance2/Inlet I I Value Tags Image: Scalar Field Distance2/Inlet I I Image: Scalar Field Note Image: Scalar Field Coordinate I I Image: Scalar Field Image: Scalar Field Coordinate Coordinate I Image: Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Image: Scalar Field Axisymmetric Complete Domain M Normalized Mode	in martin Ormalata Danaia M		
I I Tags I I I Value Isovalue 0.070477 m I I Scalar Field Distance2Inlet Distance2Inlet Mode ISOVALUE_SINGLE Tags I I I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.070477 m I I Isovalue 0.056987775950527, 5.85, -0.057774259852175956] m,radian,m Point 1 I Isovalue Isovalue Isovalue I I Isovalue Isovalue Isovalue I I Isovalue Isovalue Isovalue I I Isovalue Isovalue Isovalue I Isova			
-1 Value Isovalue 0.070477 m +15 Aux Asimensional plane Parts [R37_SI] -10 Value Scalar Field Distance2Inlet Mode ISOVALUE_SINGLE Tags] +-16 Line at Chord Distance 50% Parts [R37_SI] Parts [R37_SI] Parts [R37_SI] Point 2 [0.2156987775950527, 5.85, -0.057774259852175956] m,radian,m Point 2 Point 2 [0.2156987775950527, 6.08, -0.05623001213900435] m,radian,m Coordinate Coordinate Laboratory->Cylindrical-Parametrization Point 2 [0.2156987775950527, 6.08, -0.05623001213900435] m,radian,m Coordinate Scalar Field Axisymmetric Complete Domain M Normalized Mode Mode ISOVALUE_SINGLE Tags [I I Parts [R37_SI] Scalar Field Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I I I Tags [I I I I Scalar Field Axisymmetric Complete Domain M Normal	UVALUE_SINGLE		
+-15 Aux Asimensional plane Parts [R37_SI] Scalar Field Distance2lnlet Distance2lnlet Mode ISOVALUE_SINGLE Tags 1 -1 Value Sovalue 0.070477 m +-16 Line at Chord Distance 50% Parts [R37_SI] Point 1 [0.2156987775950527, 5.85, -0.057774259852175956] m,radian,m Point 1 Point 1 [0.2156987775950527, 5.85, -0.056723001213900435] m,radian,m Point 1 [0.2156987775950527, 5.85, -0.056723001213900435] m,radian,m Coordinate Laboratory->Cylindrical-Parametrization System Resolution 20 Tags []			
Mode ISOVALUE_SINGLE Tags [Tags [Tags [Tags [Parts [R37_SI] Point 1 [Point 1 [Point 2 [Point 2 [Coordinate Laboratory->Cylindrical-Parametrization System System Resolution 20 Tags [Parts [R37_SI] Resolution 20 Tags [Parts [R37_SI] Resolution 20 Tags [Parts [R37_SI] Mode ISOVALUE_SINGLE Mode ISOVALUE_SINGLE Tags [Parts [R37_SI] Stovalue 0.58 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Parts [R37_SI]	37_SI]	Parts	+-15 Aux Asimensional plane
Tags [] 1 14 Isovalue 0.070477 m 1 14 Line at Chord Distance 50% Parts [R37_S1] Point 1 [0.2156987775950527, 5.85, -0.057774259852175956] m,radian,m Point 1 [0.2156987775950527, 5.85, -0.055623001213900435] m,radian,m Point 2 [0.2156987775950527, 5.85, -0.055623001213900435] m,radian,m Point 2 [0.2156987775950527, 5.05, -0.055623001213900435] m,radian,m Point 2 [0.2156987775950527, 5.08, -0.056523001213900435] m,radian,m Point 2 [0.2156987775950527, 5.05, -0.057774259852175956] m,radian,m Point 2 [0.2156987775950527, 5.08, -0.056523001213900435] m,radian,m Point 2 [0.2156987775950527, 5.05, -0.057774259852175956] m,radian,m Point 2 [0.2156987775950527, 5.08, -0.056523001213900435] m,radian,m Point 1 [0.2156987775950527, 5.05, -0.057774259852175956] m,radian,m Parts [R37_S1] Parts [R37_S1] Parts [R37_S1] Parts [R37_S1] Scalar Field Axisymmetric Complete Domain M Normalized Mode Parts [R37_S1] Scalar Field Axisymmetric Complete Domain M Normalized Parts Parts [R37_S1]			
-1 Value Isovalue 0.070477 m +-16 Line at Chord Distance 50% Parts [R37_SI] Parts [R37_SI] Dint 1 [0.2156987775950527, 5.85, -0.057774259852175956] m,radian,m Point 2 [0.2156987775950527, 6.08, -0.056523001213900435] m,radian,m Laboratory->Cylindrical-Parametrization Point 2 [0.2156987775950527, 6.08, -0.056523001213900435] m,radian,m Laboratory->Cylindrical-Parametrization Visit Resolution 20 Tags [Resolution 20 Tags [Mode ISOVALUE_SINGLE Visit Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [Isovalue 0.58 + -18 Longitudinal Isosurface 2 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [Isovalue 0.65 + -18 Longitudinal Isosurface 2 Parts [R37_SI] Isovalue 0.65 + -19 Longitudinal Isosurface Part	OVALUE_SINGLE		
Point 1 [0.2156987775950527, 5.85, -0.057774259852175956] m,radian,m Point 2 [0.2156987775950527, 6.08, -0.056523001213900435] m,radian,m Coordinate Laboratory->Cylindrical-Parametrization System Resolution Resolution 20 Tags [Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE +-19 Longitudinal Isosurface Parts +-19 Longitudinal Isosurface Parts +-19 Longitudinal Isosurface Parts +-19 Longitudinal Isosurface Parts Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE +-18 Longitudinal Isosurface Parts Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE +-19 Longitudinal Isosurface Parts FR37_SI] Scalar Field Stat. 1 Scalar Field Mode ISOVALUE_SINGLE Tags [Node ISOVALUE_SINGLE <t< th=""><th></th><th>Isovalue</th><th></th></t<>		Isovalue	
Point 2 [0.2156987775950527, 6.08, -0.056523001213900435] m,radian,m Coordinate Laboratory->Cylindrical-Parametrization System 20 Tags [] +-17 Longitudinal Isosurface 1 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode Mode ISOVALUE_SINGLE Tags [] +-18 Longitudinal Isosurface 2 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode Mode ISOVALUE_SINGLE Isovalue 0.58 +-18 Longitudinal Isosurface 2 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode Mode ISOVALUE_SINGLE Isovalue 0.65 +-19 Longitudinal Isosurface Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode H - 19 Longitudinal Isosurface Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode Mode ISOVALUE_SINGLE Isovalue 0.65 <tr< th=""><th></th><th></th><th>+-16 Line at Chord Distance 50%</th></tr<>			+-16 Line at Chord Distance 50%
Coordinate System Resolution Ags [+-17 Longitudinal Isosurface 1 +-17 Longitudinal Isosurface 1 +-17 Longitudinal Isosurface 1 +-18 Longitudinal Isosurface 2 +-18 Longitudinal Isosurface 2 +-18 Longitudinal Isosurface 2 +-19 Longitudinal Isosurface 4 +-19 Longitudinal Isosurface 7 Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Sovalue 0.58 R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Sovalue 0.65 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Sovalue 0.65 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Sovalue 0.65 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Sovalue 0.65 Mode ISOVALUE_SINGLE			
Resolution 20 Tags] +-17 Longitudinal Isosurface 1 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I I Tags [Image: Single Sing			
Image: Image:		,	
+-17 Longitudinal Isosurface 1 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [+-18 Longitudinal Isosurface 2 Parts +-18 Longitudinal Isosurface 2 Parts Scalar Field Axisymmetric Complete Domain M Normalized Mode Isovalue 0.58 Parts Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Yags [
Mode ISOVALUE_SINGLE Tags [] I Tags I Sovalue 0.58 I Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE I Tags [] I Soalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags I Soalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags I Soalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Parts I Soalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Scalar Field I I Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE ISOVALUE_SINGLE I I Tags []	37_SI]		+-17 Longitudinal Isosurface 1
Image: Section 1 Tags [Image: Section 2 Isovalue 0.58 Image: Section 2 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Image: I	isymmetric Complete Domain M Normalized		
`-1 Value Isovalue 0.58 +-18 Longitudinal Isosurface 2 Parts [R37_SI] Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [+-19 Longitudinal Isosurface R37_SI] Stat. 1 Scalar Field Stat. 1 Scalar Field Mode ISOVALUE_SINGLE Tags [Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [UVALUE_SINGLE		
Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags [] I Isovalue 0.65 Parts [R37_SI] Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Mode ISOVALUE_SINGLE Stat. 1 Scalar Field Mode ISOVALUE_SINGLE Tags []			
Mode ISOVALUE_SINGLE Tags [] I Tags I Stat. 1 Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE			+-18 Longitudinal Isosurface 2
Image: Stat. 1 Tags [] Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags []			
Image: Solution of the second seco			
Stat. 1 Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags []		Isovalue	
Scalar Field Axisymmetric Complete Domain M Normalized Mode ISOVALUE_SINGLE Tags []	37_SIJ	Parts	
Mode ISOVALUE_SINGLE Tags []	isymmetric Complete Domain M Normalized	Scalar Field	
		Mode	
+-20 Longitudinal Isosurface Origin [0.178, -0.02, -0.002] m,m,m			
Stat. 1a	-	-	
Coordinate Laboratory System	boratory		
System [-0.08, 0.009, 1.0] m,m,m	.08, 0.009, 1.0] m,m,m		
Parts [R37_SI]	37_SI]	Parts	
Section Mode SINGLE Displayed Index -1			
Tags [
Single section Offset 0.0 m		Offset	
+-21 Longitudinal Isosurface Parts [R37_SI]	37_SIJ	Parts	
Stat. 3 Scalar Field Axisymmetric Complete Domain M Normalized	isymmetric Complete Domain M Normalized	Scalar Field	
Mode ISOVALUE_SINGLE		Mode	
Tags [] 1 1 Value Isovalue 0.678	578		
Image: Solution of the second seco			
Scalar Field Meridional Extrados	eridional Extrados	Scalar Field	
Mode ISOVALUE_SINGLE	OVALUE_SINGLE		
Tags [] > 1 Value Isovalue 0.0 m) m		`-1 Value
+-23 Meriodional Intrados Parts [R37_SI]	37_SI]	Parts	
Scalar Field Meridional Intrados Mode ISOVALUE_SINGLE			
Tags []			
1 Value Isovalue 0.0 m		Isovalue	
+-24 Point 50% Parts [R37.Blade_Intrados]	37.Blade_Intrados]		+-24 Point 50%
Point [0.2156987775950527, 6.175960346552706, 0.0016971] m,radian,m Coordinate Laboratory->Cylindrical-Parametrization			
System		System	
Follow Motion false Highlight Input false			
Coordinates	35		1 1
Tags []		Tags	
+-25 Point at Chord Distance Parts [R37_SI] Point [0.2156987775950527, 6.0, -0.056523001213900435] m,radian,m			+-25 Point at Chord Distance
Coordinate Laboratory->Cylindrical-Parametrization			
System		System	
Follow Motion false Highlight Input false			
Coordinates			1 1
Tags []		Tags	
+-26 Point at Intrados Parts [R37_SI] Point [0.2143279296017166, 1.551017056539166E-4, 0.014196519923516147] m,m,m			+-26 Point at Intrados
Coordinate Laboratory			
System		System	
Follow Motion false Highlight Input false			
Coordinates		Coordinates	
Tags []		Tags	
+-27 Point Inlet Parts [R37_SI] Point [0.2, -0.09, -0.127] m,m,m			
Coordinate Laboratory		Coordinate	ii
System		System	
Follow Motion false Highlight Input false			
Coordinates		Coordinates	
Tags []		Tags	
+-28 Streamline 10% Parts [R37_SI] Seed Type PART			+-28 Streamline 10%
Rotation Scale 1.0			
Vector Field Relative Velocity	elative Velocity	Vector Field	
Integration RK2 Solver	<2		
		JUIVEI	

	1	Wall Treatment	ON
· · · · ·	+-1 Source Seed	Tags Seed Parts	[] [10% Span]
		On Ratio	5
		Randomize N Grid Points	false [20, 20]
	-2 2nd Order Integrator	Initial Integration	
		Step Maximum	0.506933200000006
		Propagation	0.50095520000000
		Max Steps Integration	2000 FORWARD
1 1		Direction	
+-:	29 Streamline 50%	Parts Seed Type	[R37_SI] PART
		Rotation Scale	1.0
		Vector Field	Relative Velocity RK2
	1	Integration Solver	KN2
		Wall Treatment	ON
	+-1 Source Seed	Tags Seed Parts	[] [50% Span]
		On Ratio	5
		Randomize N Grid Points	false [20, 20]
i i	-2 2nd Order Integrator	Initial Integration	
		Step Maximum	0.506933200000006
		Propagation	
		Max Steps Integration	2000 FORWARD
	0. Streemline 000/	Direction	
-	30 Streamline 90%	Parts Seed Type	[R37_SI] PART
		Rotation Scale	1.0
		Vector Field Integration	Relative Velocity RK2
		Solver	
		Wall Treatment Tags	ON []
	+-1 Source Seed	Seed Parts	[90% Span]
		On Ratio Randomize	5 false
		N Grid Points	[20, 20]
	-2 2nd Order Integrator	Initial Integration Step	
		Maximum	0.506933200000006
		Propagation Max Steps	
		Integration	2000 FORWARD
+ 27	Summaries	Direction	
<i>−−∠1</i>			
+-28	Summaries Monitors	Monitors	26
+-28		Monitors To Print Output Direction	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal
+-28 		Monitors To Print Output Direction Heading Print	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor]
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000
	Monitors 1 Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 0
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] 10 true Total Value Iteration 0ff 5000 1 1 1
	Monitors 1 Corrected Mass Flow Inlet 1 Iteration Frequency	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 6 6 6 [Efficiency Rotor]
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 6 6 6 6 6 [Efficiency Rotor] true
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Terssure Inlet Monitor, Temp Outlet Rotating Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Probe Convergence Monitor] Horizontal 10 10 [Corrected Mass Flow Inlet] Itrue 10 Total Value Iteration 0 [f] 1 10 0 Generation 10 [f] 1 10 10 [corrected Mass Flow Inlet] Iteration 10 [f] 1 10 10 [f] 1 10 10 [] 1 1 10 10 [] 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 6 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Terssure Inlet Monitor, Temp Outlet Rotating Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Probe Convergence Monitor] Horizontal 10 10 [Corrected Mass Flow Inlet] Itrue 10 Total Value Iteration 0 [f] 1 10 0 Generation 10 [f] 1 10 10 [corrected Mass Flow Inlet] Iteration 10 [f] 1 10 10 [f] 1 10 10 [] 1 1 10 10 [] 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Staples Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor 2, Pressure Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [1 2 5000 [2 5000 [2 5000 [2 5000] [5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Monitors Corrected Mass Flow Inlet	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Fragges Iteration	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Tergsure Inlet Monitor, Torque Monitor, Tersoure Inlet Monitor, Termp Outlet Monitor 2, Corrected Mass Flow Inlet Monitor, Temp Inlet Rotating Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 [Efficiency Rotor] true Total Value [Efficiency Rotor] true Total Value Iteration O [Efficiency Rotor] true
	Monitors 1 Corrected Mass Flow Inlet -1 Iteration Frequency 2 Efficiency Rotor Monitor	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Normalization Option Maximum Plot Samples Tags Iteration Frequency	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Tergs Unter Monitor, Torque Monitor, Termp Inlet Monitor, 2, Orrected Mass Flow Inlet Monitor, Termp Inlet Rotating Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration 0ff 5000 [Lifteincy Rotor] true Total Value Iteration 0 5000 [Lifteincy Rotor] true 0 5000 [Lifteincy Rotor] 10 5000 [Lifteincy Rotor] 1 0 false 0 1 0 1 0 false 0 5000 [Lifticiency Rotor] true 5000 [Lifticiency Rotor] true 5000
	Monitors 1 Corrected Mass Flow Inlet -1 Iteration Frequency 2 Efficiency Rotor Monitor	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Frequency Start Iteration Frequency Start Iteration Frequency Start Iteration Frequency Start Iteration Enable Stop	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta, t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Teressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0
<pre></pre>	Monitors	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enabled Samples Tags Iteration Frequency Start Iteration Enables Stop Iteration Enable Stop Stop Iteration	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta_t, Mass Flow Unlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Pressure Inlet Monitor, Pressure Unlet Monitor, Temp Outlet Rotating Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] Horizontal 10 [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 O false O [] Total Value Iteration Off 5000 [] 1 O false O false O for Content false O for Content false O false O false O false O false O false O </th
	Monitors 1 Corrected Mass Flow Inlet -1 Iteration Frequency 2 Efficiency Rotor Monitor	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Proger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Frequency Start Iteration Samples Tags Stop Iteration Frequency Start Iteration Frequency Start Iteration Stop Iteration Frequency Start Iteration Stop Iteration Stop Iteration Stop Iteration Samples	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta, t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Teressure Inlet Monitor, Torque Monitor, Pressure Inlet Monitor, Temp Outlet Rotating Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Probe Convergence Monitor, Probe Convergence Monitor, Temp Outlet Monitor, Probe Convergence Monitor, Probe Converge
Monitor 	Monitors Monitors Corrected Mass Flow Inlet -1 Iteration Frequency Efficiency Rotor Monitor -1 Iteration Frequency 3	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Pringer Normalization Option Maximum Plot Samples Tags Stop Iteration Frequency Start Iteration Frequency Start Iteration Frequency Start Iteration Frequency Start Iteration Stop Iteration Frequency Start Iteration Stop Iteration Frequency Start Iteration Stop Iteration Frequency Start Iteration Stop Iteration Samples Tags	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta, t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Temp Inlet Rotating Monitor, Pressure Outlet Monitor, Pressure Outlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Probe Convergence Monitor] Pressure Outlet Monitor, Corrected Mass Flow Inlet Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] IO [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [I O I O I O I O I O I O I O I O I O I O I O I O I O I O I O
Monitor 	Monitors	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enabled Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Report Enabled Stop Iteration Frequency Start Iteration Samples Tags Iteration Frequency Start Iteration Samples Tags Iteration Frequency Start Iteration Frequency Start top Iteration Stop Iteration	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta, t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Torque Monitor, Pressure Outlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Probe Convergence Monitor Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] IO [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 O false O false O false O false O false O false O false O false O false O false O false O false O false O false
Monitor Monitor I I I I I I I I I I I I I I I I I I	Monitors	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enable Stop Stop Iteration Enable Stop Stop Iteration Enable Stop Stop Iteration Enable Stop Stop Iteration Enable Stop Stop Iteration Frequency Start Iteration Fre	Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta 1, Mass Flow Outlet Monitor, Pressure Nutet Monitor, Pressure Nutet Monitor, Pressure Nutet Monitor, Pressure Nutet Monitor, Pressure Nutet Monitor, Temp Inlet Rotating Monitor, Temp Utilet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International Intenal International </th
Monitor 	Monitors	Monitors To Print Output Direction Heading Print Frequency Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Enabled Stop Iteration Report Enabled Value Type Trigger Normalization Option Maximum Plot Samples Tags Iteration Frequency Start Iteration Report Enabled Stop Iteration Frequency Start Iteration Samples Tags Iteration Frequency Start Iteration Samples Tags Iteration Frequency Start Iteration Frequency Start top Iteration Stop Iteration	[Continuity, X-momentum, Y-momentum, Z-momentum, Energy, Tke, Sdr, Intermittency, ReTheta, t, Mass Flow Outlet Monitor, Mass Flow Inlet Monitor, Pressure Outlet Monitor, Temp Inlet Rotating Monitor, Pressure Outlet Monitor, Pressure Outlet Monitor, Temp Inlet Monitor, Temp Inlet Monitor, Probe Convergence Monitor Temp Outlet Monitor, Temp Inlet Monitor, Pressure Ratio Rotor Monitor, Efficiency Rotor Monitor, Probe Convergence Monitor] IO [Corrected Mass Flow Inlet] true Total Value Iteration Off 5000 [] 1 O false O [Efficiency Rotor] Iteration Off 10 0 11 0 12 0 13 0 14 0 15 0 16 0 16 0 16 0 17 18 00 19 <

	Maximum Plot Samples	5000
	Tags	0
`-1 Iteration Frequency	Iteration Frequency	1
	Start Iteration	0
	Enable Stop Stop Iteration	false 0
+-5 Mass Flow Outlet Monitor	Report	[Mass Flow Outlet]
	Enabled Value Type	true Total Value
	Trigger	Iteration
	Normalization Option	Off
	Maximum Plot Samples Tags	5000
-1 Iteration Frequency	Iteration	1
	Frequency Start Iteration	0
	Enable Stop	false
+-6 Physical Time	Stop Iteration Maximum Plot Samples	0 5000
	Tags	0
+-7 Pressure Inlet Monitor	Report Enabled	[Pressure Inlet] true
	Value Type	Total Value
	Trigger	Iteration
	Normalization Option	Off
	Maximum Plot Samples	5000
`-1 Iteration Frequency	Tags Iteration	1
	Frequency	
	Start Iteration Enable Stop	0 false
ii	Stop Iteration	0
+-8 Pressure Inlet Monitor 2	Report Enabled	[Pressure Inlet] true
	Value Type	Total Value
	Trigger	Iteration
	Normalization Option	Off
	Maximum Plot Samples	5000
	Tags	
`-1 Iteration Frequency	Iteration Frequency	1
	Start Iteration	0
	Enable Stop Stop Iteration	false 0
+-9 Pressure Outlet Monitor	Report	[Pressure Outlet]
	Enabled Value Type	true Total Value
	Trigger	Iteration
	Normalization Option	Off
	Maximum Plot Samples	5000
	Tags	0
`-1 Iteration Frequency	Iteration Frequency	1
	Start Iteration Enable Stop	0 false
 +-10 Pressure Outlet Monitor	Stop Iteration	0 [Prossure Outlet]
	2 Report Enabled	[Pressure Outlet] true
	Value Type	Total Value
	Trigger Normalization	Off Contract
	Option Maximum Plot	5000
	Samples	
`-1 Iteration Frequency	Tags Iteration	0 1
	Frequency Start Iteration	0
	Enable Stop	false
+-11 Pressure Ratio Rotor	Stop Iteration Report	0 [Pressure Ratio Rotor]
Monitor	Enabled	true
	Value Type	Total Value
	Trigger Normalization	Off Contract
	Option	
	Maximum Plot Samples	5000
	Tags Iteration	0 1
	Frequency	
	Start Iteration Enable Stop	0 false
	Stop Iteration	0
+-12 Probe Convergence Monitor	Report	[Probe Convergence]
	Enabled	true

	Value Type Trigger	Total Value Iteration
	Normalization	Off
	Option	
	Maximum Plot	5000
	Samples	
`-1 Iteration Frequency	Tags Iteration	[]1
	Frequency	-
	Start Iteration	0
		false
+-13 Temp Inlet Monitor	Stop Iteration Report	0 [Temp Inlet]
	Enabled	true
i i i	Value Type	Total Value
	Trigger	Iteration
	Normalization	Off
	Option Maximum Plot	5000
1 1 1	Samples	
	Tags	0
-1 Iteration Frequency	Iteration	1
	Frequency Start Iteration	0
	Enable Stop	false
	Stop Iteration	0
+-14 Temp Inlet Rotating Monitor	Report	[Temp Inlet Rotating]
	Enabled	true
	Value Type Trigger	Total Value Iteration
	Normalization	Off
	Option	
	Maximum Plot	5000
	Samples Tags	0
`-1 Iteration Frequency	Iteration	1
	Frequency	
	Start Iteration	0
	Enable Stop Stop Iteration	false 0
+-15 Temp Outlet Monitor	Report	[Temp Outlet]
	Enabled	true
	Value Type	Total Value
	Trigger Normalization	Off
1 1 1	Option	
	Maximum Plot	5000
	Samples	
1 Iteration Frequency	Tags Iteration	[]1
	Frequency	-
	Start Iteration	0
		false
+-16 Temp Outlet Rotating	Stop Iteration Report	0 [Temp Outlet Rotating]
Monitor	Report	[[en]] otier (otiang]
	Enabled	true
	Value Type	Total Value
	Trigger Normalization	Off
1 1 1	Option	
	Maximum Plot	5000
	Samples	Π
`-1 Iteration Frequency	Tags Iteration	[]1
	Frequency	
	Start Iteration	0
	Enable Stop Stop Iteration	false 0
+-17 Torque Monitor	Report	[Torque]
	Enabled	true
	Value Type	Total Value
	Trigger Normalization	Off
	Option	
	Maximum Plot	5000
	Samples	
-1 Iteration Frequency	Tags Iteration	1
	Frequency	
	Start Iteration	0
	Enable Stop	false
+-29 Reports	Stop Iteration	0 28
+-1 Pressure Loss Coefficient	Reports	20
	Units	
Report	Definition	¢(Drasours Lass Coofficient)
	Definition Periodicity	\${Pressure Loss Coefficient} Non-periodic
	Delta Value	false
	Tags	0
+-2 Relative Pressure Inlet	Units	Pa
	Field Function Parts	Total Pressure in Rotating [R37_SI: R37.Inlet]
		Volume Mesh
		false
iii	Smooth Values Weighting Function	false <select function=""></select>

	Tags	0
-3 Relative Pressure Outlet	Units Field Function	Pa Total Pressure in Rotating
		[R37 SI: R37.Outlet]
	Representation	Volume Mesh
		false
	Weighting Function	<select function=""></select>
	Tags	0
+-2 Probe		
+-1 Density Point		kg/m^3 Density
	Functions	-
		[Point at Chord Distance] Volume Mesh
		false
	Tags	0
+-2 Dynamic Viscosity Point	Units Field Function	Pa-s
		Dynamic Viscosity
	Functions	-
		[Point at Chord Distance] Volume Mesh
		false
	Tags	0
`-3 Velocity Point	Units Field Function	m/s Delative Velecity: Megnitude
		Relative Velocity: Magnitude
	Functions	
		[Point at Chord Distance]
		Volume Mesh false
i i	Tags	0
+-3 Check Area Inlet-Outlet	Units Field Eurotion	m^2 Area: Magnituda
	Field Function Parts	Area: Magnitude
		Volume Mesh
		false
+-4 Corrected Mass Flow Inlet	Tags Units	0
	Field Function	Corrected Mass Flow Inlet
		[R37_SI: R37.Inlet]
		Volume Mesh false
	Weighting	<select function=""></select>
	Function Tags	0
+-5 Density Adimensional		u kg/m^3
	Field Function	Density
	-	[Adimensional plane] Volume Mesh
		false
	Weighting	<select function=""></select>
	Function Tags	0
+-6 Efficiency Rotor	Units	
		\${Eta_rotor} Non-periodic
	Delta Value	false
	Tags	0
+-7 Flow Angle Plane	Units Field Function	Rotational Flow Angle
	Parts	[Adimensional plane]
		Volume Mesh
	Smooth Values Weighting	false <select function=""></select>
1 1	Function	
	Tags	0
+-8 Flow Angle Point	Units Field Function	Rotational Flow Angle
i i		
	Functions	[Deleted Object Distance]
		[Point at Chord Distance] Volume Mesh
		false
 +-9 Mass Flow Inlet	Tags	
		kg/s [R37_SI: R37.Inlet]
	Representation	Volume Mesh
		false
	Account for Idealization	false
	Tags	0
+-10 Mass Flow Inlet (360)	Units	
		\${Mass Flow inlet per 360} Non-periodic
	Delta Value	false
 +-11 Mass Flow Outlet	Tags	
		kg/s [R37_SI: R37.Outlet]
	Representation	Volume Mesh
		false
1 1	Account for Idealization	false
	Tags	0
+-12 Maximum 1	Units	m
í I	Field Function	Position[Z]

				Collocated Field Functions	0
					[R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados]
	-				Volume Mesh
	ł				false
	+-	13	Minimum 1	Units	m
	-				Position[Z]
1	I			Collocated Field Functions	
	1				[R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados]
	ł				Volume Mesh false
i	i.				
	+-	14	Pressure Inlet	Units	Pa
	ł				Absolute Total Pressure [R37_SI: R37.Inlet]
i	i.				Volume Mesh
					false
I	I			Weighting Function	<select function=""></select>
			-	Tags	0
	+-	15	Pressure Outlet		Pa Absolute Total Pressure
i	i.				[R37_SI: R37.Outlet]
	1				Volume Mesh
	ł				false <select function=""></select>
				Function	
	4	16	Pressure Ratio Rotor		0
	т- 	Τ0	FICSOULE RALIU RULUI	Units Definition	\${Pressure Outlet}/\${Pressure Inlet}
İ	!			Periodicity	Non-periodic
					false
	+ -	17	Probe Convergence	Units	
				Field Function	Pressure Coefficient
I				Collocated Field Functions	0
					[Point at Intrados]
					Volume Mesh
ł	ł				false
Ì	+-	18	Reynolds Number	Units	
	-				Reynolds Number [Adimensional plane]
ł	i.				Volume Mesh
	1			Smooth Values	false
I				Weighting Function	<select function=""></select>
					0
	+-	19	Temp Inlet	Units	К
ł	ł				Total Temperature [R37_SI: R37.Inlet]
İ	İ			Representation	Volume Mesh
	-				false <select function=""></select>
1	1			Weighting Function	
	1	20	Town Inlat Datating	Tags	0
	+-	20	Temp Inlet Rotating		K Total Temperature in Rotating
	į			Parts	[R37_SI: R37.Inlet]
					Volume Mesh false
	ĺ.			Weighting	<select function=""></select>
I				Function	
	+-	21	Temp Outlet	Tags Units	[] К
				Field Function	Total Temperature
					[R37_SI: R37.Outlet] Volume Mesh
					false
İ				Weighting	<select function=""></select>
				Function Tags	0
	+-	22	Temp Outlet Rotating	Units	К
				Field Function	Total Temperature in Rotating
					[R37_SI: R37.Outlet] Volume Mesh
	į			Smooth Values	false
				Weighting Function	<select function=""></select>
					0
	+-	23	Torque	Units	N-m
	I			Coordinate System	Laboratory
				Force Option	Pressure + Shear
				Reference Pressure	0.0 Pa
					[0.0, 0.0, 1.0]
				Number of	0
				Bands Axis Origin	[0.0, 0.0, 0.0] m
	Ì			Parts	[R37_SI: R37.Blade_Extrados, R37_SI: R37.Blade_Intrados]
					Volume Mesh false
					false
				Idealization	

Tene		n
Tags	s s	[]m/s
		Velocity in Rotating: Magnitude
Parts		[Adimensional plane]
		Volume Mesh
		false
	ghting ction	<select function=""></select>
Tags		0
		L true
Setti		
+-1 Steady		
`-1 Stopping Criteria Verb +-2 Partitioning Solv		false false
		laise Per-Continuum
Meth		
		false
	,	0
		500000
	e Threshold eze Flow	false
		Automatic Selection
	erence	
Loca		
		false
Froz		false
Zero		
Tem	porary	false
Stora		
	ained	Linoar Damp
CFL CFL		Linear Ramp
Expl		Constant
Rela	axation	
Meth		folgo
	anced sipation	false
		1
	sipation Start	-
	nsition	
		100
	sipation End	
		1.0
Optin	imization	
	rance	
Velo	rection	On
Limit		
		5.0
		5.0
		1
		50
+-2 Constant Relaxation Expl		0.1 0.3
	axation	
		30
		NONE
Enat Solv		false
	kimum Direct	32
	ver Equations	-
Conv	ivergence	0.1
	rance	0.0
Epsi		0.0 V Cycle
		Auto
Cont	itrol	
		4
		Gauss-Seidel
Sche Acce		Bi Conjugate Gradient Stabilized
Meth	hod	
Scal	ling	Disabled
		1
		2
Max +-4 Expert Initialization Meth		50 None
		None
Acce	elerators	
		false
		false
Froz		false
Zero	bed	
Tem	porary	false
Stora	age	
Reta Unde	ained Ier-	0.8
	axation	0.0
Fact		
Bour	ndary Layer	false
	alization	Lincor Damp
+-1 Under-Relaxation Factor Ram Ramp	np Method	Linear Ramp
	t Iteration	1
End	Iteration	50
Initia	al Value	0.08
Control AMG Linear Solver Max	Cycles	30

	N 1 1	
		NONE
	Enable Direct Solver	false
	Maximum Direct	32
	Solver Equations	
	Convergence Tolerance	0.1
		0.0
i i i		Flex Cycle
	Group Size	Auto
	Control Group Size	4
	Relaxation	Gauss-Seidel
	Scheme	
	Acceleration	None
	Method Scaling	Disabled
-1 Flex Cycle	Restriction	0.9
	Tolerance	
	Prolongation Tolerance	0.5
	Sweeps	1
+-6 K-Omega Turbulent Viscosity	Solver Frozen	false
		1.0
	Relaxation Factor	
		100000.0
-7 GammaReTheta Transition		false
1 1	Reconstruction Frozen	false
		false
	Zeroed	
	Temporary	false
	Storage Retained	
	Under-	0.8
	Relaxation Factor	
+-1 Under-Relaxation Factor		No Ramp
Ramp -2 AMG Linear Solver	Mar O alea	aa
	Max Cycles Verbosity	30 NONE
		false
	Solver	22
	Maximum Direct Solver Equations	32
	Convergence	0.1
	Tolerance	
		0.0 Flex Cycle
	Group Size	Auto
	Control	4
	Group Size Relaxation	Gauss-Seidel
	Scheme	
	Acceleration Method	None
	Scaling	Disabled
☐ 1 Flex Cycle	Restriction	0.9
	Tolerance Prolongation	0.5
I	Tolerance	0.5
		1
+-31 Stopping Criteria +-1 Maximum Inner Iterations	Verbose Enabled	false true
	Maximum Inner	5
	Iterations	
	Logical Rule Criterion	Or false
	Satisfied	
	Tags	
+-2 Maximum Physical Time		true 1.0 s
	Physical Time	
		Or
	Criterion Satisfied	false
	Tags	0
+-3 Maximum Steps	Enabled	true
	Maximum Steps Logical Rule	280000 Or
ii	Criterion	false
	Satisfied	n
-4 Stop File	Tags Enabled	[] true
	Stop Inner	true
	Iterations	APODT
	Path Logical Rule	ABORT Or
İ	Criterion	false
	Satisfied	
+-32 Solution Histories	Tags	0
+-33 Solution Views		
` -1 Current Solution		189500
		0 0.0
	Tags	0
+-34 Layout Views		

3	5 Aut	omation		
+		arameters		
	+-1	Chord	Туре	SCALAR
			Value Tags	0.055485 m
	+-2	Inlet_massflow	Туре	SCALAR
İ		_	Value	0.84
			Tags	0
	+-3	Inlet_temp	Type Value	SCALAR 288.15 K
			Tags	
i	+-4	Mesh_basesize	Туре	SCALAR
			Value	0.0018 m
		March	Tags	
	+-5	Mesh_minsurface	Type Value	SCALAR 6.0E-5
i			Tags	
	+-6	Mesh_numprismlayer	Туре	SCALAR
			Value	13.0
	+ 7	Mesh_prismlaystreching	Tags	
	+ - <i>1</i>	mesn_prismaysueching	Type Value	SCALAR 1.15
i	i		Tags	
	+-8	Mesh_prismlaythick	Туре	SCALAR
			Value	7.2E-4 m
	+ - 9	Mesh surfGrowRate	Tags	I SCALAR
		mesh_sunorownate	Type Value	1.35
İ	ĺ		Tags	
	+-10	Mesh_targetsurface	Туре	SCALAR
			Value	0.0012
	+-11	Mesh_volGrowRate	Tags Type	I SCALAR
			Value	1.15
			Tags	0
	+-12	2 Outlet_press	Туре	SCALAR
			Value Tags	210600.0 Pa
	+-13	Outlet_temp	Type	SCALAR
İ			Value	300.0 K
			Tags	
	- 14	1 w (rad/s)	Type Value	SCALAR -1800.0
i			Tags	
+		eld Functions	U	-
		Differences	Function Name	D# := DM 400.4.0
		1 Diff in RM 10-4	Inverse Distance	Diff in RM 100-4_2 false
			Weight	
			Value Type	Scalar
				(- \${MappedVertexRelative Mach Number p10} \${MappedVertexRelative Mach Number p4})
			Definition Ignore Boundary	<pre>\${MappedVertexRelative Mach Number p10}-\${MappedVertexRelative Mach Number p4} false</pre>
			Values	
		0 Diff in DM 40 4	Tags	
		2 Diff in RM 40-4	Function Name Inverse Distance	Diff in RM 100-4_4 false
	1 1		Weight	
			Value Type	Scalar
			Assembly Code Definition	(- \${MappedVertexRelative Mach Number p40} \${MappedVertexRelative Mach Number p4}) \${MappedVertexRelative Mach Number p40}-\${MappedVertexRelative Mach Number p4}
			Ignore Boundary	
			Values	
			Tags	
	+-	3 Diff in RM 40-10	Function Name Inverse Distance	Diff in RM 100-4_5
	1		Weight	ומוסק
			Value Type	Scalar
			Assembly Code	(- \${MappedVertexRelative Mach Number p40} \${MappedVertexRelative Mach Number p10})
			Definition	\${MappedVertexRelative Mach Number p40}-\${MappedVertexRelative Mach Number p10}
	1		Ignore Boundary Values	
			Tags	0
	+-	4 Diff in RM 100-4	Function Name	Diff in RM 100-4
			Inverse Distance Weight	false
			Value Type	Scalar
			Assembly Code	(- \${RelativeMachNumber} \${MappedVertexRelative Mach Number p4})
			Definition	\${RelativeMachNumber}-\${MappedVertexRelative Mach Number p4}
			Ignore Boundary Values	Taise
			Tags	0
	+-	5 Diff in RM 100-10	Function Name	Diff in RM 100-10
			Inverse Distance	false
			Weight Value Type	Scalar
			Assembly Code	(- \${RelativeMachNumber} \${MappedVertexRelative Mach Number p10})
			Definition	<pre>\${RelativeMachNumber}-\${MappedVertexRelative Mach Number p10}</pre>
			Ignore Boundary Values	talse
			Tags	Π
	-	6 Diff in RM 100-40	Function Name	Diff in RM 100-4_3
			Inverse Distance	false
			Weight Value Type	Scalar
			Assembly Code	(- \${RelativeMachNumber} \${MappedVertexRelative Mach Number p40})
			Definition	<pre>\${RelativeMachNumber}-\${MappedVertexRelative Mach Number p40}</pre>

+ -

			Ignore Boundary Values	false
			Tags	0
.		riction Coefficients		
	+-1 	Friction Coefficient 10%	Inverse Distance	Friction Coefficient 10% false
1			Weight Value Type	Scalar
İ	İİ		Assembly Code	(/ \$\${WallShearStress}{"Laboratory.Isospan 10%")[1] (* (* 0.5 \${DensityAdimensionalReport}) \${VelocityAdimensionalReport}))
			Definition	<pre>\$\$WallShearStress(@CoordinateSystem("Laboratory.Isospan 10%"))[1]/ (0.5*\${DensityAdimensionalReport}*\${VelocityAdimensionalReport})</pre>
			Ignore Boundary Values	false
			Tags	0
	+-2	Friction Coefficient 50%	Function Name	Friction Coefficient 50%
			Inverse Distance Weight	Taise
			Value Type	Scalar
			Assembly Code	(/ \$\${WallShearStress}("Laboratory.Isospan 50%")[1] (* (* 0.5 \${DensityAdimensionalReport}) \${VelocityAdimensionalReport}))
			Definition	<pre>\$\$WallShearStress(@CoordinateSystem("Laboratory.Isospan 50%"))[1]/ (0.5*\${DensityAdimensionalReport}*\${VelocityAdimensionalReport})</pre>
			,	false
			Values Tags	0
i	`-3	Friction Coefficient 90%		Friction Coefficient 90%
			Inverse Distance Weight	false
			Value Type	Scalar
			Assembly Code	(/ \$\${WallShearStress}("Laboratory.Isospan 90%")[1] (* (* 0.5 \${DensityAdimensionalReport}) \${VelocityAdimensionalReport}))
			Definition	\$\$WallShearStress(@CoordinateSystem("Laboratory.Isospan 90%"))[1]/
			Ignore Boundary	(0.5*\${DensityAdimensionalReport}*\${VelocityAdimensionalReport}) false
I			Values	
 ·	 +-3 S	Surface Distance	Tags	
i		Distance2AuxExtrados	Function Name	Distance2AuxExtrados
ĺ			Inverse Distance Weight	false
			Value Type	Scalar
			Assembly Code	distanceToSurface(@PartSurface("Extrados Blade_Extrados"))
ŀ			Definition Ignore Boundary	distanceToSurface(@PartSurface("Extrados Blade_Extrados"))
			Values	
		Distance2AuxIntrados	Tags	[] Distance24.wulttradee
ŀ	+-2 	DIStancezAuxintrauos	Function Name Inverse Distance	Distance2AuxIntrados false
			Weight	
ł			Value Type Assembly Code	Scalar distanceToSurface(@PartSurface("Intrados Blade Intrados"))
i .	İİ		Definition	distanceToSurface(@PartSurface("Intrados Blade_Intrados"))
			Ignore Boundary Values	false
			Tags	0
-	+-3 	Distance2Extrados	Function Name Inverse Distance	Distance2Extrados
			Weight	
-			Value Type Assembly Code	Scalar distanceToSurface(@PartSurface("R37 Blade_Extrados"))
i.			Definition	distanceToSurface(@PartSurface("R37 Blade_Extrados"))
			Ignore Boundary Values	false
			Tags	0
	+-4 	Distance2Inlet	Function Name Inverse Distance	Distance2Extrados_2
1	i í		Weight	10.55
			Value Type	Scalar
ŀ			Assembly Code Definition	distanceToSurface(@PartSurface("R37 Inlet")) distanceToSurface(@PartSurface("R37 Inlet"))
İ	I İ		Ignore Boundary	
1			Values Tags	Π
	+-5	Distance2Intrados	Function Name	Distance2Intrados
			Inverse Distance Weight	talse
			Value Type	Scalar
			Assembly Code	distanceToSurface(@PartSurface("R37 Blade_Intrados"))
			Definition Ignore Boundary	distanceToSurface(@PartSurface("R37 Blade_Intrados")) false
			Values	
	 +-6	Meridional Extrados	Tags Function Name	I Meridional Extrados
İ			Inverse Distance	
			Weight Value Type	Scalar
ĺ			Assembly Code	(- \${Distance2Extrados} \${Distance2AuxIntrados})
			Definition	<pre>\${Distance2Extrados}-\${Distance2AuxIntrados} false</pre>
I	I Í		Ignore Boundary Values	10155
			Tags	0
	-7 	Meridional Intrados	Function Name Inverse Distance	Meridional Intrados false
			Weight	
			Value Type	Scalar
1			Assembly Code	(- \${Distance2Intrados} \${Distance2AuxExtrados}) \${Distance2Intrados}-\${Distance2AuxExtrados}

	Ignore Boundary	false
	Values Tags	0
+-4 Corrected Mass		Corrected Mass Flow Inlet
	Value Type	Scalar
		(* (* (/ (- \${Mass Flow Inlet}) (/ \${Pressure Inlet} 101325)) (/ 1 (pow (/ 273.15 \${TempInletReport}) 0.5))) 36) -\${Mass Flow Inlet}/(\${Pressure Inlet}/101325)*(1/pow((273.15/\${TempInletReport}),0.5))*36
	Ignore Boundary Values	
 +-5 Cylindrical Axial	Tags I Velocity Function Name	Cylindrical Axial Velocity
	Inverse Distance Weight	
	Value Type	Scalar
		\$\${Velocity}("Cylindrical-Parametrization")[2] \$\$Velocity(@CoordinateSystem("Cylindrical-Parametrization"))[2]
	Ignore Boundary Values	false
+-6 Cylindrical Tang Velocity	Tags Function Name	Cylindrical Tangential Velocity
	Inverse Distance Weight	
	Value Type Assembly Code	Scalar \$\${RelativeVelocity}{"Cylindrical-Parametrization")[1]
	Definition	\$\$RelativeVelocity(@CoordinateSystem("Cylindrical-Parametrization"))[1]
	Ignore Boundary Values	false
 +-7 Distance2Hub	Tags Function Name	Distance2Hub
	Inverse Distance	
	Weight Value Type	Scalar
	Assembly Code	distanceToSurface(@PartSurface("R37 Hub"))
	Definition Ignore Boundary	distanceToSurface(@PartSurface("R37 Hub")) false
	Values	
+-8 Distance2Shrou	d Tags d Function Name	Distance2Shroud
	Inverse Distance Weight	
	Value Type	Scalar
		distanceToSurface(@PartSurface("R37 Shroud")) distanceToSurface(@PartSurface("R37 Shroud"))
i i i	Ignore Boundary	
	Values Tags	0
+-9 Eta_rotor		Eta_rotor
	Weight	
	Value Type Assembly Code	Scalar (/ (+ -1 (pow (/ \${Pressure Outlet} \${Pressure Inlet}) 0.285714)) (+ -1 (/ \${Temp Outlet} \${Temp Inlet})))
	Definition	(-1 + pow((\${Pressure Outlet}/\${Pressure Inlet}),0.2857143))/(-1 + (\${Temp Outlet}/\${Temp Inlet}))
	Ignore Boundary Values	false
 +-10 Field Function	Tags Mesh Function Name	[] Field Function Mesh Refinement
Refinement		
	Inverse Distance Weight	false
	Value Type Assembly Code	Scalar (if (<= \${RelativeMachNumber} 0.7) (/ \${Mesh_basesize} 4) \${Mesh_basesize})
	Definition	\${RelativeMachNumber} <= 0.7 ? \${Mesh_basesize}/4 : \${Mesh_basesize}
	Ignore Boundary Values	false
 +-11 Field Function	Tags Mesh Function Name	[] Field Function Mesh Refinement Complete
Refinement Complete		
	Inverse Distance Weight	laise
	Value Type Assembly Code	Scalar (if (> (* (mag grad \${MachNumber}) \${AdaptationCellSize}) 0.25) (/ \${Mesh_basesize} 4) (if (<= \${RelativeMachNumber}
		0.7) (/ \${Mesh_basesize} 4) \${Mesh_basesize}))
	Definition	mag(grad(\${MachNumber}))*(\${AdaptationCellSize}) > 0.25 ? \${Mesh_basesize}/4 : \${RelativeMachNumber} <= 0.7 ? \${Mesh_basesize}/4 : \${Mesh_basesize}
	Ignore Boundary Values	false
	Tags	0
+-12 Mass Flow inle	t per 360 Function Name Inverse Distance	Mass Flow inlet per 360 false
	Weight Value Type	Scalar
	Assembly Code	(* -36 \${MassFlowInletReport})
	Definition Ignore Boundary	-36*\${MassFlowInletReport}
	Values	
+-13 Pressure_10	Tags Function Name	Pressure_10
	Inverse Distance Weight	
	Value Type	Scalar
	Assembly Code Definition	(/ \${StaticPressure} 10) \${StaticPressure}/10
	Ignore Boundary Values	
	Tags	0

+-14	Pressure Loss	Function Name	Pressure Loss Coefficient
Coefficient		T unouon ritanie	
		Inverse Distance Weight	false
		Value Type	Scalar
iii			(/ (- \${RelativePressureInletReport} \${RelativePressureOutletReport}) (- \${RelativePressureInletReport}
			\$(PressureInletReport}))
		Definition	(\${RelativePressureInletReport}-\${RelativePressureOutletReport}//(\${RelativePressureInletReport}-\${PressureInletReport})
		Ignore Boundary Values	
		Tags	0
+-15	Reynolds Number	Function Name	Reynolds Number
		Inverse Distance Weight	false
		Value Type	Scalar
			(/ (* (* \${Density} \${Velocity Adimensional}) \${Chord}) \${DynamicViscosity})
		Definition	\${Density}*\${Velocity Adimensional}*\${Chord}/\${DynamicViscosity}
		Ignore Boundary Values	false
		Tags	0
+-16	Rotational Flow Angle		Rotational Flow Angle
		Inverse Distance Weight	false
		Value Type	Scalar
		Assembly Code	(/ (* (atan (/ \${Cylindrical Tangential Velocity} \${Cylindrical Axial Velocity})) 180) 3.14159)
		Definition	atan(\${Cylindrical Tangential Velocity}/\${Cylindrical Axial Velocity}*180/3.14159265359
		Ignore Boundary Values	false
		Tags	
+-17	Span Percentage		Span Percentage
		Inverse Distance Weight	false
		Value Type	Scalar
		Assembly Code	(/ (* 100 \${Distance2Hub}) (+ \${Distance2Hub} \${Distance2Shroud}))
		Definition	100*\${Distance2Hub}/(\${Distance2Hub}+\${Distance2Shroud})
		Ignore Boundary Values	false
		Tags	
+-18	TargetMassFlow		TargetMassFlow
		Inverse Distance Weight	
		Value Type	Scalar
			(/ (* 13 (/ \${Pressure Inlet} 101325)) (/ 1 (pow (/ 273.15 \${TempInletRotatingReport}) 0.5)))
		Definition	13*(\${Pressure Inlet}/101325)/(1/pow((273.15/\${TempInletRotatingReport}),0.5))
		Ignore Boundary Values	
		Tags	0
	mulation Operations	Selected	0
+-4 Filte			
+-5 Tag			
+-6 Sta		Active Stage	0
+-/ Upr	odate Events	Event Count	0
	Coolea	Event Names	
-8 HH	ne Scales		

Solution

Accumulated CPU Time over all processes (s) 7355467.583000539 Elapsed Time (s) 573800.0872746183 Iterations 189500