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A B S T R A C T

Irrigation systems significantly enhance agricultural productivity but are also substantial consumers of water,
energy, and natural resources. The need to optimize their design encouraged agronomic engineering to develop
various methods for improving the design and management of these irrigation networks. This development fo-
cuses on creating a tool to define the optimal flow distribution according to the system’s irrigation or con-
sumption needs, thereby determining the design flows. The aim is to optimize the design of pipe diameters to
improve sustainability (i.e., reducing CO2 emissions, minimizing service pressure, and maximizing recoverable
energy within the system). These principles ensure a better evaluation of sustainable development goals within
agricultural production. The proposed procedure develops a strategy to define the best-fitting distribution using a
multicriteria solution. As novel, the research develops a tool, which characterizes flow distributions deviating
from the classic Clement’s formulation used in irrigation systems. The proposed method was applied in a
Mediterranean irrigation system in Spain, achieving a correlation coefficient above 0.9 in the model. This
methodology addresses design criteria in terms of sustainability and reduces energy consumption in networks. It
achieved material savings of 6.01 % compared to the observed network, reducing CO2 emissions between 5.61
and 5.72 TnCO2/ha over its lifecycle.

1. Introduction

Irrigation systems are crucial in developing new agricultural prac-
tices to guarantee feasibility [1]. The correct operation of these water
systems is mandatory to guarantee the pressure and flow at each irri-
gation point [2]. Both terms (i.e., feasibility and pressure guarantee)
imply the need to consider climate change [3] since water management
is key to optimizing the available water resources, which is very
important in deficit areas [4]. Improving the management of irrigation
systems starts with the correct design of irrigation systems [5]. For this
reason, the study of flow frequency distributions is more significant than
ever [6], due to the need to improve flow distribution estimates to
improve the assumptions in the design of pipelines, once the digital-
isation of distribution systems has made it possible to better understand
the evolution of flows and pressures in the systems [7].

Water scarcity is present strongly in Mediterranean areas [8], which
should be considered when managing irrigation communities. These

structures should satisfy the water demand [1], guarantee the water
resources [9] and improve the evaluation of the different targets of the
sustainable development goals (SDGs) [10]. Water demand depends on
factors intrinsic to the plantation and external factors due mainly to
climatic conditions, mainly temperature and rainfall, which determine
the crop’s evapotranspiration [11]. Its water requirements depend
partly on the quality of the water [12].

The water demand of the different crops in irrigation systems de-
pends on the irrigation requirements by soil water balance [13], which
are new trends to get new volume resources [14], soil type and climatic
factors involved in the system [15]. These different approaches were
reviewed by Ref. [16], in which the use of new technologies have an
enormous potential for irrigation scheduling. It includes the assessment
of alternative crop management practices, as well as biophysical and
economic indicators of crop water productivity. These irrigation needs
and the mode of operation (e.g. scheduled or on-demand) of the network
establish the different sizing systems, taking into account not only the
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topology but also the distribution (i.e. gravity or pumped) [17]. Several
times this decision support is solved by Clément’s formula, which en-
ables the establishment of the opening or closure probability of the taps.
Its application allows engineers to estimate the design flow [18].
Currently, using decision support systems and artificial intelligence
supported with digital twins helped improve the networks’ management
once they are designed [19]. However, management comes at a later
stage than design and implementation [20]. Therefore, the design phase
is crucial to address a balanced design in terms of ensuring consumption
under conditions of quality, feasibility, and sustainability. This implies
approaching the sizing by estimating the circulating flow, although it is
important to be able to know the distribution of flows to be able to
establish criteria that do not oversize the installations [21].

Water scarcity has led system managers to develop better water
management within the framework of intensive agriculture in recent
decades [22]. Intensive agriculture implied the irrigation trans-
formation from gravity to pressurised irrigation systems to increase the
water efficiency [23]. For example, in Spanish Mediterranean irrigation,
the intense modernization supported by public subsidies from European
policy plans improved the efficiency from 0.49 to 0.61 of the water
systems [24].The improvement of water efficiency solved the water
scarcity problems [25]. However, the increase in profitability led and
the food needs of the population to cover its needs caused an increase in
the volumes demanded [26]. The rise in water consumption, coupled
with the reduction of water resources during drought periods due to
climate change [27], necessitates that water managers establish new
strategies to introduce additional water sources to balance irrigation
demands with available water [14]. This volume increment could get
from water reuse volume from wastewater treatment plants, which is
currently discharged to sea [28]. The irrigation modernization did not
only bring advantages but also increased the energy consumption of the
systems due to the pressurization of the systems. The unit energy use is
around 4.5 % [24]. This increase in energy was offset by the use of
renewable systems (mainly photovoltaic and micro hydropower sys-
tems) in past years [29]. It contributed to reducing the carbon footprint
of the irrigation systems [30], considering a potential of 2.8 Wh/m3 for
each meter of difference in elevation [31] and LCOE between 4 and 20
c€/kWh when photovoltaic systems are analysed, saving the electricity
costs until 80 % when it is compared to non-renewable resources [32].
These measures contributed to improving the evaluation of the different
targets involved in the SDGs, not only in SDG6 (Clean water and sani-
tation), since water is involved in many targets of the 17 SDGs [33].

[34] established a deep review of the different methods used to es-
timate flow rates in irrigation networks in which 25 different models
were evaluated to discuss the advantages and disadvantages to consider
in future methodologies to size water systems. Based on the variables
involved, the methods are classified into four groups: (i) Deterministic
Models (D), these models assume that uncertainties are external to the
process and aim to gather as much information as possible [35]; (ii)
Statistical Models (F), these models seek to determine the relative fre-
quency of different flows during the irrigation season, with the main
goal of obtaining the operation probability of the hydrants at a given
period [36]; (iii) Random Simulation Models (R), these models take a
random approach to variables by creating and assuming relationships
with components associated with the portion of irrigation that cannot be
accurately known. They account for uncertainties or operate within
established assumptions and scopes [37]; and (iv) Computational In-
telligence Models (CI), these models can learn from historical data and
use it to predict new values based on patterns and series inspired by
biological and organizational models [38]. The development an anal-
ysis, which establishes the influence of the flow distribution in the sizing
of irrigation systems, considering irrigation demands, agronomic vari-
ables and sustainable parameters is necessary to improve the water
management systems [34].

The design was approached from a conceptual point of view of using
probability distributions assuming a degree of confidence. It is a major

challenge in designing irrigation networks, which operate on-demand to
know beforehand the flows into the networks’ pipes [39]. The novelty of
the study is focused on developing a tool that allows to characterize the
distribution of flows that deviate from Clement’s formulation, which is
classic in the use of irrigation systems. The fact of improving the
knowledge of the distribution of flows makes it possible to address
within the research a methodology of network design where not only
technical aspects are taken into account but also parameters focused on
sustainability, to reduce the carbon footprint as much as possible in the
operating balances of the irrigation communities. The present research
attempts to consider the three factors outlined above by proposing a
novel methodology (objective 1) that allows the development of a tool
that, considering the consumption patterns according to the crop, can
estimate the best distribution (objective 2), establishing the sustainable
design of the network (objective 3).

2. Methodology

The proposed procedure is divided into five different phases, each
containing different steps (Fig. 1). The model needs different inputs and
iterative procedures, which establish the energy requirements and the
infrastructure sizing to supply the water irrigation demand according to
available volume.

2.1. Optimization stages

Fig. 1 shows the proposed methodology, which is divided into five
different stages: Analysis of Observed Flow Distribution (I), Network
model Calibration (II), Pipe Diameter Sizing-CO2 emission criteria (III),
Energy audits (IV) and Definition of technical and sustainability criteria
(V).

Step I. Analysis of Observed Flow Distribution

With the monthly flow records for the studied period, the first
adjustment consisted of determining the distribution function that better
fit the data for each month. The case study is based on an irrigation
network in Callosa d’en Sarrià, Alicante (Spain), and it is described
completely after the methodology section. However, the established
methodology allows for replication in any case study as well as irrigation
typology, only the data inputs described above in the methodological
process are necessary.

Following the characterization of the observed data, a structured
methodology for data adjustment was developed and executed in
MATLAB using the Statistics and Machine Learning Toolbox [40] in step
A. MATLAB is a desktop software and a programming language that
directly expresses mathematic expressions as matrices and arrays (vec-
tors or arrays) [41]. The developed tool is divided into fivemain steps, as
shown in Fig. 2a. A general outline of the process is described below. It
receives the monthly flow data as input and fits it with all the available
distributions supported byMATLAB. Subsequently, the results are sorted
following defined criteria, selecting the best 10 for each month evalu-
ated with their corresponding parameters. Lastly, goodness of fit tests
are applied, and the multicriteria process is executed to select the
optimal distribution for the data.

Step A1, called network monthly data, consists of the data prepara-
tion process, containing the twelve months for each evaluated year. For
this case, the function works with hourly readings, ranging from 672 to
744 monthly intervals.

Step A2, called Adjustment of distribution to monthly data, is
focused on the fitting process. The function evaluates through a list of all
the supported distribution functions, i.e. ‘Normal Distribution’, ‘Gamma
Distribution’, or ‘Lognormal Distribution’, using MATLAB’s Distribution
Fitter and MLE framework to fit the data to each distribution [42–44].

Step A3, called selection of the 10 best-adjusted distributions, selects
each month’s top ten adjusted distributions. The research considered 10
different functions, which appeared in all months when different
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iterations were developed in the iterative procedure of the methodology.
This step is divided into two phases: denominated Evaluation and
Sorting. In the evaluation, the tool first calculates the log-likelihood (LL)
criterion after obtaining the parameters for each fitted distribution. This
criterion assesses how well the distribution fits the data [45,46]. Then,
after calculating the log-likelihoods, the Akaike Information Criterion
(AIC) is computed for each distribution function. This criterion penalises
the distributions on the number of parameters and is based on Equation
(1) [45,46]:

AIC= 2⋅LL + 2⋅nparam (1)

Where AIC is the Akaike Information Criterion value for the evaluated
distribution fit; LL is the log-likelihood value for the evaluated distri-
bution; nparam is the number of parameters of the distribution function. In
the Sorting stage, the function returns the sorted list of distributions
based on their log-likelihood and AIC values in ascending order, with the
distributions yielding the top ten positions being considered the 10 best-

adjusted distributions.
Step A4 is focused on performing the goodness of fit tests. Chi-

squared and the Kolmogorov-Smirnov goodness of fit tests are evalu-
ated for each best-adjusted distribution [47,48]. The Chi-squared test is
commonly employed to evaluate the adequacy of fitting a categorical
distribution or to contrast observed frequencies with their expected
counterparts. Here, the test statistic, represented as χ2, measures the
served and anticipated frequencies, operating under the null hypothesis
of no difference between the observed and expected distributions [47,
48].

The Kolmogorov-Smirnov (KS) test assesses the goodness-of-fit of a
continuous distribution or compares the empirical distribution function
of the observed data to a theoretical distribution function. The test
statistic, denoted as D, measures the maximum discrepancy between the
empirical and theoretical distribution function [49,50]. MATLAB’s
Statistics and Machine Learning Toolbox provide the ‘chi2gof’ and the
‘kstest’ functions for calculating the goodness of fit tests [51,52].

Step A5, which is called the optimal monthly distribution function,
selects the optimal monthly distribution for each year following a
multicriteria function (FP), using the log-likelihood (LL), the AIC, the
Chi-squared test statistic, and the Kolmogorov-Smirnov statistic as in-
puts [49,50]. FP is a proposed criterion of the methodology as a novelty,
where by mathematical definition, the value closest to one establishes
that the type of distribution is repeated more times throughout the year
and therefore, its behaviour can be attributed to it. Equation (2) is
developed and evaluated for the four criteria for each year according to
the research proposal:

FPcriterion =
∑i=12;j=10

i=0;j=1

nrepi

12

(
11 − pj

)

10
(2)

Where FPcriterion is the FP value for the evaluated criterion; i is the
number of the month; j is the index of the position the distribution oc-
cupies in that month; nrepi is the number of months the distribution re-
peats in that position in a year, and pj is the position of the distribution in
that month. FP values closer to 1 represent the best-fitted function for
that year.

This function handles additional considerations, such as benefiting
the distributions that repeat more in higher positions, dealing with log-
likelihood ties and providing more detailed output for selecting the
optimal distribution. After calculating the FP values for each distribu-
tion and criterion in a year, Equation (3) determines the total FP value of
every distribution and selects the distribution with the highest value as
the best-adjusting distribution function for the flow data in that year.

FPdistribution = FPLL + FPAIC + FPChi2 + FPKS (3)

where FPdistribution is the total FP value for the distribution function in that
year; FPLL is FP value for the log-likelihood criterion; FPAIC is the FP
value for the Akaike Information Criterion; FPChi2 is the FP value for the
Chi-squared test statistic; FPKS is the FP value for the Kolmogorov-
Smirnov statistic. The output of this function is an array containing
the best distribution for each year and the parameters for each month for
that distribution. After the data adjustment process results, creating a
synthetic year generator that follows the selected optimal monthly dis-
tribution was necessary.

The resultant methodology and function continued from step B.
Fig. 2b shows the process for generating synthetic monthly data and is
described below. The function created uses as inputs the distribution
function parameters for each month, and the number of intervals for
each month and generates a vector with a set of values that follows the
distribution function, ensuring the total volume is the same as the input
of that original month.

Step B: Monthly distribution. The data and parameters, such as the
distribution function parameters, target monthly volume, number of
monthly intervals, and maximum/minimum values allowed for the

Fig. 1. Optimization procedure.
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generated numbers, are imported into the tool.
Step B2: Generation of cumulative probability. The first phase of this

step is to set the convergence criteria, such as the maximum number of
iterations and the tolerance for the difference between the target and
generated total volume and distribution parameters. The cumulative
probability is generated quadratically, with the fixed points being the
first interval (minimum flow) and final interval (maximum flow), and
the third point (intermediate point) is recalculated to minimize the error
in volumes [53,54]. In the iterations, the aim is to ensure that the
calculated curve is close to the linear one (otherwise, the shape of the
distribution can be lost), so it starts by iterating at the midpoint of the
linear one.

If the convergence criteria are met, the function ends the loop and
advances to the next step. If the contrary, it goes back to another iter-
ation until reaching the target convergence.

Step B3: Set final parameters and values; the function returns the
synthetic flow rate data for each month interval and the errors obtained
in monthly volume, monthly mean flow rate and standard deviation
concerning those calculated based on the parameter values of the
defined distribution function.

Step II. Network model calibration

In this second stage, it was necessary to calibrate the network model
for the three data adjustments executed in the Analysis of the observed
flow distribution step. These datasets will be described as follows: (i)
Observed data: The original monthly flow readings from the case study
during the analysed period; (ii) Best monthly flow distribution synthetic
data: A generated dataset of monthly flows that follows the optimal
monthly distribution function —i.e. a Gamma distribution— and (iii)
Normal monthly flow distribution synthetic data: A generated dataset of
monthly flows that follows the normal distribution function.

Considering the network topology and estimated base demand in-
puts, the hydraulic model was developed using the EPANET Toolkit [55,
56]. This network will be calibrated with the available datasets
following different scenarios, generating three main calibrated models
[57]. Knowing the topology makes it possible to list an inventory of the

number of pipes and nodes in the network. The irrigated area and crop
characteristics per supply point are also known, so following [58]
methodology, it is possible to estimate the base demand for the network.

Once the monthly demands were determined, the WaterPAT soft-
ware was used to calculate the consumption trend curves in the network
for the different datasets defined by Ref. [59]. Water distribution sys-
tems rely on consumption trend curves to efficiently manage and opti-
mize water usage across various temporal scales, including annually,
weekly, and hourly [60,61]. Annually aggregated consumption trend curves
reveal broader trends and seasonal variations in water usage. For
example, water demand typically increases during warmer months due
to increased crop needs [62,63]. Weekly consumption trend curves offer a
more granular view of water usage patterns, highlighting variations in
demand throughout the week. Hourly curves provide the most detailed
insights into water usage dynamics, revealing peak demand hours and
low consumption periods. These curves provide insights into water
consumption patterns over time, allowing us to calibrate the model
while also aiming to enhance the efficiency and sustainability of water
management practices. After calculating the curves for each dataset and
simulation, the opening probability for each irrigation point was
calculated [64].

The previous step enables the simulation and determines the flow
and pressures in pipes and nodes by EPANET [55]. Once the model is
simulated, the determination of error and flow distribution must be
minimised, and flow distribution achieved to advance to the next step.
The calibration process of the network model is based on the volume
balance; it should meet the monthly volume per irrigation point; these
are compared to the observed values. Additionally, the Correlation Co-
efficient is determined following Equation (4) [56]. Also, Q-Q plots are
generated for each model and then compared with the observed data.

CC(Qs,Qc)=

∑
(Qs − Qs)(Qc − Qc)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Qs − Qs)
2 ∑

(Qc − Qc)
2

√ (4)

whereQs are the sample flows,Qs the mean value of sample flows,Qc are

Fig. 2. Proposed methodology for the data adjustment. (a) Step A. (b) Step B.
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the calculated flows and Qc the mean value of calculated flows.
According to Ref. [65], the correlation coefficient can be classified in

five different approach: 1) Negligible, when it is lower than 0.09; 2)
Weak, when it is between 0.1 and 0.39; 3) Moderate, when the corre-
lation coefcient is between 0.4 and 0.69; 4) Strong, if it is between 0.7
and 0.89; and 5) Very strong when the correlation coefficient is above
0.9.

Lastly, the model is calibrated if the volumes have minimal error and
a solid correlation (CC > 0.90). Otherwise, the model is not considered
valid and must go into the loop, calculate new trend curves, and execute
all the processes until a satisfactory solution is found.

Before moving on to the next step, there is a second condition that
should be met, m ≥ m0, where m represents the number of simulations
for that model and, m0 represents the number of simulations needed for
establishing the design parameters.

Step III. Pipe Diameter Sizing -CO2 emission criteria.

Once the different models are calibrated, the next stage is deter-
mining the pipe diameter sizing following the CO2 emissions criteria. A
comparison of design flows is defined according to the following
assumptions:

The following design criteria are used for the pipe sizing [66,67]: The
100 % flow rate is considered when the number of irrigation points
oscillates between 1 and 10. If the number oscillates between 11 and 50,
the design flow rate is the value of the 99 % percentile, considering the
95 % percentile when the number is above 50 [68]. These criteria are
used in each simulation to estimate the flow rates for each line.

Based on the agronomic data of the supply points (probability of
operation), the design flow rates are determined, and the following
models are added.

a) Clement_Theoretical (CT): All flows are calculated using Clément’s
First Formula in the proposed strategy from the consumption data
and base demand of irrigation point, as described in Equation (5)
[21,68,69]:

Qd = μclement + U⋅σclement (5)

Where Qd is the design flow rate; μclement is the mean of the flow distri-
bution; σclement is the standard deviation of the flow distribution; U is the
operating quality (OQ) of the network, forU = 1.65 (95%) andU = 2.32
(99 %).

The mean and the standard deviation are determined by Equation (6)
[21] and Equation (7) [21] respectively:

μClement =
∑i=n

i=1
pi⋅qi (6)

σClement =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=1
pi(1 − pi)q2i

√

(7)

Where pi is the opening probability of the irrigation point; qi is the base
demand of the irrigation point.

b) Clement_Corrected (ClC): Since the standard deviation results
through the Clement_Theoretical model came out smaller than the
standard deviations from the Normal_Calibrated model, the flow
rates provided were lower in comparison. It enables the definition of
the Clement corrected distribution, which is get from Clement
Theoretical compared with the experimental values. A Rσ coefficient
was calculated to adjust standard deviations using Equation (8). This
new expression was determined using the data from the Normal_-
Calibrated and Gamma_Calibrated, which presented very similar
regression equations, opting in the end for a single expression for the
two models with a R2 = 0.9568. The corrected standard deviation
was obtained with Equation (9):

Rσ =0.87818⋅μClement
0.25 (8)

σCorrected =Rσ⋅σClement (9)

Where Rσ adjustment coefficient for the standard deviation; σCorrected is
the corrected standard deviation.

The corrected design flow can be calculated using Equation (10):

QCorrected = μclement + U⋅σCorrected (10)

c) Gamma_Theoretical (GT): Given the relationship between the pa-
rameters of the Normal and Gamma distributions, the parameters of
a Normal distribution (mean and standard deviation) can be used to
estimate the shape and scale parameters using Equation (11) [49]
and Equation (12) [47,70]. After determining the parameters, the
design flows can be calculated.

aTheoretical =
μ2

Clement
σ2

Clement
(11)

λTheoretical =
μClement

σ2
Clement

(12)

Where aTheoretical is the shape parameter for the Gamma_Theoretical
model; λTheoretical is the scale parameter for the Gamma_Theoretical
model.

d) Gamma_Corrected (GC): the research proposes the shape and scale
parameters using the Clement_Corrected distribution to get the
gamma corrected distribution, using analogues expressions to (11)
and (12), proposing Equation (13) and Equation (14).

aCorrected =
μ2

Clement
σ2

Corrected
(13)

λCorrected =
μClement

σ2
Corrected

(14)

Monthly synthetic flow rate distributions were generated for the
models previously described, and then, a correlation coefficient verifi-
cation is needed, following the same criteria where CC > 0.90 is needed
for each model; otherwise, it needs to get in the loop until matching the
desired criteria.

2.1.1. Pipe diameter optimal solution
The pipe sizing stage of the network was carried out using as a base

the “Economic pipe size selection” method criteria minimizing the annual
cost of the network [71,72]. For this method, instead of a cost per meter
and material curve, the CO2 emission per meter criteria was used [73],
as shown in Fig. 3.

This method aims to reduce the tons of CO2 produced by meters of
the installed network depending on the pipe material, being the optimal
solution with the lowest emissions generated.

Then, the design flow rates were calculated for all the available
models for the month of maximum demand, May, while considering the
constraints of minimum pressure of 30 m w.c. and velocity values be-
tween 0.5 and 2.5 m/s.

Step IV. Energy evaluation

For this step, an energy audit was executed for each studied model
using the optimal material solution from the previous step. First, each
model simulated and determined the flow and pressures in pipes and
nodes.

In the works of [74], the energy balance equations relative to
different types of energy within the network were described and sum-
marized in Equations (15) to (20), as shown in Table 1.

M.A. Garcia-Espinal et al.
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Where γ is the specific weight of the water; Qj is the demanded flow
in the irrigation point or line j; zo is the elevation concerning the
reference plane of the water level at the supply point or line; zj is the
elevation of the irrigation point or line j; Δt is the timestep; Pj is the
pressure at the irrigation point or line j; Pminj is the minimum pressure at
the irrigation point or line j; PminSj is the minimum service pressure in the
irrigation point or line j to guarantee the demanded flow.

An additional condition is verified to determine which is the next
step, n ≥ n0, where n represents the number of loops of the main
methodology (Fig. 1), n0 represents the number of years of the evaluated
period, this means that steps I to IV should be run three times for each
model.

Step V. Definition of technical and sustainability criteria

The evaluation of the previous steps set out in the methodology
(Steps III and IV) allows decisions to be made based on the most
favourable results in terms of design and sustainability. The

standardised assessment of energy consumption and CO2 emissions al-
lows the best solution to be addressed.

2.1.2. Sustainability indicators
Once the optimal material is determined, the sustainability in-

dicators are obtained. Following the works of [73], sustainability in-
dicators related to CO2 emissions in water networks are described next.

1. Total network environmental cost: Indicates the total environmental
cost, in tons of CO2 emissions, for the proposed network model.

2. CO2 emissions per linear meter of pipe: Indicates the environmental
cost, in tons of CO2/meter, of the network for each meter of pipe
installed.

3. CO2 emissions per hectare: Indicates the environmental cost, in tons of
CO2/ha, of using irrigation systems for each hectare of crop.

4. CO2 emissions per cubic meter of supplied water (kgCO2/m3): Indicates
the environmental cost, in kg CO2/ha of using irrigation systems for
each cubic meter of water supplied.

2.2. Materials and case study

The proposed procedure was applied in a real irrigation network. It is
located on Callosa d’en Sarrià (Alicante, Spain). The irrigation network
supplies a surface equal to 120 ha. Irrigation uses water resources from
wells. The water volume is regulated using a reservoir with enough

Fig. 3. Curve inner diameter and kg of CO2/meter for evaluated materials.

Fig. 4. Case study scheme.

Table 1
Expressions to develop the energy balance defined by Ref. [74].

Annual Energy (kWh) Equation Id

Total Energy (ETj ) γQj
(
zo − zj

)
Δt/3600 (15)

Friction Energy (EFRj ) γQj
(
zo −

(
zj + Pj

))
Δt/3600 (16)

Theoretical Necessary Energy (ETNj ) γQjPminj Δt/3600 (17)
Required Energy (ERSj

)
γQjPminSj Δt/3600 (18)

Theoretical Available Energy (ETAj) γQi
(
Pj − Pmin j

)
Δt/3600 (19)

Theoretical Recoverable Energy
(ETRj)

γQi
(
Pj −

max
(
Pminj ; PminSj

))
Δt/3600

(20)
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elevation to supply all networks by gravity. The main crop is loquat
(Eriobotrya japonica), although there are avocados and citrus fruits that
combine with the main crop. The network’s pipelines are over 10.6 km
and constructed using asbestos cement pipes, ranging in diameter from
250 to 200 mm. Within the network, there are 34 multiuser hydrants
which connect to irrigation points via pipes made of either high-density
polyethene (HDPE) or steel, depending on the service pressure re-
quirements. These hydrants supply water to 143 irrigation points.
Additionally, a consumption volume meter is installed at each irrigation
point to accurately record water usage from any hydrant. Concerning
the experimental data, water manager have the flow meter reading for
three consecutive years and the monthly reading of the meters for each
of the 143 intakes. The annual volume oscillated between 512,369 and
552,699 m3, while the maximum flow varied between 72.63 and 94.26
l/s Fig. 4 shows the case study network topology.

3. Results

This section shows the different results and discussion of the applied
methodology in the proposed case study. The different results are shown
according to the executed steps.

Step I. Analysis of observed flow distribution:

Step I analysed the observed flows for each month during the studied
period. For the three-year dataset, it was determined that the month of
maximum needs wasMay, represented between the days 122 thru 155 in
Fig. 5a.

This result is due to the uptake in water demand caused by the
increasing temperatures and the farming season, registering annual
consumed volumes between 62,339 and 66,718 m3. Fig. 5b shows the
flow records for May between 2015 and 2017, in which it can be
observed that the consumption trend follows a similar pattern and keeps
increasing from year to year.

The first adjustment (Model 1), in which every month was adjusted
to a distribution function using the methodology created in MATLAB
(Step A), as shown in Fig. 2a, executed Steps A1 through A3. The most
common first-place distributions during this analysis were the Gamma,
Weibull, GEV, and Lognormal. In the second adjustment (Model 2), the
main goal was to determine the optimal monthly distribution function.
The resultant function must be the best fitting for the observed dataset.
After completing step A4 (Goodness of fit tests), the multicriteria solu-
tion for selecting the distribution function was carried out following
Equation (2) in step A5. Table 2 shows the results of the FP value of the
top distributions during the studied period, in which the Gamma dis-
tribution was selected for the three years with a wide margin over the
other available options. This table shows the highest values were for
Gamma and Lognormal distribution, therefore the best fit of distribu-
tion; while the lowest (poor distribution) were in the Normal and Uni-
form distributions.

In the last adjustment from this block (Model 3), the observed data
was adjusted to a Normal monthly flow distribution. After completing
the adjustments, the methodology for generating a synthetic dataset
following a distribution (Step B), described in Fig. 2b, was also executed
to prepare a Gamma model and a Normal model. After completing the

Fig. 5. (a) Q-Q plots for Annual Observed_Calibrated in 2015; (b) Q-Q plots for Observed_Calibrated in May 2015; Q-Q plots for Annual Gamma_Calibrated in 2015
(c); (d) Q-Q plots for Gamma_Calibrated in May 2015; (e) Q-Q plots for Annual Normal_Calibrated in 2015; (f) Q-Q plots for Normal_Calibrated in May 2015.
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previous step, there will be three datasets to work on: Observed, Gamma
and Normal. The first step was to create three calibrated models, one for
each dataset. For this process, the main inputs were divided into two
sections: on one side, the characterization of the network topology and
the estimation of the base demand.

The second section is composed of the determination of the con-
sumption curves, thus calculating the opening probability for each
irrigation point. The calibration is carried out by obtaining the operating
probability curves (monthly, weekly, and daily) and obtaining models
that simulate the annual flow distributions of the observed ones and
Normal and Gamma distribution functions. The results for each cali-
bration are shown below.

1 Observed data calibration: Q-Q plots were generated for each year and
month of maximum needs, comparing the observations with the
calibrated model. Fig. 5a shows the results for the year 2015 and the
month of May of that year for one of the simulations performed. The
adjustments are greater when using a longer temporal scale. This
figure shows the alignment between the values of both axes, being
more deviated for the behaviour in May, but with high linearity for
flows above 12 l/s (Fig. 5b).

Table 1.A contains in Appendix I shows a Box and Whisker plot for
each year of the studied period for the Observed_Calibrated model. In
general, the correlation coefficient goes from 0.995 to 0.905, which,
according to Ref. [65], sets the model with a “Very strong correlation”
and, therefore, validates the calibration of the model where all the lines

behave as the observed data in the network model. Also, there is a
pattern where the correlation coefficient values decrease in the months
from May through August, being most noticeable in the Observ-
ed_Calibrated 2017 (Table 1.A).

2 Gamma distribution calibration: For the Gamma distribution model
calibration, and then the results were averaged for the Q-Q plots and
for determining the correlation coefficients. Fig. 5c shows the Q-Q
plots for the entire 2015 year and the month of May for one of the
simulations performed, in which it can be observed that there is a
substantial correlation between the generated and the simulated
dataset (Fig. 5d). Table 2A in Appendix I shows the correlation co-
efficients for the Gamma_Calibrated model for the whole study
period; the minimum value recorded was 0.95 in August 2015 and a
maximum of 0.995 in November 2017. The interpretation of these
values is a model with a very strong correlation following [65].

3 Normal flow distribution calibration: Lastly, the Normal flow distri-
bution is a process comparable to the one with the Gamma, where
the Q-Q plots for the Normal_Calibrated 2015 (Fig. 5e) andMay 2015
were compared to the observed data in Fig. 5f. For this particular
year, the annual comparison and the month of maximum needs were
closely related to the desired values. This model established the best
correlation coefficients compared to the two previous ones. Table 3.
A (Appendix I) shows the values, which were 0.975 for August 2016
and 0.995 for 2015. These values get for the Normal Calibrated
established a very strong correlation according to Ref. [65].

The calibration for simulation of Observed_Data, Normal_Calibrated
and Gamma_Calibrated models from observed data and synthetic years
generated for Normal and Gamma was completed. After the analysis of
the different functions as well as their graphical representation in Fig. 5,
the results obtained show a better fit for the gamma distribution in the
case study. The development of the methodology allows this charac-
terization to be addressed for any case study, making it possible to define
the best distribution to continue with the design of the network or
partial renovation of the same in the interests of sustainability, showing
a novelty within the adequacy to the design of networks. Table 4.A
(Appendix I) shows the characteristic values of May, which were get in
the proposed model. Fig. 2A (Appendix I) shows the different flow dis-
tribution for observed (Fig. 2Aa), Gamma distribution function
(Fig. 2Ab) and Normal distribution function (Fig. 2Ac).

Table 2
FP value for different Distribution functions during the studied period.

Order Distribution 2015 2016 2017

1 Gamma 3.1167 3.1583 3.0917
2 Lognormal 3.0083 3.0083 3.0917
3 Loglogistic 2.6000 2.9167 2.9833
4 Generalized Extreme Value 2.7167 2.6750 2.8667
5 Birnbaum-Saunders 2.6333 2.4583 2.4083
6 Weibull 2.4750 2.5667 2.3750
7 Inverse Gaussian 2.1333 2.0250 2.0167
8 Exponential 1.4833 1.6000 1.6500
9 Normal 1.2167 1.1417 1.0500
10 Uniform 0.6167 0.4500 0.4667

Table 3
Energy balance for the different models using PVC-O material.

Model
Code

Model Total Energy (kWh) Friction Energy (kWh) Required Energy (kWh) Theoretical Available (kWh)

Obs Observed 126424.78 21356.76 (1) 43322.78 61745.24 (1)
ClT Clement_Theoretical 126424.78 18975.19 (0.888) 43322.78 64126.81 (1.039)
ClC Clement_Corrected 126424.78 19476.56 (0.912) 43322.78 63625.45 (1.03)
GT Gamma_Theoretical 126424.78 19058.65 (0.892) 43322.78 64043.35 (1.037)
GC Gamma_Corrected 126424.78 19408.06 (0.909) 43322.78 63693.94 (1.032)
NCal Normal_Calibrated 126424.78 20509.04 (0.96) 43322.78 62592.96 (1.014)
GCal Gamma_Calibrated 126424.78 20856.93 (0.977) 43322.78 62245.07 (1.008)

*(XX) is the normalized value compared to the observed model.

Table 4
Sustainability indicators for the evaluated models using the PVC-O material solution.

Model
code

Model Total network enviromental cost
(Tn CO2)

CO2 emissions per network meter
(Tn CO2/m)

CO2 emissions per hectare
(Tn CO2/ha)

CO2 emissions from supplied water
(kgCO2/m3)

Obs Observed 702.48 0.0665 5.61 1.32
ClT Clement_Theoretical 656.22 0.0621 5.24 1.24
ClC Clement_Corrected 706.54 0.0669 5.64 1.33
GT Gamma_Theoretical 583.65 0.0552 4.66 1.10
GC Gamma_Corrected 660.26 0.0625 5.27 1.25
NCal Normal_Calibrated 705.37 0.0668 5.63 1.33
GCal Gamma_Calibrated 723.16 0.0684 5.78 1.36
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For the theoretical and corrected models of Clement and Gamma
(Clement_Theoretical; Clement_Corrected; Gamma_Theoretical; Gamma_-
Corrected), synthetic years were also generated with the same previous
methodology from Fig. 2b. These years are compared only with the
observed data from the main line. Fig. 6 shows the maximum and
minimum values for the Correlation Coefficient as well as the average
values for each month and annually.

The Clement_Theoretical model (ClT) had the lowest correlation
coefficients on average out of the compared models, with maximum and
minimum values between 0.95 and 0.92 for May and 0.97 for the annual
average (see Fig. 4). The Clement_Corrected model (ClC) followed a
trend like the Clement_Theoretical, being the second to last option in
terms of correlation coefficient value, with maximum and minimum
values between 0.97 and 0.95 for May and averaging 0.98 for the annual
series. The Gamma_Theoretical model (GT) is the second-best option,
with maximum and minimum values between 0.96 and 0.98 for the
month of maximum needs and averaging 0.98 for the annual. Lastly, the
Gamma_Corrected model (GC) obtained the best results in the correla-
tion coefficient with values between 0.98 and 0.99 for May, while
having an average value of 0.995 for the annual series.

The weighted absolute error for the design flow was calculated for
each model and it was compared with the Observed data. Fig. 7 shows
the results obtained for each model during the three years of study as
well as an average for the period. The Clement_Theoretical (ClT) and
Gamma_Theoretical (GT) models underestimate the design flows by
24.65 % and 19.05 % for the studied period; this can be explained due to
the low standard deviations from Clément and since the Gamma is
calculated from this model, is also affected. The Clement_Corrected
(ClC) and Normal_Calibrated (NCal) had a lower weighted absolute
error compared to the previous two but still underestimated the design
flows, with 3.90 % and 4.43 %, respectively. The Gamma Corrected and
Calibrated models have better overall results than the other models,
which underestimate the design flow. The Gamma_Corrected (GC)has an
8.21 % overestimation on average compared to the observed data, and
the best result comes from the Gamma_Calibrated (Gcal), overestimating
1.12 % of the design flow on average for the month of May.

This figure shows how the weighted errors are greater for the
Clement distribution in the case study addressed. The proposed meth-
odological development reveals the ability to address the selection of the
best distribution according to the established crop irrigation needs and/
or flow records in case of irrigation network renewals or expansions
thereof.

Once the design flows are calculated for each model, and the mini-
mum pressure constraint were established. The pipe diameters were
determined, using the economic method and the CO2 emissions per
meter criteria for the sizing and then for determining the total envi-
ronmental cost for each model and material. Fig. 8 shows the results for
the six previous models as well as the Observed_Calibrated of the
average cost for the three years, material and model used. On the

vertical axis, the CO2 tonnes are represented. The three Gamma models
have the lowest general CO2 emissions per installation while the system
using cast iron showed the higher valued of carbon footprint for all flow
distributions.

Considering the same material, the distribution can contribute to
variations in the carbon footprint that range between − 16.45 %
(Clement corrected) and 5.32% for the Normal distribution calibrated in
the case of cast iron. IF the PVC-O is considered, this variation ranges
between − 16.91 % in the case of the corrected gamma function and
2.94 % if the calibrated gamma is considered. Finally, if HDPE is
considered, the carbon footprint variation ranges between − 14.75 % of
the corrected gamma and − 3.86 of the calibrated normal.

The results presented by the Gamma_Corrected (GC) model represent
a slight overestimation in the design flow; nonetheless, it has a decrease
in costs of installation and CO2 emissions for all the evaluated pipe
materials. Therefore, the proposed methodology of flow modelization
following a Gamma distribution allows the simulation of the flow not
only for the design but also for monthly and yearly flows in the network,
thus creating a new tool/methodology for the analysis of irrigation
networks. The PVC-O was the solution with the lowest environmental
cost for all the models evaluated.

The average energy balance for the studied period is calculated for
the PVC Oriented and all the models in step IV. The total and required
energy are the same for all the models. Table 3 shows the energy balance
considering the different distribution hypotheses. ClC and GT shoes
lower values of the friction energy, which implies these flow distribu-
tions show the higher values of the theoretical available energy.
Particularly, the Clement Theoretical distribution showed a 3.9 % of
available recovered energy compared to the observed value in the cur-
rent distribution system.

The results for the annual total recoverable energy for each model
during the studied period, expressed in kWh, for the line 2024 are shown
in Table 5.A (Appendix I). These annual recovered values oscillated
between 32,838 and 34,798 kWh, representing around 27.5 % of the

Fig. 6. Correlation Coefficients for the theoretical and corrected Clement and
Gamma models.

Fig. 7. Weighted absolute error for the design flow in May for the evalu-
ated models.

Fig. 8. Tons of CO2 emissions for the different models and materials.
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annual total energy injected in the gravity system (Table 3). These unit
energy values, which oscillated between 0.246 and 0.279 kWh/m3

(considering an average efficiency equal to 0.5 according to Ref. [75])
were similar to those defined by Ref. [76], showing ratios between 0.028
and 0.321 kWh/m3 each year for different published case studies.

Following the results for sustainability, indicators are shown in
Table 4 for all the used models using the PVC-O material solution for
each model. This table shows the reduction of the carbon footprint equal
to 16.91 % when the Gamma Theoretical distribution is considered
compared to the observed value with the current size of the irrigation
system.

The water footprint of the system varied between 1.1 kgCO2/m3 for
GT and 1.36 kgCO2/m3 when GCal is considered, being 1.32 kgCO2/m3

for observed value. These values are − 16.6 % and 3.03 % compared to
the observed value. Therefore, the selection of the flow distribution
establishes the difference between the carbon footprints of the irrigation
system, considering the material of the irrigation system. The carbon
footprint evaluation is linked to different targets [76]: (A) SDG-6. Water
and Sanitation, implement the integrated water resources management
in all levels; (B) SDG-7. Clean Energy in which different targets could be
considered such as (B.1) increasing substantially the share of renewable
energy in the global balance energy, (B.2) doubling the global rate of
improvement in energy efficiency, and (B.3) reducing the amount of
greenhouse gas emissions to take action in the fight against global
warming; (C) SDG-11. Sustainable Cities and Communities by Enhance
inclusive and sustainable urbanization and capacity for participatory,
integrated and sustainable human settlement planning and
management.

This research shows the possibility of approaching the design and
renovation of distribution networks taking into account sustainable as-
pects to improve their carbon footprint. In contrast to different methods
summarized in Ref. [34], the research proposes a method that allows the
study and definition of the best distribution to be used in the design of
networks to consider the design flow. The use of the normal distribution
does not always give the most optimal results. Furthermore, within the
proposed methodology, the use of the correlation coefficient makes it
possible to consider a global annual analysis or to be able to discretise
for the different months of the year, being able to select the month of
maximum needs and be able to define the distribution function for that
month better. Within the proposed methodological development, the
methodology includes the objective of the economic design of networks,
guaranteeing the pressure and guarantee of supply. Still, as a novelty, it
includes the consideration of the carbon footprint [77]. It is should
mandatory in new design since its consideration allows for reducing the
environmental impact of the development of new distribution networks
and addressing the incursion of hybrid renewable systems in them,
leading to a zero-carbon balance [78].

4. Conclusions

Irrigation systems have significantly enhanced agricultural produc-
tion, and impact hydraulic system design, energy consumption, and
sustainability. This research presents a comprehensive methodology to
optimize flow distribution in irrigation systems, aiming to improve
sustainability by employing a multicriteria solution. This proposal in-
corporates log-likelihood, AIC values, Chi-squared, and Kolmogorov-
Smirnov goodness of fit tests. The study introduces an innovative tool
to characterize flow distributions, which deviate from the traditional
Clement’s formulation. Six different flow distributions were analysed
and the Gamma corrected function was identified as the most suitable
for this case study. It demonstrated correlation coefficients above 0.9,
satisfying the established criteria. The proposed methodology not only
ensures pressure and service quality, it also addresses CO2 emissions
from installation and manufacturing, emphasizing a holistic approach to
network design. Gamma function showed potential for energy recovery
up to 3 % higher than the normal distribution. This advanced approach

is applicable to any supply or irrigation system, providing water man-
agers with robust tools for enhanced digital modelling, informed
network renewal planning, and sustainable material selection. Future
research could explore the integration of real-time data analytics to
further accurate flow distribution models, the impact of climate change
on irrigation demands and system efficiency, and the development of
adaptive management strategies to dynamically respond to varying
water availability and usage patterns, ensuring long-term sustainability
and resilience of irrigation networks.
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