
Ain Shams Engineering Journal 15 (2024) 102902

Available online 15 June 2024
2090-4479/© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

A proposal of analytical formulations to calculate safety lead times under
demand variability. A case study

Ricardo Ayala a, Josefa Mula b, Raul Poler b, Manuel Díaz-Madroñero b,*
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A B S T R A C T

This paper deals with the issue of safety lead time (SLT) calculations in production-inventory systems in presence
of both demand and replenishment lead time variability. We provide some formulations of the SLT and
numerically show their performance as compared to a benchmark in the literature. Thus the main objective of
this paper is to provide analytical formulations to calculate the SLT that contemplate demand variability. To this
end, a literature review was done to analyze the approaches and justifications of the different revised research
works to identify reference formulations according to the objectives of this work. A supply chain from the
automotive sector was used as the study frame and to validate the proposed formulations. This supply chain
involved two companies: a car manufacturer and a first-tier supplier. In order to compare the proposed for-
mulations with one another, and with that currently used by the first-tier supplier and is the study object, three
parameters were used: safety stock, the number of times stockout occurs and the mean stock. They allowed the
final selection of the most suitable SLT formulation for each case study.

Glossary of acronyms:

EOQ: Economic order quantity.
ERP: Enterprise resource planning.
JIT: Just in time.
KPI: Key performance indicator.
LT: Lead time
MRP: Material requirement planning.
PLT: Planned lead time.
POQ: Periodic order quantity.
SLT: Safety lead time.
SS: Safety stock.

1. Introduction

The classical material requirement planning (MRP) [1] approach in
the supply chain management context [2] is based on the reasoning that
demand and supply time or lead time (LT) are known and follow a
deterministic pattern. In the real world however, there are many forms
of uncertainty that affect production processes, such as uncertainty in
demand or supply [3–8]. Given such uncertainty, stabilization tech-
niques like safety stock (SS) and safety lead time (SLT) should be

considered before loading the MRP system. The objectives of the SS are
to absorb fluctuations in supply and demand; e.g., unexpected demand
and short supplies, and to stabilize any errors in stock records that might
occur during production. The objective of the SLT is to absorb fluctua-
tions in the supply schedule by conferring production planner flexibility
under uncertainty; the LT of components is rarely forecast reliably; poor
supply planning leads to situations with excess stock or, conversely with
low stocks. In certain cases, the uncertainty of LTs does not essentially
cause any effect, and can therefore be ignored. However, in most cases,
fluctuations in LTs considerably degrade system performance.

Boutsioli [9] distinguishes between variability and uncertainty in
demand by determining that both concepts are interrelated, but not
identical. Variability in demand is the sum of the forecast part, plus the
part of demand that cannot be forecast. Hence, uncertainty in demand is
defined as the part that cannot be forecast in demand variability. This
author also considers that demand variability, and demand uncertainty
in particular, more strongly impacts costs. It has also been observed that
most studies employ aggregate data and lose relevant daily information
about the nature of the variability in demand and uncertainty.

Given the optimal SS level is adequate for a certain inventory system
and inventory control [10] and for measuring supply chain performance

* Corresponding author.
E-mail address: fcodiama@cigip.upv.es (M. Díaz-Madroñero).
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[11], here we present alternative SLT calculations under a demand
variability context. The main contributions of this paper are: (i) identi-
fying existing approaches to calculate SLTs; (ii) proposing new analyt-
ical formulations to calculate the SLT which contemplate demand
variability; (iii) applying and validating these analytical formulations in
the multiproduct assembly context, specifically in a supply chain in the
automotive sector. In this research, demand variability is considered as
the daily difference between estimated demand and real demand by
taking demand variability as a function of normal distribution where
calculations are done with disaggregate data on a daily basis. This study
also includes the interrelation between variability and uncertainty in
demand, and both concepts are not considered identical, but divided by
a narrow frontier by taking uncertainty to be lack of knowledge about
the root source that causes the brusque changes which result in daily
variations between estimated demand and real demand.

The rest of the paper is organized as follows: Section 2 analyzes the
concepts and modelling approaches to calculate SLTs. Section 3 contains
the problem description and the SLT calculation process in the supply
chain that is the study object. Section 4 describes the analytical model
formulation and Section 5 applies and simulates the proposed formu-
lations. Section 6 evaluates the results. Finally, Section 7 offers the
conclusions and future research lines.

2. Literature review

New [12] states, after a conceptual analysis, that using the SLT
probably proves more useful when raw material is purchased from an
external company. Whybark and Williams [13] consider that both the
SLT and SS are two stock stabilization techniques which can be used
when uncertainty appears. These authors demonstrate that the SLT is
preferable to the SS if there is uncertainty in the LT, especially for made-
to-order systems where end products can be highly adapted to customer
requirements.

Lambrecht et al. [14] formulate a Markov model to fix production
quantities and to identify the quantity of the SS and the SLT in a serial
two-level system with constant processing times. Melnyk and Piper [15]
define that the planned lead time (PLT) is the sum of the LT and SLT, and
suggest that prolonging the LT as an effective method to face uncertain
LTs. Chang [16] considers that the SS can stabilize shortages caused by
delayed raw material and production processes. The SLT can stabilize
fluctuations in process times with lower levels. This author also con-
siders interchanging the SS and the SLT by representing the one-level
production process with a deterministic production time per produced
unit and, therefore, considers the SS to be the equivalent to the SLT.

Kanet [17] demonstrates that changing the PLT can have fleeting and
stationary effects. Indeed, the objective of cutting stock is only achieved
temporarily when reducing the PLT is contemplated. Yano [18–20]
presents a generalized process for a two-level system based on a
continuous single-period stock control model by taking the LT and the
processing time as stochastic variables.

Vargas and Dear [21] propose that the SS should be robust enough by
comparing it with the SLT to face brusque changes in demand. Buzacott
and Shanthikumar [22] determine that when excessive production ca-
pacity is lacking, both the SS and SLT are useful measures to face supply
variability in those occasions in which demand information is not very
reliable. These authors conclude that the SS is more robust to ease
changes in customer requirements of the LT or other fluctuations when it
comes to forecasting the demanded LT. However, if the intention is to
forecast demand, then the models suggest that either of the two pa-
rameters can be used.

Gupta and Brennan [23] identify that the amount of LT uncertainty
strongly influences the cost. Keaton [24] determines a stockout function
and describes the LT as a stochastic variable which, when increasing LT
variability, increases the number of stockouts.

Lambrecht and Vandaele [25] combine lot-sizing models and single-
product queues with aleatory LTs. These authors follow an approach

with expected values and the LT variance of lots, and bring together the
LT distribution probability and a logarithmic function to meet the cus-
tomer’s service level. Fujiwara and Sedarage [26] consider an EOQ
model (economic order quantity) in which the LT of the components is
aleatory to minimize the mean total cost per time unit, made up of the
fitting cost, the stock holding for components and the assembled prod-
uct, and the stockout cost of the assembled product.

Tang [27] studies a multiperiod single-level production-inventory
system based on the SLT, which would function better than one based on
the SS when stochastic influences result from supply or production
times. Hegedus and Hopp [28] develop a practical method by consid-
ering the service level to fix the SLT of the components in an assembly
system with stochastic LTs. Their results indicate that the optimum SLT
reduces supply variability and determine that the SS is used to face
demand uncertainty. Koh et al. [29] identify how the SLT is a widely
used tool to ease LT uncertainty. Chopra et al. [30] base their work on
two management prescriptions with normal distribution: (i) for service
levels above 50 %, reducing LT variability reduces the reorder point and
the SS; (ii) for service levels above 50 %, reducing LT variability is more
effective than reducing the LT because this considerably reduces the SS.

Koh and Saad [31] simulate a production system with increasing
demand, LT variations and breakdowns of resources to evaluate the
system’s capacity to meet their delivery objectives by contemplating
four scenarios: (1) assigning an LT; (2) assigning capacity; (3) assigning
the SS; (4) flexibility in grouping. Lin and Lin [32] consider a supply
chain that consists in many retailers and one supplier, and they examine
the ways in which the supplier can reduce total demand variance by
adjusting the size of orders with the Portfolio Theory. Song et al. [33]
considers a multilevel made-to-order assembly system with stochastic
production supply times to find optimum PLTs by minimizing the sum of
stock holding costs and the costs caused by orders arriving late.

Hnaien and Dolgui [34] consider a multilevel assembly system in a
supply chain with aleatory LTs to find an optimum supply plan for all
levels and for the date that each component is released. Hnaien et al.
[35] contemplate a multilevel supply chain with aleatory LTs to find
optimum release dates and to meet the demand of the end products
subject to a due date. These authors introduce the same assumptions as
Yano [19] and Chu et al. [36].

Jakšič and Rusjan [37] evaluate the impact of forecasting demand
and the LT to eliminate the bullwhip effect. Louly et al. [38] study the
stock control problem for an assembly system where the LT of the
components is aleatory. These authors propose a lot-for-lot policy to
minimize the holding cost of the components according to a given ser-
vice level. Louly and Dolgui [39,40] consider calculating the PLT for
MRP systems according to a periodic order quantity (POQ) policy for
multiple components, whose LTs can be modelled with all the possible
distributions by minimizing the average holding costs, but also setup
costs.

Nenni et al. [41] evaluate the effect of delaying orders in the
customer service by considering an SLT in making deliveries. With the
technique they present, it is possible to seek optimum compensation
between the LT and the SS, and to also determine the increase in service
level by considering the LT. Chatfield et al. [42] simulate a model that
examines the effects that stochastic LTs, distributing information and
the quality of this information have on a supply chain. They identify how
LT variability worsens the extension of variance in the supply chain, and
that distributing information and its quality are most significant.

The supply variability effect is reflected in delivery performance
levels, which are measured as the fraction of the orders that meet the
due date according to the production plan [43]. The literature reports
similar relations [44,45]. Using the SLT to face this problem leads to a
better scenario in which performance levels increase. Utilizing the SS to
face supply variability leads to worse results compared to those obtained
with the SLT technique. This is explained by inherent SLT-related flex-
ibility, where products are not specified beforehand as they are in the SS.

Van Kampen et al. [43] investigate the effects of both the SS and SLT
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on the performance of deliveries in a multiproduct scenario with supply
under uncertainty combined with three types of demand uncertainty
caused by: a change in lot size, a change in order type and changes in the
sequence of orders. These authors conclude that the reliability level of
demand information and production performance forces the system to
adopt a stabilization technique, either the SS or the SLT, to guarantee
acceptable delivery performance.

Gansterer et al. [46] propose a simulation–optimization procedure in
a hierarchical planning production system to optimally set the PLT, the
SS and lot sizes. Recommendations for identifying good parameter set-
tings are provided in the robust production planning context.

Altendorfer [47] studies the influence of lot sizes and the PLT on
inventory levels and service level in a make-to-stock production system.
In an uncertain demand environment, and by applying endogenous
production time distribution, the proposed analytical procedure allows
the optimization of both planning parameters to reach a service level
constraint with minimum overall inventory. A similar approach that
considers the relation between lot sizes and the LT is addressed by Boute
et al. [48] who, by applying a Markov chain analysis and matrix analytic
methods, determine the distribution of the LT and stocks that takes into
account the correlation of these two planning parameters. Yuan and
Graves [49] consider the simultaneous calculations of PLTs and pro-
duction lot sizes in a job shop environment by implementing a nonlinear
optimization model on a spreadsheet. Prak et al. [50] determine SSs for
constant LTs and a stationary demand considering the uncertainty
associated with the estimation of the mean and the variance of the de-
mand. The authors address batch ordering policies by combining mov-
ing average and exponential smoothing forecast techniques. Ben-Ammar

et al. [51] propose a general probabilistic model and a genetic algorithm
to determine PLT and SS levels by minimizing backlogging and in-
ventory holding costs. The authors prove that it could be better to
optimize PLTs rather than apply SSs. Kania et al. [52] develop a solution
method based on an evolutionary algorithm to integrate a lot sizing
problem with the problem of determining the optimal values of SS and
SLT.

De and Mahata [53] study a supply chain network with flow and raw
materials with imperfect quality and under the effect of learning expe-
riences in a fuzzy decision-making process with constant demand and a
fixed rate replenishment. Additionally, De and Mahata [54] consider an
EOQ inventory model for items with imperfect quality developing a
fuzzy mathematical model, which considers demand cost, inventory
system parameters and analyses a single type of product with instantly
replenished, i.e., LT equals to zero. On the other hand, Barman and
Mahata [55] develop a supply chain inventory model with a single-
manufacturer and multi-retailers in which each retailer’s demand is
dependent on selling price of the product and LT, following a random
normal distribution, is composed of several components that could be
reduced by adding additional crashing cost. Also, Barman and Mahata
[56] conceptualize a vendor–buyer supply chain production inventory
model based on the advance payment phenomenon where retailers
receive price discounts and considering a buyer stochastic LT. Finally,
Barman and Mahata [57] study an integrated vendor–buyer inventory
system with a controllable buyer LT which could be reduced by using a
crashing cost from normal to minimum duration. They develop the study
based on the idea that production control, cost reduction and a
controllable LT is a strategic key performance indicator (KPI) for

Table 1
Survey of papers addressing SLT calculations with demand variability.

References Demand LT PLT SS SLT Aim

Whybark and Williams [13] Uncertain Uncertain X X Uncertainty dampening
Lambrecht et al. [14] Variable Fixed X X Uncertainty dampening
Melnyk and Piper [15] Variable Variable X Cost
Chang [16] Stochastic Fixed X X Stockout
Kanet [17] Fixed Variable X Stockout
Yano [18–20] Fixed Stochastic Cost
Buzacott and Shanthikumar [22] Variable Not considered X X Stockout
Vargas and Dear [21] Variable Fixed X X Stockout
Gupta and Brennan [23] Uncertain Uncertain Cost
Keaton [24] Stochastic Stochastic Stockout
Lambrecht and Vandaele [25] Fixed Variable Service level
Fujiwara and Sedarage [26] Fixed Stochastic Re-order point
Tang [27] Fixed Stochastic Cost
Hegedus and Hopp [28] Variable Stochastic X Stockout
Koh et al. [29] Stochastic Uncertain X X Uncertainty dampening
Chopra et al. [30] Variable Variable X Re-order point
Koh and Saad [31] Variable Variable X Service level
Lin and Lin [32] Variable Fixed Bullwhip effect
Song et al. [33] Fixed Uncertain X X Cost
Hnaien and Dolgui [34] Fixed Stochastic X Cost
Hnaien et al. [35] Fixed Stochastic X X Cost
Jakšič and Rusjan [37] Variable Fixed Bullwhip effect
Louly et al. [38] Fixed Uncertain X Cost
Louly and Dolgui [39,40] Fixed Stochastic X Cost
Nenni et al. [41] Variable Stochastic X X Service level
Chatfield et al. [42] Variable Stochastic Bullwhip effect
Van Kampen et al. [43] Variable Fixed Service level
Gansterer et al. [46] Variable Stochastic X Correlation D, LT and SS
Altendorfer [47] Stochastic Stochastic X Service level
Boute et al. [48] Variable Variable X Correlation D, LT and SS
Yuan and Graves [49] Variable Variable Cost
Prak et al. [50] Variable Variable X Re-order point
Ben-Ammar et al. [51] Variable Stochastic X X Cost
Kania et al. [52] Stochastic Uncertain X X Stockout
De and Mahata [53] Fixed Variable Cost
De and Mahata [54] Variable Fixed Cost
Barman and Mahata [55] Variable Stochastic Cost
Barman and Mahata [56] Stochastic Stochastic Cost
Barman and Mahata [57] Stochastic Variable Cost
Our paper Variable Variable X X X Stockout
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commercial enterprise fulfilment.
Table 1 compares the reviewed literature related to demand, LT, PLT,

SS, SLT with our proposal. The papers that consider variable demand
and LTs are, mainly, oriented to measure cost, service level and re-order
points. In general, the literature reviewed focused primarily on costs and
secondarily on stockouts. Nevertheless, 50 % of the cost-oriented studies
consider the demand parameter as a fixed value. On the other hand,
almost 40 % of the papers included SLT as an explicit parameter in their
investigation but few are stockout oriented. As showed in Table 1, none
of the reviewed papers consider directly the stockout indicator as a key
factor when calculating SLT with demand and LT variability.

Relevant studies have shown the importance of measuring stockout
cost, effects, consequences on factories, buyers, customers, and their
relationship. For example, Dion et al. [58] investigate the consequences
of a stockout for the buyer and the effects on vendor relationships. These
authors carried out an exploratory study on 180 National Association of
Purchasing Management members through a questionnaire. On the
other hand, Kahn [59] argues that stockout avoidance is largely suffi-
cient to explain the pertinent facts about inventories, based on that firms
hold inventories not to smooth production but rather because stockouts
are costly, and includes theory and evidence on the stockout-avoidance
motive for inventory-holding. Also, Dion and Banting [60] study the
buyer reactions to product stockouts in business-to-business markets
through interviews and mail surveys. The authors identifies that product
availability is viewed as a critical aspect of customer service and ad-
dresses the operational consequences of stockouts for the buyer firms
and the actions taken due to that. Gallego and Moon [61] study the
multiple product single facility stock avoidance problem (SAP) to find a
schedule that avoids stockouts over a finite horizon. Finally, Andersen
et al. [62] consider the understanding of a stockout cost is critical if
retail managers want to implement an inventory model. Based on that,
the authors conduct a field test to measure short and long run stockout
cost.

Therefore, we conclude that in most of the reviewed research works
the terms SS and SLT are jointly dealt with and address variability in
demand, supply, and the LT. Nevertheless, and based on those condi-
tions, few of them calculate SLT and measure its impact also in terms of
stockouts.

This research works explicitly focus on optimizing the system by
reducing stockouts, considering jointly PLT, SS and SLT with variable
demand and LT. Variability in LTs does not appear to have been suffi-
ciently studied, particularly in assembly systems whose components
have variable LTs. Establishing LTs to control production systems with
uncertainties is a complex problem. The literature provides models for
certain cases that involve specific variables and exclusive conditions
where reaching conclusions unusually differ. By considering all this
information, this article develops an analytical formulation to calculate
the SLT to face demand variability in a multiproduct assembly context.

3. Analytical formulations

In this section, we propose analytical formulations to improve SLT
calculations in demand variability contexts. The nomenclature to be
used throughout this section is provided below (Table 2).

Table 3 presents the four equations taken as the basis for the present
work and proposed by Chatfield et al. [42], Jakšič and Rusjan [37], Lin
and Lin [32] and Nenni et al. [41].

With the four equations in Table 3, we propose six new analytical
formulations to calculate the SLT that incorporate demand variability,
five of which are based on the aforementioned research works, and one
on the experienced acquired from analysing data and through the
research conducted for the present work. These six analytical formula-
tions are:

(adapted from Chatfield et al. [42])

Table 2
Nomenclature.

I Number of items (i = 1,…,I)
T Time periods (t = n, …, T), where n is a set positive or negative number
Di,t Demand of item i during time period t
Pi,t Production of item i during time period t
VDi,t Demand variability of item i during time period t
βDi,t Normal distribution of the demand variability of item i during time period t
σDi,t Standard deviation of the demand variability of item i during time period t
VdDi,t Demand variability average of item i during time period t
ni Number of data readings of item i
Zi,t Constant corresponding to desired service level of item i during time period

t
Ri,t Number of times that deliveries are made weekly of item i during time

period t
ki,t Number of deliveries made of item i during time period t
wt Number of weeks during time period t
Wcf i,t Reliability constant of on time delivery of item i during time period t
SLTi,t Safety lead time of item i during time period t
PLTi,t Theoretically planned lead time of item i during time period t
LTpi,t Real time it takes each placed order of item i to reach its destination during

time period t
σLTpi,t Standard deviation of the real time it takes each placed order of item i to

reach its destination during time period t
LTi,t Previously set lead time of item i during time period t
σDNi,t Standard deviation of the normal distribution of the demand variability of

item i during time period t
DTi,t Average lead time of the deliveries made of item i during time period t
Oi,t Placed order of item i during time period t
Dyi,t Theoretical deliveries made of item i during time period t
Si,t Stock of item i during time period t
SSi,t Safety stock of item i during time period t
SAi,t Mean stock of item i during time period t
DySi,t Deliveries from the first-tier supplier of item i during time period t
sofi,t The variable used as counter of stockouts of item i during time period t takes

a value of 1 when the stock during t is below zero
SOi,t Number of stockouts of item i during time period t
SLi,t Standard deviation of the lead time of item i during time period t
DTi,t Average lead time of item i during time period t
σ2

DNi,t Standard deviation of the normal distribution of the demand variability of
item i during time period t

WD Number of working days per week

Table 3
Reference equations.

Equation by Chatfield et al. [42] Equation by Lin and Lin [32]

SX2 = (L+R)*SD2 + D2*SL2SX2 =

variance of demand during
period L + R.
L = average lead time
R = review period
SD = standard deviation of
demand
D = average demand
SL = standard deviation of the
lead time

Si,t = (lR +R)*μ̂i,t + ki*σi,lr+RlR = the lead time
from the supplier to the customer
μ̂i,t = demand of customer i forecast for time
period t.
Si,t = customer’s reorder point
ki = constant that determines the desired
service level
R = review period
σi,lr+R = standard deviation of the errors in
forecasting in interval R and the lead time

Equation by Jakšič and Rusjan
[37]

Equation by Nenni et al. [41]

SSt = k*D*
̅̅̅̅̅̅̅̅̅̅̅̅
R+ L

√
k = safety factor

corresponding to desired service
level
D = forecasted demand
SSt = safety stock level
R = review period
L = lead time

SS = k*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2D*DT+ σ2DT*D
2

√

SS = safety stock
D = average demand
DT = average lead time
σD = standard deviation of demand
σDT = standard deviation of the lead time
k = safety factor corresponding to desired
service level

R. Ayala et al.
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SLTi,t =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Zi,t2 + βD
2
i,t*SLi,t

2
√

(1)

(adapted from Lin and Lin [32])

SLTi,t =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
WD

/
Ri,t
)
*SLi,t + Zi,t*βDi,t

√

(2)

(adapted from Jakšič and Rusjan [37])

SLTi,t = Zi,t*βDi,t*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

WD
/
Ri,t + SLi,t

√

(3)

(source: the authors)

SLTi,t =Wcf i,t*
(

Zi,t*
WD
Ri,t

+ βDi,t*SLi,t
)

(4)

(adapted no. 1 from Nenni et al. [41])

SLTi,t = Zi,t*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
DNi,t*DTi,t + SL2

i,t*βDi,t
√

(5)

(adapted no. 2 from Nenni et al. [41])

SLTi,t = Zi,t*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
DNi,t*LTi,t + SL2

i,t*βDi,t
√

(6)

Demand variability can be determined with the above analytical for-
mulations, and by using the demand and real production values (7).

VDi,t = Di,t − Pi,t (7)

Once this value is obtained for each i and t, the normal distribution of
demand variability is calculated as:

βDi,t(VdDi,t , σDi,t) (8)

The number of times that deliveries are made weekly is also considered
and calculated with this equation:

Ri,t = ki,t
/
wt (9)

Analytical formulation (4) considers the reliability that a delivery is
made on time, Wcf i,t. This value is determined with the following
equation:

Wcf i,t = 1 −
∑ni

t=1
PLTti,t

/∑ni

t=1
ABS

(
LTpi,t − PLTti,t

)
(10)

For analytical formulations (5) and (6), it is necessary to determine the
value of the average lead time of the deliveries made of item i during
time period t.

DTi,t =

(
∑ni

t=1
LTpi,t

)
/
ni (11)

Finally, the PLT for each proposed equation is calculated with the
equation below:

PLTi,t = LTi,t + SLTi,t (12)

To validate the above equations, having determined the PLT, demand
becomes an order as so:

Oi,t =
∑ni

t=1
Di,t ift = PLTi,t (13)

Therefore, deliveries are:

Dyi,t = Oi,±T− LTi,t (14)

The “+” value for T is for the positive T values, and the negative sign is
for the negative T values. In parallel, stock is calculated without

considering the SS as follows:

Si,t = Si,t− 1 +Dyi,t − Pi,t (15)

The next equation is used to calculate the SS, which is the minimum
value that appears in the stock calculation.

SSi,t = min
(
Si,t
)

(16)

The next step is to calculate the mean existing stock with the following
equation:

SAi,t =

(
∑ni

t=1
Si,t

)
/
ni (17)

The stock that does not include the SS is slightly modified to be updated
and is calculated as follows:

Si,t = Si,t− 1 +DySi,t − Pi,t (18)

Finally, for the six proposed analytical formulations and for the first-tier
supplier’s equation performance, it is important to calculate the number
of stockouts. This calculation is done as follows:

sof i,t = 1ifSi,t < 0andSi,t = 0ifSOi,t =
∑ni

t=1
sof i,t (19)

4. A case study

The supply chain considered herein is of a dual-type [63], formed by
an automotive manufacturer and a first-tier supplier. The first-tier as-
sembly supplier is in charge of its own logistics and independently se-
lects its suppliers and components for its products. Its production plant is
made up of four production plants, where finished goods are assembled
and supplied by a just-in-time (JIT) production system. MRP is calcu-
lated by using the company’s ERP (enterprise resource planning), which
is based on a standard MRP system that employs the weekly and daily
demand information provided by the automotive manufacturer. Ac-
cording to the levels of demand that the automotive manufacturer
supplies, the first-tier supplier must plan transport in such a way that the
required replenishment level is met to most efficiently cover the
customer demand on its assembly lines. To do this, the logistics
department plans with the suppliers of materials and transport the cal-
endar with which to replenish materials. Each order placed with sup-
pliers is made according to the net calculated requirements and is placed
for a period depending on the contemplated supplier. These firm orders
are included in the MRP system as scheduled arrivals. Once they have
arrived, receiving orders are compared with the calculations of the
aforementioned net requirements.

In order to determine the time when orders must be made for each
product, stock is constantly checked by the MRP system. Some param-
eters, like the SS and the LT, are previously determined so that the MRP
system knows when the time is right to place an order.

Five workdays per week are considered. In principle, it is established
that all the orders placed by the first-tier supplier will reach the factory
within 3 days (LT), regardless of the quantities ordered. However, the
SLT is aggregated to the previously set LT to deal with possible uncer-
tainty parameters. The first-tier supplier uses the following formula
based on its experience in determining the SLT and calculating the PLT.

SLTi,t =
[

0.3⋅
(

5
Ri,t

)

+ LTi,t ⋅0.4
]

⋅α (20)

where SLTi,t is the safety lead time of item i during time period t. Ri,t is
the number of deliveries made weekly, LTi,t is the previously set LT,
which equals 3 days, and α is a safety coefficient to be defined by the
planner, which takes values between 0 and 1. In this paper, α is
considered 1. The number of deliveries made weekly is calculated using
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the list of deliveries made by each supplier, which varies depending on
the use of components. If these two parameters are included in the
Equation, the SLT for each product is obtained. The value obtained by
equation (20) is the time that should be summed to the LT, whose sum
results in the PLT that considers possible breakdowns or delays in the
supplier’s deliveries.

5. Evaluation of results

The model application considers information from 13 items on an
approximate 3-month time horizon based on the background of demand
and production, and on a six-month one for the deliveries made by the
first-tier supplier. Table 4 presents a summary of these initial data. The
information on deliveries provided by the first-tier supplier includes the
date on which the order was sent and that on which the customer
received it. In this way, it is possible to calculate the real LT that each
order takes to reach its destination, and to then calculate is average. For
future calculations it is worth determining the standard deviation of the
LT. Another piece of useful information is the average number of de-
liveries made weekly, which can be obtained from the information about
the number of deliveries made weekly and the number of weeks from the
reading period. It is also possible to calculate the SLT with equation (20),
and the corresponding PLT, this being PLT(20)i,t . Thus, the average LT,
the weekly deliveries made, the standard deviation and the reliability
constant consider the total reading period of deliveries; i.e., 6 months.
For the quantity of the delivered product, the period that coincides with
the reading period of both demand and production is only considered.

Having viewed all the information as a whole, each particular item is
analysed. Table 5 shows the demand variability calculation. The infor-
mation there refers to item 1 and shows the demand, production and
quantity of the delivered material for each day. In this case, we can see
that the number of readings equals 54 (according to Table 4). Demand
variability is calculated from the difference between demand and pro-
duction. Real demand is considered the first-tier supplier’s production
because the company that produces vehicles determines and freezes the
production sequence that the first-tier supplier must make on a daily
basis (Scenario 1). To extend the analyses, another scenario is dealt with
in which the demand variability of the moving averages of both demand
and production is calculated (Scenario 2). Table 5 shows that the normal
distribution of demand variability is also calculated.

Table 6 shows the process followed to evaluate all six proposed
analytical formulations through item 1, which specifically indicates the
time when daily demand must be requested according to each equation.
Table 7 shows Scenario 2 for the same item 1, which considers the
normal distribution of the demand variability obtained by the difference
in the moving average of both demand and production.

The initial t′value for the moving averages depends on the equivalent
value to t for t́ = t + 4. It is worth mentioning that the objective is to
obtain a 99 % customer service level in all items i for time period t.
Hence the constant obtained to reach this level is Zi,t(99%) = 2.327.

A PLTi,t number exists that equals the number of proposed analytical
formulations, from (1) to (6), for each scenario: i.e. 12 equations per
item. Numbering is in accordance with that shown in Table 6 and
Table 7: PLT(1)i,t, PLT(2)i,t , PLT(3)i,t, PLT(4)i,t, PLT(5)i,t and PLT(6)i,t .
Every day the PLT is calculated for the six analytical formulations, and
how many days the quantity demanded each day must be determined
beforehand.

Tables 8 and 9 show the time when the quantity demanded for the
real values must be requested (Table 6), and also for the values that
consider demand variability (Table 7), respectively. For placed orders,
the value that results from the PLT is considered. The stock with and
without the SS is also calculated. Daily demand considers the PLT and
assigns it a placed order. This process is done from t = 1 to T = ni for
demand and is assigned to the placed orders that consider the time in-
terval from t = − 10 to T = ni. Delivered orders are made by considering
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the LT previously established by the company that manufactures vehi-
cles and the first-tier supplier, and is the equivalent to LTi,t = 3.

In this case, the initial stock value corresponds to the deliveries made
from t = − 10 to T = 1. Thus there are no production values and the SS is
null.

Si,1 =
∑1

t=− 10
Dyi,t − Pi,1 (21)

Next the stock that considers the SS is calculated and it is only necessary
to make one modification to Equation (21), as so:

Si,1 =
∑1

t=− 10
Dyi,t + SSi,t − Pi,1,t (22)

where Si,1 for t = 1 considers the made deliveries Dyi,t from t = − 1 to
T = 1, SS SSi,t by previously calculating Equation (16) and the pro-
duction in t = 1. For the next stock values from t = 2 to T = ni, the
process follows the aforementioned pattern. Tables 8 and 9 consider the
real deliveries made by the first-tier supplier, and the stock with and
without the SS is also calculated.

6. Evaluation of the results

The parameters used to evaluate the results are based on the equa-
tions for the SS (16), stockout (19) and average stock (17). The results
consider the 13 items, the seven equations and the six proposed
analytical formulations, the equation presently used by the first-tier
supplier, equation (20), and the two considered scenarios. We selected
these parameters, which represent the cost of the stock, stockouts and
their possible customer service effects. Table 10 offers the results of
Scenario 1 with real data and Table 11 represents the results of Scenario
2, which considers the moving average of demand variability.

The framework that we selected as being the most suitable for each
parameter is that which represents the lowest result of the total sum for
each equation. This framework would represent a lower cost for the first-
tier supplier given the objective of having the smallest stock quantity
with the minimum number of stockouts. Table 12 represents the total
values for Scenario 1 with each item for each equation and parameter.
The total values are calculated as shown below:

TotSSi =
∑T

t=1
SSi,t (24)

TotSAi =
∑T

t=1
SAi,t (25)

TotSOi =
∑T

t=1
SOi,t (26)

Thus, for Scenario 1, Table 12 identifies the best result with real data
that represents the smaller number of stockouts obtained with analytical
formulation (5) and also estimates the second better result for the SS,
which only exceeds the best result for this parameter by 2.16 %, rep-
resented by analytical formulation (6). It is important to note that
analytical formulation (5) considers a mean stock that represents the
most deficient of the several proposed analytical formulations. The
equation that shows the best result for the SS corresponds to the equa-
tion that the first-tier supplier employs, but it also shows the worst re-
sults for the number of stockouts and the SS. Additionally, Table 12
shows the total percentage that indicates the best results of the param-
eters for each equation in each item. The different items take seven
values for all three parameters and a unit value is assigned if the result of
the analysed equation is the lowest of the seven equations. Otherwise it
is assigned zero if the value is above the best result of the analysed
equation. Then the values for each equation and item are summed and
divided by the total number of items. The total sum of these values
among the equations does not equal 100 % because the result of each
parameter for some items is equal or similar between two equations or
more. Analytical formulation (5) shows the best results for stockouts and
the SS. In this case however, the equation that gives the best result for
the mean stock is no. (2). With this analysis sequence, where the
equation and the value that best adapt to the case study were found, the
intention was to compare the total results of the equations. Thus,
Table 12 presents the percentage by which each equation exceeds the
value which is considered the best (the smallest values of each param-
eter are taken as null). As expected, the best value for the parameter that
measures stockouts corresponds to analytical formulation (5), while the
equation used by the first-tier supplier, equation (20) determines that
with the most deficient value. The best value for the parameter that
measures the SS corresponds to analytical formulation (6), which is
exceeded by 2.16 % by the value of analytical formulation (5). The most
deficient value goes to the first-tier supplier’s equation which, however,
obtains the best value for the mean stock parameter.

For Scenario 2, which obtains the demand variability of the moving
averages of demand and production, Table 13 is similarly created to
Table 12, respectively. The obtained results are similar to Scenario 1.
Table 13 shows how the fewest stockouts are obtained with analytical

Table 5
Data analysis for item i = 1.

t Pi,t(Units) DySi,t(Units) Di,t(Units) VDi,t(Units) βDi,t Moving average

Pi,t(Units) Di,t(Units) VDi,t(Units) βDi,t

1 385 720 0 − 385 0.056080 − − − −

2 396 0 0 − 396 0.051099 − − − −

3 0 0 0 0 0.504760 − − − −

4 0 0 0 0 0.504760 − − − −

5 386 664 480 94 0.656416 − − − −

6 329 360 400 71 0.620612 − − − −

7 363 440 400 37 0.565822 − − − −

8 293 520 320 27 0.549412 − − − −

9 740 360 400 − 340 0.080534 422 400 –22 0.403418
10 0 240 360 360 0.934286 345 376 31 0.666322
11 317 520 0 − 317 0.095798 343 296 − 47 0.289868
12 411 440 400 − 11 0.486520 352 296 − 56 0.249696
13 414 360 280 − 134 0.292835 376 288 − 88 0.139278
14 376 440 480 104 0.671577 304 304 0 0.516725
15 320 0 0 − 320 0.093694 368 232 − 136 0.046302
16 317 0 400 83 0.639444 368 312 − 56 0.252117
17 381 400 440 59 0.601489 362 320 − 42 0.311926
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formulation (5), and also estimates the second better result for the SS,
which exceeded analytical formulation (6) on this occasion. Analytical
formulation (5) generates a mean stock that is the most deficient of the
various equations. Likewise, the equation that provides the best result
for the SS corresponds to the equation employed by the first-tier sup-
plier, but it also obtains the most deficient results for the number of
stockouts and the SS. Analytical formulation (5) in Table 13 displays the
best results for stockouts and the SS, and analytical formulation (4)
shows the same result as analytical formulation (5) for the SS. In this
case, the equation with the best result for the mean stock is analytical
formulation (2), which differs from that in Table 11. The best value
obtained in the comparison made of the values in Table 13 for the
parameter that measures stockouts corresponds to analytical

formulation (5), and the most deficient value is determined by the first-
tier supplier’s equation. The best value for the parameter that measures
the SS corresponds to analytical formulation (5). Although the first-tier
supplier’s equation obtains the most deficient value, it gives the best
value for the mean stock parameter.

It is noteworthy that analytical formulations (5) and (6) in Scenarios
1 and 2 well exceed the equation used by the first-tier supplier for the
parameter that measures stockouts and the SS. Indeed, the results of
these two parameters in the first-tier supplier’s equation are the most
deficient ones. For the SS, analytical formulations (5) and (6) give the
most deficient value. It is important to note that the first-tier supplier’s
equation for Scenario l has the best SS value, and the second better value
is found in Scenario 2, which is exceeded by analytical formulation (2)

Table 8
Simulation of analytical formulation (1) for item 1.

t PLT(20)i,t PLT(1)i,t
Oi,t(Units) Dyi,t(Units) Si,t(Units) Si,twithSSi,t(Units) DySi,t(Units) Si,t(Units) Si,twithSSi,t(Units)

− 10 − − − − − − −

− 9 − − − − − − −

− 8 − − − − −

− 7 − − − − −

− 6 − − − − −

− 5 − − − − − − −

− 4 0 − − − − − −

− 3 0 − − − − − −

− 2 0 − − − 0 − −

− 1 480 − − − 0 − −

1 400 720 335 1106 0 − 385 440
2 400 0 − 61 710 480 − 301 524
3 320 0 − 61 710 400 99 924
4 360 0 − 61 710 400 499 1324
5 400 664 217 988 320 433 1258
6 − 360 248 1019 360 464 1289
7 400 440 325 1096 400 501 1326
8 − 520 552 1323 − 208 1033
9 760 360 172 943 400 − 132 693
10 − 240 412 1183 − − 132 693
11 400 520 615 1386 760 311 1136
12 440 440 644 1415 − − 100 725
13 − 360 590 1361 400 − 114 711
14 240 440 654 1425 440 − 50 775

Table 9
Simulation of analytical formulation (1) for item 1 with demand variability.

t PLT(20)i,t PLT(1)i,t
Oi,t(Units) Dyi,t(Units) Si,t(Units) Si,twithSSi,t(Units) DySi,t(Units) Si,t(Units) Si,twithSSi,t(Units)

− 10 − − − − − − −

− 9 − − − − − − −

− 8 − − − − −

− 7 − − − − −

− 6 − − − − −

− 5 400 − − − − − −

− 4 360 − − − − − −

− 3 − − − − 400 − −

− 2 0 − − − 360 − −

− 1 400 − − − 0 − −

1 760 360 − 380 943 0 20 293
2 − 240 − 140 1183 400 420 693
3 0 520 63 1386 760 863 1136
4 400 440 92 1415 0 452 725
5 680 360 38 1361 0 38 311
6 − 440 102 1425 400 62 335
7 320 0 − 218 1105 680 422 695
8 760 0 − 535 788 0 105 378
9 440 400 − 516 807 320 44 317
10 920 240 − 634 689 760 446 719
11 − 400 − 945 378 440 175 448
12 0 400 − 873 450 920 767 1040
13 400 0 − 873 450 0 767 1040
14 440 1240 − 27 1296 0 373 646
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by 16 %. Logically, and in line with the calculation process, a higher
mean stock is necessary to obtain fewer stockouts. The first two pa-
rameters of analytical formulation are emphasized (5). This analytical
formulation shows that a lower SS level is necessary to obtain fewer
stockouts compared with the other equations. Thus, obtaining a mini-
mum number of stockouts and SS is considered a very good result.

As determined in the previous section, the mean stock is drawn from
the situation where zero stockouts is the aim, obtained by considering
the SS. The reason why the mean stock of analytical formulations (5) and
(6) is bigger than the others is because orders are placed, on average,
earlier than with the other equations. This situation means that more
stock accumulates at the beginning and the aggregate increases, which
becomes a higher mean stock.

After analysing both scenarios, it was determined that analytical
formulation (5), which was the first to be adapted from and Vollmann,
Berry and Whybark [64] and McClain and Thomas [65], best fitted the
case study. The second better analytical formulation to fit the case study
was no. (6), which was the second of the aforementioned authors to be
adapted.

The difference between the two adaptations lies in how the LT is
used. Analytical formulation (5) uses the average real LT, obtained from
the information provided by the first-tier supplier. Analytical formula-
tion (6) uses the LT agreed on by the suppliers and the first-tier supplier.

Given the equation’s characteristics, using an average LT is recom-
mended and this value is updated with the new information provided by
the first-tier supplier. For future calculations, a time period shorter than
6 months or one that equals 2 months can be used, and the result would
be used during a period that equals that studied for updating purposes.
In both cases, the analytical formulation (5) value corresponds to 7 days.
Hence the SLT would be 5 days if we consider that the agreed LT is 3
days.

Results presented from Table 12 to Table 13 can be found in the
Appendix.

7. Conclusions

This work commenced with a literature review to determine the
equations that currently exist and are related with calculating the SLT
(vendor–buyer context) and, in turn, to verify if any equation considered
demand variability. We were unable to find an equation related to that
context and under that condition, demand variability. However, we
identified several equations that calculate the SLT and the SS, which
mainly use variables directly related with different supply chain costs.
We also observed that the SLT was generally included in stock-related
calculations.

The present work considered the ideas and arguments of the different
reviewed research works, and consequently proposes six new analytical
formulations to calculate the SLT which depends on demand variability.
A process to calculate the PLT was determined, which should be sys-
tematically followed to obtain values in accordance with the analysed
time horizon.

Our objective was to propose an equation that would calculate the
SLT and would formalize demand variability. The study framework was
applied to the automotive industry, specifically in a first-tier supply

chain. The results were compared with those provided by the equation
that the first-tier supplier uses, which does not consider demand vari-
ability. The calculations were done using the real disaggregate data
provided by the first-tier supplier. Three parameters were determined to
measure the performance of each equation, and the proposed ones
provided better results than that used by the first-tier supplier. The
equation finally selected for the case study was analytical formulation
(5). We emphasize that we were able to describe the SLT according to
demand variability. The results of analytical formulation (5) were much
better than those obtained with the first-tier supplier’s equation, Eq.
(20), which was exceeded considerably in the two scenarios. It is
important to mention that the first-tier supplier’s equation obtained
worse results than the six proposed analytical formulations when
considering the parameters that measure the number of stockouts and
the quantity of the SS. These are important parameters because they
indirectly represent costs in companies.

Limitations of this proposal are related to use different data sources
from first-tier suppliers belonging to the same industry. Also, it could be
incorporated the cost factor to this scenario to compare the behaviour of
each equation result. On the other hand, a combinatorial approach could
be used to calculate the SLT for a specific item, demand season or LT,
among others.

The following future research lines in the SLT and demand variability
domain have been identified throughout this work. Therefore, forth-
coming works are to: (i) investigate whether a relationship exists be-
tween the SLT and the bullwhip effect. Should this link exist, it would be
worth investigating if it is possible to modify, dominate or lead the
bullwhip effect. To undertake this study, several continuous supply
chain points and the performance of both the SLT and demand vari-
ability should be investigated. This could be done by systems dynamics-
based simulation to: (ii) apply these formulations to calculate the SLT
which depends on demand variability in other sectors; (iii) to build a
multi-period calculation model; (iv) to consider other common distri-
butions such as exponential distribution to provide other functionalities
to the proposed formulations; wand (iv) to develop the current case
study and to explicitly determine costs. The cost per stockout should be
defined, as should the cost per inventoried unit per item, and whether
this aspect defines a new solution should be observed. This same sce-
nario could include a study that analyses if the SLT depends on the
quantity of items and what would happen if interdependent items
existed.
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Appendix

Table A1
The results of Scenario 1 for each item and parameter.

i Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

1 TotSOi 18 38 49 37 39 3 10
TotSSi
(Units)

771 825 838 840 825 155 161

TotSAi
(Units)

932 738 449 733 693 793 477

2 TotSOi 53 0 0 0 0 0 0
TotSSi
(Units)

482 929 929 1337 2709 1369 1337

TotSAi
(Units)

214 9098 9133 9829 11,647 10,029 9781

3 TotSOi 49 48 48 47 50 47 47
TotSSi
(Units)

442 578 578 492 322 500 500

TotSAi
(Units)

198 244 244 212 120 221 213

4 TotSOi 27 36 38 32 26 6 17
TotSSi
(Units)

1148 968 1004 1016 968 968 968

TotSAi
(Units)

1030 794 681 847 962 1458 1159

5 TotSOi 10 20 32 20 19 3 3
TotSSi
(Units)

746 384 604 616 384 126 126

TotSAi
(Units)

931 501 552 725 518 1016 708

6 TotSOi 4 40 46 42 42 5 15
TotSSi
(Units)

1202 1991 2450 1991 2232 1058 1058

TotSAi
(Units)

2174 1412 1298 1357 1549 2176 1502

7 TotSOi 44 31 31 31 31 30 31
TotSSi
(Units)

3610 6552 7587 6437 6552 4410 4420

TotSAi
(Units)

2107 4871 5673 4899 5412 4830 4099

8 TotSOi 44 17 11 5 2 16 17
TotSSi
(Units)

1124 417 379 251 71 417 417

TotSAi
(Units)

683 803 914 1201 1436 814 793

9 TotSOi 12 10 10 12 12 12 12
TotSSi
(Units)

73 71 71 73 73 73 73

TotSAi
(Units)

226 268 268 226 226 226 226

10 TotSOi 37 13 15 5 0 0 0
TotSSi
(Units)

3124 695 1096 521 970 747 399

TotSAi
(Units)

2482 1567 1807 1913 3736 3370 2615

11 TotSOi 52 43 47 40 29 10 18
TotSSi
(Units)

9549 4816 4816 4816 4816 4816 4816

TotSAi
(Units)

4239 3147 2861 3444 4373 6032 5072

(continued on next page)
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Table A1 (continued )

i Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

12 TotSOi 26 26 38 26 12 7 10
TotSSi
(Units)

1731 1057 1260 979 781 678 678

TotSAi
(Units)

1650 1046 970 987 1106 1388 1051

13 TotSOi 51 40 40 39 39 32 35
TotSSi
(Units)

2528 1880 1880 1880 1880 1880 1880

TotSAi
(Units)

1098 980 951 1147 1284 1823 1608

Table A2
The results of Scenario 2 for each item and parameter.

i Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

1 TotSOi 37 6 13 10 6 0 4
TotSSi
(Units)

1323 273 286 877 273 110 276

TotSAi
(Units)

927 641 399 1124 6 00 1132 911

2 TotSOi 41 0 0 0 0 0 0
TotSSi
(Units)

302 1422 1422 1742 2222 1742 1742

TotSAi
(Units)

185 8433 8526 8854 9908 9091 8887

3 TotSOi 35 44 44 44 44 44 44
TotSSi
(Units)

262 521 518 480 294 472 518

TotSAi
(Units)

180 200 200 194 128 199 222

4 TotSOi 32 12 18 16 6 4 6
TotSSi
(Units)

1256 390 412 704 376 376 376

TotSAi
(Units)

1038 679 590 968 867 1209 962

5 TotSOi 46 0 1 4 0 0 0
TotSSi
(Units)

13,614 10 12 304 10 333 211

TotSAi
(Units)

6165 654 507 864 674 1624 1163

6 TotSOi 26 12 28 15 14 1 5
TotSSi
(Units)

2229 1094 1146 1579 1146 136 902

TotSAi
(Units)

2225 1550 1114 1929 1497 2029 2155

7 TotSOi 21 29 29 29 29 23 26
TotSSi
(Units)

1793 5770 5770 6695 4735 4735 5310

TotSAi
(Units)

2189 5439 5127 6402 4754 6004 5842

8 TotSOi 37 10 4 4 0 9 11
TotSSi
(Units)

966 310 221 186 359 259 315

TotSAi
(Units)

650 829 973 1124 1994 813 822

9 TotSOi 9 7 8 9 9 9 8

(continued on next page)
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Table A2 (continued )

i Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

TotSSi
(Units)

53 51 52 53 53 53 52

TotSAi
(Units)

260 311 286 260 260 260 286

10 TotSOi 38 20 20 18 1 4 9
TotSSi
(Units)

3691 2159 1633 2159 225 775 1633

TotSAi
(Units)

2464 2364 1731 2513 2199 2448 2651

11 TotSOi 40 14 15 19 7 5 10
TotSSi
(Units)

6173 2482 2482 2819 1640 1640 1640

TotSAi
(Units)

3877 3470 3242 3650 3750 4908 3749

12 TotSOi 10 9 16 13 5 5 9
TotSSi
(Units)

960 483 483 904 128 128 904

TotSAi
(Units)

1654 963 789 1297 912 1205 1623

13 TotSOi 18 32 34 29 22 12 22
TotSSi
(Units)

921 1314 1314 1314 944 944 944

TotSAi
(Units)

1069 1162 1129 1140 1059 1359 1070

Table A3
The total results of each parameter and equation.

Total

Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 427 362 405 336 301 171 215
∑

iTotSSi(Units) 26,530 21,163 23,492 21,249 22,583 17,197 16,833
∑

iTotSAi(Units) 17,964 25,467 25,802 27,521 33,064 34,177 29,304

Table A4
The result that shows the total percentage which indicates the best results of the parameters for each equation in each item.

Results %

Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 7.69 % 15.38 % 15.38 % 15.38 % 23.08 % 76.92 % 30.77 %
∑

iTotSSi 15.38 % 30.77 % 23.08 % 15.38 % 38.46 % 53.85 % 53.85 %
∑

iTotSAi 30.77 % 15.38 % 46.15 % 7.69 % 15.38 % 7.69 % 7.69 %

Table A5
Comparison of the total results of each parameter in each equation with the results of the equation showing the best values.

% of separation
Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 149.71 % 111.70 % 136.84 % 96.49 % 76.02 % 0.00 % 25.73 %
∑

iTotSSi 57.61 % 25.72 % 39.56 % 26.23 % 34.16 % 2.16 % 0.00 %
∑

iTotSAi 0.00 % 41.77 % 43.63 % 53.20 % 84.06 % 90.25 % 63.12 %
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Table A6
The total results for each parameter and in each equation. Scenario 2 (moving average).

Total

Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 390 195 230 210 143 116 154
∑

iTotSSi(Units) 33,543 16,279 15,751 19,816 12,405 11,703 14,823
∑

iTotSAi(Units) 22,884 26,693 24,612 30,318 28,603 32,282 30,343

Table A7
The result that shows the total percentage which indicates the best results of the parameters for each equation in each item. Scenario 2 (moving average).

Results, %

Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 15.38 % 23.08 % 7.69 % 7.69 % 38.46 % 61.54 % 15.38 %
∑

iTotSSi 30.77 % 15.38 % 0.00 % 7.69 % 38.46 % 38.46 % 15.38 %
∑

iTotSAi 30.77 % 0.00 % 53.85 % 7.69 % 23.08 % 7.69 % 0.00 %

Table A8
Comparison of the total results of each parameter in each equation with the equation results that show the best values. Scenario 2 (moving average).

% of separation

Parameter Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)
∑

iTotSOi 236.21 % 68.10 % 98.28 % 81.03 % 23.28 % 0.00 % 32.76 %
∑

iTotSSi 186.62 % 39.10 % 34.59 % 69.32 % 6.00 % 0.00 % 26.66 %
∑

iTotSAi 0.00 % 16.65 % 7.55 % 32.49 % 24.99 % 41.07 % 32.59 %

Table A9
The average PLT that results from this case study.

i Moving average (Days) Real Data (Days)
Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

1 6 5 5 6 8 6 6 5 5 6 8 7
2 6 6 6 11 7 6 6 6 6 11 7 6
3 6 6 6 11 7 6 6 6 6 11 7 6
4 6 5 5 7 8 7 6 5 5 6 8 7
5 6 5 5 6 8 7 6 5 5 6 8 7
6 6 5 5 6 8 7 6 5 5 6 8 7
7 6 5 5 6 8 7 6 6 5 6 8 7
8 5 7 7 12 5 5 5 7 7 12 5 5
9 5 4 3 3 3 4 5 4 3 3 3 3
10 6 6 6 9 8 7 6 6 6 9 8 7
11 6 6 6 7 8 7 6 6 6 7 8 7
12 6 5 5 6 7 6 6 5 5 7 7 6
13 6 6 6 7 8 7 6 6 6 7 8 7
The average LT 6 5 5 7 7 6 6 6 5 7 7 6

Table A10
The average PLT that results from this case study, where the values of two items were eliminated since historic data were lacking.

i Moving average (Days) Real Data (Days)

Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

1 6 5 5 6 8 6 6 5 5 6 8 7
2 6 6 6 11 7 6 6 6 6 11 7 6
3 6 6 6 11 7 6 6 6 6 11 7 6
4 6 5 5 7 8 7 6 5 5 6 8 7
5 6 5 5 6 8 7 6 5 5 6 8 7
6 6 5 5 6 8 7 6 5 5 6 8 7
7 6 5 5 6 8 7 6 6 5 6 8 7
8
9
10 6 6 6 9 8 7 6 6 6 9 8 7

(continued on next page)
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Table A10 (continued )

i Moving average (Days) Real Data (Days)

Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7)

11 6 6 6 7 8 7 6 6 6 7 8 7
12 6 5 5 6 7 6 6 5 5 7 7 6
13 6 6 6 7 8 7 6 6 6 7 8 7
The average LT 6 5 5 7 8 7 6 6 5 7 8 7
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