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ABSTRACT
The current globalmarket forces companies to focus on suitablemanufacturingbasedon zerodefect
and zero waste strategies. Higher energy prices and critical raw material supply disruptions stimu-
late the implementation of non destructive inspection technologies for real-time quality assurance,
which aims to increase high-quality products and lower production costs via better materials and
energy uses. By embracing these advancements, businesses address market dynamics and strate-
gically position themselves for sustained success in a competitive and resource-conscious world.
Traditionally, in small and medium enterprises, new manufacturing or inspection equipment is
acquired based on a management decision that is, in turn, based in quality purposes and does not
focus deeply on the impact on the final factory cost reduction. This research focuses on develop-
ing a costing procedure to incorporate the impact of Non Destructive Inspection Technologies into
themultistage cost structure for investment decisions. A case study is presented to demonstrate the
applicability of the cost breakdownand returnon investment for justifying the investmentof theNon
Destructive Inspection Technology in additive manufacturing machinery. The proposed cost model
provides a framework to preliminary assess the viability of Non Destructive Inspection Technologies
investments.
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1. Introduction

Economical efforts made to help industries in transition-
ing toward non destructive testing and zero waste have
become a pressing challenge, but a mandatory one when
discussing solutions to minimise the impact on the envi-
ronment in circular economy initiatives (Psarommatis
and Kiritsis 2022). Zero Defect Manufacturing (ZDM)
is the latest approach for quality assurance and by extent
wasteminimisation (Psarommatis et al. 2022;Wang et al.,
2020). ZDM is composed of four main strategies detect,
predict, prevent and repair. The current paper is focus-
ing on the first ZDM strategy the detect, which in other
words is the inspection. The inspection can be classified
into the physical and virtual detection, the physical detec-
tion is the inspection with direct physical access to the
product and the virtual is using data from the production
to estimate the produced quality without physical access
to the part, this approach is communing from the virtual
metrology domain (Dreyfus et al. 2022). In this study, the
focus is on the physical inspection where the integration
of Non Destructive Inspection (NDI) Technologies will
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optimise production, and reduce energy use and mate-
rial consumption, by decreasing the amount of destruc-
tive testing for quality assurance purposes, while keeping
companies on the technological edge (Psarommatis and
Bravos 2022). NDI solutions (NDISs) may represent a
change in the quality assurance approach, which could
have a direct impact on the company´s business eco-
nomic sustainability. Ideally, implementing NDI systems
should result in reduced waste and defects, which are key
business objectives for an industrial company. The inte-
gration of NDISs is a promising path to achieve European
manufacturing excellence (Lindström et al. 2020).

Zero Defect Zero Waste (ZDZW) strategies aim to
minimise the number of items that require rework
because this does not meet quality standards or must
be scrapped given that an inline or in-process inspec-
tion is performed during manufacturing (Psaromma-
tis et al. 2020b). ZDZW strategies represent a crucial
approach in manufacturing by focusing on the reduction
of the items that require rework or face being scrapped
because they fail to meet stringent quality standards.
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This is achieved by implementing inline or in-process
inspections throughout the manufacturing process, as
highlighted by Psarommatis et al. (2020a) (Psarommatis
et al. 2024). The incidence of non conformance items is
intricately linked with material consumption and energy
use, and is a crucial aspect of operational process sus-
tainability. An inherent goal of NDISs is to reduce the
downstream flow of non conformance items during sub-
sequent operations. To effectively achieve this, NDISs
must seamlessly be integrated into the manufacturing
process by providing robust in-process quality assurance
mechanisms, as emphasised by Powell et al. (2022). This
integration ensures a comprehensive strategy that iden-
tifies and addresses defects promptly and contributes to
reducing material and energy waste.

Quality control allows companies to verify products’
conformance to requirements and specifications and to,
thus, build customer satisfaction and the brand’s repu-
tation (Rožanec et al. 2022). Every decade, the burden
of products must fulfil customer requirements regarding
quality increase, which leads to high personnel costs for
making inspections, and no value-adding activity is per-
formed (Tirkel et al. 2016; De Ruyter, Cardew-Hall, and
Hodgson 2002). Convention quality inspection policies
rely on manual inspections that are made by operators
who carry out repetitive tasks, which may lead to errors
caused by lack of concentration or fatigue (Connor 1986;
SAgnisarman et al. 2019; Nikolaos and Mousavi 2023).
The new development of information technologies (IT)
and sensors allows manual inspections to be replaced
with automatic in-line or in-process NDIs (Psaromma-
tis et al. 2024). These new quality inspection policies aim
to reduce personal costs, improve reliability and stan-
dardise quality inspection procedures (Reichenstein et al.
2022). Product quality and reliability are important met-
rics for any manufacturer to consider, such as cost of
quality (CoQ), to identify, measure and improve their
industrial process to seek to minimise costs and to max-
imise profits (Farooq et al. 2017; Wudhikarn 2012). The
detection of a defective part may occur during manufac-
turing processes for several reasons, where the process
randomly shifts from an in-control state to an out-of-
control one (Abdul-Kader, Ganjavi, and Solaiman 2010;
Sarkar and Saren 2016; Wan, Chen, and Zhu 2023). For
this reason, quality inspection policies are deployed in
industry to detect defective parts before being sent to
customers. Early defect detection avoids defective items
from passing to the next manufacturing steps, which
may result in significant losses of time, materials and
money (Hauck, Rabta, and Reiner 2022; Rezaei-Malek
et al. 2019). Depending on the type of inspection poli-
cies, sampling and the customer service level, different
costs can be incurred. On a quality inspection based on

an acceptance sampling, two types of error can occur: the
batch is considered unacceptable while it is acceptable,
or the batch is judged acceptable while it is unaccept-
able. The net profits are reduced when larger samples are
employed, employing destructive and non-destructive
testing (Al-Salamah 2016; Guha and Bose 2020). The
cost of inspection policies is directly related to five main
factors: typology of inspection (on-machine, in-process,
in-line or off-line), type of inspection (non destructive
or destructive), inspected quantity (entire batch or sam-
pling), cycle time and nature of inspection (manual or
automatic) (Bose and Guha 2021; Psarommatis et al.
2024).

Industrial companies need to assess the impact of inte-
grating NDI technologies (NDIT) on the manufacturing
environment, where topics like payback, first-time right
and cost related to labour, material consumption and
energy use should be considered (Abdul-Kader, Ganjavi,
and Solaiman 2010; Asiedu and Gu 1998). The economic
evaluation needs to address the entire potential savings
and benefits of NDIT integration for real-time inspec-
tions. The present article aims to create the cost model
for managers or engineers to quantify savings/costs and
quality improvements of the NDIT in the manufactur-
ing environment. It should be noted that top manage-
ment support involvement is critical for removing bar-
riers by playing a critical role in ensuring that all the
information (material and energy consumptions, costs,
amortisation, labour, etc.) is available to deploy the cost
model.

For the defective parts at upstream manufacturing
process levels, the problem posed in the present article
is relevant for many companies with several production
steps, such as electronics, energy production equipment,
or even commodity products. Several studies demon-
strated that company profitability can be improved with
the integration of a production control model based on
quality control, economic production quantity andmain-
tenance policy (Al-Salamah 2016; Guha and Bose 2020;
Shojaee et al. 2024). This study investigates the economic
impact of a scenario in which the NDIT is integrated into
an in-process inspection production process compared
to a scenario where inspection is made at End-Of-Line
(EOL) by means of an NDIT. The impact on savings that
can be achieved through in-process NDISs on the man-
ufacturing job shop is represented in the additive manu-
facturing of ceramic parts. In the use case, two scenarios
(with and without NDIT) are presented to compare the
impact of operating costs, where two types of machines
and raw materials are employed. Manufacturers should
attempt to identify the critical parameters or properties
to which NDITs should be implemented for in-process
inspections. In the earliest stage, when the NDIT can be
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implemented, more cost savings can be made by using
less material, energy and labour.

An accurate product cost estimation is a multifaceted
process that draws on a wide range of resources, such
as historical data and qualitative and quantitative mod-
els, as explained by Niazi et al. (2006) and Psarommatis
et al. (2024). An invaluable tool in this estimation is the
cost breakdown evaluation method, which is particularly
useful for assessing the transformative effects induced
by applying NDITs in manufacturing processes. Product
cost intricacies are closely linked with the consumption
of various productive resources, which range from labour
and machinery to facilities, materials and energy, in the
manufacturing life cycle (Shehab and Abdalla 2001a;
Heilala, Helin, andMontonen 2006). To broaden the true
impact of NDIT solutions on operational performance,
it is imperative to comprehensively estimate the prod-
uct’s cost by taking into account the contributions of
all these components. This holistic approach not only
improves the accuracy of cost projections, but also pro-
vides an understanding of how NDIT implementations
influence the overall efficiency and economic viability of
manufacturing operations (Psarommatis 2021).

This article makes three significant contributions to
the NDI for in-process quality assurance in industrial
production scenarios. First, the article addresses the
economic importance of ZDZW strategies based on
NDITs. Second, a manufacturing cost estimation model
is defined by considering the final factory cost to assess
the return on investment related to the acquisition of
NDIT based on the improvement in the first-time-right
rate thanks to the deployment of real-time in-process
quality assurance. The scope of the current paper is to
provide all the necessary tools, methodologies and infor-
mation for industries to used for improving their sys-
tems. The current paper can act as a step-by-step method
for accurately and efficiently invest and deploy NDIT
techniques.

In this paper, the cost estimation, which is based on a
cost breakdown methodology, is introduced to evaluate
the impact of integrating NDISs on the manufacturing
shop floor. Third, the use case is employed to estimate
the rate of return on investment (ROI) of Mid-Infrared
Optical Coherence Tomography (MIR-OCT) when it is
integrated into lithography equipment employed toman-
ufacture ceramic antennas. The present use case enables
the proposed cost model to be deployed and evalu-
ates the impact of the cost related to reducing mate-
rial, energy and other productive resources when an
NDIT is applied. The model proposed in this study is
applied for parts manufactured by the additive manufac-
turing process, which are later subjected to several heat
treatments to consolidate parts and to achieve desirable

properties. However, by means of the present methodol-
ogy, an extension of the proposedmodel can be employed
for other industries or parts beyond that proposed in the
case of study. The paper´s novelty lies in the proposed
cost breakdown model, which enables the evaluation of
the impact on the final factory costs (labour, energy,
materials, capitalised, etc.) when the first-time ratio is
modified thanks to deploying an in-process NDIT for
inspection quality assurance.

The paper is structured as follows, section 2 presents
the evaluation of different solutions for ZDZW and their
economic impact, section 3 presents the manufacturing
cost estimationmodel and section 4 presents the return of
investment model. The final section 5 is the conclusions
summarising all the findings of the current paper.

2. Evaluating the economic impact of ZDZW
solutions

This section addresses a fundamental challenge faced
by the NDI system for justifying the high investment
required for its integration into the manufacturing
flow shop (EMAT sensor, MIR-OCT, Acoustic emission,
GPU hardware, etc.) that is required to promote more
advance quality inspection methodologies (in-process,
on-machine or in-line). One barrier that significantly
hinders the widespread adoption of NDISs lies in the
complexities associated with accurately defining initial
assumptions and making precise cost analysis estimates
and impact on production profitability. These critical
aspects are indispensable for calculating the expected
value and variance of cash flows attributed to the deploy-
ment of automated inspection equipment. The inherent
complexity in these preliminary steps is a significant bar-
rier, and overcoming it which requires careful considera-
tion and strategic planning (Dietrich and Cudney 2011).
Successfully overcoming this challenge is imperative for
organisations to search to acquire the benefits of NDISs,
which underlines the importance of a thorough com-
prehensive approach to justify investments in advanced
inspection technologies in manufacturing.

Today’s current economic status remains very volatile
due to geopolitical tensions between the main indus-
trial nations (USA, China, Russian Federation and Euro-
pean Union), which have ended in rising inflation, inter-
est rates and global trade sanctions (European Central
Bank, 2023). After the COVID-19 pandemic, as Euro-
pean countries have become aware of the marked level
of their dependency from the industrial point of view
(European Commission 2021), one of the main goals for
forthcoming decades is to regain their industrial com-
petitiveness on the world market. Once clear example of
an economic long-term strategy is visible in the EU Chip
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Act, where more thane57 billion will be invested in pro-
duction capabilities and infrastructure until 2035 (Ciani
and Nardo 2022).

In some specific cases, investment in automatic
inspection systems tends to be capital intensive with a
payoff over a longer period, but the focus should be
placed on long-term results, such as product recall, non
conformities or amanufactured product’s reliability (Pan
et al. 2022). Depending on the industrial sector or type of
products (aerospace, energy production, medical, etc.),
these benefits can be considered to be competitive advan-
tages. In some industries, the established payback period
is 2 years, and an investment that presents higher values
would require more work to justify investment. Imple-
menting automatic NDITs enables companies to cut
operational costs, which consequently lowers its selling
prices. As customer goods are or outsourcing production
is price-sensitive, they can gain market shares, increase
their volumes and benefit from supplier’s discounts or
large production batches. However, if companies do not
focus their efforts on manufacturing excellence and zero
defect strategies, they will gradually have less competitive
prices, which will narrow their market share, and they
will be forced out of business sooner or later (Cochran,
Foley, and Bi 2017).

The economics of quality inspection equipment does
not differ from manufacturing systems. The main goal
of any investment is to acquire an economical rate of
ROI. This economic rate depends on the added value
of the manufactured item and the industrial sector in
which NDI equipment is installed. Investment in NDI
equipment should consider the cost of acquiring and
operating equipment, and labour and management costs
in themanufacturing facility. ROI should be calculated by
considering the added value obtained by installing NDI
equipment.

Investing in quality assurance equipment is repre-
sented by the capital needed to integrate all the sensors
and software to be feasible to inspect parts. This invest-
ment may be influenced by several factors: automatisa-
tion level, integration IT infrastructure, inspection accu-
racy, inspection velocity, and flexibility of the products
to be inspected. Elevated automation requires a higher
investment because several sensors and control systems
are needed to provide feedback to inspection equip-
ment, and also to the manufacturing system where it is
installed. The economic evaluation of NDI equipment
requires identifying the production equipment, material
waste, energy use and inspection labour which, can be
realistically reduced in the ROI window.

The benefits of NDI systems include the capability to
detect, quantify and respond to changes in the produc-
tion environment. These abilities provide the capability

to adapt the manufacturing process to the changes that
might occur during production. All industrial invest-
ments always involve some risk. The risk in automatic
NDISs is the chance that the system will not achieve the
planned accuracy level, the reliability of quality inspec-
tion, inspection velocity is slower than planned or the
cost will be higher than estimated. ROI declines when
one or more of these possibilities occur, which makes
the solution less interesting from an economical point of
view.

3. Manufacturing cost estimationmodel

Manufacturing environments are complex scenarios in
which several operations, raw materials and productive
resources are consumed to manufacture a product. Cap-
turing this complexity is essential to accurately estimate
the manufacturing cost, a task that can be addressed by
applying various models (Asiedu and Gu 1998). All cost
models rely on a central pillar: the definition and estima-
tion of the parameters, coefficients or constants employed
in the different equations proposed for a specific model
(Niazi et al. 2006; Shehab and Abdalla 2001a).

This complexity can be translated to estimate theman-
ufacturing cost; the current task can be performed by
several models. For this reason, an accurate, reliable and
updated database to estimate the manufacturing cost
should be employed in cost simulation models.

The cost estimation model allocates the different
consumed productive resources (machines, labour, raw
materials, energy, infrastructure, etc.) based on the routes
and bill of materials (BOM) for the specific manufac-
tured part, and on a specific direct or no-direct cost.
The cost breakdown approach proposed in this paper
can consider increased product structure complexity.
Traditional quantitative cost estimation methods are
arranged in three main families: operation-based (Niazi
et al. 2006), feature-based (Shehab and Abdalla 2001b;
Mörtl and Schmied 2015; Jung 2002) and breakdown
approaches (Mahadik and Masel 2018). The operation-
based approach focuses on a very detailed estimation
of manufacturing processes, but needs to improve the
definition of the indirect cost (capitalise, allocate or
administration cost). The feature-based cost estimation
approach identifies the cost related to product features
and estimates their costs based on historical data. The
breakdown approach divides the partmanufacturing cost
into different elements (Mahadik and Masel 2018; Mörtl
and Schmied 2015; Park and Kim 1995). The estimated
part cost is given per the total contribution of all the
direct and indirect cost elements incurred during manu-
facturing. The present research work focuses on the Final
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Figure 1. Cost element diagram.

Factory Cost, which considers the prime manufactur-
ing cost and indirect expenses in a proposed breakdown
model approach. To obtain the final selling price, the
selling and marketing costs and the company profit mar-
gin should be considered, but this analysis is beyond
the scope of this work (Figure 1). The proposed cost
model extends the literature on investment feasibility
for new technologies based on ZDM strategies since it
integrates the impact of NDIT technologies in advanced
quality inspection methodologies (in-process or in-line).
For these purposes, the variable of FTR is considered in
the direct labour costs, energy use costs, material costs,
and capitalised costs to quantify the impact in the final
factory cost where NDIT is implemented in-process or
on-machine quality inspection.

In order for companies to stay competitive they need
to develop new cost estimation models that adapt to the
flexibility of theirmanufacturing process, and to consider
the impact of integrating NDISs for in-process quality
assurance, while being accurate and reliable (Park and
Kim 1995). For this reason, the Zero Defect Manufac-
turing approach is utilised, as it is the latest approach
for quality assurance (Powell et al., 2022). This requires
fully contemplating the potential savings and bene-
fits of the investment projects or inspection equipment
based on ZDZW strategies (Azamfirei, Psarommatis, and
Lagrosen 2023).

They should also allow managers or engineers to
quantify indirect savings/costs and intangible benefits,
such as improved quality linkedwithmanufacturing flex-
ibility and the first-time-right rate (Psarommatis and
Kiritsis 2019). To provide a detailed ROI calculation to
implement NDITs, manufacturing costs were analysed

by following a breakdown approach that aims to pro-
vide accurate insights into how NDIT helps to minimise
the costs associated with the process. The breakdown
approach is a proven accurate cost estimation model
when it comes to analysing all the resources consumed
in the production cycle of an industrial product (Niazi
et al. 2006). Figure 2 shows the hierarchy cost breakdown
structure proposed to assess the impact of NDIT imple-
mented for in-process quality assurance purposes based
on ZDZW strategies.

In this section, the basic formulas proposed in this
paper for all the considered cost elements are introduced
and their essential aspects are discussed. The presented
formulas can be adapted for different product structures
and each cost element is estimated per part.

The Direct Cost component is composed of four cost
components that are calculated by adding the Direct
Labour Cost (CDL), Direct Labour Cost Benefits (CDLB),
Energy Cost (CEC) and Material Cost (CMAT), as shown
in Equation (1). Some of the aforementioned costs are
related to the First-Time-Right Ratio (FTRi), and the
building ratio per process (BRi). These two variables are
intrinsically related to the use of NDITs in the manufac-
turing process.

Direct Costs
( e
unit

)
,

CD = CDL + CDLB + CEC + CMAT (1)

The direct labour costs consider the building rate and
the FTR rate that depends on the processing parame-
ters employed during each specific operation according
to the manufacturing bill of materials, and the feedback
collected from NDIT solutions to make decisions that
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Figure 2. Tree diagram for cost estimation.

modify the FTR rate. The direct labour cost is obtained
by dividing the average labour hourly cost by the build-
ing ratio and the FTR rate, andmultiplying the coefficient
based on the process labour needs for each process con-
sidered to manufacture the part. In the equation of the
direct labour costs (Equation 1.1), a variable (KPLn) to
indicate the labour required per process or operation step
is added. The Average Hourly Cost (AVGHC) concept
emerges, which indicates the average price per hour of
a worker operating a machine in an industrial environ-
ment, or the building ratio (BRn), which is defined as the
units produced in an hour for a given process.

Direct Labor Costs
( e
unit

)
,

CDL = AVGHC ×
N∑

n=1

KPLn

BRn × FTRn
(1.1)

where n refers to the process and N denotes the total
amount of subjected processes.

Average Hourly Cost,AVGHC

( e
hour

)

Building Ratio per process, BRn
(
unit
hour

)

First − Time − Right ratio per process, FTRn(%)

Coefficient based on the process labor needs,KPL,n(%)

The Direct Labour Benefit Cost (CDLB) calculation
relates the labour benefits associated with workers, such
as insurance expenses, taxes, healthcare, and all the social

expenses related to EU standards paid by enterprises.
According to EUROSTAT, this cost estimation accounts
for 21% of the direct labour expenses incurred on aver-
age, as seen in the following equation.

Direct Labor Costs Benefits
( e
unit

)
,

CDLB = KLBE × CDL (1.2)

Coefficient based on the labor benefits expenses,

KLBE(%)

The energy use costs (CEC n,j) are composed of the
energy use of all the manufacturing operations ‘n’ to
manufacture one item, as well as the subtasks ‘j’ or oper-
ation performed during one manufacturing operation.
Therefore, the first term of the equation defines the
energy use for industrial equipment based on its nomi-
nal power (Pn,j) and operating time (WHn,j), while the
second term focuses on the energy use that takes place
during heat transfer processes, by taking into account
the material-specific heat (cn,j,k), temperature increase
(�Ta

n,j), material (RMn,j) used, among others. Working
hours have a direct influence on both terms for the unit
energy, which is why they have been broken down into an
hourly rate per day (DWH) and the days that the process
took to be completed (DWH).

Energy Use Costs
( e
unit

)
,CEC = CMEC + CHTEC

(1.3)

Machine energy use costs
( e
unit

)
,
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CMEC =
N∑

n=1

⎛
⎝ J∑

j=1
P n,j × WHn,j × EP

⎞
⎠ (1.3.1)

where, j refers to the subtask and J refers to the total

amount of subjected subtasks.

Working hours operating time in operation n and

subtask j (hours), WHn,j = DWH × NWHn,j
(1.3.1.1)

Output nominal power per manufactured unit during

operation i and subtask j,Pn,j
(
kW
unit

)

Hourly rate per day
(

h
day

)
,DWH

Operating process phase days per subtask j performed

during operation i (days), NWHn,j

EUAverage energy industrial price
(

e
kW × h

)
,EP

Heat Treatment energy use costs
( e
unit

)
,

CHTEC =
H∑
h=1

( K∑
k=1

�Th × cpk × ω × RMCk

FTRi

× WHh × ηo × EP2

)
(1.3.2)

where k is the material identifier and K

refers to the total number

of material used during heat treatment.

where h is the heat treatment step and H refers to the

total number of steps used during heat treatment.

Subtask heat treatment temperature(K),�Th

Specific heat value for materialk
(

KJ
kg × K

)
, cpk

Heat transfer coefficient
(
kW · h
KJ

)
,ω

Raw Material Consumption for material k(
kg
unit

)
,RMCk

Oven efficiency(%), ηo

EU Average energy industrial price for heat treatment

×
(

e
W × s

)
,EP

Lastly, to summarise all the direct costs, the mate-
rial costs of the process at the raw material level, also
known as Material Cost (CMAT), are included. The mate-
rial cost includes manufacturing material losses, scrap
and administration charges, which have to be considered
to obtain the final product. All these costs are assigned to
parts based on the amount of consumed material; NDIT
integration will increase the FTR rate and decrease the
consumed amount.

Material Cost
( e
unit

)
,

CMAT =
N∑

n=1

( K∑
k=1

RMCk × RMPk
FTRn

)
(1.4)

Raw Material Price
(

e
kg

)
,RMPk

The Indirect Costs are regarded as overhead expenses
associated with the overall production environment,
administration personnel salaries, facility maintenance,
utilities, among others. These costs are crucial for
determining the comprehensive unitary production cost
and are defined in the equations below. The Indi-
rect Costs contemplate the capitalise, allocation and
general/administration costs. The capitalised costs are
defined as the equipment costs/ expenses imputable for
each process that consume resources to manufacture a
part. The equipment cost expenses per unit consider the
overall equipment costs for a specific operation, avail-
able on working days, and the number of years to be
contemplated for depreciation and the building ratio.
The depreciation period is selected by considering the
product manufacture type, the employed technology and
finance company policies. The capitalised cost is cal-
culated based on the overall equipment cost allocated
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for a specific process, working hours per year and the
amortisation period.

Indirect cost
( e
unit

)
, CIC = CCAP + CAC + CG&A

(2)

Capitalized Costs
( e
unit

)
, CCAP =

N∑
n=1

CEQn × Kn

(2.1)

Equipment Costs expenses per unit
( e
Unit

)
,

CEQn = OECn

WDn × WHn × BRn × FTRn × NYn
(2.1.1)

Overall equipment cost(e),OECn

Working days per year
(
day
year

)
,WDn

Working Hours operating time during operation

× n (hours),WHn

Number of Years for Technological Depreciation

× (years),NYn

Operating expenses coefficient (%),Kn

The allocation cost includes the cost of maintenance,
services and infrastructure to support the equipment or
machine. It is also necessary to bear in mind that the
Capitalised Cost (CCAP) will depend on the accuracy and
resolution required during the process, which is sub-
ject to tolerances and the integration of NDIT for in-
process quality inspection purposes. The Overall Equip-
ment Cost for NDI (OECNDI) is based on several factors:
working hours per day (WDi), number of years for tech-
nological depreciation (Ny,i) and the building ratio per
process (BRi). Finally, in relation to equipment, the costs
associated with the allocated cost (CAC) in relation to
the equipment maintenance and installation associated
cost are both merged in an allocation cost coefficient and
linked with the equipment cost expenses per unit (CEQ,i).

Allocated Cost of process n
( e
Unit

)
,

CAC =
N∑

n=1
CEQn × KACn (2.2)

Allocated cost coefficient per process i (%),KACn

Management and administration costs are a percent-
age of the direct labour (DL) and labour benefits (DLB)
imputable on general and administration costs. A com-
pany’s policies normally balance the direct labour with
the personnel assigned to general and administration
costs. For this reason, the coefficient (KG&AC) multiples
the costs associated with direct labour and benefits.

General and Administration Cost
( e
unit

)
,

CG&A = KG&AC × (CDL + CDLB ) (2.3)

General and Administration Cost coefficient (%),

KG&AC

The net revenue is the difference between the oper-
ational cost without NDI equipment and the estimated
operational cost with the integration of NDI equip-
ment, multiplied by the real production. Finally, ROI is
obtained by dividing the net revenue by the total NDI
investment. Once all the costs are adequately defined, the
cost variation from the As-Is scenario to the potential
To-Be scenario in which NDIT is deployed is carried out
based on the following equation.

Return of Investment (%),

ROI = Net Revenue
NDIT Overall Equipment Cost

= �OPR × �Cw

OECNDIT
(3)

Overall Production Rate variation
(
unit
year

)
,�OPR

Unitary Cost variation
( e
unit

)
,�Cw

The proposed cost model to evaluate the investment
viability of NDIT for on-machine, in-process, and in-line
allows manufacturing companies to quantify the poten-
tial financial performance outcomes. Since these NDIT
presents the capability to detect defects in real-time, and
potentially adapt the manufacturing process to distur-
bances the FTR rate is improved, reducing the materi-
als consumption, increasing the energy efficiency, and
decreasing the environmental impact of the manufactur-
ing process.
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4. Industrial use case for return of investment
for NDIT applied in AM ceramic antennas

The analysed use case evaluates the economic feasibil-
ity of integrating MIR-OCT for the real-time inspection
of high-value ceramic parts manufactured by lithography
additive manufacturing equipment. This model serves as
a basis for the quantification of the actual financial influ-
ence of MIR-OCT as an NDIS applied for high-value
ceramic parts manufactured by AM technology.

A short description of the lithography additive manu-
facturing technology is described in this paragraph. This
manufacturing process consists of fabricating ceramic
parts from photocurable ceramic suspension. The stere-
olithographic technology employs LEDs as a light source
and a Digital Mirror Device (DMD) chip as a dynamic
masking to create the 3D ceramic part (Baino et al.
2022). Once the green part is obtained, the ceramic parts
should follow several heat treatments to eliminate the
organic matrix and to consolidate the ceramic powders
through sintering. The heat treatment is composed of
four steps: the first one is the debinding step, in which the
green parts are heated to 200°C for 2–3 days to eliminate
photocurable resins. The second heat treatment is the
degassing step, in which the ceramic parts are heated to
400°C to remove the gasses trapped in the ceramic pow-
ders, which lasts around 12–24 h on average. During the
third heat treatment, temperature is raised to 1100°C to
perform pyrolysis and to remove any remaining organic
compounds. It lasts around 18–24 h. During the last heat
treatment, the sintering temperature is achieved (around
1700°C), at which the ceramic particles are consolidated
and porosity is reduced or removed, depending on the
cycle time employed, which usually lasts 2 or 4 days
(Baino et al. 2022).

4.1. Cost breakdown for the economic feasibility of
non-destructive inspection solutions

The printing system selected for the economic analysis is
CeraFab 8500 from Lithos GmBh, with a working area of
115× 64 mm and a building speed of 80 layer per hour
(116.7 unit/hour), with resolution on the x-y plane and
25 µm deposition thickness layer. The additive machine
cost is considered to range from300,000 to 569,000 euros,
with an amortisation horizon of 4 years (Ozog et al. 2019;
Romanov and Zhuravleva 2020; Romero 2018). The inte-
gration ofMIR-OCT technology for real-time inspection
and control purposes has an estimated cost of 120,000
euros. The equipmentwith no in-process control solution
presents an F-T-R ratio of 50%, and this value increases
to 66% when theMIR-OCT technology is integrated into
the lithography equipment, complemented by AI-driven

image recognition capabilities to enhance the analytical
potential of the data acquired by the MIR-OCT system.
The lithography equipment operates 254 days per year
at a rate of 16 h per day. The furnaces operates 24 h
per day. The present case focuses on specific parts that
employ micrometric or submicrometric powder, whose
price can range from 300 to 2200 euros per kilogram
depending on powder size and purity, and with an aver-
age weight per part of 5 grams (Romanov and Zhuravleva
2020; Romero 2018). The higher cost related to the raw
material is related to current suspension, which is com-
posed of 97.4–99.99% ceramicmaterial with particle sizes
between 10 and 0.1μm (Sobhani et al. 2020). Based on
the literature review, the electric furnace selected to per-
form the economic analysis is Nabertherm (Baino et al.
2022).

4.2. Non-destructive inspection technology
economic analysis

The cost of the ceramic partsmanufactured by the lithog-
raphy additive manufacturing technology was broken
down into direct labour (labour, benefit, energy, mate-
rials) and indirect (capitalised, allocated and adminis-
tration). Economic analysis performance relies on the
operating cost related to the lithography machine and
the electric furnaces employed to consolidate parts. The
cost to manufacture high-value ceramic parts though
Digital Light Processing (DLP) consider five main ele-
ments: direct costs; material cost, allocated cost, capi-
talised costs, general/administration cost (Dossett 2014).
Direct costs are related to the equipment cost per opera-
tion hour, which are composed of direct labour, benefits
and energy costs. Direct labour considers the hourly rate
that would be charged for each part for the involved
lithography and heat treatment processes. The hourly
labour costs are estimated as e30.5, which is the cur-
rent average in the EU (Eurostat, 2023). The direct labour
benefits cost is estimated by multiplying a social bene-
fit coefficient by the direct labour cost. Benefits include
health and life insurance, compensation, state unemploy-
ment tax, holidays and employer social security con-
tributions that the company pays. The energy use cost
considers two main inputs: the first cost comes from
machine energy use and the second from heat treatment,
which generally represents high energy use. The electric-
ity prices selected for this study were obtained from the
Eurostat Database as 0.1886 e/kilowatt-hour for indus-
trial consumers (Eurostat, 2023). Table 1 summarises the
parameters employed to calculate themanufacturing cost
in the present use case of ceramic parts.

The material cost is defined by multiplying the mate-
rial consumption per the raw material cost and the
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Table 1. Use case parameters for the cost breakdown estimation.

Description Value Units

Average Hourly Cost, AVGHC 30.5 (e/hour)
Building Ratio per process, BR1 116.7 (unit/hour)
First-Time-Right ratio per pro-
cess without NDIT, FTR1

50.0 %

First-Time-Right ratio per pro-
cess with NDIT, FTR2

66.0 %

Coefficient based on the pro-
cess labour needs, KPL,i

50.0 %

Coefficient based on the bene-
fits labor expenses, KLBE

21.0 %

Specific heat value for material
k, cpk

0.955 (KJ/(kg× K))

Heat transfer coefficient,ω 2.778 x10−4 ((kW× h)/KJ)
Raw Material Consumption for
material k, RMCk

5× 10−3 (kg/unit)

Oven efficiency, ηo 240 %
EU Average energy industrial
price for heat treatment, EP

0.1886 (e/(KW× h))

Raw Material Price, RMPk 300–2200 (e/kg)
Overall equipment cost with-
out NDIT, OECLithography

300,000–569,000 (e)

Overall equipment cost with
NDIT, OECLithography NDIT

420,000–689,000 (e)

Overall equipment cost,
OECOvens

25,000 (e)

Working days per year,WDi 254 (day/year)
Working Hours operating time
in Lithography, WHLithography

16 (hours/day)

Working Hours operating time
in Sintering, WHSintering

24 (hours/day)

Number of Years for Technolog-
ical Depreciation, Ny, i

4 (years)

Operating expenses coefficient,
Ki

100 %

Allocated cost coefficient per
process i, KAC i

20 %

General and Administration
Cost coefficient, KG&AC

45 %

first-time-right rate for each raw material during every
manufacturing process that consumes materials accord-
ing to the bill of materials. For the capitalised cost, in
the present study it includes the depreciation of the
main equipment (lithography, furnaces, installations)
employed while producing AM ceramic antennae. As
part of the allocated costs, repairs and maintenance cost,
fixture or tooling costs and process control are consid-
ered. The administration costs and indirect personnel
cost, infrastructure and general utilities cost are included
in the General and Administration costs.

The main results from the ROI of the MIR-OCT
technology applied as NDI on lithography machines
are summarised in Table 2. This table shows that inte-
grating the MIR-OCT NDIT reduces the Direct Costs
from 3.577–22.577 e/unit to 2.709–17.103 e/unit. The
improvement in the FTR ratio improves productivity,
reduces energy use and also lowers the material costs
by around 24%. Nevertheless, integratingMIR-OCT into
the AM lithography machine increases the capitalised
costs by about 24%, and also the allocation costs, because
purchasing the lithography equipment and its related

Table 2. Detailed cost breakdown for high-value AM ceramic
parts.

AM Lithography
ceramicwithout

MIR-OCT

AM Lithography
ceramicwith
MIR-OCT

Direct costs (e/unit) [3.577–22.577] [2.709–17.103]
Direct labour (e/unit) 0.261 0.198
Direct labour benefits

(e/unit)
0.055 0.042

Energy (e/unit) 0.260 0.197
Debinding heat treatment

(e/unit)
0.016 0.012

Degassing heat treatment
(e/unit)

0.011 0.009

Pyrolysis heat treatment
(e/unit)

0.032 0.024

Sintering heat treatment
(e/unit)

0.201 0.152

Material costs (e/unit) [3000–22,000] [2273–16,667]
Indirect costs (e/unit) [0.557–0.897] [0.535–0.792]
Capitalised costs (e/unit) [0.345–0.629] [0.356–0.570]

Lithography operating costs
(e/unit)

[0.316–0.600] [0.334–0.548]

Furnaces operating costs
(e/unit)

0.029 0.022

Installation operating costs
(e/unit)

[0.086–0.157] [0.089–0.142]

Allocated cost (e/unit) [0.069–0.126] [0.071–0.114]
Lithography equipment

costs (e/unit)
[0.063–0.120] [0.067–0.110]

Furnaces equipment costs
(e/unit)

0.006 0.004

General and Administration
costs (e/unit)

0.142 0.108

Total (e/unit) [4.133–23.473] [3.244–17.895]
Total production (Unit/year) 237,134 313,017
ROI (%) - 56–353
Payback period (months) 4–21

costs increase. It is necessary to consider that the cap-
italised costs depend on the precision and technology
employed with the lithography equipment. Depending
on the cost of the selected machine, and the employed
raw material, the ROI windows range from 56-353%,
and the payback period can range from 4 months (for
expensivemachine and rawmaterial) to 21months (more
economical machine and raw material).

Table 2 presents the ratios of different costs con-
sidered to calculate both ROI and payback period
(PBP) of implementing MIR-OCT. Figure 3 presents a
detailed investment feasibility calculation flow, outlin-
ing the step-by-step calculation and financial metrics for
investment decision-making in non-destructive inspec-
tion technologies. These results clearly evidence that
implementing MIR-OCT as an NDIT in the lithography
additive manufacturing technology considerably lowers
both energy use and material waste. The manufacturing
cost heavily depends on the size and composition of the
employed powder (material selection), and on powder
characteristics because powder is the main element that
allows high-value ceramic parts to be produced. When
a high-investment lithography machine and expensive
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Figure 3. Flow diagram for investment feasibility.

powder are employed, the improved FTR by integrat-
ing MIR-OCT in-process inspection allows four months
of PBP, which is considerably lower than the other sce-
nario where less expensive raw material and lithography
equipment are employed. The scenario in which MIR-
OCT is implemented as in-process quality inspection
technologies can reduce the total manufacturing cost by

around 1–6 euros/part, which gives an estimated saving
of 30% for material waste and energy use.

The economic analysis indicates that integrating the
NDIT based on MIR-OCT into a manufacturing pro-
cess that employs lithography machines with a higher
investment and higher cost of raw materials presents
shorter payback periods compared to more economical
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approaches. Moreover, integrating NDIT for in-process
inspections may increase the FTR ratio and lower the
prime manufacturing costs (labour, energy, materials),
which improves the final factory profitability. Finally, to
evaluate the productivity improvement of NDIT deploy-
ment, organisations should ensure it through equipment
validation and employ performance metrics, such as
OEE, as indicators and drivers of performance improve-
ments (Binti et al. 2016; Cochran, Foley, and Bi 2017;
Huang et al. 2003; Wudhikarn 2012). Integrating an
NDIT will modify machine availability, production and
the quality rate. Therefore, these three elements formpart
of the OEE and evaluation of metric performance, and
will be required after NDIT integration.

The deployment of MIR-OCT or other non-destru-
ctive inspection technology on machine for in-process
quality inspection methodology decrease the probabil-
ity of failure in the manufacturing processes, increase
the first-time right rate and improve the production
sustainability. Psarommatis et al. (2024) demonstrated
that advancing to in-process inspectionmethodologies in
machining aluminium parts for the aeronautical indus-
try reduced material handling by >30%, delays by
10%, and production costs >45%. The current study is
alignedwith Psarommatis et al. (2024) since the improve-
ment in FTR, after MIROCT integration for in-process
quality assurance, may reduce the final factory cost by
around 35%, depending on the operational conditions
selected.

In the current ceramic use case, deploying MIR-OCT
and artificial intelligence algorithms for defect detection
will allow for advancement in a quality inspection-based
in-process approach. The new capabilities will allow to
quantify the internal defects, such as inclusion, porous,
aggregates, or others that may make the part manufac-
tured by lithography out of specifications. In this new
scenario, based on the inspection data acquired dur-
ing production, a digital twin can be created to esti-
mate the final material properties; this can be employed
on a reactive approach to adapt the process parameters
to the subsequent manufacturing operations (Azamfirei,
Psarommatis, and Lagrosen 2023; Catalano et al. 2022;
Psarommatis and May, 2023; Rožanec et al. 2023). For
example, MIR-OCT with AI algorithms can quantify the
porosity on the green part; this information can be used
to set up the sintering temperatures and process heat
treatment cycle-time. Another example of using the digi-
tal twin, created with the data gathered with NDIT, is the
prediction of mechanical properties of the manufactured
part, which can be employed to select optimal machin-
ing parameters (feeding rate, revolution, tool geometry,
etc.). This reactive approach based on deploying NDIT
for in-process inspection can be employed to reduce the

defect probability in machining (cracks, fissures, burrs,
and others). This digital twin could also select part han-
dling parameters, such as gripping forces, geometries or
tightening torques.

5. Conclusion

The current paper provides a toolbox for efficiently eval-
uating the manufacturing cost and the KPIs for investing
in an NDI. This is very important for the industries as
it offers a complete and practical tool for using. A lot of
focus was paid for making the proposed method prac-
tical to have real application to the industrial domain.
More specifically, this work contributes to develop a cost
estimation breakdown model that evaluates the ROI and
payback period of a quality inspection policy based on
in-process inspection by an NDIT. Innovation is accom-
plished by developing a model that considers the FTR
ratio in the prime manufacturing cost and the indirect
cost, which can be modified by integrating an NDIT.
In this work, a general overview of NDITs is presented,
which plays a crucial role in the in-process inspection
of defects that occur during industrial processes. Auto-
matic NDI systems deployed on the manufacturing shop
floor can reduce energy use and materials consump-
tion by optimising the production rate, and decreasing
the amount of destructive testing for quality assurance
purposes. The proposed economic cost model relies on
the definition of the production equipment cost, labour,
material consumption/energy use and infrastructure that
influence the ROI value of automatic inspection systems
based on the ZDZWparadigm. The proposed cost model
can be applied in any manufacturing production sce-
nario in which several production steps are carried out,
and where material, energy and labour are consumed,
and scrap is produced. The primary contribution of the
proposed cost model based on the ZDZW strategy is
that managers can employ it to evaluate the economic
feasibility of an investment based on NDITs. Different
scenarios can be established to evaluate the expected
final factory cost before and after an NDIT is inte-
grated into production with different FTR production
rates. In the future, the proposed model can be extended
by considering quality inspection costs based on the
inspection type, the required inventory levels, tooling
cost and setup time for machining, and the employed
workforce.
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