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ABSTRACT 20 

Phenolic compounds play important roles in wine quality attributes such as colour, mouthfeel 21 

and ageing potential. The ability to monitor their extraction and implement appropriate 22 

vinification techniques relies on accurate phenolic analysis methods. Front-face fluorescence 23 

spectroscopy presents itself as a user-friendly, rapid and cost-effective alternative to other 24 

spectrophotometric methods. The main aim of the study was therefore to investigate the 25 

potential of fluorescence spectroscopy to directly measure phenolic content of red wine 26 

samples throughout red wine fermentations. Cabernet Sauvignon fermentations were 27 

monitored using fluorescence spectroscopy and UV-Visible spectrophotometry. 28 

Fermentation conditions were explored for their influence on the prediction accuracy of 29 

fluorescence-based regression models. The coefficient of correlation (R2val) and root mean 30 

square errors of validation (RMSEV) for models built using non-invasive spectral data obtained 31 

from unaltered samples were 0.96, 0.94 and 0.89 and 1.38 index units, 42.84 mg/L and 20.53 32 

mg/L for total phenols (index units (IU)), total condensed tannins (mg/L), total anthocyanins 33 

(mg/L), respectively. Overall, the ability to obtain high quality spectra from unaltered samples 34 

simulating direct measurements from the fermentation vessel was demonstrated and holds 35 

potential for on-line automated systems or portable device applications. 36 

KEYWORDS 37 

Fluorescence spectra, direct measurements, unaltered samples, phenolic compounds, 38 

chemometrics, machine learning 39 
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1. INTRODUCTION 43 

Red wine production involves alcoholic fermentation taking place in the presence of both 44 

solid and liquid phases of the grape must, resulting in the suspension of grape solids, yeast 45 

and various colloidal particles. Phenolic extraction relies on adequate skin-juice contact and 46 

various winemaking techniques implemented pre-, post- or during fermentation have been 47 

studied for their influence on the resulting red wine phenolic profile (Casassa & Harbertson, 48 

2014; Sacchi et al., 2005; Smith et al., 2015). These vinification techniques may include the 49 

addition of pectolytic enzymes, cap management in the form of pump-overs or punch-downs 50 

as well as extended maceration, among others (Sacchi et al., 2005). Anthocyanins, flavonols 51 

and their subsequently polymerised forms are considered to have the greatest sensory impact 52 

on red wine, specifically with regards to important attributes such as mouthfeel, colour and 53 

ageing potential (Sacchi et al., 2005). 54 

Anthocyanin extraction reaches a maximum early on in the fermentation followed by a 55 

decline thereafter because of co-pigmentation and polymerisation reactions, while 56 

condensed tannins experience continued skin-juice extraction with seed tannins increasing 57 

linearly compared to the earlier plateau reached by skin tannins (Cadot et al., 2006; Canals et 58 

al., 2005; Sacchi et al., 2005). Understanding the extraction dynamics of phenolic compounds 59 

may aid in implementing timely winemaking practices for the desired effect and therefore 60 

requires the routine analysis of these important compounds throughout fermentation. The 61 

benefits of fluorescence spectroscopy, including its non-invasive technique, increased 62 

sensitivity, rapid and user-friendly action as well as its relative cost-effectiveness when 63 

compared to other time consuming conventional spectrophotometric methods that require 64 

a sample preparation step, measurement of a specific wavelength and quantification with a 65 
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standard compound (Aleixandre-Tudo et al., 2017). This has allowed fluorescence 66 

spectroscopy to become an increasingly popular alternative in various food science disciplines 67 

(Airado-Rodríguez et al., 2011; Karoui & Blecker, 2011; Strasburg & Ludescher, 1995). Front-68 

face fluorescence spectroscopy is explored in this study as an alternative to the current 69 

spectrophotometric analysis methods used for phenolic analysis. 70 

Understanding fluorescence spectroscopy instrumentation and the factors affecting optimal 71 

analysis are essential for collecting accurate and representative spectral information. The 72 

electronic transitions taking place during fluorescence data acquisition, namely the 73 

absorption of UV-Visible light, the subsequent redistribution of energy by excited electrons 74 

within fluorescent compounds and their detected emitted light, are influenced by several 75 

factors such as quenching, the local environment and light scatter phenomena (Karoui & 76 

Blecker, 2011; Strasburg & Ludescher, 1995). Higher temperatures during analysis may 77 

increase collisional velocity and therefore collisional quenching, resulting in a decreased 78 

fluorescence intensity. The local environment including pH changes and sample colour 79 

influence the highly sensitive fluorophores, thereby influencing the shape and intensity of the 80 

captured fluorescence spectra, and light scatter phenomena such as Rayleigh scattering can 81 

be considerably affected in turbid or opaque samples with regards to the optical sampling 82 

depth as well as the captured fluorescence signal. The results from analysing diluted samples 83 

are not always comparable with those of the original sample, specifically with the matrix of 84 

food products significantly affecting intrinsic fluorescent compounds (Airado-Rodríguez et al., 85 

2011). The sample geometry of front-face fluorescence eliminates the need for sample 86 

dilution as with conventional right-angle fluorescence and allows for the analysis of native 87 

samples (turbid, concentrated or solid) owing to the signal captured being independent of the 88 

light penetration through the sample (Airado-Rodríguez et al., 2011; Karoui & Blecker, 2011). 89 
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The minimal to no sample preparation required for this technique therefore holds potential 90 

for analysing red wine throughout fermentation directly from the fermentation vessel, an 91 

application which may be of benefit to the producer in on-line systems or portable devices. 92 

The aim of this study was to investigate the prediction accuracy of five phenolic content 93 

regression models built using front-face fluorescence spectroscopy, while exploring the 94 

effects of fermentation conditions. The influence of carbon dioxide and turbidity caused by 95 

the presence of grape solids, and therefore the required sample preparation, was assessed in 96 

order to successfully analyse red wine samples throughout fermentation directly from the 97 

fermentation vessel. To the authors best knowledge, this is the first attempt to obtain 98 

fluorescence spectra from undiluted (no sample preparation) and unaltered (with solids in 99 

suspension and carbon dioxide) samples. Spectroscopy calibrations were then attempted to 100 

simulate direct measurements of phenolic content during the red wine fermentation process. 101 

2. MATERIALS AND METHODS 102 

2.1. Reagents. Ammonium sulphate, hydrochloric acid (HCl 1 M), methyl cellulose, sulphur 103 

dioxide (SO2), ethanol (96%) and sodium metabisulfite (2.5 %) were purchased from Sigma-104 

Aldrich Chemie (Steinheim, Germany). 105 

2.2. Experimental design. This study was performed using Cabernet Sauvignon grapes from 106 

the same vineyard harvested in the 2020 vintage and frozen in a -20 °C room until processing 107 

in the experimental cellar at the Department of Viticulture and Oenology (Stellenbosch 108 

University). Twenty kg of grapes were crushed and destemmed into a 20 L plastic bucket and 109 

received 50 mg/L sulphur dioxide (SO2). The must was inoculated with 20 g/hL Zymaflore RX60 110 

(Saccharomyces cerevisiae, Laffort, Bordeaux, France) and the fermentation took place in a 111 

25 °C temperature-controlled room. Two punch-downs were performed per day. Sample 112 
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collection and analysis took place from the first day of fermentation until the wines had 113 

fermented dry (residual sugar < 4 g/L) 12 days later. Although sampled on consecutive 114 

fermentation days and UV-Vis spectrophotometric methods conducted daily, fluorescence 115 

analysis was performed only on 9 of those days due to logistical reasons. 116 

Following the morning punch-down and homogenous mixing, three 15 ml test tube samples 117 

were collected per treatment. Three sample preparation treatments were investigated, 118 

namely clean samples (Treatment A), degassed samples (Treatment B) and unaltered samples 119 

(Treatment C). For each ferment, the first tube (Treatment A) was degassed by vacuum 120 

followed by centrifuging at 5000 rpm for 2 min in an Eppendorf 5415D centrifuge (Hamburg, 121 

Germany) and subsequently removing the supernatant to inhibit interference of fermentation 122 

sediment such as yeast and grape solids. The second tube (Treatment B) was degassed by 123 

vacuum to remove the carbon dioxide (CO2) within the sample while remaining turbid, and 124 

the third tube (Treatment C) received no sample preparation, representing sample analysis 125 

directly from the fermentation vessel. Sampling was done in triplicate for each treatment. A 126 

total of 81 samples were collected during the experiment.  127 

2.3. Spectrophotometric analysis. All reference data analysis was performed with UV-Vis 128 

spectroscopy using a Multiskan GO Microplate Spectrophotometer (Thermo Fisher Scientific, 129 

Inc., Waltham, MA, USA). The methodology reported by Iland, P., Ewart, A., Sitters, J., 130 

Markides, A., & Bruer (2000) was used to quantify total phenolics (IU) and total anthocyanins 131 

(mg/L). One hundred μl of sample supernatant was diluted 50 times with 1 M hydrochloric 132 

acid, vortexed and stored in the dark for 1 hour before recording the absorbance at 280 nm 133 

and 520 nm, respectively. Total phenolic content was calculated as the absorbance at 280 nm 134 

multiplied by the dilution factor while total anthocyanins was calculated in malvidin-3-135 

glucoside equivalents using the absorbance at 520 nm. 136 
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The methyl cellulose precipitable tannin assay (MCP) protocol modified by Mercurio et al. 137 

(2007) was used to calculate the total condensed tannins. The tannin content is calculated 138 

using the difference between control and treated samples and converted into epicatechin 139 

equivalents (mg/L) using a calibration curve and a dilution factor of 40. The 2 ml microfuge 140 

treatment tubes consist of adding 600 μl of MCP solution (0.04% w/v) to 50 μl of wine. After 141 

being vortexed and standing for 2-3 min, 400 μl of ammonium sulphate and 950 μl of distilled 142 

water are added. The control tubes contain no MCP solution and therefore a total of 1.55 ml 143 

distilled water is added. Both control and treatment stand for 10 min before being centrifuged 144 

at 10 000 rpm for 5 min and recording the absorbance at 280 nm. 145 

Colour density was calculated as the sum of absorbance at 420 nm, 520 nm and 620 nm 146 

wavelengths for a 50 μl sample volume (Glories, 1984). Polymeric pigments were calculated 147 

using the modified Somers assay whereby 200 μl of sample supernatant is diluted with 1.8 ml 148 

buffer solution (12% v/v ethanol, 0.5 g/L w/v tartaric acid at pH 3.4) containing 2.5 % sodium 149 

metabisulfite (Mercurio et al., 2007). The samples were stored for an hour before calculating 150 

the polymeric pigment content in absorption units (AU) using a dilution factor of 10 and the 151 

absorbance at 520 nm. 152 

2.4. Fluorescence analysis. Front-face fluorescence analysis was conducted at room 153 

temperature in a 700 μl quartz cuvette (2 mm width) (Hellma Analytics, Germany) using a 154 

Perkin Elmer LS50B spectrophotometer. Excitation wavelengths between 245 nm and 400 nm 155 

at 5 nm intervals were used to capture emission spectra between 245 nm and 500 nm at 0.5 156 

nm intervals. A 2 cm in diameter aperture was fitted in the emission path for reducing excess 157 

light scattering. A scanning speed of 500 nm/min was used and the excitation and emission 158 
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slit widths were set at 3 nm and 5 nm, respectively. The instrument control and data 159 

manipulation software, UV Winlab, was used for data acquisition. 160 

2.5. CHEMOMETRICS 161 

2.5.1. Data pre-processing. Unwanted spectral signatures were removed using the method 162 

described by Airado-Rodríguez et al. (2011) whereby first and second order Rayleigh 163 

scattering are excluded as the excitation peaks centred on the identity bands λex = λem and 164 

2λex = λem, respectively. The triangular region below the identity line λex > λem possesses 165 

no chemical information and values were therefore inserted as zero. Data and image 166 

processing were performed with JupyterLab (Project Jupyter, USA) using the Python 3 167 

language library scikit-learn (Pedregosa et al., 2011) and Matlab ver 9.5 (The Mathworks Inc., 168 

MA, USA). 169 

2.5.2. Model validation. Principal component analysis (PCA) was performed on the dataset 170 

to evaluate for differences between sample preparation treatments as well as to determine 171 

differences based on the stage of fermentation (early versus late).  172 

Two different strategies were followed to assess the influence of sample conditions, namely 173 

clean, degassed and unaltered, on the ability of fluorescence spectral properties to accurately 174 

predict phenolic content during the fermentation process. First (strategy 1), the regression 175 

models reported in dos Santos et al. (2022) and built with clean samples (degassed by vacuum 176 

followed by centrifugation) and a more extensive sample set were validated using the 81 177 

samples obtained from the abovementioned Cabernet Sauvignon fermentations. In other 178 

words, the models were used to predict the samples obtained from the fermentations 179 

performed in this study. Models were built for five phenolic parameters, namely total 180 

phenolics (IU), total condensed tannins (mg/L), total anthocyanins (mg/L), colour density (AU) 181 

and polymeric pigments (AU) and showed R2 and validation errors (RMSEP) of 0.77 and 7.16 182 
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IU, 0.80 and 172.37 mg/L, 0.77 and 76.57 mg/L, 0.64 and 3.10 AU, 0.66 and 0.49 AU, 183 

respectively for the abovementioned phenolic measurements  (dos Santos et al., 2022). 184 

Overall, models built using a well-balanced dataset and large number of both fermenting 185 

musts and finished wines may be generally better suited for all applications compared to 186 

those built for specific tasks, which may become over-fitted and predict poorly on new data. 187 

Additionally, models built using a more variable dataset may be able to handle the complexity 188 

from complex environments such as with degassed or unaltered samples. In addition, the data 189 

was passed into each phenolic model to determine the prediction accuracy for different 190 

dataset configurations. These sub datasets investigated day of fermentation (all treatment 191 

samples for the entire fermentation, day 1-3 treatment samples and day 5-12 treatment 192 

samples) and subsequently the three treatments (clean (A), degassed (B) and unaltered (C)). 193 

The metrics used to determine prediction accuracy included root mean square error (RMSE) 194 

and mean absolute error (MAE). MAE weights all errors equally while RMSE gives errors with 195 

larger absolute values more weight than errors with smaller absolute values. Both metrics are 196 

regularly used in model evaluation and there is often little consensus when deciding on the 197 

most suitable metric, therefore the combination of both allows for improved understanding 198 

of different data projections and characteristics of model performance (Chai & Draxler, 2014). 199 

Secondly (strategy 2), calibration models built directly with fluorescence spectra collected 200 

from samples in different formats (clean, degassed and unaltered) were attempted. For this, 201 

the fermentation data was separately passed through the machine learning pipeline and 202 

modelled using the previously optimised parameters identified per phenolic model as 203 

reported in dos Santos et al. (2022). Briefly, the fermentation data was split into train and test 204 

sub datasets, of which 10 samples were retained as the test validation set. Thereafter, the 205 

training data was passed through the five consecutive steps of the pipeline including a column 206 
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selector for optimised spectral region selection, a savgol transform used to apply a Savitzky-207 

Golay filter for data smoothing (Savitzky & Golay, 1964), a pre-processing selector for optimal 208 

data scaling, six-component PCA for data decomposition, and lastly, the XGBoost regressor to 209 

build a tree-based gradient boosted model (Chen & Guestrin, 2016). The total phenolics 210 

model consisted of region selection between 260-360 nm excitation and 370-400 nm 211 

emission, the total condensed tannins model made use of region selection between 285-340 212 

nm excitation and 290-350 nm emission and the total anthocyanins model involved region 213 

selection between 280-300 nm excitation and 330-380 nm emission, all of which were 214 

previously identified as optimal spectral regions by dos Santos et al. (2022). Bayesian 215 

optimisation was the framework used for the automatic tuning of the other pipeline hyper-216 

parameters such as data scaling and smoothing (Pelikan et al., 2006; Swersky & Adams, 2013). 217 

Once passed through the pipeline, 2-fold cross-validation was performed, with the reported 218 

RMSE used as the key metric for Bayesian optimisation and the sequential improvement on 219 

previously chosen hyper-parameters. The best final model was evaluated using the previously 220 

retained 10 sample test set as a form of external validation. The metrics used to determine 221 

prediction accuracy included coefficient of determination (R2cal and R2val), root mean square 222 

error (RMSE) and mean absolute error (MAE). Data processing was performed with 223 

JupyterLab (Project Jupyter, USA) using the Python 3 language library scikit-learn (Pedregosa 224 

et al., 2011). 225 

3. RESULTS AND DISCUSSION 226 

3.1. Principal component analysis (PCA). PCA was conducted on the excitation-emission 227 

matrices (EEMs) of the samples collected throughout fermentation. Figure 1 shows the 228 

evolution of fluorescence within the fermenting must as the fermentation proceeds, with 229 

early fermenting samples (days 1-3) being clustered separately to those of later fermenting 230 
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samples (days 5-12). Components 1 and 2 accounted for 85.82 % and 7.76 % of the explained 231 

variance, respectively. This confirms previous findings involving the difference in fluorescence 232 

between fermenting musts and wine, while further highlighting the unique fluorescent 233 

changes taking place within a fermentation vessel (dos Santos, 2021). Without having 234 

fluorescent information for day 4 of the fermentation, the exact moment in which the 235 

fluorescence evolves from characteristically being early versus later in fermentation is 236 

unknown. The clear separation between classes, however, may indicate a threshold, 237 

potentially the result of maximum plateaued anthocyanin extraction and the subsequent 238 

reabsorption of light from a darker sample matrix reached early on in fermentation (Casassa 239 

& Harbertson, 2014). Figure 2 shows PCA based on sample preparation treatment. No clear 240 

distinction between the treatments is found and may indicate that the stage of fermentation 241 

has a greater effect on the fluorescent information obtained than sample preparation. 242 

It is important to mention that the freezing of the grape berries could have led to an enhanced 243 

presence of solid particles due to the disruption of the berry cells. This could have simulated 244 

riper berries with structurally weaker cells (Garrido-Bañuelos et al., 2022) or most of all 245 

created suitable conditions to investigate the influence of augmented presence of solid 246 

particles on the fluorescence spectral properties of samples during fermentation and on the 247 

prediction accuracy of the attempted models. Considering the above, Figure 2 can be seen as 248 

a visual representation of the features of front-face fluorescence spectroscopy, whereby the 249 

changed sample geometry allows for the analysis of samples in their natural state in order to 250 

retain the influence of the surrounding matrix on highly sensitive fluorophores (Airado-251 

Rodríguez et al., 2011; Karoui & Blecker, 2011). The scattered appearance of the samples 252 

analysed in triplicate may indicate the heightened sensitivity of fluorescence spectroscopy 253 

(Strasburg & Ludescher, 1995). Although all samples were analysed at room temperature and 254 
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pipetted into the cuvette as homogenous solutions, other influencing factors must be 255 

considered such as the varying rates at which the turbidity settles out in the cuvette over a 256 

25 minute analysis time, the occurrence of which may mimic the turbidity changes occurring 257 

naturally during fermentation, as well as the time taken for the analysis of all samples thereby 258 

influencing potential instrumental drift or changes in lamp intensity and heating (Airado-259 

Rodŕiguez et al., 2009; Andersen & Bro, 2003). 260 

3.2. Fermentation excitation-emission matrices. The three-dimensional EEMs of 261 

treatments A, B and C on the first and last day of fermentation are shown in Figure 3. The 262 

fluorescent intensity of the clean sample on day 1 is greater than those of the degassed and 263 

unaltered samples which may be attributed to the reduction in fluorescence because of 264 

turbidity, however, the effect on scattered light is increased for the turbid samples as can be 265 

seen in the elevated spectra alongside the removed identity bands λex = λem and 2λex = λem 266 

of first and second order Rayleigh scattering, respectively. As fermentation is completed, all 267 

treatments experience a reduced fluorescence intensity with treatment A decreasing by 268 

roughly 300 units and treatments B and C by roughly 200 units. 269 

This may be a result of the greater fluorescent abilities of monomeric pigments compared to 270 

their polymerised counterparts as suggested in previous studies (dos Santos et al., 2022) as 271 

well as colour changes occurring by means of anthocyanin extraction. Darker samples are 272 

known to reduce fluorescence intensity due to their increased reabsorption of light (Karoui & 273 

Blecker, 2011). 274 

Treatments B and C show no major differences between each other and the effect of carbon 275 

dioxide (CO2) during fermentation may not substantially influence fluorescence spectra. The 276 

EEMs of treatments B and C in Figure 3 indicate a shouldered peak compared to treatment A, 277 
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roughly determined as the region 275-295 nm excitation and 320-360 nm emission (Region 278 

1). Treatment A indicates a slightly more prominent fluorescence determined between 255-279 

265 nm excitation and 360-400 nm emission (Region 2). As fermentation proceeds, these 280 

regions become more pronounced specifically with region 2 fluorescing more intensely 281 

between 320 and 340 nm emission. 282 

The fluorescence in region 1 correlates well with the regions identified as flavan-3-ols, namely 283 

catechin, epicatechin and epigallocatechin, as well as polymeric proanthocyanidins (Airado-284 

Rodríguez et al., 2011; Ranaweera et al., 2021) and may represent the extraction of 285 

condensed tannins during fermentation and their subsequent polymerisation. Region 2 falls 286 

within the optimal region previously selected by a machine learning pipeline for a total 287 

phenolics model (dos Santos et al., 2022) and will be elaborated on below. Additionally, 288 

treatments B and C have slightly greater fluorescent intensities at the end of fermentation 289 

which may be a result of light scattering. 290 

3.3. Strategy 1: Model validation. The best models per phenolic parameter obtained in dos 291 

Santos et al. (2022) were validated using the 81 samples collected throughout fermentation. 292 

This model validation involved obtaining the prediction accuracy, by means of root mean 293 

square error (RMSE) and mean absolute error (MAE), for various sub datasets. Each phenolic 294 

model has its own unique set of parameters, with the column selector having identified 295 

optimal spectral regions for total phenolics (excitation 260-360 nm and emission 370-400 296 

nm), total condensed tannins (excitation 285-340 nm and emission 290-350 nm) and total 297 

anthocyanins (excitation 280-300 nm and emission 330-380 nm). The colour density and 298 

polymeric pigments models cover the entire EEM obtained during fluorescence analysis. 299 

During model development, ten-fold cross validation was incorporated to prevent over-fitting 300 

1 1 

1 1 

2 2 

2 2 
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and better understand model stability and performance while internally validating the model. 301 

The use of this external validation set of fermenting samples aids in investigating the 302 

suitability of the chosen parameters per phenolic model, explores model performance when 303 

predicting on unseen data and investigates the influence of sample preparation on prediction 304 

accuracy. Due to the differences in fluorescence according to the day of fermentation, three 305 

sub datasets were explored including the entire fermentation from day 1 to 12, early 306 

fermentation from day 1 to 3 and later fermentation from day 5 to 12. Although PCA did not 307 

clearly distinguish between sample preparation treatments, these were included as sub 308 

datasets to determine model performance under fermentation conditions, including 309 

potential effects from CO2 and turbidity. The spectrophotometric reference data per phenolic 310 

parameter is reported in Table 1 below. 311 

Figure 4a shows the performance of the total phenols model possessing a calibration RMSE 312 

and MAE of 5.71 index values. The model performed better during early fermentation and 313 

generally had the greatest prediction accuracy with degassed and unaltered samples 314 

(treatments B and C) with the lowest overall RMSE and MAE for treatment C. On average, the 315 

model was able to predict the validation samples within 9.55 and 8.68 index units for RMSE 316 

and MAE, respectively. The optimal total phenolic region identified during model 317 

development slightly overlaps region 255-265 nm excitation and 360-400 nm emission 318 

(Region 2) as identified in Figure 3 and could potentially be influencing the model’s prediction 319 

abilities. Unaltered samples seemed to have more intense fluorescence in this region and 320 

perhaps building the model on clean samples allowed for over-fitting on regional spectral 321 

properties and was therefore able to better predict on samples with greater turbidity. Only 322 

slightly higher errors were observed for the degassed (B) and unaltered (C) treatments when 323 

all the samples were pooled together, indicating minimal model depreciation to predict 324 
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samples with CO2 or solids in suspension. Similar attempts to quantify total phenol content 325 

with spectroscopy applications have been reported in the literature (Lambrecht et al., 2022a, 326 

2022b). These studies investigated calibrations using infrared instruments suitable for direct 327 

online measurements and using samples with different pre-treatments such as degassing, 328 

rough filtration or even no sample pre-treatment. Error values in the range of the calibration 329 

model but lower than our validation errors were reported. However, these results need to be 330 

contextualized since in this study models built with clean samples are used to predict samples 331 

that have received degassing, or no pre-treatment (unaltered) and a certain model 332 

depreciation should be expected. 333 

The total condensed tannins model performance is seen in Figure 4b with no clear effect 334 

based on the day of fermentation but rather predicting better on clean samples (treatment 335 

A). On average, the model was able to predict the validation samples within 196.41 and 336 

172.43 mg/L when compared with the calibration model’s RMSE and MAE of 104.03 mg/L. 337 

When looking at region 2 (255-265 nm excitation and 360-400 nm emission) identified in 338 

Figure 3, the inverse effect of region 1 and total phenols may be occurring, with potential 339 

spectral interferences caused by the turbidity of samples reducing the prediction accuracy. 340 

Gilmore et al. (2022) reported calibrations for polymeric tannins quantified with HPLC with 341 

fluorescence data from diluted grape phenolic extracts. Another study showed fluorescence 342 

calibration for MCP total tannin using gradient boost regression in finished Cabernet 343 

Sauvignon samples (Schober et al., 2022). Accurate prediction errors were reported in both 344 

studies confirming the suitability of fluorescence spectroscopy to quantify tannin content.  345 

The total anthocyanins model was able to predict the fermenting samples on average within 346 

123.13 and 114.21 mg/L when looking at RMSE and MAE, respectively. The model seemed to 347 
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perform best during early fermentation (days 1 to 3) and on clean samples as seen in Figure 348 

4c. The optimal spectral region identified during model development slightly overlaps region 349 

2 identified in Figure 3 and may be influenced by the shouldered peak of the turbid samples 350 

as described for total condensed tannins. In a study reported by Lambrecht et al. (2022a) 351 

partial least square regression (PLS) models for anthocyanin content were attempted for 352 

unaltered wine fermenting samples using mid infrared spectra. In agreement with our study, 353 

certain permissible model depreciation was also observed due to the presence of particles in 354 

suspension. Other studies using fluorescence properties in diluted wine and grape phenolic 355 

extracts also reported accurate models to quantify the content of anthocyanins (Schober et 356 

al., 2022; Gilmore et al., 2022) 357 

The colour density model performed most poorly of all the models, showing no clear 358 

preference for day of fermentation or sample preparation and on average predicting within 359 

7.419 and 6.810 AU compared to the calibration model’s RMSE of 2.46 AU (Figure 4d). This 360 

may be a result of an optimistically cross-validated model as well as the metric of colour 361 

density itself. Colour density is an estimation of responsible yellow, red and blue colouring 362 

pigments at three UV-Visible spectral regions (Glories, 1984) and therefore the reflexion of 363 

these into the fluorescence EEM may not have been adequately achieved during model 364 

development (dos Santos et al., 2022). Contrarily to what was observed here, accurate models 365 

to quantify colour density making use of mid infrared spectra have been reported (Lambrecht 366 

et la., 2022a) 367 

The polymeric pigments model performed the best, on average predicting within 0.371 and 368 

0.307 AU when compared to the calibration model’s RMSE of 0.63 AU. The best model 369 

performance can be seen in Figure 4e during later fermentation (days 5 to 12) and for 370 
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degassed and unaltered samples (treatments B and C). This improved prediction accuracy of 371 

the external validation set may be a result of cultivar specific benefits or the polymeric 372 

pigments range developing throughout fermentation falling within a region of the calibration 373 

model better able to predict. Although possessing seemingly poorer accuracy metrics 374 

reported in dos Santos et al. (2022), the model as seen in Figure 5 shows a relatively accurate 375 

prediction ability when analysing samples below 2 AU and incorporating more samples within 376 

the minority group above this threshold may improve upon the model’s predictive ability. This 377 

illustrates the importance of balanced datasets in modelling. 378 

Prediction models are known to perform better on data used to construct them than new and 379 

unseen data, resulting in some expected model depreciation during validation. However, 380 

internal validation techniques such as cross-validation or bootstrapping are often 381 

optimistically accepted without validating on external data (Bleeker et al., 2003). Within the 382 

five best phenolic models previously developed and herein validated, an important 383 

consideration includes the variability and balance of the dataset used for model calibration. 384 

Certain regions within the models may predict better than others as can be seen with 385 

polymeric pigments and although a synthetic dataset was created during model development 386 

in dos Santos et al. (2022) to offset any data imbalances using a synthetic minority over-387 

sampling technique for regression (SMOTER), gaps may still remain and have implications for 388 

prediction accuracy. The results of this external validation also follow a single fermentation 389 

of a single cultivar and should therefore be further investigated to determine the prediction 390 

accuracy on other cultivars and fermentations. 391 

3.4. Strategy 2: Influence of sample preparation to quantify phenolic content. The 392 

fermenting samples were passed through the machine learning pipeline in order to validate 393 
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the stability and suitability of the model parameters chosen during model development while 394 

most importantly determining the influence of sample preparation and the implications for 395 

real-time analysis during fermentation. All models were passed through the same pipeline 396 

steps as in dos Santos et al. (2022), excluding the SMOTER algorithm due to sampling taking 397 

place in triplicate and thereby creating an already well-balanced dataset, therefore 398 

eliminating the need for synthetic samples. The total anthocyanins and polymeric pigments 399 

models required the removal of outliers, specifically samples A1 and B3 and samples B4-B6, 400 

respectively. As no other phenolic model possessed outliers from the second day of analysis, 401 

it is difficult to identify the cause of such significant difference. 402 

Table 2 below shows the predication accuracy metrics obtained per phenolic parameter 403 

model throughout fermentation for each sample preparation treatment. The fact that 404 

samples from a single cultivar were collected on consecutive fermentation days might explain 405 

the accuracy of the models obtained dos Santos et al. (2022). Moreover, an important 406 

consideration is that the effect of sample preparation may not noticeably influence front-face 407 

fluorescence spectroscopy, confirming the findings of Figure 3 above. No clear differences can 408 

be identified between treatments, except for colour density and polymeric pigments models. 409 

For colour density treatment A may have produced slightly better results. However, the 410 

prediction accuracy metrics allows for a more holistic evaluation of model performance as in 411 

the case of treatments B and C of colour density. Although the data is poorly fitted as reported 412 

by R2, the RMSE and MAE values are not noticeably different to treatment A. variable results 413 

were observed for the polymeric pigments model with the best performance observed for 414 

the model built with unaltered samples. 415 
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Overall, the obtained models resulted in high correlations and validate the chosen pipeline 416 

parameters as well as highlight the potential for building models using unaltered samples, the 417 

benefit of which involves the application in analysing samples directly from fermentation 418 

vessels. Attempting cultivar specific models and the use of a samples set collected during the 419 

duration of the fermentation where noticeable changes in the fluorescence spectral 420 

properties are observed might have provided a valid strategy to ensure model accuracy. In 421 

addition, triplicate sampling aided in obtaining a well-balanced dataset and should also be a 422 

consideration in further modelling. The colour density model, although producing promising 423 

results in Table 2, should be approached with caution as model development and external 424 

validation performed the most poorly of all the phenolic parameters models and should 425 

therefore be further explored with regards to optimal model parameter selection and 426 

development. As previously discussed, the characteristics of colour density as a metric may 427 

potentially limit the success of modelling in this study due to the fluorescent EEM not 428 

encompassing the responsible regions or fluorescence spectral characteristics having not 429 

been adequately identified. In addition, discrepancies between calibration and validation 430 

statistics were observed for the polymeric pigment model with degassed samples (treatment 431 

B). This can be understood as poor model robustness (Ranaweera et al., 2021) and it is 432 

speculated that the model might be suffering from overfitting, being therefore unable to 433 

accurately predict new samples.  434 

When comparing the above models with literature, it was found that the total condensed 435 

tannins model performed the best and presents itself as a promising alternative to other 436 

spectrophotometric analysis methods such as UV-Vis and infrared spectroscopies. For 437 

example, UV-Vis models developed by Aleixandre-Tudo et al. (2018a) obtained RMSE scores 438 

of 239 and 209 mg/L for calibration and prediction, respectively, and can be compared to the 439 
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fluorescence model developed previously with a RMSE of 104.03 mg/L and externally 440 

validated above to predict on average within 196.409 mg/L. Infrared calibration models built 441 

using Fourier transform near infrared (FT-NIR), attenuated total reflectance mid infrared 442 

(ATR-MIR) and Fourier transform infrared (FT-IR) spectroscopies showed the same trend 443 

(Aleixandre-Tudo et al., 2018b). Moreover, studies using infrared instrumentation suitable for 444 

direct measurements on filtered and unaltered samples showed similar prediction errors than 445 

those reported here. Specifically, prediction errors between 85.23 and 100.37 mg/L were 446 

reported (Lambrecht et al., 2022b). Regarding fluorescence spectroscopy applications, similar 447 

model statistics were reported in the literature for Cabernet Sauvignon wines and grape 448 

phenolic extracts from multiple varieties (Schober et al., 2022; Gilmore et al., 2022). However, 449 

these studies differ from the direct measurement approach reported here in the sample 450 

dilution step required before spectra data acquisition. The total condensed tannins model 451 

built using unaltered samples possessing R2cal 0.86, R2val 0.94, and RMSEC 48.42 mg/L (Table 452 

2) is also able to compete while showcasing the potential for building models using 453 

fermenting samples analysed directly from the tank, eliminating the need for sample 454 

preparation. Producing similar competitive results, the total phenols and total anthocyanins 455 

models built in this study show promise and may too present themselves as successful 456 

alternatives in agreement with previous literature (Aleixandre-Tudo et al., 2018a; Aleixandre-457 

Tudo et al., 2018b, Lambrecht et al., 2022a, 2022b). When looking at fluorescence 458 

spectroscopy in literature, models have previously been built on pure compounds such as 459 

catechin and epicatechin (Airado-Rodŕiguez et al., 2009; Cabrera-Bañegil et al., 2017) and also 460 

for individual and total content of the main phenolic compounds (Ranaweera et al., 2021; 461 

Schober et al., 2022; Gilmore et al., 2022). However, these investigations did not follow a 462 

direct measurement approach as the one reported in the present study. Raman spectroscopy 463 
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calibrations for Cabernet Sauvignon wine phenolics have been successfully investigated and 464 

although based on competing phenomena, the fermentation models described in Table 2 can 465 

be considered comparatively successful in their prediction accuracies (Gallego et al., 2011). 466 

4. CONCLUSION 467 

Monitoring phenolic content during winemaking may aid in the decision making and 468 

implementation of vinification practices thereby improving process control and fermentation 469 

management. This study validated the potential for phenolic models built using fluorescence 470 

spectroscopy and chemometrics as well as the suitability of front-face geometry to quantify 471 

phenolics of fermenting musts under fermentation conditions. Following a Cabernet 472 

Sauvignon fermentation allowed for improved understanding of the evolution of fluorescence 473 

spectra from juice to wine. The models were adequately validated and show the potential for 474 

analysing directly from the fermentation vessel which may allow for phenolic analysis using 475 

portable optical devices or on-line automated systems. The potential for building 476 

fermentation-based models appears promising and may be beneficial to winemakers in 477 

creating cellar specific software able to be expanded on each vintage and used as a tool for 478 

optimal red wine production. 479 
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