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Industrial wastes have found great use in the built environment due to the role
they play in the sustainable infrastructure development especially in green
concrete production. In this research investigation, the impact of wastes from
the industry on the compressive strength of concrete incorporating fly ash (FA)
and silica fume (SF) as additional components alongside traditional concrete
mixes has been studied through the application ofmachine learning (ML). A green
concrete database comprising 330 concrete mix data points has been collected
and modelled to estimate the unconfined compressive strength behaviour.
Considering the concerning environmental ramifications associated with
concrete production and its utilization in construction activities, there is a
pressing need to perform predictive model exercise. Furthermore, given the
prevalent reliance of concrete production professionals on laboratory
experiments, it is imperative to propose smart equations aimed at diminishing
this dependency. These equations should be applicable for use in the design,
construction, and performance assessment of concrete infrastructure, thereby
reflecting the multi-objective nature of this research endeavour. It has been
proposed by previous research works that the addition of FA and SF in concrete
has a reduction impact on the environmental influence indicators due to reduced
cement use. The artificial neural network (ANN) and theM5Pmodels were applied
in this exercise to predict the compressive strength of FA- and SF-mixed concrete
also considering the impact of water reducing agent in the concrete. A sensitivity
analysis was also conducted to determine the impact of the concrete
components on the strength of the concrete. At the end, closed-form
equations were proposed by the ANN and M5P with performance indices
which outperformed previous models conducted on the same database size.
The result of the sensitivity analysis showed that FA is most impactful of all the

OPEN ACCESS

EDITED BY

Rahul V. Ralegaonkar,
Visvesvaraya National Institute of Technology,
India

REVIEWED BY

Panagiotis G. Asteris,
School of Pedagogical and Technological
Education, Greece
Shengwen Tang,
Wuhan University, China

*CORRESPONDENCE

Kennedy C. Onyelowe,
kennedychibuzor@kiu.ac.ug

Carlos Roberto López Paredes,
konyelowe@mouau.edu.ng

RECEIVED 23 June 2024
ACCEPTED 12 September 2024
PUBLISHED 03 October 2024

CITATION

López Paredes CR, García C, Onyelowe KC,
Zuniga Rodriguez MG, Gnananandarao T,
Andrade Valle AI, Velasco N and
Herrera Morales GC (2024) Evaluating the
impact of industrial wastes on the compressive
strength of concrete using closed-form
machine learning algorithms.
Front. Built Environ. 10:1453451.
doi: 10.3389/fbuil.2024.1453451

COPYRIGHT

© 2024 López Paredes, García, Onyelowe,
Zuniga Rodriguez, Gnananandarao, Andrade
Valle, Velasco and Herrera Morales. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2024
DOI 10.3389/fbuil.2024.1453451

https://www.frontiersin.org/articles/10.3389/fbuil.2024.1453451/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1453451/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1453451/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1453451/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1453451/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2024.1453451&domain=pdf&date_stamp=2024-10-03
mailto:kennedychibuzor@kiu.ac.ug
mailto:kennedychibuzor@kiu.ac.ug
mailto:konyelowe@mouau.edu.ng
mailto:konyelowe@mouau.edu.ng
https://doi.org/10.3389/fbuil.2024.1453451
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2024.1453451


studied components thereby emphasizing the importance of adding industrial
wastes in concrete production for improved mechanical properties and reduced
carbon footprint in the concrete construction activities. Also, the M5P and ANN
models with R2 of 0.99 showed a potential for use as decisivemodels to predict the
compressive strength of FA- and SF-mixed concrete.
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1 Introduction

The compressive strength of concrete is one of its most
important properties, indicating its ability to withstand axial
loads or pressure (Soleymani and Esfahani, 2019). It is typically
measured by subjecting cylindrical or cubic specimens of concrete to
a compressive force until failure occurs (Jahangir and Eidgahee,
2021). Compressive strength is the maximum compressive stress
that concrete can withstand before failure occurs (Soleymani and
Esfahani, 2019). It is usually expressed in megapascals (MPa) or
pounds per square inch (psi). Compressive strength is crucial for
assessing the structural performance and durability of concrete in
various applications, including buildings, bridges, dams, pavements,
and other infrastructure projects (Salesa et al., 2017). It is a
fundamental parameter used in structural design and quality
control of concrete construction (Samad and Shah, 2017).
Generally, lower water-cement ratios lead to higher compressive
strength because they result in better cement hydration and a denser
concrete matrix (Ma et al., 2016). Different types of cement, such as
Portland cement, blended cements, or specialty cements, can have
varying effects on compressive strength due to differences in
chemical composition and fineness (Liew et al., 2017). Aggregate
characteristics, including size, shape, gradation, and strength,
influence concrete strength (Ting et al., 2021). High-quality
aggregates with strong interlocking particles typically contribute
to higher compressive strength (Güneyisi et al., 2012). Certain
chemical admixtures, such as water reducers, superplasticizers,
air-entraining agents, and pozzolanic materials, can affect
compressive strength by modifying the properties of fresh and
hardened concrete (Guo et al., 2020). Proper curing of concrete
is essential for achieving optimal strength development. Factors such
as temperature, humidity, duration, and curing methods can
significantly impact compressive strength (Sahoo et al., 2021).
The proportioning of cement, aggregates, water, and admixtures
in the concrete mix, as well as the use of supplementary cementitious
materials, influence compressive strength (L et al., 2021). A well-
designed mix with proper proportions is essential for achieving
desired strength levels. Compressive strength testing of concrete is
typically performed on standard specimens (cylinders or cubes)
using a compression testing machine (Yang et al., 2019). The
specimens are subjected to a gradually applied compressive load
until failure occurs, and the maximum load at failure is recorded
(Çelik et al., 2022). Compressive strength testing is an essential
component of quality control in concrete production (Liu et al.,
2017). It helps ensure that concrete meets specified strength
requirements for the intended application and provides feedback
for adjusting mix designs and production processes as needed
(Hossain et al., 2016). The compressive strength of concrete is a

fundamental property that depends on various factors related to mix
design, materials, curing conditions, and testing procedures (Dong
et al., 2015). Understanding and controlling these factors are
essential for achieving durable and structurally sound concrete in
construction projects (Alaloul et al., 2021). The impact of industrial
wastes on the compressive strength of concrete can vary depending
on several factors, including the type and characteristics of the waste
material, its dosage in the concrete mix, and the curing conditions
(Kumar KR. et al., 2021). Different industrial wastes have varying
effects on concrete strength. Some industrial by-products, such as fly
ash, silica fume, and slag, are commonly used as supplementary
cementitious materials (SCMs) and can enhance the compressive
strength of concrete when properly utilized (de Matos et al., 2020).
Others, like certain types of waste aggregates or sludges, may have a
detrimental effect on strength if used inappropriately (Siamardi,
2022). The chemical composition of industrial wastes can influence
their interaction with cementitious materials and hydration
products in concrete (Bhuva and Bhogayata, 2022). Some
industrial by-products contain reactive components that can
contribute to the formation of additional cementitious phases,
leading to improved strength and durability of concrete (Sun
et al., 2022). However, certain contaminants or undesirable
constituents in industrial wastes may adversely affect the
hydration process and weaken the concrete matrix (Rezazadeh
Eidgahee et al., 2022). The proportion of industrial waste
incorporated into the concrete mix, as well as the extent to
which it replaces conventional materials like cement or
aggregates, can significantly impact compressive strength (Chen
et al., 2022). Optimal dosage and replacement levels need to be
carefully determined through experimental testing to achieve the
desired balance between strength enhancement and potential
drawbacks (AlShareedah and Nassiri, 2021). The particle size
distribution of industrial waste materials can influence their
pozzolanic or hydraulic activity and their ability to fill voids in
the concrete matrix (Wang A. et al., 2022;Warda et al., 2022; Solouki
et al., 2022; Khan and Ali, 2019). Finer particles typically contribute
more effectively to strength development by providing nucleation
sites for hydration products and improving packing density within
the concrete (Xing et al., 2022). Proper curing of concrete is essential
to ensure adequate hydration and development of strength (ISO
14040:2006, 2016). The presence of industrial wastes may alter the
curing requirements of concrete due to their effects on hydration
kinetics and moisture retention (SO 14044:2006, 2016).
Adjustments to curing procedures may be necessary to optimize
the performance of concrete containing industrial wastes (KumarM.
et al., 2021). In addition to compressive strength, the long-term
durability and performance of concrete incorporating industrial
wastes should also be considered (Che et al., 2020). Some
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industrial by-products may impart beneficial properties such as
increased resistance to chloride ingress, sulfate attack, or alkali-
silica reaction, which can enhance the overall durability of concrete
structures over time (Tayeh et al., 2020). The impact of industrial
wastes on the compressive strength of concrete is multifaceted and
depends on various factors (Sandanayake et al., 2020). Proper
selection, characterization, and incorporation of industrial waste
materials into concrete mixes, along with careful consideration of
mix design parameters and curing practices, are essential to
maximize the benefits while minimizing potential drawbacks
(Bhanja and Sengupta, 2005). The addition of silica fume and fly
ash in concrete can have significant effects on its compressive
strength (Nochaiya et al., 2010). Silica fume, also known as
microsilica, is a by-product of the silicon and ferrosilicon alloy
production process (Mazloom et al., 2004). It consists of very fine
particles, usually with an average diameter of less than 1 micron
(Seto et al., 2017). When added to concrete, silica fume acts as a
pozzolan, reacting with calcium hydroxide (a by-product of cement
hydration) to form additional calcium silicate hydrate (C-S-H) gel
(Chen et al., 2019). This results in a denser and more refined
microstructure of the concrete paste (Khan and Siddique, 2011).
The densification of the concrete matrix due to silica fume
incorporation leads to improved packing of particles and reduced
porosity, resulting in increased compressive strength (Ganesh
Kumar et al., 2022). Additionally, the formation of additional
C-S-H gel contributes to the strength enhancement (Ashraf et al.,
2022). Silica fume also enhances the bond between cement particles
and aggregates, which further contributes to the overall strength of
the concrete (Thomas et al., 1999). However, excessive amounts of
silica fume can lead to a rapid stiffening of the concrete mix, making
it challenging to handle and place (Nežerka et al., 2019). Proper mix
design and dosage control are essential to harness the beneficial
effects of silica fume on compressive strength without
compromising workability (Wang et al., 2021a). Fly ash is a by-
product of coal combustion in power plants and is composed of fine
particles that are similar in size to cement particles (Ghalehnovi
et al., 2022). In concrete, fly ash acts as a pozzolan, reacting with
calcium hydroxide to form additional C-S-H gel and calcium
aluminosilicate hydrate (C-A-S-H) gel (The International
Standards Organisation, 2006). This secondary hydration reaction
contributes to strength development (Onyelowe and Ebid, 2023).
Additionally, fly ash particles can fill voids and improve particle
packing within the concrete matrix, resulting in densification and
reduced permeability (Onyelowe et al., 2023a). The long-term
pozzolanic reaction of fly ash can lead to continued strength gain
over time, making concrete more durable (Onyelowe et al., 2023b;
Onyelowe et al., 2023c; Onyelowe et al., 2023d; Onyelowe K. C. et al.,
2023; Wernet et al., 2016; Huijbregts et al., 2017; Garcia-Troncoso
et al., 2022; Dandautiya and Singh, 2019; Teixeira et al., 2016). The
effect of fly ash on compressive strength depends on factors such as
its chemical composition, fineness, and dosage (Onyelowe et al.,
2023c; Onyelowe et al., 2023d; Onyelowe K. C. et al., 2023; Wernet
et al., 2016; Huijbregts et al., 2017; Garcia-Troncoso et al., 2022;
Dandautiya and Singh, 2019; Teixeira et al., 2016; Panesar et al.,
2019; Onyelowe et al., 2022a; Onyelowe et al., 2022b; Onyelowe
et al., 2021; Dutta et al., 2018; QUINLAN, 1992; Asteris et al., 2024;
Asteris P. G. et al., 2021; Asteris PanagiotisG. et al., 2021; Asteris
et al., 2022; Ali et al., 2024; Cavaleri et al., 2022; Armaghani et al.,

2021; Zhang et al., 2022; Ali et al., 2023; Faisal Alkayem et al., 2024).
In general, moderate levels of fly ash incorporation (typically up to
30% replacement of cement by mass) can lead to significant
improvements in compressive strength (Wang L. et al., 2022;
Wang et al., 2021b; Wang et al., 2021c; Wang et al., 2020).
However, excessive fly ash content may result in slower early-age
strength development and may require longer curing periods to
achieve desired strength levels (Onyelowe et al., 2023d). Meanwhile
the addition of silica fume and fly ash in concrete as illustrated in
Figure 1 can enhance compressive strength by promoting
densification of the concrete matrix, additional hydration
reactions, and improved particle packing (Onyelowe K. C. et al.,
2023; Wernet et al., 2016; Huijbregts et al., 2017; Garcia-Troncoso
et al., 2022; Dandautiya and Singh, 2019). Proper mix design, dosage
control, and curing practices are essential to optimize the beneficial
effects of these supplementary cementitious materials on concrete
strength (Teixeira et al., 2016; Panesar et al., 2019; Onyelowe et al.,
2022a; Onyelowe et al., 2022b; Onyelowe et al., 2021; Dutta et al.,
2018; QUINLAN, 1992).

Conversely, the influence of a high-rate water reducing agent
(HRWRA) on the compressive strength of concrete containing silica
fume and fly ash can vary depending on several factors, including the
type and dosage of HRWRA, the characteristics of silica fume and fly
ash, and the mix design parameters (Onyelowe et al., 2023d;
Onyelowe K. C. et al., 2023; Wernet et al., 2016; Huijbregts et al.,
2017). HRWRA is typically added to concrete mixes to improve
workability while reducing the water content (AlShareedah and
Nassiri, 2021; Teixeira et al., 2016). By dispersing cement particles
and reducing interparticle friction, HRWRA allows for better
particle packing and improved lubrication, leading to increased
workability and easier placement of concrete without the need
for additional water 4–8]. This can contribute to better
compaction and consolidation of the concrete, potentially
enhancing compressive strength (Soleymani and Esfahani, 2019;
Jahangir and Eidgahee, 2021; Salesa et al., 2017; Samad and Shah,
2017; Ma et al., 2016). HRWRA can also affect the hydration and
pozzolanic reactions of supplementary cementitious materials
(SCMs) such as silica fume and fly ash (Sahoo et al., 2021; L
et al., 2021; Yang et al., 2019; Çelik et al., 2022; Liu et al., 2017;
Hossain et al., 2016). The dispersing action of HRWRA may
enhance the distribution of these materials within the concrete
matrix, facilitating their interaction with cement hydration
products and leading to more complete hydration and pozzolanic
reactions (Panesar et al., 2019). This can result in denser
microstructures and improved strength properties. The addition
of HRWRA may necessitate adjustments to the mix proportions of
silica fume and fly ash mixed concrete to maintain desired
workability and strength characteristics (Nochaiya et al., 2010;
Mazloom et al., 2004; Seto et al., 2017; Chen et al., 2019; Khan
and Siddique, 2011; Ganesh Kumar et al., 2022; Ashraf et al., 2022;
Thomas et al., 1999). Proper dosage control and optimization of mix
designs are essential to achieve the desired balance between
workability, strength, and durability (Teixeira et al., 2016).
HRWRA can promote early-age strength development by
accelerating the hydration reactions of cementitious materials
(Onyelowe et al., 2022a). This may lead to higher early
compressive strength in silica fume and fly ash mixed concrete,
which can be advantageous for reducing formwork time and
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accelerating construction schedules (Jahangir and Eidgahee, 2021).
While HRWRA may enhance early-age strength, its long-term
effects on the compressive strength and durability of silica fume
and fly ash mixed concrete should be carefully evaluated
(Dandautiya and Singh, 2019). Excessive use of HRWRA or
improper mix designs may lead to decreased long-term strength
and durability due to factors such as increased shrinkage, reduced
pore refinement, and potential loss of bond between cementitious
materials and aggregates (Güneyisi et al., 2012). Finally, the
influence of HRWRA on the compressive strength of concrete
containing silica fume and fly ash is complex and depends on
various factors. Proper mix design, dosage control, and
consideration of both short-term and long-term performance are
essential to optimize the benefits of HRWRA while ensuring the
desired strength and durability of the concrete (Panesar et al., 2019).
More very positive research results have been reported presently on
the different advantages of the applying machine learning in solving
most civil engineering problems especially those bothering on
infrastructure sustainability (Asteris et al., 2024; Asteris P. G.
et al., 2021; Asteris PanagiotisG. et al., 2021; Asteris et al., 2022;
Ali et al., 2024; Cavaleri et al., 2022; Armaghani et al., 2021; Zhang
et al., 2022; Ali et al., 2023; Faisal Alkayem et al., 2024). Among these
reports included the research on the application of the newly
introduced a20 index in the performance evaluation of machine
learning models (Asteris et al., 2024; Asteris P. G. et al., 2021), which
has attracted attention as it supports in great extent the previously
used indices. Also, previous reports (Wang L. et al., 2022; Wang
et al., 2021b; Wang et al., 2021c; Wang et al., 2020), have presented
different machine learning models utilized in studying the behaviour
of concrete mixed with sustainable admixtures such as fly ash, Pva

fiber, phosphorus slag, etc., Producing results that are decisive.
However, in this research paper, machine learning models have
been reported on the effect of industrial wastes on the compressive
strength of hardened concrete under different curing regimes.

2 Research significance

Evaluating the impact of industrial wastes on the compressive
strength of concrete using closed-form machine learning algorithms
is a research topic with significant implications in both
environmental sustainability and civil engineering. Industrial
waste disposal is a significant environmental concern. By
incorporating these wastes into concrete, you can reduce landfill
usage and pollution, contributing to a circular economy. Using
industrial wastes as a substitute for traditional concrete components
(like cement and aggregates) can reduce the demand for natural
resources such as limestone and sand. Cement production is a major
source of carbon dioxide emissions. Replacing part of the cement
content with industrial by-products like fly ash, slag, or silica fume
can lower the overall carbon footprint of concrete production.
Understanding how different types of industrial wastes affect the
compressive strength of concrete is crucial. It allows engineers to
optimize mix designs to achieve the desired strength while
incorporating sustainable materials. Closed-form machine
learning algorithms can create robust models that predict the
compressive strength of concrete based on various input
parameters, including the type and amount of industrial waste
used. This predictive capability is valuable in both research and
practical applications. Cost Reduction: Incorporating industrial

FIGURE 1
Illustration of the (A) impact of FA in concrete and (B) impact of SF in concrete.
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waste can reduce the cost of concrete production, particularly if the
waste is readily available and would otherwise be expensive to
dispose of. Companies that successfully integrate waste materials
into high-performance concrete could gain a competitive advantage
by offering more sustainable and potentially lower-cost products.
The research can lead to new concrete formulations that have
enhanced properties or are suitable for specialized applications. It
can also provide insights into the long-term durability and
environmental performance of such materials. Closed-form
machine learning algorithms can analyze large datasets to
identify patterns and relationships that might not be apparent
through traditional statistical methods. This can lead to new
discoveries in material science and civil engineering. The research
can contribute to the development of standards and guidelines for
using industrial wastes in concrete, helping to ensure safety and
performance across the industry. Promoting the use of industrial
wastes in concrete can raise awareness about sustainable
construction practices among engineers, architects, and builders.
Research in this area supports broader societal goals of sustainability
and responsible resource management, aligning with global efforts
to mitigate environmental degradation and climate change. If the
research demonstrates that industrial wastes can be safely and
effectively used in concrete, it may influence regulatory bodies to
update building codes and material standards, paving the way for
wider adoption. This research topic is not only relevant for
advancing the field of concrete technology but also for addressing
pressing environmental issues. By integrating machine learning with
material science, the study could lead to practical, sustainable
solutions for the construction industry while contributing to
academic knowledge and policy development.

Conversely, using industrial wastes in concrete has significant
environmental implications, both positive and negative. The
practice is gaining attention due to the potential benefits in
sustainability and waste management, but it also presents certain
challenges. Incorporating industrial wastes like fly ash, blast furnace
slag, silica fume, or recycled aggregates into concrete helps divert
these materials from landfills, reducing the burden on waste
management systems. By reusing waste materials, the demand for
new landfill sites is reduced, preserving natural landscapes and
decreasing the environmental footprint of waste disposal.
Industrial by-products like fly ash or slag can partially replace
Portland cement in concrete. Since cement production is highly
energy-intensive and a major source of CO₂ emissions, reducing its
usage directly lowers the carbon footprint of concrete. Energy
Savings: The energy required to process and use industrial wastes
is often lower than that needed for producing new raw materials,
further reducing the environmental impact. Using industrial wastes
reduces the need for virgin raw materials like limestone, sand, and
gravel, thereby conserving these natural resources and reducing the
environmental degradation associated with their extraction.
Incorporating waste materials aligns with the principles of
sustainable construction by promoting the use of recycled
content and reducing the environmental impacts of new
construction projects. Certain industrial wastes can enhance the
properties of concrete, such as its durability, strength, and resistance
to chemical attacks. For example, fly ash can improve the workability
and long-term strength of concrete, potentially leading to longer-
lasting structures that require less maintenance and fewer resources

over time. By reusing industrial wastes, the potential for pollution
from these materials is mitigated. For instance, fly ash or slag, if not
used in concrete, may contribute to air and water pollution through
leaching or airborne particles. The practice supports the concept of a
circular economy, where waste materials are continuously reused
and recycled, minimizing environmental impacts and maximizing
resource efficiency. Some industrial wastes, such as fly ash from coal-
fired power plants, may contain heavy metals or other toxic
substances. If not properly managed, there is a risk of leaching,
which could contaminate groundwater and soil. Fine particulate
matter from industrial wastes, especially during the mixing and
curing of concrete, can contribute to air pollution and pose health
risks to workers and nearby communities. The long-term
performance of concrete containing certain industrial wastes is
not always well understood, particularly under varying
environmental conditions. If these materials lead to premature
degradation of concrete, this could result in increased
maintenance and repair activities, offsetting initial environmental
benefits. The quality and composition of industrial wastes can vary,
leading to inconsistencies in the performance of the concrete. This
variability can pose challenges in ensuring the reliability and
durability of the structures, which may have environmental and
safety implications. Some industrial wastes require significant
processing before they can be used in concrete. For example, the
grinding of slag or the treatment of fly ash can be energy-intensive,
potentially reducing the overall environmental benefits. If industrial
wastes need to be transported over long distances to be used in
concrete production, the associated emissions from transportation
could diminish the environmental advantages. The use of industrial
wastes in concrete may face regulatory hurdles, particularly if there
is concern about environmental contamination or health risks.
Navigating these regulations can be complex and may require
additional testing and certification, adding to the environmental
and economic costs. There may be resistance from stakeholders or
the public to the use of industrial wastes in construction due to
concerns about safety, performance, and environmental impact.
Overcoming these perceptions requires education and
demonstration of the benefits and safety of such practices.
Conclusively, the environmental implications of using industrial
wastes in concrete are largely positive, contributing to waste
reduction, resource conservation, and a lower carbon footprint.
However, careful management and thorough assessment of
potential risks are essential to maximize the benefits and mitigate
any negative impacts. When appropriately handled, the use of
industrial wastes in concrete supports the move towards more
sustainable and environmentally responsible construction practices.

3 Methodology

3.1 Data collection and preliminary analysis

A total of 331 data sets collected from the experiments were
analyzed and divided into three and two groups for ANN and M5P
model respectively. The larger group included 225 data used to
create models, while the other groups included 73 and 33 data sets
used to test and forecasting the models respectively for ANNmodel.
However, for M5P model the total data is segregated into two parts:
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70% for training and remaining 30% for testing. The input data set
consists of the cement (C), Fine Aggregate (FAg), Coarse Aggregate
(CAg), Water (W), Fly Ash (FA), Silica Fume (SF), High-rate water
reducing agent (HRWRA), and Curing time (D); compressive
strength (fs) of concrete was used as a target. Table 1 shows the
statistical characteristics of the data entries with respect to the
studied parameters and Table 2 presents the Pearson correlation
analysis. The total data was shown in Figure 2 as in the form
of histogram.

4 Machine learning models

4.1 Artificial neural networks (ANNs) theory

An ANN functions as a computational system that emulates the
processes and analyses undertaken by the human brain. Specifically
applied in construction materials (Onyelowe et al., 2022a; Onyelowe
et al., 2022b), this machine learning model facilitates various
numerical predictions and problem-solving tasks. The
architecture of an artificial neural network comprises an input
layer, one or more hidden layers, and an output layer. The

hidden layer establishes connections through weight, transfer
function, and bias to the final output layers. To develop a
multilayer feed-forward network for Constructing Engineering,
inputs such as proportions, cement (C), Fine Aggregate (Fag),
Coarse Aggregate (Cag), Water (W), Fly Ash (FA), Silica Fume
(SF), High-rate water reducing agent (HRWRA), and Curing time
(D) with maximum compressive strength as the output. The absence
of a standardized method for designing network architecture led to a
thumb-rule approach, to fix the number of hidden layer neurons
(Onyelowe et al., 2021). The next step in optimal network design
involved selecting the ideal number of epochs during training,
aiming for the minimum Mean Square Error (MSE), and a high
R2-value as shown in Figure 3.

From Figure 3, the epochs are fixed as a 1,000. While calculating
the MSE and R2 for each increment of epochs default sigmoid
activation function was used. Upon designing the optimal
architecture, the dataset (comprising a total of 331 data points)
was split into training (68% of the data), testing (22% of the data)
and forecasting (10% of the data) sets. Multiple transfer functions
and ANN structures, featuring different hidden layers and neurons,
were assessed to determine the most effective network structure for
predicting concrete compression strength (fs). Among the options, a

TABLE 1 Statistical analysis of collected database.

Range Minimum Maximum Mean SD Variance Skewness Kurtosis

C 0.21 0.32 0.53 0.43 0.05 0.00 0.41 −1.09

FAg 0.18 0.54 0.72 0.65 0.05 0.00 −0.49 −0.87

CAg 0.18 1.03 1.21 1.12 0.04 0.00 −0.56 −0.19

W 0.06 0.15 0.21 0.17 0.02 0.00 0.84 −1.17

FA 0.06 0.00 0.06 0.03 0.02 0.00 0.22 −1.12

SF 0.02 0.00 0.02 0.00 0.00 0.00 0.44 −1.63

PL 0.01 0.00 0.01 0.00 0.01 0.00 0.03 −2.01

A 6.32 0.11 6.43 1.96 2.12 4.47 1.18 0.15

Fc 100.00 7.80 107.80 56.81 22.79 519.29 −0.05 −0.56

TABLE 2 Pearson correlation matrix.

C FAg CAg W FA SF PL A Fc

C 1.00

FAg 0.37 1.00

CAg −0.57 −0.34 1.00

W −0.46 −0.86 0.32 1.00

FA −0.05 −0.53 0.10 0.04 1.00

SF −0.09 0.13 −0.22 −0.07 −0.25 1.00

PL 0.62 0.57 −0.15 −0.83 0.19 −0.05 1.00

A 0.03 −0.07 0.15 0.05 0.06 −0.10 0.05 1.00

Fc 0.53 0.55 −0.35 −0.46 −0.35 0.10 0.43 0.54 1.00
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single hidden layer with five neurons was used to for the architecture
of ANN model as followed by thumb rule (Dutta et al., 2018).
18 activation function were used with the above proposed ANN
architecture such as linear piece, linear piece symmetric, sin
symmetric, cos symmetric, sin, linear, threshold, threshold
symmetric, sigmoid, sigmoid stepwise, sigmoid symmetric,
sigmoid symmetric stepwise, gaussian, gaussian symmetric,
gaussian stepwise, Elliot, Elliot symmetric, and cos transfer
function emerged as the choice for concrete modified with Silica
Fume, and High-rate water reducing agent. This segment of the
research focused on utilizing the ANN model to estimate the
maximum compressive strength of Silica Fume-containing
concrete, considering factors such as C, Fag, Cag, W, FA, SF,
HRWRA and D contents following the above said architecture.
The architecture of ANNs model is depicted in Figure 4.

4.2 M5P-tree model (M5P) theory

The M5P-tree is a type of algorithm used for solving problems
related to predicting numerical values, known as regression

problems. It was first introduced in a study (QUINLAN, 1992).
This algorithm works like a tree, where each branch represents
a different part of the data. In simple terms, the M5P-tree uses
a method called linear regression at the end points of its branches.
It adapts to different parts of the data by sorting or dividing it
into various groups. The M5P model architecture has depicted
schematically in Figure 5. The M5P model begins with separating
the input data into distinct subsets; each subset has data records
with a sharing feature (Figure 5). To overcome the difference
within the defined sub-set, linear regression models (LRM)
might be employed in this procedure. The information gathered
in the preceding stage is then utilized to generate numerous
nodes, each of which is segregated accord with the certain
attribute (Figure 6A).

This phase enables you to construct a structure as like tree with
the roots and leaves presented as top and bottom respectively. New
datasets are added to the tree, it progresses from the roots through
the nodes until they reach to each leaf (Figure 6B). To estimate
errors, the algorithm considers the criteria for dividing the tree at
each point. The errors are measured by looking at how much the
values in each group differ from the average value. The algorithm

FIGURE 2
Histogram for input and output data.

Frontiers in Built Environment frontiersin.org07

López Paredes et al. 10.3389/fbuil.2024.1453451

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1453451


decides how to divide the tree based on the attribute that is most
likely to reduce the error. This is done by evaluating the impact of
each attribute at a specific point in the tree. The error calculation
involves looking at the standard deviation, which measures how
spread out the values is in a group. As the tree grows, the child nodes
(smaller groups) have less variation in values compared to the parent
nodes (larger groups). After exploring different ways to structure the
tree, the algorithm selects the one that is most likely to reduce errors.
However, this process can lead to overfitting, where the model is too
closely tailored to the training data. To address this issue, the
algorithm goes through a second step called pruning. This
involves trimming the branches of the tree and replacing them
with simpler linear regression functions. This helps prevent the
model from becoming too complex and specialized for the training
data. In summary, the M5P-tree algorithm uses linear regression at
its branches to predict numerical values. It decides how to structure
the tree based on the attributes that are likely to reduce errors. To
avoid overfitting, it prunes the tree and replaces some branches with
simpler functions. Standard reduction:

SDR � sd T( ) −∑ Ti| |
T| | sd Ti( ) (1)

In this study, T stands for the group of examples that reach a
certain point in the process. Ti refers to the specific examples that fall
under the ith product of the potential set, and SD stands for standard
deviation. The multi-layer models in this research were
implemented using the Weka software. Weka is a free and
widely-used open-source platform designed for engineers and
scientists. It helps them analyze and create systems and products
that have a significant impact on our world.

4.3 Performance measures

Once the model is identified, its performance in predicting
compression strength of concrete needs evaluation using a test
dataset. Researchers often lack consensus on the best measure for
prediction, so accuracy becomes a crucial criterion. To assess quality,
we consider minimizing errors, and in this case, mean absolute
percentage error (MAPE), root mean square error (RMSE), mean
absolute error (MAE), and mean square error (MSE) are chosen.
MAE gives an overall accuracy, indicating the degree of spread. It
assigns equal weight to all errors, being zero for a good fit and larger
for a poor one. Comparisons between prediction methods are made,
and the one with the minimum MAE is selected. MSE, providing
accuracy measures and indicating spread, assigns additional weight
to large errors. RMSE, simply the root of MSE, is measured in the
same unit as the predicted variable, offering advantages. MAPE is a
relative performance measure, useful for comparing prediction
accuracy among different methods. Interpretations include
excellent accuracy (less than 10%), good prediction (10%–20%),
acceptable prediction (20%–50%), and inaccurate prediction (over
50%). MAPE measures prediction quality independently of the
variable’s unit of measurement. Smaller values for MSE, RMSE,
MAE, and MAPE indicate better models. Although historically
popular, RMSE and MSE are sensitive to outliers, leading some
researchers to recommend against their use in predictive accuracy
evaluation. MAE, considered a ‘robust’ measure of predictive
accuracy, tends to favour procedures with occasional large
prediction failures. Estimation procedures often rely on least-
squares criteria, and an emphasis on MAE may involve a logical
inconsistency. Model selection depends on different criteria, and the
choice of an error measure significantly impacts conclusions about
predictive methods’ accuracy. When evaluating neural network
models, relying solely on coefficients of correlation (r) and
determination (R2) can introduce bias. Thus, unbiased statistical
criteria such asMSE, RMSE, MAE, andMAPE should complement r
and R2 evaluations. Different statistical parameters and error models
used for predicting compression strength of concrete are presented
in Table 3.

5 Results, discussions and comparison

Overall, as presented in Equations 1–10, 18 ANN models were
developed by following the architecture with varying activation
functions. Each model performance is validated with the help of
performance measures as discussed in the preceding section. Where,
the performance measures are calculated and the best five model
values are tabulated in Table 4 for training, testing and forecasting.

FIGURE 3
Optimal epochs for ANN model.

FIGURE 4
Architecture of ANNs model.
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From Table 4, it can be concluded that the sigmoid activation
function is predicting the compressive strength of the concrete
more accurately as compared with the remaining activation
functions. The predicted Vs. experiments plots for training,
testing and forecasting are depicted in Figure 7. From Figure 7, it
can be concluded that the predicted values are within the 20% of
error. In practical terms, for predicting compression strength of
concrete, a neural network model with a sigmoid activation function
is recommended. This choice yields the least values for R2, MSE,
RMSE, MAE, and MAPE, indicating accuracy and good correlation
between predicted and targeted compressive strength of concrete.
Finally, the number of data Vs. compressive strength of concrete for
experimental, ANN-trained, ANN-tested and ANN-forecasted plot
was drawn to see the variation among them as depicted in Figure 8.
From Figure 8, the experimental and ANN model predicted values
are closely matching each other as it revels the prediction accuracy
in visual way.

Similarly, the M5P model was developed using defined user
defined parameters. The developed model is validated with the help
of performance measures and the calculated performance measures
are tabulated in Table 5. From Table 5 yields the least values for
MSE, RMSE, MAE, and MAPE and closed to one of r, R2 indicating
accuracy and good correlation between predicted and targeted
compressive strength of concrete. The predicted Vs. experiments
plots for training, testing is depicted in Figure 9. From Figure 9, it
can be concluded that the predicted values are within the 20% of
error. Finally, the number of data Vs. compressive strength of
concrete for experimental, M5P-trained, and M5P-tested plot was
drawn to see the variation among them as depicted in Figure 10.
From Figure 10, the experimental and ANN model predicted values
are closely matching each other as it revels the prediction accuracy
in visual way.

6 Closed-form models appraisals

6.1 Model equation for ANN

The fundamental mathematical equation of the ANN
connecting the input variables and the output can be
expressed as

qu � f b0 +∑h
k�1

wk × f bhk +∑m
j�1

wjk × Xj( )⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭ (2)

As a result, the model equation for the output may be formed
using the ANN model’s training weights. In this work, a model
equation for compressive strength of concrete was created utilising
the values of the weights and biases presented in Table 6.

The ANN model equations are developed using Table 5 as
presented below:

A � y + p × C + q × Fag + r × Cag + s × W + t × FA + u × SF

+ v × HRWRA + w × Curing

(3)
B � y + p × C + q × Fag + r × Cag + s × W + t × FA + u × SF

+ v × HRWRA + w × Curing

(4)
C � y + p × C + q × Fag + r × Cag + s × W + t × FA + u × SF

+ v × HRWRA + w × Curing

(5)
D � y + p × C + q × Fag + r × Cag + s × W + t × FA + u × SF

+ v × HRWRA + w × Curing

(6)

FIGURE 5
M5P model architecture.
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E � y + p × C + q × Fag + r × Cag + s × W + t × FA + u × SF

+ v × HRWRA + w × Curing

(7)

H � z + 1.86
1 + e−A

+ 1.49
1 + e−B

− 0.74
1 + e−C

− 2.12
1 + e−D

− 6.74
1 + e−E

(8)

fs � 1
1 + e−F

(9)

The compressive strength value produced from Equation 9 is in
the [-1, 1] range and must be denormalized as

fs � 0.5 fc + 1( ) fc[ ]max − fc[ ]min( ) + fc[ ]min (10)

6.2 Model equation for M5P

The training and testing technique is a most widely used
technique to develop the learning algorithms to establish model.
For training and testing the model, the train and test datasets are
divided into two subsets using random partitioning. The model is
trained using 70% of the data and then tested using the remaining

FIGURE 6
The schematic view of the M5P model tree algorithm for (A) training and (B) testing.
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30% for evaluation of desired model. Table 1 provides the mini.,
max., and Stan. Dev. Values for the total data for each of the
individual parameters used to create the M5P model.

The model tree that was created using the M5P technique is
displayed in Equations 11–24. The generated equations for the
present M5P model in the form of the linear model are shown in
Figure 11. The equations have to be used following Figure 11
conditions as represented as M1 to M5.

fc � 0.11 *C + 0.12 *Fag - 0.08 *Cag - 0.26 *FA + 0.70 * SF

+ 1.89 *Curing - 1.91 (11)
fc � -0.13 *C + 0.07 *Fag - 0.05 *Cag - 0.19 *FA + 0.37 * SF

+ 1.39 *Curing + 91.81

(12)
fc � 0.27 *C + 0.12 *Fag - 0.01 *Cag + 0.01 *FA + 1.39 * SF

+ 0.11 *Curing- 126.05 (13)
fc � 0.06 *C + 0.11 *Fag - 0.01 *Cag - 0.20 *FA + 0.47 * SF

+ 0.16 *Curing - 32.43 (14)
fc � -0.08*C+0.45*Fag-0.12*Cag+0.13*FA+0.70*SF

+2.20*Curing-87.58 (15)
fc � -0.05*C+0.33*Fag-0.01*Cag-0.15*FA+0.13*SF

+0.14*Curing-106.80 (16)
fc � -0.05*C+0.28*Fag-0.01*Cag-0.15*FA+0.14*SF

+0.14*Curing-74.68 (17)
f c � -0.05*C+0.22*Fag-0.01*Cag-0.16*FA+0.14*SF

+0.14*Curing-34.94 (18)
fc � -0.01*C+0.06*Fag-0.01*Cag-0.16*FA+0.14*SF

+0.14*Curing+54.52 (19)
fc � -0.01 *C + 0.002 *Fag - 0.01 *Cag - 0.157 *FA + 0.139 * SF

+ 0.16 *Curing + 94.76

(20)
fc � -0.01*C+0.06*Fag-0.01*Cag-0.16*FA+0.14*SF

+0.16*Curing+53.72 (21)

fc � -0.05*C+0.08*Fag-0.01*Cag-0.11*FA-0.16*SF

+0.13*Curing+58.85 (22)
fc � -0.05 *C + 0.08 *Fag - 0.01 *Cag - 0.11 *FA - 0.19 * SF

+ 0.13 *Curing + 65.36 (23)
fc � -0.05 *C + 0.07 *Fag - 0.01 *Cag - 0.11 *FA - 0.14 * SF

+ 0.13 *Curing + 65.76 (24)

Comparatively, the performance of an Artificial Neural
Network (ANN) model and an M5P model (a type of model
tree) involves analyzing several aspects, including prediction
accuracy, interpretability, computational efficiency, and
robustness, which formed part of the above results analyses
(Asteris et al., 2024). ANNs can model complex, non-linear
relationships between inputs and outputs, making them
particularly powerful for problems where the relationship is not
easily captured by simpler models. With the right architecture and
training, ANNs often achieve high prediction accuracy (Rezazadeh
Eidgahee et al., 2022). ANNs require a substantial amount of data
to train effectively. If the dataset is small or imbalanced, the ANN
might overfit or underperform compared to simpler models like
M5P. However, k-fold classification and data sorting was applied
to overcome the overfitting issue with the ANN. M5P models
combine decision trees with linear regression at the leaves,
enabling them to capture both non-linear and linear
relationships effectively (Onyelowe et al., 2022a). They often
perform well on moderately complex datasets and can be
surprisingly accurate given their simplicity. M5P models might
struggle with highly complex, non-linear relationships where the
partitioning of the feature space by the decision tree might not be
sufficient to capture the underlying patterns. ANNs are often
considered “black-box” models due to their complexity
(Onyelowe et al., 2022b). However, recent advancements in
interpretability methods (like SHAP values, LIME, and saliency
maps) have made it easier to interpret their predictions to some
extent. Despite these methods, the internal workings of an ANN
remain complex, and it can be challenging to understand how
specific input features contribute to the final prediction (Onyelowe
et al., 2021). M5P models are highly interpretable. The tree

TABLE 3 Mathematical equations for performance measures.

Statistical coefficient Mathematical expression

Correlation coefficient (r)
r � ∑fsht

′ × fshp
′−nf′

sht × f′
s hp

(n−1)S
fsht
′Sfshp

′

Coefficient of determination (R2)
R2 � 1 − ∑i

(fshp
′−fsht

′ )2∑i
(fshp

′−f′
s hp )2

Mean square error (MSE) MSE � 1
n∑n

i�1(fsht
′ − fshp

′)2

Root mean square error (RMSE) RMSE �
�������������
1
n∑n

i�1(fsht
′ − fshp

′)2
√

Mean absolute error (MAE) MAE � 1
n∑n

i�1|fsht
′ − fshp

′|

Mean absolute percentage error (MAPE)
MAPE � [1n∑n

i�1|
fsht
′−fshp

′

fsht
′ |] × 100

fsht
′ , fshp

′ target and predicted compressive strength of concrete, f′
sht , f

′
shp : mean of the target and predicted compressive strength of concrete respectively, Sfsht

′ , Sfshp
′ : standard deviation of the

target and predicted compressive strength of concrete respectively, n: number of observations.
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structure provides clear decision paths, and the linear regression
models at the leaves offer straightforward relationships between
input features and the output. This makes M5P models easier to
understand and explain to non-experts. While interpretable, M5P
models may oversimplify complex relationships, which could lead
to less accurate predictions in certain cases. ANNs, especially deep
neural networks, require significant computational resources for
training, including powerful GPUs or TPUs. Once trained, they
can make predictions relatively quickly (Dutta et al., 2018). The
training process can be time-consuming and resource-intensive,
especially if the network has many layers or if the dataset is large.
Hyperparameter tuning (e.g., optimizing learning rates, number of
layers, and neurons) also adds to the computational cost. M5P
models are generally more computationally efficient to train and
require less computational power compared to ANNs. They are
faster to train, particularly on smaller datasets, and their structure
allows for quick predictions. While efficient, M5P models might
not scale as well as ANNs when dealing with very large or complex
datasets, particularly when the underlying data relationships are
highly non-linear. ANNs, when properly regularized and trained
on large datasets, can generalize well to unseen data. Techniques
like dropout, L2 regularization, and data augmentation can
improve robustness. ANNs are prone to overfitting, particularly
if the model is too complex relative to the amount of training data.
They also require careful tuning of hyperparameters to achieve
good generalization. M5P models are generally more robust to
overfitting than ANNs, particularly when they are pruned
correctly. Their inherent simplicity often leads to better
generalization on smaller datasets. While robust, M5P models
may lack the flexibility needed to capture more complex
patterns, leading to poorer generalization on highly complex
tasks. Problems where there are complex, non-linear
relationships in the data, such as image recognition, natural
language processing, or tasks where large amounts of data are
available. It is less suited in models with small datasets, where
overfitting is a significant concern, or scenarios where model
interpretability is critical. M5P is best suited with problemsT
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FIGURE 7
For training, testing and forecasting ANN model.
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where interpretability is important, and the relationships in the
data are either linear or can be well captured by a combination of
linear models in different partitions of the feature space and less
suited with highly complex tasks with intricate non-linear
relationships that are difficult to model with simple linear
models or decision trees. With the availability of libraries like
TensorFlow, Keras, and PyTorch, implementing ANNs has
become more accessible. However, expertise in neural network
design, tuning, and training is still required. The complexity of

ANN architectures and the need for extensive hyperparameter
tuning can make them challenging to implement and optimize
effectively. M5P models are relatively easy to implement and do
not require as much tuning as ANNs. Tools like Weka provide
user-friendly interfaces for building and evaluating M5P models.
While easier to implement, the simplicity of M5Pmodels may limit
their application to more complex tasks where ANNs would be
more appropriate. ANNs are powerful for capturing complex, non-
linear relationships, especially when large amounts of data are
available. They offer high prediction accuracy but come with
higher computational costs and lower interpretability. M5P
models strike a balance between interpretability and accuracy,
particularly for problems with mixed linear and non-linear
relationships. They are computationally efficient and more
straightforward to implement but may fall short on tasks
requiring deep understanding of complex patterns (Dutta et al.,
2018). The choice between ANN and M5P models should be based
on the specific requirements of the task, including the need for
accuracy, interpretability, computational resources, and the nature
of the dataset.

6.3 Sensitivity analysis

Sensitivity analysis was carried out in order to study the
contribution of individual variables on the deviator stress using a
method reported by Garson (Garson, 1991) which was based on
weight configuration. The method essentially involves partitioning
the hidden-output connection weights of each hidden neuron into
components associated with each input neuron. The detailed

FIGURE 8
Comparison of training, testing and forecasting for experimental and forecasting based on ANN model.

TABLE 5 Performance measures for training and testing of M5P model.

Model Name Training Testing

r R2 MSE RMSE MAE MAPE r R2 MSE RMSE MAE MAPE

M5P 0.99 0.99 24.21 4.92 4.05 9.15 0.99 0.99 26.66 5.16 4.17 8.41

FIGURE 9
M5P targeted Vs. predicted plot for training and testing.
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FIGURE 10
M5P model comparison among the prediction and experimental.

TABLE 6 ANN model connection weights and biases.

Equation Weights Bias

p q r s t u v w x y z

A 2.88 0.23 −2.28 −1.81 −0.46 −1.14 −1.06 0.19 1.86 −0.51 −0.36

B 1.53 −0.20 −0.97 −0.97 0.64 0.93 −0.11 0.27 1.49 0.12

C −0.70 −0.39 0.06 0.04 0.05 −0.14 −0.27 −0.62 −0.74 −0.94

D −1.72 −0.42 −0.29 2.26 0.17 1.13 −0.90 −1.10 −2.12 1.34

H −0.49 0.19 −0.94 0.73 −0.24 −1.51 −10.89 −0.96 −6.74 1.86

FIGURE 11
Proposed M5P model tree to forecast the compressive strength of concrete.
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procedure for this sensitivity analysis with example is provided in
the work of Garson (Asteris et al., 2024) as the same was followed in
this article. The final relative importance of each individual input
parameter on the output is sown in Figure 12. Form the study of
Figure 12 reveals that FA is the major influencing parameter
followed by C, Fag, Curing, HRWRA, Cag, W and SF
respectively. From the above, it can be seen that sensitivity
analysis is an effective method of indicating the physical
relationship between inputs with the output.

7 Conclusion

The present work is aimed at developing the model equation for
the compressive strength of concrete treated with Fly Ash, Silica
Fume, High-rate water reducing agent using artificial neural
networks and M5P model tree techniques. To obtain the model
equations, the independent variables used were cement (C), Fine
Aggregate (Fag), Coarse Aggregate (Cag), Water (W), Fly Ash (FA),
Silica Fume (SF), High-rate water reducing agent (HRWRA), and
Curing time (D). The developed ANN andM5Pmodels and models’
equation for the compressive strength of concrete the following
conclusions are put forward.

* The analysis of the plot comparison (targeted versus predicted)
shows that the errors are spread consistently along the line in the
artificial neural network model. On the other hand, the M5P
model tree has a slightly different error distribution, not quite
along the line. So, the conclusion is that predictions made with
the neural network model are more accurate compared to those
made with the M5P model tree technique. This is also supported
by various statistical parameters like r, R, MSE, RMSE,
MAE, and MAPE.
* Equations were developed for both the ANN and M5P models.
However, in the ANN model, forecasting was done using 33 data
points out of the total 331. This forecasting effectively predicts
the compressive strength of concrete by using only the input
parameters during this step.

* A sensitivity analysis was carried out using the weights obtained
during the creation of the ANN model. This analysis aimed to
understand how the input variables affect the output compressive
strength of concrete. The findings show that FA has the greatest
impact at 18.62%, followed closely by C at 18.52%.

In general, this paper aims to shed light on using two soft
computing techniques to forecast the compressive strength of
concrete. This information can be valuable for estimating the
compressive strength of concrete treated with Fly Ash, Silica
Fume, and a high-rate water reducing agent, saving the cost of
conducting expensive experiments.

8 Limitations and future work

There are several limitations and potential areas for future work
that should be considered. These are crucial for understanding the
scope of the research and identifying opportunities for further
investigation. The effectiveness of machine learning models relies
heavily on the quality and quantity of data. Limited availability of
comprehensive datasets that include various types of industrial
wastes and their effects on concrete properties could constrain
the model’s accuracy. If certain types of industrial waste are
overrepresented in the dataset, the model might be biased,
leading to inaccurate predictions for underrepresented waste
types. Industrial waste materials can vary significantly in
composition depending on the source and processing methods,
making it difficult to generalize findings across different waste
streams. Closed-form machine learning algorithms might overfit
to the training data, particularly if the model is complex relative to
the size of the dataset. This could result in poor generalization to
new, unseen data. The models developed might be specific to certain
types of concrete mixes or waste materials, limiting their
applicability to other contexts or regions. Concrete properties are
influenced by complex, non-linear interactions between various
components. Closed-form models might struggle to capture these
interactions, especially if they involve synergistic or antagonistic
effects of different industrial wastes. The study might focus on initial
compressive strength, but long-term durability and other
performance metrics (e.g., resistance to chemical attack, freeze-
thaw cycles) are also important. Closed-form models might not
adequately predict these long-term effects. The implementation of
findings in real-world settings might be challenging. Factors such as
the cost of industrial waste processing, availability, and regulatory
constraints could limit the practical application of the research.
Inconsistent mixing, curing, and environmental conditions during
concrete production and application could lead to deviations from
predicted compressive strength, affecting the model’s reliability in
practical scenarios. While closed-form algorithms can provide quick
and interpretable results, they might not capture the complexity of
the relationships between variables as effectively as more
sophisticated machine learning methods, such as deep learning
or ensemble models. Closed-form models typically trade off
accuracy for interpretability. While this can be advantageous in
understanding the factors affecting compressive strength, it might
result in less precise predictions compared to more complex
models. However, future research should focus on expanding

FIGURE 12
Relative importance (%) of individual input variables on the
compressive strength of concrete.
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the dataset to include a wider variety of industrial wastes, mix
designs, and environmental conditions. Collaborations with
industry partners could help in gathering more diverse and
comprehensive data. Integrating long-term performance data,
such as durability tests and real-world case studies, can enhance
the predictive power of the models and provide a more complete
understanding of the impacts. Combining closed-form machine
learning algorithms with more advanced techniques, such as
neural networks or ensemble methods, could improve the
accuracy of predictions while retaining some level of
interpretability. Future work could explore models that better
capture non-linear interactions between variables, such as
polynomial regression, support vector machines, or tree-based
methods. Future research could investigate the trade-offs
between compressive strength and other properties, such as
workability, durability, and environmental impact. Multi-
objective optimization techniques could help balance these
factors in concrete design. Conducting real-world pilot projects
that implement the research findings could provide valuable
insights into the practical challenges and effectiveness of using
industrial wastes in concrete. Analyzing the economic implications
of using industrial wastes in concrete, including lifecycle costs and
benefits, could help in understanding the feasibility of large-scale
adoption. Future work could contribute to the development of
guidelines and standards for incorporating industrial wastes into
concrete, ensuring that the research findings are aligned with
regulatory requirements and industry practices. Integrating
sustainability metrics into the evaluation process, such as
carbon footprint reduction or resource efficiency, could help in
promoting the adoption of green concrete technologies.
Collaborations between material scientists, environmental
engineers, and data scientists could lead to more holistic
approaches to solving the challenges of incorporating industrial
waste into concrete. Investigating new or underutilized waste
materials and their potential impact on concrete properties
could open up new avenues for sustainable construction
practices. While the research on using closed-form machine
learning algorithms to evaluate the impact of industrial wastes
on concrete compressive strength has significant potential, it is
essential to recognize its limitations. Addressing these limitations
through future work can lead to more robust, applicable, and
sustainable outcomes in the field of concrete technology and
environmental engineering.
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