
SMT efficiency in supervised ML methods:
a throughput and interference analysis
Lucia Pons1*, Marta Navarro1, Salvador Petit1, Julio Pons1, María E. Gómez1 and Julio Sahuquillo1

Introduction
General-purpose processors are continuously evolving to adapt their microarchitec-
ture to software advances. Currently, simultaneous multithreading (SMT) processors
are prevalent among the server platforms installed at data centers worldwide. SMT
processors improve the utilization of the costly functional units present at the core by
allowing instructions of multiple threads to share the issue ports. Moreover, SMT is the
only multithreading paradigm [1] capable of issuing instructions from multiple threads
simultaneously.

Because of their throughput nature and performance over single-threaded proces-
sors, commercial vendors dominating the microprocessor market, like Intel, IBM,
ARM, or AMD, have opted to include SMT processors among their commercial
products. As multiple threads are supported in each core, these processors intro-
duce inter-thread interference within the core. Consequently, the performance of an

Abstract

The microarchitecture of general-purpose processors is continuously evolving to adapt
to the new computation and memory demands of incoming workloads. In this
regard, new circuitry is added to execute specific instructions like vector multiplica-
tion or string operations. These enhancements and the support of multiple threads
per core make simultaneous multithreading (SMT) processors dominate the market
for data center processors. Regarding emerging workloads, machine learning is taking
an important role in many research domains like biomedicine, economics, and social
sciences. This paper analyzes the efficiency of machine learning workloads running
in SMT mode (two threads per core) versus running them in ST mode (single-threaded)
with twice the number of cores. Experimental results in an Intel Xeon Skylake-X
processor show an SMT efficiency falling between 80% and 100% across the studied
workloads. These results prove two main findings: i) last-generation SMT proces-
sors are excellent candidates to execute ML workloads as they achieve a high SMT
efficiency, and ii) if the performance of two major resources (i.e., FP double operator
and core’s caches) was boosted, all the workloads would achieve an almost perfect
SMT efficiency. Moreover, results show that there is still room to support more threads
without adding extra hardware. The discussed findings are aimed at providing insights
to design future processors for ML workloads.

Open Access

© The Author(s) 2024, corrected publication 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCom-
mercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived
from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

RESEARCH

Pons et al. Journal of Big Data (2024) 11:152
https://doi.org/10.1186/s40537-024-01013-5

Journal of Big Data

*Correspondence:
lupones@disca.upv.es

1 Universitat Politècnica de
València, Valencia, Spain

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-01013-5&domain=pdf

Page 2 of 29Pons et al. Journal of Big Data (2024) 11:152

individual thread can be severely affected when co-running with another thread in
the core with respect to its individual execution. The extent to which the individual
thread performance is affected depends on the co-runner and the microarchitecture.

From a certain point of view, SMT processors can be seen as heterogeneous proces-
sors as the performance of a given thread (or single-threaded application) is enhanced
when running the thread alone in the core in single-threaded (ST) mode. In contrast,
the threads can be run in SMT mode, allowing them to compete for core resources
with other co-running threads. Recent work [2, 3] has been done in this direction,
focusing on identifying symbiotic pairs of single-threaded applications to be run on
the same core.

One of the current trends regarding the evolution of SMT processors is the type
and amount of functional units deployed to adapt to the workload evolution. Among
emerging workloads, machine learning (ML) workloads have increased in popular-
ity in recent years in the scientific community [4, 5]. ML workloads have become
key workloads in current data centers that deal with large and heterogeneous work-
loads [6]. These workloads allow performing an exhaustive list of tasks: image and
speech recognition, data clustering, pattern identification, classification, prediction,
etc. Thus, ML plays an important role in the context of data analysis in many areas,
including biomedical engineering, economics, and social sciences.

The high number of threads these applications spawn make accelerators or GPUs
[7–12] excellent computing devices to run them. Therefore, many ML frameworks [13–
17] provide support to be executed on GPUs. However, due to the throughput nature
of SMT cores and advances in their execution units, which add more functionalities to
accelerate the execution of ML workloads in each processor generation, it makes sense
to study the way SMT processors perform when running ML workloads and identify
potential performance bottlenecks that should be faced to improve performance.

This paper studies the efficiency of SMT processors when executing machine learn-
ing (ML) benchmarks. The study uses an Intel Skylake Server (Skylake-X) processor
implementing Hyper-Threading, where each core can support the execution of up to
two threads. To focus the research, we evaluate four standard ML-supervised classifi-
cation methods with ten publicly available datasets. We compare the efficiency of the
core when running in SMT mode over running in ST with twice the number of cores.
Experimental results show that SMT efficiency is over 90% in two learning methods
and around 80% on average in the other two studied learning methods.

This paper makes two main contributions:

• We show that last-generation simultaneous multithreading processors are fit to
execute supervised ML classification methods. This claim is supported by the fact
that SMT efficiency is especially significant in ML workloads, which makes these
processors excellent candidates for such tasks.

• We found that two main reasons prevent ML workloads from achieving a high
SMT efficiency: the performance of the floating-point (FP) scalar double operator
and the storage capacity of the core’s caches (L1 and L2), which are shared among
the threads running on the same core. These findings are aimed at providing
insights to guide future processors’ design to boost ML workloads’ performance.

Page 3 of 29Pons et al. Journal of Big Data (2024) 11:152

Following the taxonomy proposed in [18] to classify innovation ideas, the work pro-
posed in this paper mainly falls under the class Implantation.

Background
This section presents some background on simultaneous multithreading and ML bench-
marking concepts to ease the reading and make this paper self-contained. Authors with
solid expertise on these topics can skip this section.

Simultaneous multithreading

Understanding the essence of SMT processors and to what extent they can improve
workload performance is challenging due to the high complexity of the microarchi-
tecture. Obtaining a sound knowledge of SMT processors is only achievable through
guided learning of commercial processors, as many implementation issues need to be
considered. Moreover, it is not easy to foresee i) to what extent this paradigm is capable
of improving the processor throughput and ii) how it can affect (damage) the perfor-
mance of individual workloads. The reason is that the answers to these questions require
a strong grounding of many architectural concepts and depend both on the specific
microarchitecture implementation and on the particular characteristics of the workload
to be executed.

In an SMT processor’s core, most of the core resources, like the register file, the
arithmetic operators, or the ROB, are shared among the co-running threads. Resource
sharing requires both extra logic and additional structures (e.g., auxiliary queues) to
implement the policy that controls which share of the resource each thread has avail-
able. Because important resources are shared among the threads, the performance of a
given thread strongly depends on the co-runner, making the execution time unpredict-
able. In [19], it is shown that, in the context of compute-intensive workloads, the execu-
tion time can more than double. In other words, if we want to boost the performance
of a single-threaded application, then we should execute it alone in a single core in ST
mode. This kind of policy can be applied by an OS that is aware of the threads running
and schedules a specific thread to be executed alone in a given core. In this way, all the
core resources are made available to the running thread.

To help understand the way in which inter-thread interference affects the perfor-
mance, we first introduce some basic notions of these processors focusing on the issue
ports since, as results will show, they define the performance. Let us illustrate these con-
cepts through an example. Assume a hypothetical SMT processor implementing four
issue ports as depicted in Fig. 1. There are two ports devoted to arithmetic operations

Fig. 1 Example of the distribution of issue ports in a hypothetical SMT processor

Page 4 of 29Pons et al. Journal of Big Data (2024) 11:152

and two ports devoted to read/write access data in the (cache) memory. The arithmetic
ports (1 and 2) carry out the most common basic arithmetic/logic integer operations
(INT ALU). While port 1 is attached to the integer multiplier/divisor, port 2 is linked to
the branch unit. Regarding the data access ports (3 and 4), they both include an address
generation unit (AGU), but port 3 handles load operations and port 4 manages store
operations. Notice that this design example is balanced in the sense that half of the ports
are devoted to arithmetic operations and the other half to data accesses.

Figure 1 also shows the reservation station, which is unified and shared among all the
threads. This is implemented as an out-of-order queue, and instructions from any thread
are scheduled to an issue port provided that the corresponding operator is available and
the source operands are ready. Thus, all the ports are available to a single thread if the
core runs in ST mode and to all the threads if it runs in SMT mode. In the latter case, a
thread may wait for a given port while other threads are using it. That is, the execution of
the thread can be delayed with respect to executing alone in the core.

Machine learning workloads

Machine learning provides systems the ability to learn without human intervention.
Among the types of learning algorithms, supervised learning is one of the most com-
monly used since it allows to make future predictions based on a series of known input–
output pairs and a learning model. For instance, traffic prediction, face detection, and
image classification.

ML workloads comprise two main components: the ML method and the dataset. The
ML method refers to the ML algorithm being studied, which is implemented as a multi-
threaded application. Thus, with the term workload, we refer to a given learning method
with a specific dataset. Unlike traditional HPC workloads [20–23], ML workloads’ per-
formance highly depends on the dataset. A wide set of datasets focusing on specific
problems are publicly available and can be used to assess ML methods’ performance.

Benchmarking can be applied to machine learning (ML) [4] from different perspec-
tives. For instance, it can be applied to assess the ability of the studied method to learn
patterns from ‘standard’ datasets [24, 25] or identify strengths and weaknesses of exist-
ing learning methods [26, 27]. Many problems and the corresponding datasets have
been published in the open literature, and the conclusion was that there is no global ML
method that performs the best across all the datasets, but performance is highly depend-
ent on the problem being addressed.

Problem definition
This section introduces the problem addressed in this paper. Understanding the wide
variety of SMT concepts and their impact on performance is challenging for academic
instructors as it is not easy to map theoretical concepts to implementation aspects. In
this paper, we address this problem from a new and more practical perspective: explor-
ing the suitability of general-purpose processors to run ML workloads.

To do so, we focus on the SMT efficiency of high-performance processors typically
installed in data centers. We define the SMT Efficiency metric as the ratio of the execu-
tion time an ML workload takes running in single-threaded (ST) mode to the time taken
by the same application to execute in SMT mode (see Eq. 1). The execution time of a

Page 5 of 29Pons et al. Journal of Big Data (2024) 11:152

given workload is defined as the time used to complete the evaluation of an ML method
on an individual dataset.

In ST mode, each core runs a single thread from the workload, and in SMT mode, as
many as the number of supported threads (e.g., two threads per core with Intel Hyper-
Threading). Thus, in SMT mode, much fewer cores are needed. For instance, with Intel
Hyper-Threading, just half the number of cores is required. Nevertheless, overall Proces-
sor Throughput improves as expressed in Eq. 2.

For example, as stated in Eq. 1, if the SMT efficiency is 0.8, it means that the performance
is 1

0.8 = 1.25 higher in ST mode than in SMT mode. However, the processor throughput
(i.e., the performance per core) is 0.8× 2 threads/core = 1.6 times higher in SMT mode.

Existing solutions
There are few works [28–33] that analyze the impact of CPU microarchitecture on the
performance of machine learning workloads.

One of the first works [28] analyzes the performance of a machine learning workload
parallelized with OpenMP running on an Intel Pentium 4 processor supporting Hyper-
Threading. This paper focuses on understanding the performance of genetic-related
machine learning workloads (SNP or single-nucleotide polymorphisms) and the under-
lying reasons behind that performance. However, the architecture of the processor used
in this work is outdated, and many improvements have been included in new processor
generations.

In [29], the authors present a comprehensive performance analysis of machine learn-
ing algorithms on the Apache Spark platform. Some of the algorithms used, Logistic
Regression and Decision Tree, have also been used in this work. They identify bottle-
necks at the microarchitectural level following Intel’s Top-Down performance analysis
[34] and propose solutions to address the discovered performance issues. Unlike this
work, the focus is software-oriented, as the authors identify the functions and high-level
functions responsible for producing such bottlenecks. In addition, they study the effec-
tiveness of Hyper-Threading (Intel’s SMT implementation), concluding that it should be
enabled when running ML workloads.

Prieto et al. [30] perform an architectural analysis of how effective a set of DNN mod-
els use the underlying hardware. The analysis is performed following Intel’s Top-Down
performance analysis. The authors conclude that bottlenecks are found both in the core
and the memory, highlighting that adding more FP units is essential to improve the per-
formance of some DNN applications. Unlike our work, they do not study the effect of
Hyper-Threading.

Focusing on parallelism, in [31], authors analyze the performance impact of key set-
tings of a popular machine learning framework, Tensorflow, and quantify the role
of parallelism. They observe that SMT or Hyper-Threading does not improve per-
formance significantly, especially on those workloads bottlenecked by the fused

(1)SMT Efficiency =
Execution Time in ST mode

Execution Time in SMT mode

(2)Processor Throughput = SMT Efficiency× #Threads per Core

Page 6 of 29Pons et al. Journal of Big Data (2024) 11:152

multiply-accumulate (FMA) units, which are shared between threads running in the
same core. They propose a set of guidelines to achieve higher training and inference
speedups, outperforming the performance improvements obtained with the settings
recommendations from Intel and TensorFlow for the studied framework. Among these,
they propose placing threads from the ML applications and from the framework oper-
ator to share the same core. However, as experimental results will prove in this work,
some ML worker threads can share the core without barely experiencing performance
degradation.

In [32], a survey of techniques for optimizing deep learning applications on CPUs is
presented. The survey identifies CPUs’ strengths and weaknesses in the field of deep
learning. Regarding Hyper-Threading, it performs a small analysis, identifying that
it increases the latency in some of the layers of the evaluated neural networks, espe-
cially when SIMD hardware needs to be time-multiplexed between the running threads.
It summarizes several optimization techniques proposed for inference and training in
mobile, desktop/server, and distributed systems.

Finally, some studies have considered energy consumption when running machine
learning workloads. In [33], a comprehensive study is conducted on the power behav-
ior and energy efficiency of CNNs and training frameworks on CPUs and GPUs. The
authors provide a detailed workload characterization to facilitate the design of energy-
efficient deep learning solutions. Among the studies features, they study the effect of
Hyper-Threading, concluding that it does not significantly affect power consumption.
However, in some applications, it increases the execution time and, thus, the energy
consumption.

Proposed solution
This paper provides sound knowledge that helps understand why SMT efficiency is
almost perfect in some ML workloads and why it drops in others. This is done by follow-
ing a refinement approach that covers a wide range of key architectural concepts.

The analysis starts from a high-level perspective to go step-by-step into the core
microarchitecture. This is done in a simple way that helps the reader to slowly introduce
to complex architectural mechanisms.

Firstly, classical metrics such as the IPC in SMT mode (quantified both per core and
per thread) and in ST mode are studied. Comparing both IPCs offers an overall overview
of SMT efficiency. These throughput metrics are strongly connected to low-level archi-
tectural metrics, such as the issue port utilization. For instance, an IPC of 3 instructions
per cycle means that, on average, at least,1 three issue ports are used per cycle. However,
by looking at the issue ports, one can know which type of functional units require the
workload and if some of them are being overused or underused by these workloads.

This way of proceeding helps the reader to get introduced step by step into the micro-
architecture. However, the study does not solve the problem yet. After that, the approach
goes deeper into the hardware to identify the major backend core components that
prevent twice the number of instructions in SMT mode from progressing in order to

1 Since some instructions are mispeculated.

Page 7 of 29Pons et al. Journal of Big Data (2024) 11:152

achieve a high SMT efficiency. In this regard, the approach classifies instructions accord-
ing to the functional units they use (e.g., integer ALU, FP scalar double, etc.). After that,
it is investigated if there is a relationship between the type of instructions each workload
executes and a drop in the SMT efficiency. We found that there is a strong relationship
with the FP scalar double instructions. This observation led us to an important finding:
the number of issue ports having attached FP scalar double functional units should be
increased to boost both the SMT efficiency and the performance of some ML workloads.

Nevertheless, this finding does not explain all the workloads presenting low SMT
efficiency. We then looked at the core’s caches (L1 and L2) as they are shared by the
two threads running in the same core. We found that, indeed, the cache perfor-
mance dropped in some workloads when running two threads due to the inter-thread
interference.

To the best of our knowledge, this is the first time that ML workloads are studied in a
commercial processor through a rigorous measurement methodology that only makes
use of the performance events available in the machine, providing insights on the design
of future processors to boost the performance of these workloads.

Elaboration
This section evaluates the SMT efficiency of machine learning workloads running two
threads per core with respect to ST execution using twice as many cores. To understand
the efficiency obtained by different workloads, we perform two main studies:

• A throughput-oriented analysis from two perspectives: committed instructions per
cycle (IPC) and issue ports utilization.

• An interference analysis to identify potential performance bottlenecks in SMT mode,
both in the functional units and processor caches.

Before presenting the results, a detailed description of the ML workloads used in this
work, as well as the experimental setup, is provided.

ML Workloads

There exists a wide set of ML algorithms that are typically evaluated using different data-
sets. The algorithm used depends on many factors, like the function to be performed
(e.g., classification or regression) or the size of the dataset. On the other hand, there are
many publicly available benchmark datasets [35–38], but their widely different organiza-
tions and formats imply that significant pre-processing efforts are required before they
can be used with ML algorithms [39]. Furthermore, many of the published benchmarks
present similar features, which can make it difficult to represent a sufficiently diverse
range of data science problems. In addition, some repositories like Kaggle [36], and
OpenML [37] are not designed specifically for comprehensive ML benchmarking but
rather focus on collaboration to solve data science problems.

In this work, we evaluate a subset of popular machine learning algorithms following
the methodology to evaluate the PMLB benchmarks described in [40]. To carry out the

Page 8 of 29Pons et al. Journal of Big Data (2024) 11:152

experiments, we have used the code2 from scikit-learn benchmarks [41] which provides
the implementation of ML supervised methods to evaluate their performance using
Python Scikit-learn library [42]. The original code has been adapted to suit the men-
tioned methodology (further details can be found in Appendix A.2).

Below, a detailed description of the algorithms and datasets used is provided.

Classification algorithms

We evaluate the performance of four standard statistical ML supervised classification
methods [43, 44], which present different characteristics and are used in the real world
for different purposes:

Decision Tree Classifier The decision tree classification algorithm classifies the values
of a target variable based on a set of input features. It creates a model in the form of a
tree structure, with internal nodes representing features, branches representing decision
rules, and leaf nodes representing outputs (classes). The algorithm works by recursively
partitioning the data into smaller subsets based on the values of the attributes.

K-Nearest Neighbors (K-Neighbors) Classifier The k-nearest neighbors classification
algorithm works by storing all available cases and classifying new cases based on a simi-
larity metric (usually distance functions). A case is assigned to the most common class
among its K-nearest neighbors. K-Neighbors is particularly useful for cases where the
decision boundary is not clearly defined. One limitation of this learning method is that
it can be computationally expensive since it requires storing all the data and calculating
distances between the new case and all stored cases.

Linear Support Vector Classifier (SVC) The linear support vector classification algo-
rithm finds the hyperplane in N-dimensional space (N is the number of features) that
differentiates the data points of one class from the other. SVC is computationally inten-
sive and does not scale well with large datasets.

Logistic Regression The logistic regression algorithm provides a linear model that pre-
dicts the likelihood of a given classification with a set of input features. A prediction is
made using a function that maps the output of the linear model to a value between 0 and
1. This value is used to classify the input value into one of the predefined classes. The
goal is to find the best coefficients for the input features that minimize the difference
between the predicted classification class and the real one. Compared to the previous
classification algorithms, it is relatively simple and fast to train.

Datasets

In this work, we use several datasets from the Penn Machine Learning Benchmark
(PMLB) suite [40] to evaluate the machine learning algorithms. PMLB is a publicly avail-
able dataset suite hosted on GitHub that pursues to overcome the aforementioned short-
comings. PMLB includes classification and regression datasets from several well-known
ML benchmark suites, comprising over 200 datasets, and it seeks to help identify the
strengths and weaknesses of different ML algorithms.

2 Available at https:// github. com/ rhiev er/ sklea rn- bench marks

https://github.com/rhiever/sklearn-benchmarks

Page 9 of 29Pons et al. Journal of Big Data (2024) 11:152

Table 1 shows the details of the ten datasets used in this work, sorted by descend-
ing order of instances or values to classify. The computational time of the evaluated
ML algorithms is directly related to the number of instances, which represents the
values of the dataset. Features and classes denote the data attributes and the possible
values, respectively. The number of features and classes depends on the problem being
addressed. For instance, for the krkopt dataset, the features represent possible posi-
tions (White King file, White King rank, White Rook file, White Rook rank, Black King
file, and Black King rank) and the classes represent the game-theoretical values (draw,
zero, and one to sixteen).

To compare the performance of the ML methods, we have computed the accuracy [45]
(obtained from the score() method from Python Scikit-learn library) when running
with each dataset. Figure 2 shows the results. In general, all the applications achieve high
accuracy, with Decision Tree and K-Neighbors being the methods that have higher accu-
racy. The outlier points in Linear SVC and Logistic Regression correspond to krkopt
dataset, as these linear models are better suited for binary classification (two classes)
rather than multiclass datasets (see column Classes in Table 1).

Experimental setup

The machine used to evaluate the ML algorithms is equipped with an Intel Xeon Silver
4116 processor (Skylake-X microarchitecture), which features 12 Hyper-Threading cores

Table 1 Characteristics and description of the datasets from PMLB used in this work to assess the
ML algorithms

Dataset Instances Features Classes Description

krkopt 28056 6 18 Chess Endgame Database for White King and Rook against
Black King

Letter 20000 16 26 Identification of images as capital letters

Magic 19020 10 2 Particle shower measurements used to classify types of
radiation

Nursery 12958 8 4 Applications ranking for nursery schools

pendi-gits 10992 16 10 Pen-based recognition of handwritten digits

coil2000 9822 85 2 Insurance company benchmark (COIL 2000) information
about customers

Agaricus lepiota 8145 22 2 Features of mushrooms in agaricus-lepiota family

Mush-room 8124 22 2 Mushroom records drawn from The Audubon Society Field
Guide to North American Mushrooms

Ring 7400 20 2 Piston ring diameter data

ann thyroid 7400 21 3 Patient information concerning Hyperthyroidism

Fig. 2 Accuracy distribution for the studied ML methods and datasets

Page 10 of 29Pons et al. Journal of Big Data (2024) 11:152

(i.e., two execution threads per physical core). Regarding the memory hierarchy, each
core has private 64-KB L1 (32-KB instruction and 32-KB data) caches, a private 1-MB
L2 cache, and all cores share a 16.5-MB L3 cache. The main memory consists of 4 chan-
nels, each one equipped with 1 DIMM DDR4 2400 MT/s with a total storage capacity of
64GB. The OS installed is Ubuntu 18.04 LTS with kernel version 5.4.

SMT efficiency results

We first evaluate the SMT efficiency of the studied ML workloads to quantify the perfor-
mance of executing ML workloads in SMT cores compared to ST execution, which uses
twice as many cores. Figure 3 presents the results for the four studied learning methods.
It can be appreciated that Decision Tree and K-Neighbors achieve an SMT efficiency
above 90% on average and almost 100% in some datasets like krkopt and letter.
This is surprising since the SMT executions achieve these values with half the number
of cores than the ST execution. A lower SMT efficiency is achieved in Linear SVC and
Logistic Regression, but the average is still around 80%. The SMT efficiency in Linear
SVC presents minor changes regardless of the studied datasets. In contrast, the SMT
efficiency achieved by Logistic Regression presents significant deviations, ranging from
75% to 86%, depending on the studied dataset.

Next, we delve into providing insights regarding the distinct workload behaviors from
a microarchitectural point of view. Multiple options have been explored. We first study
basic throughput metrics that corroborate that an individual core is not able to sustain
the per-thread performance when running two threads.

Fig. 3 SMT efficiency results for the studied ML methods and datasets

Page 11 of 29Pons et al. Journal of Big Data (2024) 11:152

Throughput analysis

SMT processors are throughput-oriented processors, meaning that they allow increasing
the number of executed instructions per cycle over single-threaded processors. In this
section, throughput is analyzed from two main perspectives: committed instructions per
cycle and issue port utilization.

IPC evaluation

The processor throughput is commonly quantified in terms of committed instructions
per cycle or IPC. SMT processors increase throughput over ST processors since they
execute instructions from multiple threads in the same cycle.

From a performance perspective, an SMT processor can be seen to behave as ideal for
a given workload when its SMT efficiency is 1 or close to 1 for such a workload. For this
situation to happen, the core throughput in SMT mode should double the throughput of
a core when running in ST mode. In other words, the core should double the IPC as it is
able to execute twice as many instructions when running in SMT mode than in ST mode
for the same amount of time.

Figure 4 shows the IPC calculated as the quotient of the following performance events:

The graphs plot the IPC obtained by each workload in ST mode (IPC-ST) and SMT
mode. Two IPCs, per thread (IPC-thread-SMT) and per core (IPC-core-SMT), are pre-
sented for SMT mode. For a single core, the IPC per thread corresponds to the average

Fig. 4 Average IPC results for the studied ML methods and datasets. Results in SMT are provided both per
logical core (thread) and physical core (core)

Page 12 of 29Pons et al. Journal of Big Data (2024) 11:152

IPC for both threads running on the core, and the IPC per core to the sum of the IPC
of both threads. Comparing Figs. 3 and 4, it can be observed that in those workloads
where IPC-thread-SMT matches IPC-ST, the SMT efficiency is close to ideal (1). This
was expected as it means that the SMT architecture behaves ideally with respect to ST
mode since it is able to double the IPC over ST mode. This happens, for instance, in
Decision Tree with krkopt dataset.

In contrast, it can be appreciated that in the aforementioned workloads where the
SMT efficiency is around 80%, the IPC-thread-SMT drops around 20% over IPC-ST.
For instance, K-Neighbors with the dataset magic or nearly all the datasets of Logistic
Regression present this behavior.

Architectural analysis at port level

The previous discussion can be seen as a high-level analysis; however, a lower-level anal-
ysis is required to understand why SMT efficiency is over 95% across most of the stud-
ied datasets in Decision Tree and K-Neighbors. This section analyzes the utilization of
the issue ports to identify if any ports are preventing the processor from achieving a
high SMT efficiency. Before presenting the analysis, the architectural issue ports of our
experimental platform are described.

Architectural Ports Description
Figure 5 presents a block diagram with the eight issue ports and the attached func-

tional units of our experimental Intel Skylake-X processor: four ports are devoted to
arithmetic-logic operations (ports 0, 1, 5, and 6), and the other four to the load/store
unit. Arithmetic ports have attached multiple functional units, especially ports 0 and
1. Regarding the load/store unit, two ports are used for load operations (including the
address generation unit (AGU) and load data), and the other two are used for store
operations (AGU and store data). In this way, the design balances arithmetic operations
with memory accesses, replicating the most critical functional units (e.g., integer and
load) used by typical workloads to avoid these ports becoming potential performance
bottlenecks.

Effective Issue Width Utilization
In order to double the IPC per core in those workloads exhibiting high SMT efficiency,

the issue ports need to be used twice as long. On the contrary, port utilization would be

Fig. 5 Issue ports of the Intel Skylake-X microarchitecture

Page 13 of 29Pons et al. Journal of Big Data (2024) 11:152

less for low-efficiency workloads. This fact can be studied from two main perspectives:
the distribution of the effectively used issue ports and the port utilization. The focus of
this section is on the first perspective.

The studied processor can issue up to four instructions (issue width) per cycle. So,
the distribution function quantifies the fraction of time 0, 1, 2, 3, and 4 instructions are
issued. To this end, we looked into the available performance counters and found a set of
interesting performance events in this regard. Below, we list the hardware events and the
publicly available description, where i is a value ranging from 1 to 4:

Figure 6 presents the results3 for ST and SMT modes normalized with respect to
the cycles in ST. For each workload, two columns are shown; the first corresponds
to the results obtained in ST mode, and the second to those obtained in SMT mode.

Fig. 6 Average fraction of cycles (normalized to the cycles obtained in ST mode) per logical core where 0, 1,
2, 3, and 4 µops are executed in all ports for ST (left sidebar) and SMT (right sidebar) modes

3 Results only refer to the time the issue queue is not empty.

Page 14 of 29Pons et al. Journal of Big Data (2024) 11:152

Results for SMT are averaged and presented on a per-thread level so they must be
multiplied by two to obtain the equivalent value per core. For instance, if 20% of the
time, four instructions are issued per thread (upper slice of the bar), then 40% of the
time, the core issues four instructions as it hosts two threads. As results are normal-
ized over ST cycles, the higher the SMT bar, the lower the SMT efficiency. In the case
of an ideal SMT efficiency, the height of the SMT bar is equal to 1. It can be observed
that in high SMT efficient workloads, not only are the bar heights similar, but also the
heights of the slices, especially for a high number of instructions (e.g., 4). Notice that
this means that the processor in SMT mode is able to work at its maximum issue rate
for twice as long as in ST mode, which is averaged per thread. In contrast, in low SMT
efficient workloads, slices 1 and 2 grow while slice 4 significantly decreases.
Individual ports utilization This section explores whether there is any issue port
limiting the processor from achieving a high SMT efficiency in those workloads with
lower SMT efficiency. For this purpose, we analyzed the utilization of the eight issue
ports of each core. Figure 7 presents the results for both ST and SMT modes for the
studied workloads in a stacked manner. In other words, each bar plots the sum of the
eight issue ports’ utilization; thus, eight is the maximum value. For a given port, the
utilization has been computed as the fraction of cycles the port has been used with
the performance counters listed below, where X is the port number that ranges from
0 to 7.

Fig. 7 Cumulative average port utilization per physical core for ST and SMT modes (one bar for each one)

Page 15 of 29Pons et al. Journal of Big Data (2024) 11:152

In the case of SMT mode, the utilization is the sum of the utilization for both threads.
Notice that to reach an ideal SMT efficiency, the execution time (i.e., cpu_clk_
unhalted.thread performance counter) should be similar to that obtained in ST
mode. Since two threads are executed in the same SMT core, the port utilization in SMT
mode should be twice as large as in ST mode, and so the height of the bar. Three main
observations can be drawn:

1. The port utilization grows according to the SMT efficiency. For instance, in those
workloads having an SMT efficiency of 0.8, the port utilization rises in a 1.25 (10.8)
factor in SMT over ST mode.

2. A relatively high value of the port utilization in ST mode (e.g., over 0.4) does not
necessarily incur a low SMT efficiency. In fact, all datasets executed with the Deci-
sion Tree method and some workloads of K-Neighbors present relatively high val-
ues in some ports while achieving a high SMT efficiency. This claim can be better
observed in Fig. 8, which plots, for illustrative purposes, the utilization of port #6
(INT ALU Branch) as it is one of the most used in both ST and SMT modes. As
it can be seen, the workloads with the highest SMT efficiency (the plots in the top
row) are close to doubling the utilization of this port (e.g., Decision Tree with dataset
krkopt), whereas the ones with poorer efficiencies obtain a more modest port-6
increase with respect to ST execution.

Fig. 8 Port with the highest utilization for ST and SMT, which corresponds in all cases to port 6

Page 16 of 29Pons et al. Journal of Big Data (2024) 11:152

3. There are some workloads, like K-Neighbors, where the six rightmost datasets
achieve high efficiency with a very low port utilization (none of them exceed 0.25)
in SMT mode, which means there is still room in the processor for improving per-
formance in the core. In other words, if the processor had supported four threads, a
good SMT efficiency would likely have been achieved.

Takeaway i) the utilization of the different ports grows at the same rate when execut-
ing in SMT mode, ii) a relatively high port utilization (e.g., over 0.35) in ST execution
does not prevent the system from achieving a high SMT efficiency, and iii) there is still
room for the core to boost the performance if it supported more threads as the utiliza-
tion of the most-used issue port is below 2/3 in most workloads.

Interference analysis

As concluded in the throughput analysis, a high utilization of the issue ports does not
necessarily imply a low SMT efficiency. In fact, in some cases, a utilization over 0.9 led to
an SMT efficiency of over 0.95. This makes sense, as a port is used in only one cycle for
each executed instruction. Thus, performance losses do not appear because of port con-
tention. This observation led us to move behind the issue ports and focus the research
on identifying the major components of the processor backend that are preventing the
core from reaching a high SMT efficiency: functional units contention and core caches
(i.e., L1 and L2).

Functional units

This section looks into the available functional units to identify contention due to pos-
sible structural hazards. To this end, we first classified the retired instructions into four
main categories according to the functional unit they use (floating point, load and store,
branches, and integer). After that, we refined each group as much as possible, consider-
ing the available performance counters. Below, we list these groups and the performance
counters that are used.

• Floating-Point Operations Floating-point (FP) operations are used to define the
performance of computers (e.g., FLOPS) since they are computationally expensive.
FP numbers are represented in 32-bit single-precision and 64-bit double-precision
IEEE-754 formats. FP operations instructions are also executed using vector process-
ing, and the vector size ranges from a 32-bit single scalar operand to 512 bits (e.g., 16
32-bit single precision operands). In this regard, Intel provides the following perfor-
mance counters:

Page 17 of 29Pons et al. Journal of Big Data (2024) 11:152

• Load and Store Operations. These operations quantify the read and write accesses
performed to the cache memory, which can be computed with the following perfor-
mance events:

• Branch Operations. Branches, depending on the branch predictor accuracy, can
impact the processor throughput due to speculative execution. The number of
branch instructions retired can be measured with the following performance event:

• Integer Operations. These instructions perform mathematical operations with inte-
ger values. Unlike FP operations, Intel does not provide specific performance events
to quantify these instructions. However, having quantified all the other types of
instructions, we assume that the integer operations constitute the remaining instruc-
tions that do not fall under one of the previous categories.

Figure 9 shows the fraction of instructions corresponding to each of the above cate-
gories for the studied workload. To have further insights, the FP operations have been
further divided into scalar (vector size equal to one) or vector (vector size greater
than one), and in turn, into single and double precision. For each workload, two bars

Page 18 of 29Pons et al. Journal of Big Data (2024) 11:152

are shown: the first corresponds to the execution in ST mode, and the second to SMT
mode. To ease the analysis, the SMT efficiency is plotted on the Y-right axis.

Several observations can be made. Firstly, none of the studied workloads presented
single-precision FP instructions (i.e., FP_scalar_single and FP_vector_single events
count zero); thus, they are not shown in any of the graphs.

Some workloads present a significant fraction of double-precision FP instructions,
either scalar or vector. In particular, those workloads experiencing low SMT efficiency
(below 0.8) present a significant fraction of FP_scalar_double instructions. This hap-
pens in all the datasets in Linear SVC, magic and ring in Decision Tree, magic
and nursery in K-Neighbors, and krkopt and letter in Logistic Regression. This
means that structural hazards happen in these functional units, probably because
these FP operations (especially multiplication and division operations) are time-con-
suming and are unlikely to be fully pipelined. Regarding the remaining instruction
types (Integer, Branch, Load, and Store), all the studied workloads present a similar
magnitude. On average, 35% of the instructions retired perform integer operations,
25% perform branch operations, 25% perform load operations, and 10–15% perform
store operations.

Finally, notice that FP_scalar_double instructions do not explain the low SMT effi-
ciency in all the workloads. For instance, in Logistic Regression, most data sets with
just a few exceptions (e.g., krkopt and letter) barely present any FP_scalar_dou-
ble instructions. Despite this fact, they achieve a low SMT efficiency, which means

Fig. 9 Breakdown of retired instructions into categories according to the functional unit they use, for ST (left
bar) and SMT modes (right bar)

Page 19 of 29Pons et al. Journal of Big Data (2024) 11:152

that there is another functional unit, other than the FP unit, that is hindering the per-
formance of these datasets.

Memory resources

From the core resources (functional units) analysis, we have concluded that structural
hazards due to FP operations can significantly lower SMT efficiency. However, some
workloads executed with Decision Tree or Logistic Regression experience a drop in
SMT efficiency despite barely having FP instructions. Therefore, we looked into the
memory resources to see if they bottleneck the performance. More precisely, as both
threads share the L1 cache within the core, it is likely that the relatively small size of
this cache affects the miss ratio of the co-running threads and, therefore, their perfor-
mance. In addition, the L2 cache was also investigated, as this cache is also shared by
the threads running in the same core.

Figure 10 shows the average misses per kilo instruction (MPKI) for these caches
computed with the performance counters listed below.

Fig. 10 Average Misses per kilo instruction (MPKI) of the L1 data cache and L2 cache per logical core for ST
and SMT modes (one bar for each one)

Page 20 of 29Pons et al. Journal of Big Data (2024) 11:152

For each workload, results are shown for ST mode (left bar) and SMT mode (right
bar). The SMT efficiency is also plotted (Y-right axis) to ease the analysis. It can be
appreciated that those workloads that achieve very high SMT efficiency (over 0.9) pre-
sent low MPKI at both cache levels (sum less than 10) and barely increase the number
of misses when running in SMT mode compared to ST mode. In some workloads, like
in nursery with Decision Tree or krkopt with K-Neighbors, the MPKI per thread
barely decreases in SMT mode, possibly because both threads in the same core share
the part of the dataset and the lack of cache space is not an issue as very few misses are
observed.

Those workloads that experience a negligible number of FP instructions but a rela-
tively low SMT efficiency show a high difference in the height of the bars between ST
and SMT. Examples are coil2000 with Decision Tree and most datasets executed with
Logistic Regression. In the former case, the MPKI of L1 and L2 caches increases over
5% and 70%, respectively. In Logistic Regression, the average increase is 40% for the L1
cache and over 25% for the L2 cache.

Finally, workloads like Linear SVC with most of the datasets experience both a sig-
nificant fraction of FP instructions and a noticeable MPKI difference (in percentage)
between the ST and SMT bars.

Takeaway High pressure on the core’s caches (L1 and L2), the FP units’ structural haz-
ards, or both can significantly impact the SMT efficiency.

Performance of 4th generation intel xeon processors

So far a 1 st generation of the Intel Xeon Scalable processor has been used to obtain the
results. However, processors evolve in each microprocessor generation, including new or
enhanced microarchitectural features. For comparison purposes, this section evaluates
the ML applications in an Intel Xeon Gold 6438Y+, that is, a 4th generation (launched in
Q1, 2023) Intel Xeon Scalable processor. This processor presents important microarchi-
tectural advances like increased ROB size, more issue ports, and larger cache sizes.

To illustrate how last-generation processors perform on ML workloads, the results for
Linear SVC with the same datasets are shown. This ML method has been chosen as it
presents, on average, the lowest SMT efficiency. Thus, the objective is to analyze if this
new processor allows for the achievement of higher SMT efficiency results.

To analyze the impact of the microarchitectural evolution, the applications have been
executed under the same conditions regarding the number of processor cores (12) and
CPU frequency (2.10 GHz). We would like to mention that this is the base frequency of
the 1st generation platform, which ranges from 800 MHz to 3.0 GHz, while the fourth-
generation platform ranges from 800 MHz to 4.0 GHz. Figure 11a shows the speedup
results in terms of the execution time obtained in the 4th generation processor (4th gen)
compared to that obtained in the 1st generation processor (1st gen). Counterintuitively,
only six out of the ten tested datasets improve their performance when executed in
the 4th-gen processor. In general, higher improvements are obtained in these applica-
tions when running in ST mode (12 cores). Per contra, SMT manages to obtain a higher
speedup in applications with worse performance.

To analyze how the SMT performs in the 4th-gen processor, Fig. 11b shows the
comparison of the SMT efficiency obtained for Linear SVC in 1st-gen and 4th-gen

Page 21 of 29Pons et al. Journal of Big Data (2024) 11:152

processors. Those applications that obtained the highest speedup (krkopt, letter,
and pendigits) obtain worse SMT efficiency. However, the applications that did not
improve their performance in the 4th-gen processor (agaricus, mushroom, ring
and ann_thyroid) significantly improve their SMT efficiency.

To provide further insights into why some applications improve while others do not,
we have analyzed the utilization of the different functional units. The 4th-gen processor
includes new performance events that help with this task. For instance, the number of
FP µops executed in each of the issue ports that are attached to FP units:

Figure 12 shows the values obtained for the three above performance events. Those
applications that dispatch a higher number of FP operations (krkopt, letter, pen-
digits and coil2000) correspond to those that 1) obtained better performance

Fig. 11 Comparison of the performance obtained when running Linear SVC in 1st and 4th Generation
Intel Xeon Scalable processors with 12 cores. Notice that only the microarchitecture is being compared as
the frequency has been fixed to the base of the 1st generation. The 4th Generation always outperforms if
technological aspects (frequency) are also considered

Fig. 12 FP µOPs executed when running Linear SVC in the 4th gen. processor

Page 22 of 29Pons et al. Journal of Big Data (2024) 11:152

(speedup) and 2) showed a lower SMT efficiency in the 4th-gen processor. Notice that
this newer processor has a total of 32 cores, and the results show the values correspond-
ing to experiments where only 12 cores (and 6 in SMT mode) were used, the same num-
ber of cores as the 1st-gen processor.

Therefore, to obtain better performance, more cores should be assigned to those appli-
cations that make use of the FP units. To test this claim, we run the applications with 32
cores (ST mode) and 16 cores (SMT mode). Figure 13 shows the results of the SMT effi-
ciency obtained, which is almost perfect in all the cases, proving the high computational
power of this new processor.

Takeaway New-generation processors provide architectural enhancements (higher
core count, more FP units) that are able to provide an almost perfect SMT efficiency of
ML applications.

Conclusions
This paper has evaluated multi-threaded machine learning workloads in a recent Intel
server processor with Hyper-Threading technology. Keeping the number of threads con-
stant, we have analyzed the SMT efficiency achieved with only half of the number of
processor cores. Two main findings have been found, elaborated next.

First, last-generation SMT processors are excellent candidates for executing ML work-
loads as they achieve high SMT efficiency. Effectively, the designed experiments reveal
that the performance per core (IPC and port utilization) significantly grows over 80%
in some workloads (e.g., Linear SVC and Logistic regression) or almost double in others
(e.g., Decision Tree). This is achieved because, counter-intuitively, the issue port utiliza-
tion is not a problem in most workloads. None of the ports presents a utilization above
0.35 when executing in SMT mode.

Second, looking into the functional unit utilization, we found that two major processor
resources can potentially act as the major performance bottleneck in some ML work-
loads in last-generation processors when running in SMT execution mode: i) the FP sca-
lar double functional unit, and ii) the L1 and L2 processor caches.

Finally, we claim that because the issue port utilization is low in high SMT-efficient
workloads, there is still room to increase the multithreading level to support more
threads in current processors. As comparative experimental results illustrate, this

Fig. 13 SMT efficiency when running Linear SVC with 32 cores (all the available cores) in the 4th gen.
processor

Page 23 of 29Pons et al. Journal of Big Data (2024) 11:152

finding has been correctly addressed in the recent Q1–2023 Intel Xeon Golden Cove
processor, which deploys three FP double-issue ports.

To the best of our knowledge, this is the first work identifying the critical issue ports
when running ML workloads that should be improved (e.g., replicated) for performance
boosting from an SMT-efficiency perspective and validating the claim through experi-
mental results. The proposed analysis can be replicated in a different processor if the
corresponding performance events are available. For instance, all Intel Xeon processors
have similar performance events. Regarding processors from other architectures, AMD
EPYC processors provide similar performance events (e.g., number of µops dispatched
to the different execution units) that could be used analogously.

In summary, the elaborated findings are aimed at helping processor designers boost
the performance of ML workloads in next-generation processors. In this regard, the
processor caches (especially the L1 DCache) should be made larger, and the FP double-
functional unit’s performance should be boosted by adding more powerful and/or more
FP double-functional units.

Experimental methodology: detailed steps
This appendix details the steps followed to set up and run the ML methods and datasets
used in this work to ease experimental replicability. In addition, a shell script is provided
to run the experiments and obtain the results shown in Sect. 6.

PMLB Installation

One major strength of PMLB is its easy installation and its user-friendly interface for
datasets. Additionally, unlike other benchmark suites [46, 47], it does not rely on the
usage of any external framework, which eases the experimental setup.

To install and use PMLB,4. the user first needs to download the PMLB Python wrapper
using the pip package installer:

Once installed, to access the datasets, the user must use the fetch_data function
from pmlb. Below, we show an example of a small Python program that reads all the
available classification datasets and prints the description of each one of them:

Obtaining datasets in this way avoids downloading and storing the datasets locally,
which occupy tens of GBs.

4 Full instructions available at https:// github. com/ Epist asisL ab/ pmlb.

https://github.com/EpistasisLab/pmlb.

Page 24 of 29Pons et al. Journal of Big Data (2024) 11:152

ML workloads evaluation

In this work, we have followed the methodology to evaluate the PMLB benchmarks
described in [40]. To carry out the experiments, we have used the code5 from scikit-learn
benchmarks [41] which provides the implementation of ML supervised methods to eval-
uate their performance using Python Scikit-learn library [42]. The original code has been
adapted to suit the mentioned methodology.

Firstly, data is preprocessed as datasets provided in PMLB are not scaled nor normal-
ized, and some ML methods like K-Neighbors require data to be scaled. To this end, the
features are scaled by subtracting the mean and then scaling them to the unit variance:

Once datasets are scaled, each ML method is evaluated by performing a 10-fold cross-
validation [48]. Since in this work, we aim to study multithreading efficiency, we have
modified the original code so that the cross-validation is performed by launching as
many processes as available cores by adding n_jobs=-1 parameter:

After the single-threaded preprocessing is complete, a file named STARTED is created
to signal the start of the parallel computation. Similarly, a file named FINISHED is cre-
ated to indicate that the ML method evaluation has ended:

Running the experiments

Given the large number of experiments to perform, it is of paramount importance to
automate the execution, monitoring, and data collection of experimental results.

5 Available at https:// github. com/ rhiev er/ sklea rn- bench marks.

https://github.com/rhiever/sklearn-benchmarks.

Page 25 of 29Pons et al. Journal of Big Data (2024) 11:152

For this purpose, we have created a shell script that allows running a given ML method
with a list of datasets and monitoring the performance. Figure 14 presents this script’s
code for the specific Logistic Regression case. Note that this script can be used for any
other algorithm by changing the name of the file to be executed6 (in this case Logis-
ticRegression.py) in line 25. The different parts of the script are described in the
following subsections.

Variables and Functions Declaration The top part of the script in Fig. 14 defines the
variables to be used:

• DATASETS. List of datasets to be processed by the ML method. Notice that the
DATASETS variable is defined by the first command-line argument passed to the

Fig. 14 Example of the shell script used to launch the experiments for the Logistic Regression algorithm

6 PATH should be replaced by real the file path.

Page 26 of 29Pons et al. Journal of Big Data (2024) 11:152

script. We use the YAML7 language to detail the list of datasets. Figure 15 shows
an example of the YAML file format with the list of the ten datasets analyzed in this
work.

• INI_REP and MAX_REP. Number of repetitions of the experiments to be per-
formed. Experiments have been repeated a minimum of 3 times until the results pre-
sent minor variations (less than 5%) among three consecutive repetitions.

• EVENTS. List of performance events to be monitored. For illustrative purposes,
Fig. 14 includes the names of the events corresponding to the number of instruc-
tions retired (inst_retired.any) and the number of execution cycles when the
thread is not halted (cpu_clk_unhalted. thread). The names of all the avail-
able performance events can be obtained by executing the perf list command
or in the manuals of the processor’s microarchitecture. Section 6 details the perfor-
mance events that need to be monitored to calculate the analyzed metrics.

• QUANTUM. Length of quantum in milliseconds.
• CORES. List of logical cores where the workload will be executed. For ST experi-

ments, all 12 cores in our experimental platform (from 0 to 11) have been utilized.
For SMT, half of the physical cores have been used so that the same amount of logi-
cal cores (i.e., threads) are available to the workload. The file /proc/cpuinfo pro-
vides logical to physical core mapping information.

Finally, the top section of the script also defines the function join_by, which extracts
the names of the datasets from the lines of the YAML file by removing special characters
and spaces.

Environment Preparation The next step performed by the script is preparing the execu-
tion environment. To this end, it creates two folders named data and run to store the
data collected from the performance counters and the output from each experiment,
respectively.

Then, it sets the processor frequency to its base frequency (lines 11 and 12), which is
2.10GHz in our experimental platform. Although the system allows running in higher fre-
quencies, the base frequency has been selected to ensure the machine does not overheat.
Otherwise, if a higher frequency is set and the processor overheats, the OS automatically
throttles the clock frequency until the temperature drops and is within the allowed thresh-
old, after which the frequency will be raised again to reach the configured value. These

Fig. 15 Example of the YAML file with the list of datasets

7 http:// yaml. org/.

http://yaml.org/.

Page 27 of 29Pons et al. Journal of Big Data (2024) 11:152

fluctuations in the working frequency cause significant variations in the results; thus, we
avoid them by setting the frequency to the base value.

Execution Main Loop Once the environment has been prepared, the experiments are exe-
cuted. Two nested loops are used to iterate over all the datasets in the YAML file (line 15)
for the number of repetitions defined (line 14). In each iteration, the first step is to run the
ML algorithm (i.e., Logistic Regression in the figure) with the dataset ${DS}. The com-
mand taskset is used to set the workload affinity to the specified cores (${CORES}).

As we want to evaluate the parallel computation of ML workloads, we do not start moni-
toring the workload from the start of its execution but after the STARTED file has been cre-
ated (line 27) because the creation of this file signals the start of the parallel computation.
To monitor the hardware performance counters, we use perf stat command (line 31).
Since an ML algorithm spawns many processes during its execution to perform the paral-
lel computation, and the creation of these processes cannot be easily monitored, we opt to
perform monitoring at a logical core level (-C ${CORES}). Note that the monitoring is
performed every quantum period (-I ${QUANTUM}).

Performance counters are sampled until the shell script detects a file named FINISHED
has been created (line 34). When this occurs, the execution time is recorded in a file inside
the data folder (lines 36–38), and the Perf process is killed to stop monitoring the perfor-
mance counters (line 41).

It is important to note that root privileges are needed to execute this script since actions
like reading the performance counters or fixing the processor frequency cannot be per-
formed with user-level privileges.
Acknowledgements
Not applicable.

Author contributions
All authors contributed equally to the work’s conception and design. Experimental evaluation, software development,
and workload installation were performed by L.P., M.N., and J.P. L.P. performed data collection and representation. J.S. was
responsible for the project administration, supervision, and data validation. J.S., M.E.G., and S.P. were responsible for the
funding acquisition and administration. All the authors contributed to the writing and reviewing of the manuscript.

Funding
This work has been supported by the Spanish Ministerio de Ciencia e Innovación and European ERDF under grants
PID2021–123627OB-C51 and TED2021–130233B-C32. Marta Navarro is supported by Subvenciones para la contratación
de personal investigador predoctoral by CIACIF/2021/413.

Availability of data and materials
Datasets from PMLB are publicly available at https:// github. com/ Epist asisL ab/ pmlb, as well as the code for classification
algorithms used https:// github. com/ rhiev er/ sklea rn- bench marks. Appendix A provides a detailed explanation to help
the reproducibility of the experiments conducted in this work.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

https://github.com/EpistasisLab/pmlb
https://github.com/rhiever/sklearn-benchmarks

Page 28 of 29Pons et al. Journal of Big Data (2024) 11:152

Received: 1 May 2024 Accepted: 13 October 2024
Published: 29 October 2024

References
 1. Eggers SJ, Emer JS, Levy HM, Lo JL, Stamm RL, Tullsen DM. simultaneous multithreading: a platform for next-genera-

tion processors. IEEE Micro. 1997;17(5):12–9.
 2. Feliu J, Eyerman S, Sahuquillo J, Petit S, Eeckhout L. Improving IBM POWER8 performance through symbiotic job

scheduling. IEEE Trans Parallel Dis Syst. 2017;28(10):2838–51.
 3. Feliu J, Sahuquillo J, Petit S, Eeckhout L. Thread isolation to improve symbiotic scheduling on SMT multicore proces-

sors. IEEE Trans Parallel Dis Syst. 2020;31(2):359–73.
 4. Thiyagalingam J, Shankar M, Fox G, Hey T. Scientific machine learning benchmarks. Nat Rev Phys. 2022;4(6):413–20.
 5. Hey T, Butler K, Jackson S, Thiyagalingam J. Machine learning and big scientific data. Philos Trans Royal Soc A.

2020;378(2166):20190054.
 6. Umer A, Mian AN, Rana O. Predicting machine behavior from Google cluster workload traces. Concurrency and

Computation: Practice and Experience, 2022;7559
 7. Coleman C, Narayanan D, Kang D, Zhao T, Zhang J, Nardi L, Bailis P, Olukotun K, Ré C, Zaharia M. Dawnbench: An

end-to-end deep learning benchmark and competition. Training. 2017;100(101):102.
 8. James S, Ma Z, Rovick Arrojo D, Davison AJ. RLBench: The robot learning benchmark & learning environment. IEEE

Robotics and Automation Letters;2020.
 9. Thiyagalingam J, Leng K, Jackson S, Papay J, Shankar M, Fox G, Hey T. SciMLBench: A Benchmarking Suite for AI for

Science 2021; https:// github. com/ stfc- sciml/ sciml- bench
 10. RedisAI: aibench 2020; https:// github. com/ Redis AI/ aiben ch
 11. Jiang Z, Gao W, Wang L, Xiong X, Zhang Y, Wen X, Luo C, Ye H, Lu X, Zhang Y. HPC AI500: a benchmark suite for HPC

AI systems. In: Proceedings of Bench, 2018;pp. 10–22. Springer
 12. Mattson P, Cheng C, Diamos G, Coleman C, Micikevicius P, Patterson D, Tang H, Wei G-Y, Bailis P, Bittorf V. Mlperf train-

ing benchmark. Proc Mach Learn Syst. 2020;2:336–49.
 13. Ketkar N, Moolayil J. Introduction to pytorch. In: deep learning with python, 2021;pp. 27–91. Springer.
 14. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M. {TensorFlow} : a system

for {Large-Scale} machine learning. In: Proceedings of OSDI, 2016;pp. 265–283
 15. Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A, VanderPlas J, Wanderman-

Milne S, Zhang Q. JAX: composable transformations of Python+NumPy programs. 2018; http:// github. com/ google/
jax

 16. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. 2015; arXiv preprint arXiv: 1512. 01274

 17. Ma Y, Yu D, Wu T, Wang H. PaddlePaddle: an open-source deep learning platform from industrial practice. Front Data
Comput. 2019;1(1):105–15.

 18. Blagojević V, Bojić D, Bojović M, Cvetanović M, Đorđević J, Đurđević Đ, Furlan B, Gajin S, Jovanović Z, Milićev D. A sys-
tematic approach to generation of new ideas for PhD research in computing. In: Advances in Computers 2017;vol.
104, pp. 1–31. Elsevier.

 19. Feliu J, Sahuquillo J, Petit S, Duato J. Addressing Fairness in SMT Multicores with a Progress-Aware Scheduler. In:
Proceedings of IPDS, 2015; pp. 187–196

 20. Singh JP, Weber W-D, Gupta A. SPLASH: stanford parallel applications for shared-memory. ACM SIGARCH Comput
Architecture News. 1992;20(1):5–44.

 21. Bailey D, Harris T, Saphir W, Van Der Wijngaart R, Woo A, Yarrow M. The NAS parallel benchmarks 2.0. Technical report,
Technical Report NAS-95-020, NASA Ames Research Center 1995.

 22. Dongarra JJ, Luszczek P, Petitet A. The LINPACK benchmark: past, present and future. Concurr Comput.
2003;15(9):803–20.

 23. Henning JL. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput Architecture News. 2006;34(4):1–17.
 24. Segal MR. Machine learning benchmarks and random forest regression 2004.
 25. Stallkamp J, Schlipsing M, Salmen J, Igel C. Man vs. computer: benchmarking machine learning algorithms for traffic

sign recognition. Neural Netw. 2012;32, 323–332
 26. Singh A, Thakur N, Sharma A. A review of supervised machine learning algorithms. In: Proceedings of INDIACom,

2016;pp. 1310–1315
 27. Maseer ZK, Yusof R, Bahaman N, Mostafa SA, Foozy CFM. Benchmarking of machine learning for anomaly based

intrusion detection systems in the CICIDS2017 dataset. IEEE Access. 2021;9:22351–70.
 28. Ge S, Song J, Lai C, Li E, Hu W, Tian X. Performance evaluation of SNPs machine-learning workload on Intel pentium

4 hyper-threading architectures. In: Proceedings of PDCS 2004.
 29. Cepillo JAM. A Microarchitectural Analysis of Machine Learning Algorithms on Spark. PhD thesis, University of

Toronto (Canada) 2017.
 30. Prieto P, Abad P, Gregorio JA, Puente V. Performance characterization of popular DNN models on out-of-order CPUs.

In: Proceedings of PACT, 2023;pp. 199–210.
 31. Wang YE, Wu C-J, Wang X, Hazelwood K, Brooks D. Exploiting parallelism opportunities with deep learning frame-

works. ACM Trans Archit Code Optim. 2021;18(1):1.
 32. Mittal S, Rajput P, Subramoney S. A survey of deep learning on CPUs: opportunities and co-optimizations. IEEE Tras

Neural Netw Learning Syst. 2022;33(10):5095–115.
 33. Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on CPUs

and GPUs. In: Proceedings of BDCloud-SocialCom-SustainCom, 2016;pp. 477–484

https://github.com/stfc-sciml/sciml-bench
https://github.com/RedisAI/aibench
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1512.01274

Page 29 of 29Pons et al. Journal of Big Data (2024) 11:152

 34. Yasin A. A top-down method for performance analysis and counters architecture. In: Proceedings of ISPASS, 2014;pp.
35–44. IEEE

 35. Asuncion A, Newman D. UCI machine learning repository. Irvine, CA, USA (2007). http:// archi ve. ics. uci. edu/ ml
Accessed 1 Jan 2023.

 36. Goldbloom A, Hamner B, Moser J, et al. Kaggle: your machine learning and data science community 2010; https://
www. kaggle. com/ Accessed 1 Jan 2023.

 37. Vanschoren J, Rijn JN, Bischl B, Torgo L. OpenML: networked science in machine learning. SIGKDD Explor.
2013;15:49–60.

 38. Derrac J, Garcia S, Sanchez L, Herrera F. Keel data-mining software tool: Data set repository, integration of algorithms
and experimental analysis framework. J Mult Valued Logic Soft Comput. 2015;17:255–87.

 39. Macia N, Bernadó-Mansilla E. Towards UCI+: a mindful repository design. Inf Sci. 2014;261:237–62.
 40. Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH. PMLB: a large benchmark suite for machine learning

evaluation and comparison. BioData Mining. 2017;10(1):1–13.
 41. Olson RS, La Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven Advice for Applying Machine Learning to Bioinfor-

matics Problems. arXiv e-print. https://arxiv.org/abs/1708.05070 2017.
 42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn Mach Learn Python. J Mach
Learning Res. 2011;12:2825–30.

 43. Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: a review of classification techniques. Emerging
artificial intelligence applications in computer engineering. 2007;160(1):3–24.

 44. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, Inference, and
Prediction vol. 2. Springer, 2009.

 45. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learning Res. 2006;7:1–30.
 46. Ben-Nun T, Besta M, Huber S, Ziogas AN, Peter D, Hoefler T. A modular benchmarking infrastructure for high-perfor-

mance and reproducible deep learning. In: Proceedings of IPDPS, 2019; pp. 66–77. IEEE
 47. Braun S. LSTM benchmarks for deep learning frameworks. arXiv preprint arXiv: 1806. 01818 2018.
 48. Beheshti N. Cross Validation and Grid Search 2022; https:// towar dsdat ascie nce. com/ cross- valid ation- and- grid-

search- efa64 b127c 1b

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://archive.ics.uci.edu/ml
https://www.kaggle.com/
https://www.kaggle.com/
http://arxiv.org/abs/1806.01818
https://towardsdatascience.com/cross-validation-and-grid-search-efa64b127c1b
https://towardsdatascience.com/cross-validation-and-grid-search-efa64b127c1b

	SMT efficiency in supervised ML methods: a throughput and interference analysis
	Abstract
	Introduction
	Background
	Simultaneous multithreading
	Machine learning workloads

	Problem definition
	Existing solutions
	Proposed solution
	Elaboration
	ML Workloads
	Classification algorithms
	Datasets

	Experimental setup
	SMT efficiency results
	Throughput analysis
	IPC evaluation
	Architectural analysis at port level
	Individual ports utilization

	Interference analysis
	Functional units
	Memory resources

	Performance of 4th generation intel xeon processors

	Conclusions
	Experimental methodology: detailed steps
	PMLB Installation
	ML workloads evaluation
	Running the experiments

	Acknowledgements
	References

