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SUMMARY

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. 3 ana-

nassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry

species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely

unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex vola-

tilome by GC–MS as well as the fruit size and shape using a European germplasm collection that represents

the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes

of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distri-

bution that will be valuable for further genetic studies to identify candidate genes or develop markers linked

to volatile compounds or fruit shape and size traits.
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INTRODUCTION

The woodland strawberry, Fragaria vesca, is a wild diploid

species from the Fragaria genus (family Rosaceae), which

includes 23 species with different levels of ploidy, includ-

ing the commercial octoploid species Fragaria 9 ananassa

(Liston et al., 2014), the most consumed berry crop world-

wide (FAOSTAT http://faostat.fao.org/). F. vesca has a vast

natural distribution, but with differences between its four

subspecies. F. vesca subsp. vesca is widely distributed in

the northern hemisphere, being naturally present across

Eurasia (including Iceland) and eastern North America.

However, the other three subspecies, that is, F. vesca

subsp. bracteata, americana, and californica, are endemic

to North America (Hilmarsson et al., 2017; Liston

et al., 2014; Staudt, 2009).

Commonly, strawberry fruit refers to the fleshy part,

which is derived from the enlargement of the floral recep-

tacle, and the actual fruits, the achenes, which are embed-

ded in this receptacle (Perkins-Veazie, 1995). The shape of

the strawberry fruit is determined during the berry devel-

opment by auxin and gibberellin (GA) phytohormones,

which respectively promote horizontal and vertical growth

(Liao et al., 2018; Wang et al., 2017). Furthermore, several

QTLs for natural shape variation have been reported in both

F. vesca and F. 9 ananassa (Cockerton et al., 2021; Lerceteau-

K€ohler et al., 2012; Rey-Serra et al., 2021; Urrutia et al., 2015).

Strawberry fruit ripening, as a non-climacteric fruit, is

mainly promoted by the phytohormone abscisic acid

(ABA) (Kim et al., 2019; Li et al., 2019; Liao et al., 2018).

This process involves a series of complex and tightly
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coordinated physiological and biochemical changes in the

enlarged receptacle, including color, texture, flavor, and

aroma, as a strategy for seed dispersal (Fait et al., 2008;

Li et al., 2020; Wang et al., 2021). In particular, the changes

in flavor and aroma are mainly due to the accumulation of

volatile (VOCs) and non-volatile secondary metabolites.

Plant volatile cues mediate plant communication with the

environment carrying information about the identity of

the emitter, being specific volatile ratio combinations heri-

table (Karban et al., 2014; Ninkovic et al., 2016).

Although strawberries are very valued for their fine

and delicate flavor and aroma, as with many other fruit

species such as tomato, these traits have not been histori-

cal priorities in F. 9 ananassa breeding programs (Klee &

Tieman, 2018). However, this tendency is changing toward

programs that include sensory quality in their selection

process, being the VOCs essential to achieve a pleasant fla-

vor and aroma (Fan et al., 2021; Folta & Klee, 2016). Thus,

in order to counteract the reduction in genetic diversity

resulting from traditional crop breeding, current programs

include wild close relatives of crop species in the search

for new sources of genetic variability (Warschefsky et al.,

2014). This phenomenon has also occurred in the culti-

vated strawberry, where a small but significant genetic

diversity reduction has been reported (Gil-Ariza et al.,

2009). The study of the wild woodland strawberry, and par-

ticularly its Eurasian subpopulation, which is the most

diverse among the species (Hilmarsson et al., 2017), is

expected to reveal new genetic and metabolic diversity in

the Fragaria genus.

Despite the complexity of the strawberry fruit volati-

lome, with more than 979 identified compounds (Ulrich

et al., 2018), only around 20 of them have been found to

date to contribute to fruit aroma and flavor perception

from the human consumers’ perspective. These contribut-

ing compounds include furanones that add sweet-caramel

notes (mesifurane and furaneol), lactones contributing with

peach-like notes (c-decalacatone and c-dodecalactone), the
phenylpropene eugenol, with a spicy-nutmeg aroma,

the acetic, butanoic, and hexanoic acid esters, which pro-

vide fruity and ester-like notes, and some terpenoids such

as linalool, with a flowery-sweet touch (Du et al., 2011; Fan

et al., 2021; Jetti et al., 2007; Klee & Tieman, 2018; Nuzzi

et al., 2008; Schieberle & Hofmann, 1997; Schwieterman

et al., 2014; Ulrich et al., 1997, 2018).

Interestingly, woodland strawberry fruit aroma is the

result of a richer volatilome in terms of quantity and diver-

sity compared with cultivated F. 9 ananassa fruits (Pyysalo

et al., 1979; Ulrich et al., 2007; Ulrich & Olbricht, 2014). Thus,

F. vesca develops fruits with a more intense, floral, and fru-

ity aroma, mainly due to the presence of compounds such

as methyl 2-aminobenzoate, methyl cinnamate, and by a

greater variety and quantity of terpenoids (Negri et al., 2015;

Ulrich et al., 1997, 2007; Ulrich & Olbricht, 2014).

Beyond the volatile-individual contribution to the

aroma, some studies have focused on the contribution of

these compounds to human perception in terms of accept-

ability and liking. These studies have pointed to individual

volatiles that are positively correlated with positive

perception, such as linalool, nerolidol, c-decalactone, c-
dodecalactone, furaneol, 2-pentenal, methyl butanoate, 2-

methyl butanoate, 1-methylbutyl butanoate, 3-methylbutyl

butanoate, pentyl butanoate, hexyl butanoate, hexyl ace-

tate (Z)-3-hexenyl acetate, and 1-penten-3-one. On the con-

trary, other VOCs, that is, mesifurane, butyl acetate, pentyl

acetate, ethyl 2-methyl butanoate, ethyl 3-methyl butano-

ate, pentenal, (E)-2-hexenal, and 2-pentanone, are nega-

tively correlated to consumer’s acceptance (Schwieterman

et al., 2014; Ulrich & Olbricht, 2016). Furthermore, it has

been described that a simultaneous high content of terpe-

noids and lactones is highly correlated with a positive con-

sumers’ perception (Ulrich & Olbricht, 2016).

In recent years, a number of enzymes involved in the

biosynthetic pathway for different key strawberry VOCs

have been identified. However, we are still far from a com-

plete description of those pathways. Among them, an

anthranilic acid methyl transferase (FanAAMT) catalyzing

the final steps in the synthesis of methyl 2-aminobenzoate

(also named methyl anthranilate) and two anthranilic acid

methyl transferase-like (FanAAMT-like) have been identi-

fied (Barbey et al., 2021; Pillet et al., 2017). This compound

is rarely detected in cultivated strawberry, being responsi-

ble for the typical grape note of the wild strawberries’

aroma. The glucosylation of methyl cinnamate, also nor-

mally absent in cultivated strawberry and a contributor to

the pleasant spicy notes to the fruit scent (Ulrich et al.,

2007), has been shown to be catalyzed by a UDP-Glc:

cinnamate glucosyltransferase (FaGT2) (Lunkenbein et al.,

2006). The diversity of terpenoids in woodland strawberry

aroma is a signature of the species (Ulrich & Olbricht,

2014). Among the structural genes involved in the biosyn-

thesis of these compounds, a nerolidol synthase (FaNES1)

has been associated with the synthesis of the sesquiter-

pene nerolidol (Aharoni, 2004). Furthermore, several candi-

date genes for the biosynthesis of multiple terpenes have

been identified recently in a QTL region, including FaNES1

(Barbey et al., 2021). Besides these typical woodland straw-

berry characteristic compounds, some genes have also

been identified for the biosynthesis of VOCs normally pre-

sent in F. 9 ananassa, including the methyltransferase

FaOMT for the production of mesifurane (Barbey et al.,

2021; Zorrilla-Fontanesi et al., 2012), and the fatty acid

desaturase FaFAD1 for c-decalactone (Chambers et al.,

2014; S�anchez-Sevilla et al., 2014). Finally, three biosyn-

thetic and regulatory genes (EGS1, EGS2, and EOBII) have

been described in the eugenol biosynthetic pathway in the

octoploid species (Araguez et al., 2013; Medina-Puche

et al., 2015; Molina-Hidalgo et al., 2017).
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The fruit volatilome is a complex mix of

secondary metabolites that tends to be lineage-specific

(Ninkovic et al., 2021) and that evolves due to the duplica-

tion and subsequent diversification of genes encoding for

their biosynthetic enzymes. This commonly results in

changes in the preferred substrate or resultant volatile

product with minimal changes in the primary amino acid

sequence (Pichersky et al., 2006). Metabolic markers have

been shown to be useful in order to discriminate between

landraces and genotypic groups in several crops such as

maize, sunflower, cassava, rapeseed, pepper, and grape

(Billet et al., 2018; Fernandez et al., 2019; Lamari et al., 2018;

Perez-Fons et al., 2020; Venkatesh et al., 2016; Wagner et al.,

2012; Wahyuni et al., 2013). In addition, studies comparing

the prediction power of genetic and metabolic markers in

maize concluded that metabolites are condensed informa-

tion of the genotype, with a set of 130 metabolites being

almost as good predictors as 38 000 SNPs (Riedelshei-

mer, 2012). As previously mentioned, wild and domesticated

strawberry species can be differentiated based on secondary

metabolism. In addition, the relative abundance of secondary

metabolites among wild strawberry accessions is very vari-

able (Vallarino et al., 2018). Thus, a more comprehensive

analysis of the woodland strawberry volatilome would

enhance the comprehension of strawberry metabolic diver-

sity and might provide suitable biomarkers to trace plant

divergence.

Volatilome as well as fruit shape and size are rich,

diverse, and variable characters in woodland strawberry

and depend on genotypes and environments. Previous

studies characterizing woodland strawberry volatilome and

fruit shape have focused on interspecific biparental popula-

tions (Urrutia et al., 2015, 2017) or a few accessions (Dong

et al., 2013; Li et al., 2020; Negri et al., 2015; Ulrich et al.,

2007; Ulrich & Olbricht, 2013, 2014), limiting the range of

studied diversity of the species. Thus, this work aims at an

in-depth characterization of the woodland strawberry spe-

cies (F. vesca sub. vesca) volatilome and fruit shape across

a wide geographical area, therefore reflecting secondary

metabolites adaptation to environmental conditions across

the European continent. In addition to revealing a richness

of resources for cultivated strawberry breeding, this work

will open opportunities for the identification of genetic

markers and candidate genes for VOCs of interest.

RESULTS

Natural volatilome diversity of woodland strawberry fruit

across Europe

Berries at their stage of full ripeness were harvested from

the European F. vesca collection at the University of Helsinki

(Helsinki, Finland). A total of three biological replicates were

harvested from 125 and 170 accessions in 2016 and 2017,

respectively, of which 113 were common between both

years. The volatilome profiling of fruit samples was per-

formed by GC-MS, resulting in the relative quantification of

99 unambiguously identified metabolites, which were clas-

sified depending on their biosynthetic pathway. Thus, the

great majority of the identified compounds (45 in total)

belonged to the esters or benzenoid esters biosynthetic

pathways. Other abundant VOCs biosynthetic pathways

included those for fatty acid degradation (19 volatiles) and

cuticular-wax biosynthesis (10 volatiles). Other pathways

for different chemical families were less represented, that

is, terpenoid synthesis (6), carotenoid cleavage (4), volatile

benzenoid biosynthesis (8), furans (4), lactones (4), and car-

bohydrate degradation (1). In addition, there were two

ketonic compounds that were not assigned to any described

pathway (Table 1). Among all these compounds, we

detected and quantified most key VOCs for cultivated straw-

berry aroma including a variety of lactones (c-decalacatone,
c-dodecalactone, c-octalactone, and d-decalactone) and ter-

penoids (a-farnesene, a-pinene, a-terpineol, linalool, nerol,
and myrtenol), several key esters (methyl butanoate, 1-

methylbutyl butanoate, hexyl butanoate, hexyl acetate, and

(Z)-3-hexenyl acetate), furanes (mesifurane, furaneol), (E) 2-

pentenal, and 1-penten-3-one. Furthermore, compounds

rarely detected in commercial strawberry varieties, but

expected in F. vesca fruits were also found, including VOCs

that add the typical notes to their aroma, such as methyl 2-

aminobenzoate and methyl cinnamate (Table 1, Table S1).

All investigated compounds showed a quantitative distribu-

tion, with great differences detected between accessions,

with ranges going from approximately eightfold difference,

that is, for 3,4-dimethylbenzaldehyde or 6-methyl 5-hepten-

2-one, to >1000 fold for mesifurane, methyl 2-

aminobenzoate, c-decalactone, ethyl octanoate, ethyl

decanaoate, and ethyl dodecanoate (Table 1).

Genetic and environmental effects on the volatilome

VOCs differed in their stability between harvests as shown

by Pearson’s correlation analysis (Table 1). Interestingly,

several terpenoids, lactones, and volatile esters, known to

positively contribute to aroma perception and consumer’s

acceptance, showed a high correlation between the two

harvest seasons (>0.5), revealing a steady distribution of

these compounds in both seasons and supporting a high

genetic effect on their accumulation (Table 1). Analysis of

variance (ANOVA) between geographical origins revealed

significant differences between subpopulations and

between accessions for most of the quantified VOCs (96

and 92 out of the total 99 compounds, respectively)

(Table S2), which indicates that there exist ample differ-

ences in the European woodland strawberry volatilome

associated with their region of origin. The estimated effect

size of the genotype (x2
G) was higher than the effect size

of the harvest year (x2
E) for 79 of the VOCs identified. On

the contrary, and consistently with their low correlation

� 2023 The Authors.
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Table 1 Diversity and variability of identified volatile compounds in fruits from a European woodland strawberry germplasm. Average
(mean), standard deviation (SD), and range values in two independent harvest seasons, as well as Pearson correlation between harvests
(corr), are provided. Relative quantification values are given in log2 scale. +, �, N/D: compounds with positive, negative or non-determined
effect respectively over consumer’s acceptance according to bibliography (Schwieterman et al., 2014; Ulrich & Olbricht, 2016)

Compound Pathway

First season (H16) Second season (H17)
Corr

Effect on
perceptionMean SD Range Mean SD Range

H16-
H17

c-decalactone Lactones �2.07 2.44 10.52 �2.04 2.65 11.49 0.89 +
Methyl benzoate Volatile benzenoid esters biosynthesis �0.56 1.63 7.68 �1.37 1.29 7.29 0.81 N/D
Methyl cinnamate Volatile benzenoid esters biosynthesis �0.97 2.23 8.47 �1.74 2.33 8.5 0.8 N/D
Eugenol Volatile benzenoid biosynthesis �2.46 1.69 9.57 �1.84 2.17 10.72 0.77 N/D
2-undecanone Cuticular-wax biosynthesis �0.6 1.66 6.4 �1.43 1.73 7.48 0.76 N/D
a-farnesene Terpenoid synthesis �0.02 1.43 5.22 �1.81 1.19 4.9 0.73 N/D
Methyl dodecanoate Volatile esters biosynthesis �0.72 2.02 9.76 �2.47 2.05 9.52 0.7 N/D
2-nonanone Cuticular-wax biosynthesis �0.13 0.81 3.88 �1.25 1.4 6.53 0.7 N/D
Methyl 2-aminobenzoate Volatile esters biosynthesis �3.15 3.1 11.28 �3.49 3.31 11.15 0.69 N/D
Mesifurane Furanes �3.06 3.47 12.31 �2.44 3.21 12.31 0.69 �
Myrtenyl acetate Volatile esters biosynthesis �0.57 1.1 5.03 �0.3 0.86 5.35 0.68 N/D
c-dodecalactone Lactones 0 0.72 2.75 0.24 1.39 6.45 0.68 +
Methyl 3-hydroxyoctanoate Volatile esters biosynthesis �1.14 1.33 6.12 �1.74 2.07 8.27 0.66 N/D
Methyl decanoate Volatile esters biosynthesis �0.2 1.39 8.17 �1.79 1.92 10.97 0.64 N/D
2-heptanone Cuticular-wax biosynthesis �0.32 0.6 3.09 �0.77 1.17 5.07 0.63 N/D
3-methyl 2-butenyl acetate Volatile esters biosynthesis �0.22 1.01 7.46 �0.73 1.16 6.32 0.61 N/D
2-nonanol Cuticular-wax biosynthesis �1.03 2.14 11.85 �2.13 2.13 9.77 0.61 N/D
Linalool Terpenoid synthesis �0.75 0.8 3.83 0.97 1.04 5.69 0.6 +
2-undecanol Cuticular-wax biosynthesis �1.58 2.15 8.92 �2.16 2.34 9.74 0.59 N/D
1-methylethyl butanoate Volatile esters biosynthesis �0.02 1.15 4.66 �0.66 0.96 4.44 0.58 N/D
Octyl butanoate Volatile esters biosynthesis �0.15 1.53 7.93 �2.15 1.87 8.49 0.58 N/D
2-pentanone Cuticular-wax biosynthesis �0.17 1.01 4.84 �0.65 1.57 7.41 0.58 �
b-ionone Carotenoid cleavage �0.37 0.56 3.44 0.25 0.68 3.88 0.58 N/D
1-methylbutyl butanoate Volatile esters biosynthesis �0.37 1.38 6.26 �2.22 1.8 8.11 0.57 +
Cinnamyl acetate Volatile benzenoid esters biosynthesis �1.31 2.04 9.06 �1.32 2.14 9.37 0.57 N/D
Acetophenone Not assigned 0.1 0.68 4.78 �0.23 0.54 3.55 0.57 N/D
Octyl acetate Volatile esters biosynthesis �0.11 0.97 6.22 �1.16 1.5 7.07 0.56 N/D
a-pinene Terpenoid synthesis �0.07 1.27 6.7 �1.12 1.31 7.09 0.56 N/D
Methyl hexanoate Volatile esters biosynthesis �0.05 1.04 4.97 �1.61 1.71 9.38 0.55 N/D
Octyl hexanoate Volatile esters biosynthesis �0.74 1.99 9.17 �2.84 2.37 10.38 0.55 N/D
Ethyl methylthioacetate Volatile esters biosynthesis �0.94 1.58 7.64 �1.75 2.03 8.15 0.55 N/D
d-decalactone Lactones �0.4 1.13 4.93 �0.85 1.38 6.77 0.55 N/D
2-pentylfuran Furanes �0.11 0.98 4.57 0.03 0.54 3.91 0.54 N/D
1-methyloctyl butanoate Volatile esters biosynthesis �0.62 1.73 8.74 �2.41 1.83 10.06 0.53 N/D
Hexyl butanoate Volatile esters biosynthesis �0.24 1.33 7.42 �0.96 1.36 7.06 0.53 +
a-ionone Carotenoid cleavage �0.41 0.59 2.47 0.29 0.81 4.38 0.53 N/D
Methyl octanoate Volatile esters biosynthesis 0.08 0.94 4.99 �1.25 1.67 9.14 0.52 N/D
Benzyl acetate Volatile benzenoid esters biosynthesis �0.18 0.84 4.1 �0.11 0.75 5.37 0.52 N/D
Butyl hexanoate Volatile esters biosynthesis �0.17 1.28 6.55 �1.47 1.73 9.3 0.51 N/D
Myrtenol Terpenoid synthesis �0.6 1.56 10.87 �1.19 1.57 7.99 0.51 N/D
a-terpineol Terpenoid synthesis �0.17 0.81 3.89 �0.03 0.79 5.26 0.5 N/D
2-heptanol Cuticular-wax biosynthesis �0.6 1.81 9.67 �1.75 1.67 6.99 0.5 N/D
Ethyl dodecanoate Volatile esters biosynthesis �2.8 3.27 11.64 �6.39 2.91 11.88 0.49 N/D
Acetone Not assigned �0.06 1.43 6.53 0.24 1.17 5.29 0.49 N/D
2-heptyl acetate Volatile esters biosynthesis �0.14 0.98 5.76 �2.23 1.68 8.22 0.48 N/D
Butyl butanoate Volatile esters biosynthesis �0.38 1.44 8.81 �1.35 1.76 9.01 0.48 N/D
2-methylbutyl acetate Volatile esters biosynthesis 0.1 0.87 5.56 �0.83 1.08 5.91 0.47 N/D
Hexyl hexanoate Volatile esters biosynthesis �0.23 1.48 7.15 �2.23 1.75 7.68 0.47 N/D
2-tridecanone Cuticular-wax biosynthesis �0.29 1.26 6.98 �1.43 1.41 7.67 0.45 N/D
Benzaldehyde Volatile benzenoid biosynthesis �0.15 0.56 3.19 0.24 0.42 2.65 0.44 N/D
Decyl acetate Volatile esters biosynthesis �0.3 1.23 8.01 �1.91 1.86 10.31 0.43 N/D
2-pentadecanone Cuticular-wax biosynthesis �0.45 1.4 7.78 �1.5 1.65 7.9 0.43 N/D

(continued)
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values between the two harvest seasons, the estimated

effect size of the harvest year was higher for eight VOCs,

that is, (E)-2-pentenal, 1-penten-3-one, (E)-2- and (Z)-3-

hexenyl acetate, (Z)-3-hexenal, (E)-2-hexen-1-ol, 2-heptyl

acetate, and linalool, supporting a significant effect on

their content by the environmental conditions (Table S2).

However, for the vast majority of the volatiles both the

genotype and the environmental effects were significant.

Therefore, least square means per genotype were esti-

mated and used in further statistical analyses (Table S3).

Woodland strawberry chemotypes across Europe

In order to investigate the distribution of wild strawberry

aroma across the European continent, we classified the

accessions into chemotypes based on high (above the

mean) or low (below the mean) content in total terpenoids

Table 1. (continued)

Compound Pathway

First season (H16) Second season (H17)
Corr

Effect on
perceptionMean SD Range Mean SD Range

H16-
H17

1-methylethyl acetate Volatile esters biosynthesis 0.1 0.97 5.16 0.77 1.02 5.04 0.42 N/D
Ethyl hexanoate Volatile esters biosynthesis �0.8 1.53 8.66 �3.7 2.56 10.27 0.41 N/D
Butyl acetate Volatile esters biosynthesis �0.12 0.88 6.06 �0.87 1.21 6.04 0.39 �
Furaneol Furanes �0.32 1.17 5.57 �0.38 1.23 6.61 0.39 +
3-methylbutyl acetate Volatile esters biosynthesis 0.23 1.02 3.9 �0.95 1 5.17 0.38 N/D
1-decanol Fatty acid degradation �0.8 0.92 5.1 �1.33 1.61 8.76 0.38 N/D
Ethyl butanoate Volatile esters biosynthesis �0.13 1.02 6.21 �2.15 1.74 8.28 0.36 N/D
Ethyl decanoate Volatile esters biosynthesis �1.43 2.5 11.48 �5.35 2.89 12.17 0.36 N/D
Ethyl octanoate Volatile esters biosynthesis �1.17 2.29 11.2 �4.63 2.98 12.12 0.36 N/D
Propyl butanoate Volatile esters biosynthesis 0.04 1.07 5.56 �1.27 1.45 7.47 0.36 N/D
2-tridecanol Cuticular-wax biosynthesis �0.61 1.16 6.83 �1.34 1.63 8.14 0.36 N/D
Ethyl 2-hexenoate Volatile esters biosynthesis �1.06 2.09 8.55 �4.1 1.91 7.84 0.35 N/D
Nonyl acetate Volatile esters biosynthesis 0.08 0.81 4.13 �0.87 0.99 4.84 0.35 N/D
1-octanol Fatty acid degradation �1.16 1.5 7.05 �1.33 1.27 7.54 0.35 N/D
Methyl butanoate Volatile esters biosynthesis 0.14 1.11 6.11 �0.79 1.75 9.25 0.34 +
(E)-2-hexenyl acetate Volatile esters biosynthesis �0.81 1.05 5.68 0.96 0.9 4.94 0.32 N/D
2,3-butanediyl diacetate Volatile esters biosynthesis �0.35 1.26 6.04 �2.12 1.34 5.87 0.32 N/D
Hexanal Fatty acid degradation �0.36 0.5 2.9 0.37 0.44 3.59 0.32 N/D
Benzyl alcohol Volatile benzenoid biosynthesis �0.85 0.76 3.12 �0.31 0.95 5.43 0.31 N/D
Octanal Fatty acid degradation �1.6 1.88 8.36 0.07 0.9 6.27 0.3 N/D
(Z)-3-hexenyl acetate Volatile esters biosynthesis �1 1.06 4.99 0.85 0.93 4.55 0.29 +
Hexyl acetate Volatile esters biosynthesis 0.01 0.47 2.38 �0.38 0.6 4.8 0.29 +
Ethyl acetate Volatile esters biosynthesis �1.18 2.12 9.73 �2.96 2.22 10.43 0.28 N/D
c-octalactone Lactones 0.09 0.63 3.83 �0.64 0.75 4.69 0.26 N/D
(Z)-3-hexenal Fatty acid degradation �0.19 0.52 2.56 1.1 0.72 3.64 0.26 N/D
Geranylacetone Carotenoid cleavage �0.61 0.99 5.1 �0.04 0.64 4.11 0.24 N/D
Nonanal Fatty acid degradation �0.92 1.34 10.15 �0.63 1.12 8.76 0.23 N/D
Decanal Fatty acid degradation �0.67 0.92 4.52 0.24 0.57 4.83 0.22 N/D
(E)-2-nonenal Fatty acid degradation �0.21 0.57 3.01 �0.42 0.49 4.63 0.21 N/D
(E)-2-octenal Fatty acid degradation �0.42 0.75 4.97 0 0.66 4.94 0.2 N/D
(E, E)-2–4 heptadienal Fatty acid degradation �0.45 0.86 4.88 �0.1 0.85 4.86 0.2 N/D
(E)- 2-hexen 1-ol Fatty acid degradation �0.58 1 5.6 1.88 0.94 6.04 0.18 N/D
Pentyl acetate Volatile esters biosynthesis �0.12 0.87 5.51 �0.26 0.68 4.3 0.16 �
Heptanal Fatty acid degradation �0.63 1 6.24 0.19 0.51 3.67 0.16 N/D
Methyl acetate Volatile esters biosynthesis �0.29 1.3 6.17 0.69 1.66 8.72 0.14 N/D
3, 4-dimethylbenzaldehyde Volatile benzenoid biosynthesis �0.14 0.34 2.7 �0.47 0.36 2.68 0.1 N/D
2-(1-pentenyl)furan Furanes �0.66 0.8 3.51 0.71 0.79 5.42 0.09 N/D
6-methyl 5-hepten-2-one Carotenoid cleavage �0.33 0.5 2.59 0.04 0.42 2.68 0.08 N/D
Ethanol Carbohydrate degradation �2.54 1.7 10.16 �2.53 2.1 10.69 0.07 N/D
(E)-2-pentenal Fatty acid degradation �0.91 0.86 4.36 1.26 0.76 4.16 0.06 +
Pentanal Fatty acid degradation �0.18 0.82 3.9 0.43 0.59 4.94 0.06 �
Nerol Terpenoid synthesis �0.96 0.8 3.48 �2 1.67 8.18 0.05 N/D
1-hexanol Fatty acid degradation �1.28 1.23 5.7 1.15 1.01 5.76 0.05 N/D
(E)-2-heptenal Fatty acid degradation �0.36 0.72 3.44 0.1 0.64 5.34 0 N/D
(E)-2-hexenal Fatty acid degradation �0.19 0.37 1.89 0.31 0.49 4.91 �0.03 �
1-penten-3-one Fatty acid degradation �1.35 1.09 4.93 1.32 0.8 8.32 �0.05 +
1-penten-3-ol Fatty acid degradation �1.48 1.16 5.38 �0.06 0.85 5.02 �0.12 N/D

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 116, 1201–1217
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and lactones, since high content of these compounds has

been described as one of the most correlated traits to con-

sumer’s liking (Ulrich & Olbricht, 2016). Thus, we com-

bined the content for the most genetically controlled

(correlation between harvest >0.5) terpenoids (a-farnesene,
a-pinene, a-terpineol, linalool, and myrtenol) and lactones

(c-decalactone, c-dodecalactone, and d-decalactone). In

order to give the same weight to all added variables,

values were rescaled before the addition (Table S3). This

classification resulted in four chemotypes: high terpenoids

and high lactones (High_TL), high terpenoids and low lac-

tones (High_T), low terpenoids and high lactones (High_L),

and low terpenoids and low lactones (Low_TL) (Table S3),

which geographical distribution is depicted in Figure 1. In

addition, the accessions were assigned to seven major

geographical groups covering main western European

landforms and islands, named south to north: Iberian Pen-

insula, The Alps, Middle Europe, Great Britain, Baltic Sea

Region, Scandinavian Peninsula, and Iceland (Table S4).

Although all chemotypes are present in all geographical

areas, High_TL chemotype was more frequent among

Icelandic and Central Europe accessions, High_L and

High_T chemotypes were common in the Iberian Peninsula

and the Baltic Sea Region, respectively, while the Low_TL

accessions were commonly found in the Scandinavian

region (Figure 1).

A principal components analysis (PCA) computed on

LSmeans by genotype revealed that four of the geographi-

cal groups were clustered based on their volatilome profile

(Figure 2). Samples from Icelandic and Baltic Sea regions

were the most different based on PC1 and PC2, while PC3

and PC4 separated Iberian and Scandinavian peninsula

samples revealing that subpopulations from extreme Euro-

pean latitudes were distinguishable based on their volati-

lome. However, accessions from intermediate latitude

regions (Middle Europe, Alpine, and Great Britain) were

not distinguishable within the first four principal

components.

We next grouped the F. vesca collection based on

their volatilome profiles. For that purpose, we performed a

bootstrapped hierarchical clustering analysis (HCA) on

LSmean data per genotype. Accessions clustered into five

Figure 1. Chemotypes and geographical origins and grouping of the accessions from the European woodland strawberry collection.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 116, 1201–1217
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main groups (A to E). For clarity, cluster E was divided into

two subclusters (E1 and E2). This analysis showed that

three of the clusters (C, E1, and E2) mostly corresponded

to the four geographical groups that were distinguished by

PCA. Thus, most Icelandic samples clustered in group C,

most Iberian and some Alpine accessions grouped in clus-

ter E1, while cluster E2 gathered the majority of the north-

ern accessions, including those from the Baltic Sea Region

and from the Scandinavian Peninsula. On the contrary,

clusters B and D gathered a mix of accessions from differ-

ent geographical origins, most of them being from the

Alps, Middle Europe, and Great Britain. Finally, cluster A

only comprised two accessions that came from distant

populations, that is, UK6 from Scotland and NOR21 from

northern Norway. The Great Britain geographical group

was especially promiscuous considering their reduced

sample size, with seven accessions that belonged to four

different clusters.

Volatilome footprints in the European woodland

strawberry collection

The bootstrapped HCA on the LSmeans volatiles values

revealed volatilome footprints across the European conti-

nent. Volatiles were classified into two clear distinct

clusters, named 1 and 2. Cluster 1 was also divided into

three subclusters: 1.1, 1.2, and 1.3 (Figure 3). In many

cases, compounds belonging to the same biosynthesis

pathway clustered together. For instance, cluster 2 con-

tains six ethyl esters and their precursor, ethanol. Inter-

estingly, cluster 2 also groups mesifurane and methyl

2-aminobenzoate, both compounds associated with

intense aroma and negatively correlated to consumer’s

acceptance. Lactones (except c-decalactone) were tightly

grouped within the cluster 1.2. Apocarotenoids (gerany-

lacetone, a-ionone, b-ionone, and 6-methyl-5-hepten-2-

one) were strongly correlated and grouped together

Figure 2. Principal component analysis (PCA) for the least square mean volatilome profile values of the F. vesca collection. Ellipses indicate 95% confidence

intervals of geographical group means. (a) Principal components 1 and 2; (b) Principal components 3 and 4.

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 116, 1201–1217
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within the cluster 1.2, which is dominated by fatty acids

derivates. Interestingly, methyl ketones (cuticular-wax biosyn-

thesis pathway) were separated into two groups, one group

gathering long chain (C11 and C13) methyl ketones and

their secondary alcohols in cluster 1.1, and another group

including short chain (C5, C7, and C9) and one long chain

(C15) methyl ketones in cluster 1.2. Terpenoids clustered in

three groups of two compounds within the cluster 1.2.

Finally, the majority of the numerous volatile esters are

grouped in clusters 1.2 and 1.3. It is noteworthy that

cluster 1.3 gathers several long acyl chain esters (i.e.,

octyl hexanoate, octyl butanoate, and hexyl butanoate).

Volatilome signatures were found in those subpopula-

tions separated by PCA and HCA. Thus, a pairwise compar-

ison analysis revealed that the most southern accessions

(Iberian Peninsula) were characterized by a higher content

in c-decalactone, cinnamyl acetate, and methyl hexanoate,

while they showed lower levels of mesifurane, a-terpineol,
a-pinene, and myrtenyl acetate, being this profile main-

tained in the 2016 and 2017 harvests (Figure 4a). In Icelan-

dic samples, a higher accumulation of a-farnesene and

several ethyl and methyl esters (e.g., ethyl 2-hexenoate,

ethyl dodecanoate, and methyl dodecanoate) was found,

while they contained lower levels of linalool, eugenol,

Figure 3. Hierarchical clustering analysis (HCA) and heatmap representation of the volatilome of 113 European F. vesca accessions. Data represent least square

means of two harvests. Accessions are presented in rows and grouped according to their geographical origin (see legend). Volatile compounds are presented in

columns and colored according to their biosynthesis pathway (see legend).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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methyl 2-aminobenzoate, methyl benzoate, and methyl cin-

namate (Figure 4b). Scandinavian Peninsula accessions

were characterized by a higher content in the alcohols 1-

octanol and 2-nonanol together with a lower accumulation

of the methyl ketones 2-undecanone and 2-tridecanone. In

addition, both Scandinavian Peninsula and Baltic Sea

region samples showed lower accumulation of cinnamyl

acetate and c-decalactone (Figure 4a,c). Finally, Great Brit-

ain accessions, especially UK1 and UK2, were character-

ized by a higher eugenol content (Figure 4b).

Besides individual VOCs that could be characteristic of

a specific geographic area, we next evaluated, as a proof

of concept, if a reduced set of these compounds could

serve as a signature to classify an a priori unknown acces-

sion into a geographical origin category. For that purpose,

we performed a sparse partial least square discriminant

analysis (sPLS-DA) on groups separated by PCA, joining

Middle Europe, Great Britain, and The Alps into a new

group called ‘Central Europe’ (see experimental proce-

dures). The model correctly predicted the origin of all Ice-

landic samples and committed just one miss assignment

on Iberian Peninsula and Baltic Sea Region samples. How-

ever, the accuracy was below 50% for Scandinavian Penin-

sula samples and very poor for Central Europe samples, as

expected by their less diverse volatilome profile (Table 2).

Variables that were consistently selected for the prediction

model are reported in Table S5, revealing that the most

important compounds for geographical group separation

are cinnamyl acetate, methyl-2-aminobenzoate, methyl

benzoate, 2-pentylfuran, methyl cinnamate, a-farnesene, a-
pinene, methyl-3-hydroxyoctanoate, a- and b-ionone, gera-
nylacetone, and 2-nonanone among others.

Figure 4. Volatile signatures of geographical areas. Tukey test graphical representation (P-value <0.05) of a selection of the most characteristic VOCs of specific

geographical areas, such as Iberian Peninsula (a), Iceland (b), and Scandinavian Peninsula and Baltic Sea region (c) in two harvest seasons (H16 and H17).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 116, 1201–1217
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Diversity in fruit size and shape

Despite strawberries are typically considered as conical

berries, they are very diverse in size and shape, varying

from oblate to long conic berries. We phenotyped the

European F. vesca collection for these traits by measuring

fruit size (length, width, and volume) from all collected

fruits in both harvests. Furthermore, fruit shape was

inferred by the length/width ratio, being those fruits with

this ratio >1 classified as elongated fruits, while those

with a ratio ≤1 as rounded. A selection of fruits showing

the diversity in fruit size and shape is shown in Figure 5a.

Average fruits were 15.8–11.8 mm long and 11.9–12.3 mm

wide in the first and second seasons, respectively, with

variations of approximately 10 mm in fruit length between

the shortest and largest accessions, and of approximately

7 mm in fruit width between the narrowest and widest

accessions (Figure 5b). Clear differences were also

detected in fruit volume in both harvest seasons, ranging

from 0.31 to 1.40 cm3 in the 2016 harvest and from 0.16 to

1.03 cm3 in 2017. In addition, we also detected a range of

fruit shapes in the collection, varying the length/width ratio

from 0.90 to 1.77, and from 0.73 to 1.39 in the 2016 and

2017 harvests, respectively (Figure 5b). Average data per

genotype can be found in Table S6.

Analysis of variance considering genotype (g) and har-

vest (e) as factors revealed that fruit length, width, and vol-

ume significantly varied among the accessions, being the

effect size of the genotype (x2
G) bigger than that of

the environment (x2
E) (Table S7). Interestingly, fruit length

but not width or volume significantly varied in the two har-

vests as well, being fruits collected during the first season

longer, but not wider, than during the second harvest

(Figure 5b, Table S7). However, when the geographical ori-

gin (geo) of the accessions was considered as a factor, we

observed that all fruit length, width, volume, and ratio

were affected by both the geographical origin and the har-

vest year (Table S7). Pairwise comparisons between geo-

graphical origins revealed clear differences between fruit

shape and size (Figure 5c). Fruit volume was strongly

linked to geographical origin, being fruits from the Iberian

Peninsula the biggest, those from northern locations

(Iceland, Baltic Sea Region, and Scandinavian Peninsula)

the smallest, and those from Middle Europe, the Alps, and

Great Britain intermediate in size. Interestingly, these dif-

ferences in volume were mainly driven by the differences

in fruit width. Thus, both fruit width and volume were

strongly negatively correlated with latitude, being those

fruits from southern accessions wider, and consequently,

bigger (Figure S1). Fruit length also tended to be shorter in

northern accessions, especially in Scandinavian samples

(Figure 5b), but the pattern was not so clear and its correla-

tion with latitude was weaker (Figure S1). Regarding fruit

shape, Iberian and Icelandic samples were the roundest

and the most elongated, respectively, in both harvests, but

other geographical origins were not so consistent with fruit

shape. Thus, as found for the volatilome profile, fruit size

seems to be associated with latitude, decreasing across

the south–north axis.

DISCUSSION

The richness and complexity of woodland strawberry fruit

volatilome have been revealed in previous studies (Negri

et al., 2015), especially, in comparison with its cultivated

relative, the commercial strawberry F. 9 ananassa (Dong

et al., 2013; Pyysalo et al., 1979; Ulrich et al., 2007; Ulrich &

Olbricht, 2013, 2014). However, those studies have been

limited to a few accessions (Dong et al., 2013; Ulrich &

Olbricht, 2013) or a segregating population (Urrutia et al.,

2017). To our knowledge, this work constitutes the

unprecedented volatilome analysis of a large-scale natural

population covering one of the main areas of distribution

of F. vesca, the European continent, and islands.

A review work by Ulrich et al. (Ulrich et al., 2018)

highlighted that there is little consensus between the dif-

ferent published reports on strawberry (F. 9 ananassa) fruit

volatile composition, since almost 70% of the total VOCs

identified in this species were detected in just one of the

27 reviewed studies, whereas only around 30 compounds

were commonly reported in the literature. This issue

points to both biological (i.e., genotypes, growing condi-

tions, and ripening stage) and technical causes

(sampling preparation, extraction method, chromatography,

Test set prediction

Test set origin

Baltic
Sea R.

Central
Europe

Iberian
Peninsula Iceland

Scandinavian
Peninsula

Baltic Sea R. 7 8 0 0 5
Central Europe 0 4 1 0 0
Iberian Peninsula 0 3 10 0 0
Iceland 0 3 0 4 1
Scandinavian
Peninsula

1 6 0 0 5

Table 2 sPLS-DA prediction performance
on testing set

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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and spectrometry techniques) behind these disagreements.

In this study, we followed the experimental approaches

described in Zorrilla-Fontanesi et al. (2012) and Urrutia et al.

(Urrutia et al., 2017), identifying the same set of 99 com-

pounds previously reported in F. vesca and 75% coincident

with the compounds reported in F. 9 ananassa cv. Camar-

osa, which supports the reliability of the methodology used.

Furthermore, the set of detected metabolites includes 22 of

the 30 frequently reported VOCs described in Ulrich et al.

(2018).

The expression of a plant phenotypic trait is the sum

of its genetic potential, the particular environmental condi-

tions where it is grown, and the interaction between them.

Our results reveal a relevant genotypic effect on the stud-

ied traits, supported by a consistent and rather stable phe-

notype for most fruit VOCs, as well as fruit sizes and

Figure 5. Diversity of fruit sizes and shapes in F. vesca. (a) Picture of a representative set of ripe berries from the F. vesca European collection. From left to right:

Top row: ES2, IT15, FIN12, LIT2, IT7, and UK2. Middle row: ICE3, DK1, NOR22, GER2, ICE16, and GER10. Bottom row: POR3, ES12, UK1, FIN28, UK4, and NOR11.

Scale bar, 1 cm. (b) Violin plots of average fruit size and shape. (c) Tukey test graphical representation of fruit size and shape (P-value <0.05).

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 116, 1201–1217
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shapes in two harvest years (Tables S4 and S7). In addi-

tion, genotypes from the same or closely located distribu-

tion areas showed remarkable phenotypic similarities,

supporting a close genetic relationship between them and

probable phenotypic adaptations to the environment (Kar-

ban et al., 2014; Ninkovic et al., 2016). Our study suggests

that the phenotypes observed in plants grown in a com-

mon garden reflect the genetic potential of the plant. In

fact, previous studies performed with different traits

and species concluded that the geographical origin was

determinant for environmental adaptations that remained

expressed when plants were cultivated out of their geo-

graphical distribution of origin. For instance, a study car-

ried out with European blueberries studying the

association between their anthocyanin content and geo-

graphical origin concluded that differences between north-

ern and southern varieties in anthocyanin content were

maintained when they were cultivated together in the

same environment (�Akerstr€om et al., 2010). Similarly, stud-

ies with different varieties of F. 9 ananassa cultivated in

several growing conditions detected genotype-specific sec-

ondary metabolites that allowed to differentiate between

the cultivars, highlighting a prevalence of genetic effects

over the environmental or year-to-year effects (Akhatou

et al., 2016, 2017; Cocco et al., 2015; Josuttis et al., 2012).

In addition, a study with five F. 9 ananassa varieties grown

at different locations in Italy (with a 5° difference in lati-

tude) reported strong dependence of fruit size on the geno-

type rather than the location (Cocco et al., 2015).

The stronger effect of the genotype over the environ-

ment for most VOCs is consistent with a previous volati-

lome study in ripe fruits from an interspecific near-isogenic

line collection (NILs) with the genetic background of

F. vesca and introgressions of F. bucharica (Urrutia et al.,

2017). Similarly to our results, this study detected a high

or moderate genetic effect on the accumulation of methyl

2-aminobenzoate, methyl cinnamate, myrtenyl acetate,

eugenol, a-pinene, a-farnesene, methyl decanoate, methyl

dodecanoate, benzyl acetate and methyl benzoate, c-
decalactone, 2-undecanone, cinnamyl acetate, and butyl

butanoate. However, they also reported a high genetic

effect in the accumulation of (E)-2-hexenal, (Z)-3-hexenal,

and (Z)-3-hexenyl acetate in the NIL population (Urrutia

et al., 2017), while these VOCs were among the least stable

compounds in our population. Thus, we hypothesize that

the effects of F. bucharica alleles of key genes on the bio-

synthetic pathways of these compounds resulted in drastic

differences in their accumulation, enhancing the genetic

effect. In the same way, previous volatilome studies with

F1 progenies of F. 9 ananassa cultivars pointed to both

genetic and environmental factors affecting volatile accu-

mulation, detecting different degrees of stability between

VOCs in samples harvested in different seasons (Olbricht

et al., 2011; Zorrilla-Fontanesi et al., 2012). In agreement

with our results, Olbricht and collaborators (2011) found 2-

undecanone and methyl 2-aminobenzoate among the most

stable compounds in their population. On the contrary,

they reported c-decalactone as the least stable compound

in their population, while it was among the most stable

in our study. Therefore, these differences highlight that

choosing an appropriate population for a specific trait is

key to the success of genetic mapping.

European woodland strawberry was divided into four

chemotypes according to their total terpenoids and lactone

accumulation. According to previous studies by Ulrich and

Olbricht (2016), the group with high terpenoids and high

lactones content (High_TL) is likely to present a more

pleasant aroma profile from human’s perspective. Thus,

further organoleptic and molecular genetic studies of these

chemotypes could uncover interesting genetic variants for

aroma selection in the Fragaria genus.

In addition, European woodland strawberry subpopu-

lations presented significant differences in fruit volatilome

relative composition, being those differences increased

with the geographical distances. Thus, subpopulations

from extreme latitudes (Iberian Peninsula from the south,

Iceland, Baltic Sea Region, and Scandinavian Peninsula

from the North) showed distinctive volatilome footprints

suggesting a low gene flow between those morphologi-

cally distant populations and an adaptation to their specific

environmental conditions (Ninkovic et al., 2021). On the

contrary, subpopulations from intermediate latitudes, such

as The Alps, Middle Europe, and Great Britain, did not pre-

sent clear distinctive volatilome footprints, likely due to a

higher gene flow among them.

Icelandic accessions, the most isolated and northern

group of samples, constituted the most distinctive cluster

(cluster C in HCA), close to some Central European and

Baltic accessions (cluster B) (Figure 3). However, the sam-

ples from the other island covered in this study, Great Brit-

ain, did not form a uniform cluster. These samples had

diverse volatile profiles, which might be the result of a fre-

quent gene flow enabled by the proximity of Great Britain

to continental Europe. These results are consistent with a

recent genetic analysis of 56 SSR markers in a global

F. vesca collection, which divided European samples into

two clusters, the Icelandic group and the rest of the Eur-

asian accessions (including Great Britain) and pointed to a

closer genetic relation between Icelandic and Central Euro-

pean accessions than to those from Scandinavia (Hilmars-

son et al., 2017). However, although no subpopulations

were detected with molecular markers in the F. vesca from

the Eurasian continent, PCA performed on volatilomes in

this study identified three distinctive geographical groups

based on volatile footprints on continental Europe, two

from Northern areas (Baltic Sea Region and the Scandina-

vian Peninsula) and one from Southern area (Iberian Pen-

insula). Moreover, the volatile signature from the latter
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was shared by some of the alpine accessions (CRO1, FR4,

GER100, IT3, and SUI1) (Figure 2), suggesting a lineage

continuity between those subpopulations. A sPLS-DA

model confirmed that levels of few VOCs would be suffi-

cient to classify Icelandic, Iberian Peninsula, and Baltic Sea

Region samples with high accuracy. However, samples

from Scandinavian Peninsula and Central Europe areas

(The Alps, Great Britain, and Middle Europe) were more

difficult to model, suggesting that further improvements to

this model are needed.

The study of our natural collection in two independent

harvests allowed the identification of compounds with a

stable between-seasons pattern and a wide between-

accessions range of accumulation. These compounds are

likely more genetically regulated than others and are suit-

able for the search for candidate genes involved in their

biosynthesis. Examples of these are c-decalactone, methyl-

2-aminobenzoate, methyl benzoate, methyl cinnamate,

mesifurane or 2-undecanone among others. Interestingly,

c-decalactone showed a remarkable variable pattern

among the geographical groups, being highly present in

Iberian Peninsula accessions (Figure 4a) and, interestingly,

in a few accessions of Middle Europe (i.e., GER2) and Great

Britain (i.e., UK1, UK2, and UK6) as well (Figure 3). The

higher c-decalactone content profile in these geographi-

cally distinct accessions suggests either a genetic flow

from Iberian populations or a convergent evolution in the

biosynthesis of this compound. Further studies might facil-

itate the identification of new variants of the fatty acid

desaturase FaFAD1 previously identified in F. 9 ananassa

(Chambers et al., 2014; S�anchez-Sevilla et al., 2014;

Zorrilla-Fontanesi et al., 2012) and/or novel genes involved

in the biosynthesis of this compound.

Fruit morphological differences were also driven by

geographical distribution, being fruits from southern

accessions significantly bigger and rounder, while berries

from northern origin were smaller and more elongated. In

addition, a general decline in fruit size was detected in the

second harvest (2017) compared with the first (2016).

Strawberry fruit growth and ripening are coordinated and

regulated by the combined action of the phytohormones

auxin, GA, and ABA. First, in early fruit developmental

stages, auxin promotes fruit growth in both length and

width in a GA-dependent and independent pathways,

respectively, being GA responsible for promoting fruit

elongation only (Liao et al., 2018). Then, when the fruit has

reached its final size, ABA inhibits fruit growth and triggers

ripening (Fenn & Giovannoni, 2021; Liao et al., 2018). Inter-

estingly, average temperatures during the harvesting

period in 2017 (June and July) were colder by 1.7 and

1.8°C than the same period in 2016 (Finnish Meteorological

Institute, n.d.). Since it is known that lower temperatures

repress GA biosynthesis (Zhou et al., 2017), the colder

summer in 2017 might have contributed to the shorter

fruits reported during the 2017 harvest (H17). Furthermore,

it is suspected that both endogenous and exogenous envi-

ronmental signals trigger the shift from growth to ripening

stages (Dur�an-Soria et al., 2020; Kou et al., 2021). Recently,

some QTLs have been found to explain variations in fruit

size and shape (Cockerton et al., 2021; Rey-Serra et al.,

2021; Urrutia et al., 2015). However, the genetic and envi-

ronmental effects on these traits need further studies to

understand underlying regulatory mechanisms, being this

collection of European F. vesca accessions an excellent

resource for that purpose.

In conclusion, this work summarizes the biochemical

and physical diversity of woodland strawberry fruit across

Europe. The genetic flux rate and exposure to different

environmental threats and conditions may have shaped

strawberry fruit volatilome across the continent, which has

been shown to have a strong genetic basis based on our

data. We demonstrate that there are phenotypic differ-

ences between fruits associated with their region of origin,

allowing us to differentiate specific European subpopula-

tions and pinpoint specific metabolic signatures that are

characteristic of different areas. These results indicate that

metabolites have the potential to be used, under certain

circumstances, as an alternative to molecular markers as

proposed in previous studies (Fernandez et al., 2016; Rie-

delsheimer et al., 2012). However, their potential needs to

be further explored. Furthermore, this work highlights the

European F. vesca collection as a valuable tool for future

genetic studies to identify candidate genes controlling the

contents of VOCs of interest as well as fruit size and shape

and develop markers linked to traits of interest. In addition,

future studies could address the interaction between the

characteristic VOCs of each specific geographical origin

and their environment, helping to elucidate adaptations to

specific pests, diseases, seed dispersal fauna or the activa-

tion of specific biochemical pathways by climatic condi-

tions such as temperature or light periods.

EXPERIMENTAL PROCEDURES

Plant material and harvest

The collection of Fragaria vesca used in this study comprises 182
accessions representing European genetic diversity. These acces-
sions were collected from 18 countries covering all the main distri-
bution areas of the species in Europe from the south of the
Iberian Peninsula to Kiolen Mountains, Northern Plain, and Lap-
land in the Scandinavian Peninsula, from Iceland and Great Britain
islands to the Alps and the central plateau in continental Europe.
Geographical coordinates of sampling sites spanned the latitude
and longitude ranges of 37.2614° N-70.1848° N and 23.1833° W-
104.3050° E, respectively (Table S8). All F. vesca accessions were
cultivated at the Department of Agricultural Sciences, University
of Helsinki, in Helsinki, Finland. During the autumn of 2015 and
2016, three clones of each genotype were propagated from runner
cuttings in 10 9 10 cm square pots. Two-month-old plants were
subjected to 12 h short days at 11°C for 6 weeks in a greenhouse
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to induce flowering. Following the flower induction, plants were
acclimated at 6°C for 6 weeks prior to cold storage at �2°C during
winter. In the spring, plants were transplanted into 3-liter pots.
Plants were divided into three blocks with one clone per accession
in each block and cultivated in a cage with polycarbonate roof for
berry production during the summer of 2016 and 2017. Fertilized
peat (Kekkil€a, Finland) was used as a growing media and plants
were regularly fertilized using liquid fertilizer (Kekkil€a, N-P-K: 17–4-
25, Finland). For the volatilome analysis, three biological replicates
of pools with at least five fully ripe berries each were harvested
from 125 and 170 F. vesca accessions in the first (June–July 2016)
and second season (June–July 2017), respectively, being 113
accessions common between both years. In addition, samples
from var. ‘Hawaii 4’ (H4), ‘Reine des Vall�ees’ (RV), and ‘Yellow
Wonder’ (YW) were collected in one harvest and treated equally.
Fruits were immediately frozen in liquid nitrogen, and the recepta-
cles, after the removal of achenes, ground to a fine powder and
stored at �80°C until the analysis was performed.

Seeds of all the accessions studied in this work are available
upon request to Dr. Timo Hyt€onen.

Volatile quantification

VOCs were determined in a similar way as described in previous
studies (Zorrilla-Fontanesi et al., 2012). Briefly, aliquots of 500 mg
of three independent biological replicates per accession and year
were analyzed as independent samples. VOCs were sampled by
HS-SPME (headspace solid-phase microextraction) with a 65 lm
PDMS/DVB (polydimethylsiloxane/divinylbenzene) fiber (Supelco,
PA, USA). A Combi-PAL autosampler (CTC Analytics, Zwingen,
Switzerland) was used for incubation, VOC extraction, and desorp-
tion. GC–MS was performed in a 6890 N gas chromatograph
coupled to a 5975B mass spectrometer (Agilent Technologies, CA,
USA). Compounds were monitored over the mass/charge ratio
(mz�1) range of 35–250. Chromatograms and mass spectra were
analyzed using the Enhanced ChemStation software (Agilent
Technologies, CA, USA). VOCs were unambiguously identified
by comparison of both retention time and mass spectra to those
of commercial standards (Sigma-Aldrich, MO, USA) run under
the same conditions. For quantification, a specific ion was
selected for integration of the area of each of the identified com-
pounds. Areas were normalized by comparison with the peak
area of the same compound in the flanking reference samples.
Reference sample consisted of a homogeneous mix of all ana-
lyzed samples and was injected regularly each of five to six sam-
ples in order to correct for variations in sensitivity and fiber
aging.

Fruit size, shape, and volume

Berry sizes were scored right before harvesting using a slide
gauge. The length of the berries was measured using their largest
axis from sepals to the tip, while the width was measured at their
widest part. Fruit shape was inferred as a ratio between length
and width, being indexes >1 an indication of elongated fruits,
while indexes ≤1 indicate rounded fruits. Fruit volume was
approximated by considering woodland strawberry berries as con-
ical and estimating their volume by the formula vol = prh/3, where
r is half fruit width and h is fruit length.

Data and statistical analyses

Volatile quantification ratios were normalized by log2 transfor-
mation. Statistical analysis was carried out using R software
basic functions unless otherwise is specified (R Core Team, 2022).
The chemotypes groups were defined based on the sum of

terpenoids (total terpenoids) and lactones (total lactones). Only
terpenoids and lactones showing between harvest correlation
values >0.5 were considered. Before summing up the relative
quantification values, they were rescaled using the formula: func-
tion(x) = x-min(x))/(max(x)-min(x)). Chemotypes were defined as
high (above the mean) or low (below the mean) for total terpe-
noids and total lactones respectively. Additive ANOVA models
with error type II were estimated for volatile traits taking geno-
type and harvest (year) factors and their effect sizes were
expressed as omega squared values (x2) calculated from ANOVA
table as follows: x2

x = (SSx-dfx*MSerror)/(SSt + MSerror). For fruit
size (length width and volume) and shape (index) traits, and for
VOCs taking geographical origin as a factor, an interaction
ANOVA model with error type III correction was fitted. In both
cases, we used Anova function from the package car (Fox &
Weisberg, 2019).

Volatile least square means (LSmean) per genotype were
estimated using emmeans function emmeans R from package
emmeans (Lenth, 2020). Principal component analysis (PCA) was
performed on LSmeans data and plotted using function PCA from
FactoMine package (Lê et al., 2008). The bootstrapped hierarchical
clustering analysis (HCA) was performed on least square mean
data computing Euclidean distances and complete clustering
method with 1000 iterations using function Bclust from shipunov
R package (Shipunov, 2020). Pairwise differences for VOCs, fruit
size, and fruit shape traits were estimated using emmeans and
CLD functions from emmeans package (Lenth, 2020; Piepho, 2004).
Sparse partial least squares discriminant analysis (sPLS-DA) was
performed with functions from mixOmics package (Rohart et al.,
2017). VOCs dataset (average values per genotype in two harvests)
was randomly subset for training (80% of samples) and testing
(20% of samples) sets. sPLS-DA model was estimated with splsda
function. Optimal number of components estimated with tune.splsda
function (validation = ‘Mfold’, folds = 3, nrepeat = 100) was set to 5
and optimal number of variables per component was set to 10, 9, 9,
8, and 9, respectively. Model performance and stability of selected
variables were estimated with function perf (validation = ‘Mfold’,
folds = 3, nrepeat = 100). Fitted model was applied on testing set
using predict function.
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