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Abstract
This thesis investigates the improvement of speech emotion recognition systems through the integration
of different interpretation techniques, focusing on low-resource languages. The research addresses two
main areas: performance variations across languages, and the influence of emotional representations on
system generalization.

Three speech emotion recognition models were implemented, all following from the same pre-trained
model: wav2vec 2.0. This model was adapted and retrained to read emotions following different sys-
tems of interpretation. A classification model for discrete emotions, a regression model for continuous
emotions, and a multiobjective model combining both. The evaluation assesses system performance
across English and non-English datasets to refine emotion recognition capabilities in various linguistic
and cultural contexts.

The findings show that incorporating multiple emotional representations helps to stabilize predictions
but does not fully resolve generalization issues. Performance discrepancies between English and non-
English datasets and significant biases towards specific emotions are noted. The study underscores the
need for more sophisticated models that can address the linguistic and cultural diversity of non-English
populations. Future research should focus on enhancing cross-corpus training and studying the applica-
bility of this technique with other modalities. This research contributes to advancing general emotion
recognition for broader inclusivity in human-computer interaction technologies.
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CHAPTER1
Introduction

1.1 Introduction and motivation
Recent advancements in deep learning and the popularization of large language models (LLMs) have
brought forth a revolution in AI that promises immense potential for the future. Countless industries
and organizations across various fields have already shown an interest in applying intelligent chatbots
to enhance internal processes and improve client interactions. These innovations are reshaping how we
interact with technology, offering smarter, more efficient solutions. The newly developed capacity for
seamless interaction between computers and humans, primarily through chatbots, is at the heart of this
transformative potential.

For human-computer interaction to be genuinely effective, communication must be fluid and natural,
mirroring human-to-human interactions as closely as possible. A critical aspect of this communication is
the expression and recognition of emotions. Emotional expression and recognition enable more meaning-
ful and empathetic interactions, which are essential for user satisfaction and engagement. Consequently,
there is a growing market need for sophisticated emotion recognition systems capable of understanding
and responding to human emotions accurately.

Emotion recognition technology has a wide array of potential applications. For instance, it can assist
healthcare professionals in understanding patients’ emotional states, thereby improving the quality of
care. In education, emotion recognition can help children with communication challenges express their
feelings and intentions more effectively. In security, it can enhance profiling and screening processes.
One particularly promising application is in mental health care, where companies like Tetatet are de-
veloping AI applications to provide mental health support. One example among them is a chatbot
that can perform emotional awareness exercises, recognize emotional cues to engage users in meaningful
conversations and generally help manage mental well-being, among many utilities. Emotion recognition
is naturally crucial for many of those applications.

Despite these advancements, deep learning systems face significant limitations, particularly their re-
liance on large datasets, which are expensive and challenging to create. Most AI models are primarily
trained in English, benefiting from the abundant resources available for this language. However, this
creates a significant challenge when these models are applied to other languages, as they often suffer a
well-known drop in performance due to the lack of training data. This issue is even more problematic for
low-resource languages with fewer speakers and resources, often overlooked in the training of AI models.
This situation presents a real risk of excluding these communities from the technological benefits of
emotion recognition systems. Bridging this gap is essential to ensure equitable access to advanced AI
technologies across different linguistic groups.

The goal of this thesis is to analyze different methods to create end-to-end unimodal systems for audio
input with satisfactory accuracy and robustness in English and other languages not originally trained
in. With this, this project aims to impulse this technology and its potential applications and help make
them accessible and beneficial to a broader range of linguistic communities, thereby enhancing their
inclusivity.
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1.2 Research objectives
My research aims to explore various solutions to the challenge of emotion recognition in low-resource
languages. Among the numerous techniques available in deep learning, I will primarily focus on uni-
modality due to its simplicity compared to multimodal techniques and its potential to escalate and
adapt to more complex applications later on. This study will examine the effectivity of multiple sys-
tems with different speech emotion representation, their robustness in handling non-trained languages,
and the biases exposed in their behaviour depending on the language and the emotion to classify. To
achieve this, I have formulated two key research questions that this thesis aims to address:

1. What are the performance disparities of emotion recognition systems when applied to low-resource
language datasets?

2. How does the emotional representation of speech affect the performance of the models and their
capability to generalize across languages?

1.3 Thesis structure
The thesis is organized as follows. Chapter 1 introduces the motivation and objectives of the research.
Chapter 2 presents background concepts and previous work related to emotion recognition, feature
extraction, emotional datasets, emotion representation and transfer learning methodologies. Chapter 3
describes the datasets used in this study. Chapter 4 details the speech emotion recognition model used
in this study. Chapter 5 evaluates the experiments, comparing the performance of different models and
their effectiveness. Chapter 6 discusses the results, interpreting the implications of the results. Chapter
7 concludes the thesis with a summary of findings and future research directions.



CHAPTER2
Background and previous

work
This chapter begins by exploring conversational agents and their applications in healthcare. The field
of emotion recognition is introduced and described from its early stages, focusing primarily on single
modalities, to modern advanced multimodal systems that enhance accuracy and reliability. The details
of speech feature extraction are presented, emphasizing the challenges and breakthroughs that have
shaped the field. Furthermore, the characteristics and challenges related to emotional data are discussed.

2.1 Conversational agents for health care
For several years, the potential of conversational agents, or chatbots, to make various aspects of our
lives more efficient and convenient has been increasingly recognized. One notable area is health care,
where the applications of this technology have been particularly emphasized. One of the earliest ex-
amples, ELIZA, was introduced by Joseph Weizenbaum in 1966 [30]. This system was one of the first
to demonstrate how a machine could function as a psychotherapist. With the rapid advancements in
artificial intelligence and natural language processing, the introduction of systems like Apple’s Siri and
Amazon’s Alexa, along with the increase in highly capable large language models, has caused renewed
interest in this field.

In a comprehensive 2018 review, Laranjo et al. [12] evaluate studies describing conversational agents
used in health care. These agents vary in complexity, from finite-state systems that guide users through
a pre-determined dialogue to more sophisticated agent-based systems that engage in complex interac-
tions. Modern systems, such as ChatGPT, exemplify agent-based systems where each agent can reason
about its own actions and beliefs and dynamically adapt the dialogue based on the conversation’s con-
text.

An intermediate system type is a frame-based system, which uses frames to collect the necessary in-
formation to accomplish a specific task. Unlike finite-state systems, these are not limited to a fixed
dialogue path but are guided toward filling the information ”slots” required to complete the interaction.

The significance of these systems extends beyond mere task completion. For instance, a study by Fitz-
patrick et al. [9] found that a non-task-oriented frame-based conversational agent could significantly
reduce symptoms of depression among college students over two weeks by engaging them in dialogues
based on cognitive behavioral therapy principles. Moreover, a diagnostic study [21] highlighted the po-
tential and challenges of using conversational agents for diagnosing major depressive disorders (MDD).
The agent’s ability to accurately diagnose MDD improved with the severity of symptoms, achieving a
sensitivity of 73% in cases with severe symptoms, while maintaining a specificity above 95% across all
severity levels.

These studies underscore the potential for conversational agents not only to perform specific tasks but
also to understand and respond to human emotions, making them invaluable in sensitive applications
like mental health. The development of emotion recognition capabilities in these systems could en-
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hance their effectiveness by enabling more empathetic and contextually appropriate interactions. This
enhancement is crucial for applications where understanding user emotion is key, such as in therapy
or customer service. By integrating advanced emotion recognition technologies, conversational agents
could revolutionize how we interact with machines, making these exchanges more human-like and sup-
portive.

2.2 Emotion recognition
Research on emotion recognition is vital as it equips computers with the capability to interpret human
emotions accurately and respond intelligently to human needs, enhancing human-computer interaction.
One area where this technology holds particular significance is in the field of mental health care, enabling
psychiatrists and psychologists to better understand the emotional conditions of their patients, which
can facilitate more personalized and precise healthcare services. Consequently, emotion recognition has
increasingly evolved into an area of high interest within artificial intelligence, capturing widespread
interest due to its potential to fundamentally change how humans and computers engage with one
another.

In the early stages of emotion recognition research, the focus was predominantly on unimodal emotion
recognition systems, such as voice [8, 28, 36, 10, 19], text [31, 26], or facial expression recognition [34,
29, 14, 32]. These methods, when employed alone, are often subject to inaccuracies due to insufficient
data available for training and vulnerability to environmental noise. This recognition of limitations led
to the development of multimodal emotion recognition frameworks. Multimodal emotion recognition
systems integrate data across various modalities, enabling the system to extract the most useful and
discriminative features from each and to quantify dependencies among different modal features. The
approach has shown a significant increase in the accuracy of emotion detection systems [33, 27, 15, 17].

Although multimodal systems have become the norm in recent research, these systems often employ
separate unimodal systems for each modality which are then blended together by using a fusion module.
Figure 2.1 illustrates a typical multimodal system with three categories: speech, text and face. Any
improvement in one of the separate categories could then potentially benefit the multimodal system’s
capabilities as a whole, and thus it justifies the ongoing research into improving the separate unimodal
models. As more research is being conducted into deep learning technologies, emotion recognition has

Figure 2.1: Overview of a typical multimodal emotion recognition framework [16].

become one of the leading topics in artificial intelligence research [18]. This involves the design of
neural network architectures and specialized loss functions, with cross-entropy loss, in particular, being
employed extensively [16].
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2.3 Speech feature extraction
At the heart of emotion recognition technologies is the principle of identifying emotional content from
a specific signal or modality. The careful identification of speech features that capture emotional vari-
ations represents a critical challenge in the field of emotion recognition. Typically, speech emotion
features are divided into two main categories: hand-crafted features and deep speech emotion features.
Hand-crafted features refer to the features used to describe speech signals that are designed by people
based on prior knowledge and professional experience [16]. Deep features, on the other hand, are ex-
tracted using modern deep-learning techniques.

These methods involve using deep learning [13] models to extract a set of feature vectors that represent
a signal’s deep speech features. One of the strengths of deep learning is that it can learn high-level
feature representations for emotion recognition automatically and often outperform traditional methods
based on hand-crafted features. Common deep learning-based feature extraction methods include Deep
Belief Networks, Convolutional Neural Networks, Recurrent Neural Networks, and Long Short-Term
Memory networks [35].

A number of self-supervised frameworks have been developed and are seeing increased use. These
models learn high-quality representations from unlabeled data. Among these are wav2vec [25] and the
improved wav2vec 2.0 [1]. These unsupervised models use raw audio waveforms to obtain generalized
speech features that can be applied to various downstream tasks. Other recent self-supervised models
include HuBERT [11] and WavLM [5].

Despite significant progress in the field, deep feature extraction of speech features still faces obstacles.
Deep learning models depend heavily on extensive datasets for training, which might not be readily
available or practical to gather in certain situations. Moreover, although self-supervised models are
generally efficient, they often fail to capture subtle emotional variations in speech [16]. Furthermore,
even though the existing models perform well, they require considerable computational power, which
can be a barrier for real-time applications. Future studies need to tackle these issues to improve the
utility and performance of deep feature extraction in this field.

2.4 Emotional datasets
Datasets may have one or more modalities; the most common of them include audio, visual, and text,
but other modalities, such as motion capture data or physiological signals, are used in some datasets.

Annotations can take the form of discrete, categorical emotion classes, continuous, dimensional val-
ues, or both. Datasets with categorical labels often employ Ekman’s six basic emotions [7] (happiness,
sadness, surprise, fear, disgust, and anger), as well as a neutral state. Studies commonly reduce the
number of emotions used before training or fine-tuning emotion recognition models in order to increase
performance.

Other datasets have continuous dimensional emotions. In this case, emotions are represented in a two-
dimensional space with valence (negative-positive) on the x-axis and arousal or activation (low-high) on
the y-axis. For example, anger is characterized by negative valence and high arousal. An illustration
of the dimensional representation of emotions is shown in figure 2.2.

Emotion annotation is always subject to some ambiguity and subjectivity, and this issue is more signif-
icant for dimensional labels. For this reason, most datasets have categorical annotations. Furthermore,
emotional datasets are divided in terms of their recording conditions: ”In-the-lab”, where actors imitate
emotions in a clean environment, facing the camera or microphone directly, and “in-the-wild”, sponta-
neous emotional expressions that are not acted for the purpose of the dataset, e.g. taken from movies
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or TV shows [24].

Figure 2.2: Illustration of the dimensional representation of emotions [6, 23].

2.4.1 Challenges related to data
It should be noted that most studies in emotion recognition were performed without thorough cross-
corpus experimentation, thus their findings are specific to the datasets used. Creating a model that
remains robust against variations in data conditions and distributions continues to be a persistent
challenge across most machine learning fields. This issue is particularly crucial in the field of affective
computing, as human emotional expression varies widely across ethnicities, cultures, languages, and
even factors like age and gender [24].

A significant barrier in advancing emotion recognition technology is the scarcity of high-quality datasets.
Obtaining data that is both comprehensive and representative of diverse emotional expressions across
different demographics is a major challenge. How emotions are expressed varies greatly both between
individuals and across different cultural backgrounds, nationalities, etc. Datasets from small countries
are especially rare, posing an obstacle for the development of emotion recognition systems adapted to
small ethnic populations and low-resource languages.

Secondly, ethical considerations play a significant role in acquiring emotional data. Ensuring the privacy
and consent of participants, especially in sensitive contexts involving emotional expressions, limits the
availability of such data. Datasets are often created using actors that are asked to express different
emotions while facing the camera directly or speaking directly into the microphone, resulting in an
artificial, enacted character of the expressed emotions. This varies greatly from true ”in-the-wild”
emotional expressions, and thus poses another challenge for developing robust emotion recognition
systems to be employed in real situations.

Moreover, the quality of data in terms of accuracy, resolution, and annotation is also an important
factor, to a large extent due to the inherent subjectivity in emotion perception. Poorly annotated data,
where the emotional labels do not accurately reflect the displayed emotions, can lead to models that
are ineffective or biased in their predictions. For this reason, many datasets use annotations created by
letting a number of people rate the perceived emotions, from which the average rating can be determined,
instead of relying solely on the actors’ self-reported expressed emotions. Similarly, low-resolution data
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can limit the ability of models to distinguish subtle emotional cues, which are often crucial for accurate
emotion recognition.

Furthermore, the advancement of emotion recognition systems for low-resource languages faces a barrier
due to a lack of sufficient resources in terms of data and labels for languages beyond the most commonly
spoken ones [6].

In conclusion, the lack of high-quality, diverse, and ethically sourced data is a significant barrier to
developing reliable and universally applicable emotion recognition systems. Overcoming this barrier
requires a large effort to create representative high-quality datasets for a broad range of languages and
different demographics.

2.5 Dimensional labels for transfer learning
Das et al. [6] propose using the dimensional representation of emotions to improve the generalization
of emotion recognition models across various languages, including those that are low-resource. Speech
emotion recognition systems typically face challenges in generalization due to the wide range of linguistic
features and emotional expressions across languages. Supervised learning approaches work well when
there is a wealth of labeled data, but they are less effective for languages that lack extensive and
annotated datasets.

The dimensional approach, which focuses on continuous scales of activation (emotional energy) and
valence (emotional positivity or negativity), provides a more universal framework that is beneficial for
accommodating the subjective nature of emotion perception. This subjectivity can vary significantly
across different cultural and linguistic contexts. For instance, perceptions of what might be considered
a ’neutral’ emotional tone can vary between languages, influenced by inherent phonetic and cultural
differences. Most conventional models train using fixed class labels, which do not effectively capture
these variations.

By adopting a model that utilizes activation and valence to capture emotional intensity and polarity,
Das et al. aim to offer a more adaptable approach. This method not only addresses the challenges of
scarce labeled data in many languages but also improves the consistency of speech emotion recognition
systems across diverse linguistic environments.

Das et al.’s semi-supervised approach, which integrates dimensional metrics of activation and valence,
has demonstrated superior performance compared to traditional methods. Their results show that
the model not only enhances the accuracy of emotion classification but also ensures that the learned
emotional representations are more consistent and transferable across different language datasets [6].
This supports their proposal that dimensional representation can significantly improve the generalization
capabilities of speech emotion recognition systems in linguistically diverse settings.

2.6 Chapter summary
This chapter examines the integration and implications of conversational agents and emotion recognition
technologies, particularly in healthcare settings. It describes various methodologies in emotion recog-
nition, including multimodal frameworks that analyze combined data from multiple modalities such as
speech, text, and visual data for more accurate emotional assessments. Specific feature extraction tech-
niques are covered, noting the progression from hand-crafted to deep learning methods. Furthermore,
the critical role of high-quality, diverse datasets in refining these technologies is discussed. We explore
the significant challenge of developing robust emotion recognition systems for low-resource languages
and present the dimensional representation of emotions as a potential solution to this problem. This
approach, by focusing on universal dimensions of emotional expression such as activation and valence,
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aims to improve the generalization capabilities of these systems across various linguistic environments.
The chapter also covers the challenges of data scarcity, ethical considerations, and the technical barriers
in deploying these systems in real-world settings.



CHAPTER3
Datasets

As with any task involving the design of frameworks based on machine learning models, access to large
amounts of high-quality data is crucial. This chapter presents the emotional datasets that were used in
the implementation of the emotion recognition system. The chapter is structured as follows: First, a
brief introduction to emotional datasets and their various properties and characteristics. Subsequently,
the specific datasets employed in this research are introduced and detailed comprehensively.

3.1 Datasets used in this study

3.1.1 IEMOCAP
The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset is an audio-visual dataset
collected by the Signal Analysis and Interpretation Lab (SAIL) at the University of Southern California
[3]. The dataset consists of scripted and improvised dialogues. The modalities included are audio, visual,
facial motion capture, and text data, thereby serving as an important source for thorough investigation
of emotional states in interactive settings. The dataset employed ten American actors (five female and
five male) speaking English. IEMOCAP includes 4784 improvised and 5255 scripted conversations, in
total approximately 12 hours of audio-visual data, providing a wide spectrum of emotional contexts.
The dialogues being both scripted and improvised results in the dataset containing a variety of emotional
content, improving its representativeness of real-world emotional communication [16]. The recordings
have an average duration of 4.5 s and an average word count of 11.4. The dataset contains both ten
categorical emotion labels (happiness, sadness, anger, surprise, fear, disgust, frustration, excitement,
neutrality, and other) and the continuous dimensional labels valence, arousal, and dominance. The
data was labelled by six expert raters overall with no less than three raters per video. Although the
IEMOCAP is an ”in the lab” dataset the authenticity of the expressed emotions is increased due to
the dialogues being improvised. This is beneficial in helping deep learning models perform well on
real data. IEMOCAP is limited by its English-only data, reducing its applicability for flexible models
intended to work across different languages and cultures. Furthermore, the dataset is characterized by
a severe class imbalance, with some emotional classes having only very few instances, which can impact
trained models’ performance for those classes. The copy of IEMOCAP obtained for this study was,
unfortunately, not complete, as some files were corrupted. In terms of audio files, the loss was minor,
as only one out of five sessions were affected. For video data, however, the dataset contains only videos
of full minutes-long dialogues, as opposed to the audio, where both data and labels were provided as
individual utterances. For this reason, the IEMOCAP dataset was used exclusively as an audio dataset
in this study.

3.1.2 CREMA-D
This audio-visual dataset [4] contains a total of 7442 video clips with an average duration of 2.5 seconds.
The data consists of the interpretations of 91 actors (48 male and 43 female) from different nationalities
and ethnicities speaking in English. They were asked to speak a selection of 12 sentences with six
different emotions and four different levels of intensity. The annotators classified the emotions into one
of six categorical emotion labels based on the combined audio-visual presentation, based solely on audio



3.2 Chapter summary 10

data, and solely on video data. 95% of the clips have more than 7 ratings. Contrary to other datasets,
CREMA-D also includes the confidence level of the annotators about their ratings. This dataset gives
us the opportunity to test the model against the self-reported emotion labels (the actor’s representation
of the emotion they were asked to perform) and the perceived emotions represented by the annotators’
ratings. I tested the model with both methods since it could give insight into the capabilities of the
model.The data in CREMA-D is more diverse than IEMOCAP with a higher number of actors that
vary in terms of ethnicity and age (from 20 to 74).

3.1.3 Emo-DB
Speech dataset in German [2], with 535 utterances in total, each one lasting for a couple of seconds.
10 actors (five male and five female) performed 10 sentences with one of seven different emotions.
Annotations are self-reported, i.e. the emotions the actors were asked to express.

3.1.4 ShEMO
Speech dataset in Persian [20], with 3000 semi-natural utterances of a few seconds each one, equivalent
to 3 hours and 25 minutes of speech. The utterances were captured from radio talks by 87 native Persian
speakers and rated by 12 participants, also native Persian speakers, into six emotional categories.

3.2 Chapter summary
Chapter 3 introduces and describes the datasets used in this study, emphasizing their critical role in
developing robust emotion recognition systems. The chapter begins with an overview of emotional
datasets, discussing their various properties, modalities, and types of annotations (categorical and
dimensional). It then provides detailed descriptions of the specific datasets employed in the research,
such as IEMOCAP and CREMA-D. Each dataset’s characteristics, including the type of emotional
content, recording conditions, and annotation methods, are thoroughly examined. The chapter also
addresses the challenges of data processing and preparation, highlighting the importance of aligning
data quality and annotation accuracy with the research objectives.



CHAPTER4
Audio modality: Speech

emotion recognition
4.1 Wav2vec 2.0
Wav2vec 2.0, developed by Meta (formerly Facebook AI), is a state-of-the-art model for processing
audio data, particularly for automatic speech recognition tasks. Released in October 2020, it remains
one of the most utilized self-supervised models for speech recognition. It allows the learning of useful
representations from large amounts of unlabeled data before fine-tuning on smaller, labeled datasets,
enabling adaptation to specific tasks.

The basic version of wav2vec 2.0 used in this thesis was trained exclusively on unlabeled English language
data. Leveraging extensive unlabeled audio data is significant because it is more readily available and
easier to prepare compared to labeled data. By pre-training on this vast amount of unlabeled data,
the model learns robust representations of the underlying audio features, making it highly effective for
subsequent fine-tuning tasks such as emotion recognition.

The inner workings of wav2vec 2.0 involve several key components and processes that enable it to
effectively learn representations from raw audio data:

1. Feature encoder: The process begins with the feature encoder, in this case a multi-layer CNN
designed to process raw audio waveforms into latent speech representations, capturing local tem-
poral dependencies. The encoder produces a high-dimensional representation that serves as the
input for subsequent stages.

2. Latent representation and masking: Once the audio is encoded into latent representations,
wav2vec 2.0 employs a masking strategy inspired by masked language modeling in natural language
processing. A certain proportion of the latent representations are randomly masked, and the model
predicts the masked portions based on their surrounding context. This approach forces the model
to learn robust, context-aware features that capture the underlying structure of the audio signal.

3. Transformer network: The masked latent representations are then fed into a Transformer net-
work, which is known for its ability to model long-range dependencies and contextual information.
The Transformer processes the entire sequence of latent representations, building a contextualized
representation for each time step. This contextualization is crucial for understanding the temporal
dynamics and patterns within the audio data.

4. Quantization module: A distinctive feature of wav2vec 2.0 is its quantization module, which
discretizes the continuous latent representations into a finite set of learned speech units. This
step involves using a Gumbel-Softmax operation to enable differentiable quantization, allowing the
model to jointly learn discrete speech units and their contextual representations. The quantization
helps in reducing the model’s complexity and improving the robustness of the learned features.

5. Contrastive loss and fine-tuning: During pre-training, wav2vec 2.0 is optimized using a con-
trastive loss function. This loss encourages the model to distinguish the true latent representation



4.2 Pre-trained models for speech emotion recognition 12

of masked time steps from a set of distractors. Additionally, a diversity loss is applied to ensure
the model utilizes the quantized speech units uniformly, promoting a richer and more balanced
representation.
After the pre-training phase, the model undergoes fine-tuning on labeled data for specific down-
stream tasks.

Wav2vec 2.0’s open-source nature makes it accessible to researchers and developers worldwide, con-
tributing to its rapid adoption and continuous improvement. Given its advantages, wav2vec 2.0 was
selected as the pre-trained model for this thesis, offering a more effective solution than creating a new
model from scratch.

To adapt the speech recognition model for emotion recognition, a new classification or regression head
is required, and the model must be fine-tuned on an appropriate dataset. There have been many previ-
ous projects that implemented similar adaptations, so my initial approach involved exploring relevant
platforms, such as Hugging Face, where there could potentially be an appropriate model for the thesis.

4.2 Pre-trained models for speech emotion recognition
I explored the most recent and popular models on Hugging Face for pre-trained speech emotion recog-
nition. Most of these models used wav2vec 2.0 as their base, with subsequent fine-tunings to improve
performance for emotion recognition. These models were accessed directly through the Transformers
library, simplifying implementation.

I tested these models using two datasets: EmoDB in German and CREMA-D in English, selecting
160 random utterances for testing in each case. My objective was to verify the reported performance
on English datasets and assess robustness in other languages. Initial results showed subpar capabilities,
with some models performing significantly lower than reported.

My second approach involved fine-tuning my own model while monitoring new additions on Hugging
Face. My attempts at preparing my own emotion classification model encountered challenges, such as
choosing an appropriate dataset for training, balancing the data, and adjusting hyperparameters. All
of these took more effort and time than expected. Eventually, I found a newly released fine-tuned
model by the SpeechBrain team that passed my performance tests. SpeechBrain [22] is an open-source
PyTorch toolkit focused on speech applications and conversational AI.

4.2.1 SpeechBrain model for classification
This new model was fine-tuned in Google Colab using a V100 GPU and the IEMOCAP dataset due
to its availability and quality. It used an 80/10/10 split ratio for training, validation, and testing
subsets. A classification head was added to the base wav2vec 2.0 model, retrained by freezing the feature
encoder components of wav2vec 2.0 but leaving the Transformers and classification head trainable, which
allegedly increased performance and reduced training time. The model was trained with a batch size
of 4, for 30 epochs, with a dynamic learning rate that started at 0.00001 for the wav2vec2 model and
0.0001 for the classifier head. The training also utilized an Adam optimizer. Using this setting the
model reportedly achieved a 78.7% accuracy, with an average class accuracy of 75.3% on the testing
subset. While this subset was not shared, limiting verification, successive experiments with my dataset
have shown consistent results. After verifying its suitability for the purposes of this thesis, I proceeded
to adapt and use the model for other experiments.

The IEMOCAP dataset originally contained utterances classified within 11 different labels, but the
dataset was pruned to contain only five of them: neutral, anger, happiness, sadness and excitement,
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which was found equivalent to happiness and relabeled as such. This simplification improved accuracy
by focusing only on the most basic and universal emotions and facilitated compatibility with other
datasets, as these labels are the most commonly used.

The splits among the used IEMOCAP data were performed randomly across all utterances labeled with
the specified emotions. Notably, the SpeechBrain team did not separate the training, validation, and
testing subsets based on the speaker, and I maintained this approach. This method was chosen because,
ultimately, the ultimate application of this model would be a personalized system with which the user
consistently interacts. In such a scenario, it is reasonable to anticipate that the model will learn and
adapt from these interactions, enhancing its functionality over time with the same user. Thus, training
and testing on utterances from the same speaker in different contexts seems appropriate and aligns with
the technological trend of AI systems becoming more personalized and adaptive.

4.2.2 SpeechBrain model for regression
The Speechbrain model is capable of performing emotion classification among four different emotions
using the IEMOCAP dataset. That said, this dataset provides labels not only for emotional classes but
also for dimensional values, such as valence and arousal. This feature allowed me to adapt the existing
model to perform regression instead of classification, predicting these dimensional attributes from the
inputs.

The IEMOCAP dataset includes the three dimensions commonly used for defining emotional recognition:
valence, arousal, and dominance. However, following common practice in the literature, the model was
adapted to predict only the first two dimensions since they are commonly considered enough to define
an emotional state. Furthermore, the simplification may help improve the performance of the model in
representing the attributes we are most interested in.

While I was unable to acquire a non-English dataset with dimensional data to test the model’s ability to
generalize across languages, further experiments could use the results of these experiments to investigate
the generalization potential, so they are also included in the project.

To adapt the original model for regression, I made several modifications to the dataset handling and
model structure:

• Dataset inclusion: I included all instances from the original IEMOCAP dataset since there was
no longer a limitation by emotion classes. This allowed for a more extensive use of the available
data.

• Data treatment: The data handling was modified to save the dimensional attributes (valence
and arousal) instead of the classification labels.

• Model adjustment: The linear head added to the wav2vec model was retained, but the number
of output units was reduced from four to two, corresponding to the valence and arousal dimensions.

• Loss function and evaluation metric: I replaced the original loss function and evaluation
metric with Mean Squared Error (MSE), which is more suitable for regression tasks.

• Softmax removal: The softmax function, which was applied to the original output, was removed
to accommodate the regression outputs.

Other characteristics of the model remained unchanged. The wav2vec 2.0 model was then fine-tuned
from scratch using the same 80/10/10 split ratio for training, validation, and testing on the IEMOCAP
dataset, as was previously done for the classification tasks.
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4.2.3 SpeechBrain multiobjective model
At this point, I had developed both a classification model and an adapted regression model. These are
the two classical approaches for emotion recognition, depending on the type of labeled data available.
However, it is possible to combine these approaches into a multi-objective model. Similar to multimodal
or multitask models, the rationale behind using a multi-objective implementation is that training the
model on different but related objectives can enhance learning efficiency, reduce training time, and
potentially improve accuracy by sharing representations across tasks.

Both the classification of four basic human emotions and the regression of two emotional dimensions
are related representations of emotion recognition but stem from different methodological approaches.
By training them together, I aimed to enrich the internal representations and define clearer classifica-
tion boundaries. A better understanding of emotional dimensions such as arousal and valence could
potentially help differentiate between emotional classes more effectively.

This approach could also enhance the model’s generalization capabilities for cross-corpus and cross-
lingual cases. Sneha Das et al. [6] suggest that emotional dimensions, particularly arousal, are easier
to identify across languages than discrete emotional classes. If this holds true, a multi-objective model
with a well-defined arousal dimension in its internal representation may perform better in classifying
emotions in other languages compared to a purely classification-focused model.

To test this hypothesis, several modifications were made to the previous models, particularly in dataset
handling and model structure:

• Dataset inclusion: For classification, I only used data corresponding to the emotions intended
to classify. The process was similar to that used for the classification model.

• Data treatment: The data handling was modified to include both the dimensional attributes
(valence and arousal) and the classification labels. All instances labeled as ”excitement” were
changed to ”happy.”

• Model adjustment: Two linear heads were added to the wav2vec 2.0 model: one for classification
and one for regression. The classification head included a bias term, whereas the regression head
did not. The number of outputs for each head remained the same as previously defined.

• Softmax implementation: The log_softmax function was applied to the classification output
to normalize the results, offering a more stable implementation when paired with the Negative
Log-Likelihood (NLL) loss.

• Loss function and evaluation metric: Averaging pooling was applied to the outputs of both
heads. The regression head used MSE as the loss function and metric, while the classification
head used NLL after the softmax. The global loss function for the model was the sum of these
two values. Since NLL tends to produce slightly higher values, the model is expected to train the
classification task more aggressively than the regression task.

Keeping other hyperparameters intact, such as the learning rate and the freezing of the feature encoder,
the model was fine-tuned from scratch. Due to changes in the available environments on Google Colab,
I used an L4 GPU instead of a V100, as used for previous audio model training.

4.3 Chapter summary
Chapter 4 explores the use of the wav2vec 2.0 model, developed by Meta, for speech emotion recognition.
This model leverages extensive unlabeled audio data to learn robust representations, which are then fine-
tuned on smaller labeled datasets. The chapter details the key components of wav2vec 2.0, including its
feature encoder, masking strategy, Transformer network, quantization module, and the use of contrastive
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loss during pre-training. It also discusses the process of fine-tuning pre-trained models for emotion
recognition, using various datasets to assess performance and robustness. The SpeechBrain model,
which was fine-tuned using the IEMOCAP dataset, demonstrated significant accuracy and was selected
as the base model for the speech emotion recognition model. Finally, the chapter describes how the
model was further adapted for other experiments, highlighting the potential of combining classification
and regression tasks to enhance emotion recognition capabilities across languages.



CHAPTER5
Experiments and results

In this chapter, I present the tests done on the models described in past chapters. To evaluate all models
in the most complete way possible I used a variety of datasets, from English to non-English ones. All
experiments were performed with an ample quantity of test data and balanced class representation to
represent effectively any bias or trend acquired by the models.

5.1 Speech model for classification
According to the Speechbrain developers’ report on Hugging Face, the model achieves an accuracy of
78.7% on IEMOCAP. Due to a lack of access to the specific training and testing subsets used, I was
unable to verify these numbers directly. Instead, I conducted additional experiments to evaluate the
model’s performance on IEMOCAP and other datasets, including two in different languages.

Experiment with IEMOCAP (see figure 5.1(a)): The model was tested in a random sampling of the
IEMOCAP dataset, consisting of 494 utterances per class, totaling 1,976 utterances. This sample size
was chosen to ensure equal representation of emotions while using the maximum available utterances
from the partially accessible IEMOCAP dataset.

The model’s high performance on this dataset was expected, as the sample likely included training
data, but it serves as a point of comparison to other datasets. The results showed strong capabilities
in identifying anger, happiness, and sadness, with the main error source being the misclassification of
happiness and sadness as neutral. The model easily differentiated between anger and neutral emotions
but struggled slightly more (above 7%) between neutral and happiness or sadness.

Experiment with CREMA-D: The CREMA-D dataset’s self-reported emotion labels already had a bal-
anced class representation. I removed utterances of unwanted classes, resulting in 1,087 inputs per class
and 4,348 inputs in total. For human rated annotations, class frequencies varied, leading to a test set
of 353 utterances per class, totalling 1,412 utterances.

As anticipated, the model’s performance dropped on this different corpus. The CREMA-D tests mir-
rored the IEMOCAP results but showed more pronounced issues. The model recognized neutral and
anger with above 75% accuracy but struggled with happiness and sadness, often misclassifying them
as neutral or anger. Only on rare occasions does the model even predict an input as happiness. The
model’s classification of neutral and anger was more aligned with the rated annotations, suggesting
it matched human rater performance. Two possible causes of this are a performance problem from
the actors that struggled to imprint a specific emotion on the voice while concentrating on the visual
interpretation, or human limitations to recognise emotions with just the voice as input.

Experiment with Emo-DB: Due to the low amount of utterances on Emo-DB and the imbalance of the
dataset, it was tested with 62 utterances per class, totalling 248 utterances. Surprisingly, the model
performed better on this German dataset than on CREMA-D, an English dataset, with neutral being
the easiest emotion to classify with above 90% accuracy. Both anger and happiness show acceptable
results. However, sadness was frequently misclassified as neutral or happiness (31% and 60% respec-
tively). Similar to the case of happiness in CREMA-D, it is rarely predicted.
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((a)) IEMOCAP

((b)) CREMA-D (self-reported) ((c)) CREMA-D (rated)

((d)) Emo-DB ((e)) ShEMO

Figure 5.1: Confusion matrices for the classification speech model tested on each dataset.
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Experiment with ShEMO: This Persian dataset was tested with 201 utterances per class, totalling 804
inputs. The model performed worse on ShEMO than on Emo-DB (see table 5.1. While this is likely due
to closer linguistic similarities between English and German, it is not possible to rule out the influence
of a statistical shift in the data. The model showed good classification capabilities between neutral
and anger but often misclassified inputs as happiness, especially those marked as sadness or neutral,
where the true false positives reach 80% and 51% of the total inputs of both emotions. Similarly to the
German dataset, sadness is rarely predicted and is often confused with happiness or neutral.

Overall, the model tended to classify English inputs as neutral, but this tendency shifted to happiness
in other languages, even those as different as German and Persian. The model also predicted anger
consistently but struggled to predict sadness, especially in non-trained languages.

IEMOCAP CREMA-D
(self-reported)

CREMA-D
(rated)

Emo-DB ShEMO

Accuracy 0.92206 0.51656 0.52195 0.60081 0.51990
F1 score (macro) 0.92266 0.44441 0.46672 0.53310 0.46678

Table 5.1: Results of the classification speech model on each dataset.

5.2 Speech model for regression
This experiment evaluated the performance of the speech unimodal model for regression. The model
was tested exclusively on the IEMOCAP dataset, as it was the only accessible dataset with labeled
dimensional emotions. For context, it must be noted that in IEMOCAP each utterance was rated by at
least three human annotators, with scores ranging from 0 to 5 for each dimension. Although the values
are theoretically continuous, the annotators used discrete increments of 0.5. The different scores were
then averaged to determine the final dimensional label for each utterance. As shown in figure 5.2, the

Figure 5.2: Distribution of true and predicted dimensional values.

distribution of the predictions followed, in general terms, the distribution of the true labels. This can
also be seen when plotting the true and predicted dimensional values, as shown in figure 5.3. Intuitively,
it can be understood that high absolute scores of valence will be related to high levels of arousal, as
expressed emotions on the extreme of the valence spectre are generally shown in an emphatic manner.

In figure 5.4, the error distribution for valence and arousal is displayed. We can observe that both error
distributions followed a normal pattern. Table 5.2 provides detailed characteristics of these distributions.
Generally, the model predicted the arousal score slightly better than the valence, indicated by a smaller
maximum error and reduced standard deviation. The slightly lower correlation for arousal suggests a
slight misalignment between the prediction and true labels.



5.2 Speech model for regression 19

Figure 5.3: Correlation between true and predicted dimensional values.

Figure 5.4: Error distribution for valence and arousal.

Valence Arousal
MSE 0.3696 0.2715

Max error 2.4541 1.7625
Mean -0.0078 0.0352

Standard deviation 0.6079 0.5199
Correlation 0.7293 0.6693

Table 5.2: Results of the regression speech model on IEMOCAP.
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5.3 Speech multiobjective model
This experiment assessed the performance of the multiobjective speech unimodal model for both re-
gression and classification tasks. All tests were conducted under the same conditions and using the
same subsets as the previous unimodal experiments for their respective tasks. This approach ensured
consistency and comparability of results across different experimental setups. Figure 5.8 shows the con-
fusion matrices for the multiobjective speech model tested on each dataset. Overall, the multiobjective
model performed both tasks adequately but with slightly different performances compared to separately
trained models. In regression, as for the case for the exclusively-regression model, the distribution of

Figure 5.5: Distribution of true and predicted dimensional values.

Figure 5.6: Correlation between true and predicted dimensional values.

predicted values follows the actual values, as shown in figure 5.5 and figure 5.6. It can be seen in table
5.3 that the model’s performance was slightly worse, with a 0.075 increase in MSE for valence and a
0.034 increase in MSE for arousal. The only improvement was an increase in the correlation of arousal,
correcting the previous slight misalignment.

In classification, as shown in table 5.4, the results were mixed. For English datasets, the multiobjective
model provided more balanced results across all classes, increasing predictions for happiness, sadness
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Figure 5.7: Error distribution for valence and arousal.

and anger but also raising the error rate for neutral. This tendency reversed for non-English datasets,
particularly with ShEMO, where the model decreased predictions for happiness and sadness, often mis-
classifying these emotions as neutral. In the case of sadness, it was not predicted even once in all tested
inputs.

Compared to the single objective classification model, the multiobjective model reduced its tendency to
classify inputs as neutral in English but exhibited this behavior more in other languages. The model
improved its ability to predict sadness in English but lost almost completely this ability in non-trained
languages. Overall, the multiobjective model shows worse results in its regression task when tested on

Valence Arousal
MSE 0.4443 0.3054

Max error 3.2874 2.2233
Mean -0.0306 -0.0360

Standard deviation 0.6659 0.5515
Correlation 0.7005 0.7126

Table 5.3: Dimensional results of the multiobjective speech model on IEMOCAP.

IEMOCAP
(full)

IEMOCAP
(test)

CREMA-
D (self-
reported)

CREMA-
D (rated)

Emo-DB ShEMO

Accuracy 0.94886 0.75 0.51539 0.53754 0.61694 0.56095
F1 score (Macro) 0.94896 0.75331 0.45723 0.50064 0.53472 0.48596

Table 5.4: Classification results of the multiobjective speech model on each dataset.

the IEMOCAP dataset, but an improvement on the classification task. While it does not perform as
well on the testing subdataset of IEMOCAP and just slightly worse on the self-reported CREMA-D it
is of note that it shows better results on all other tests, including in all the non-English datasets.
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((a)) IEMOCAP (testing data) ((b)) IEMOCAP (full dataset)

((c)) CREMA-D (self-reported) ((d)) CREMA-D (rated)

((e)) Emo-DB ((f)) ShEMO

Figure 5.8: Confusion matrices for the classification results of the multiobjective speech model tested
on each dataset.
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Classification model Multiobjective model
Dataset Accuracy F1 score (max) Accuracy F1 score (max)
IEMOCAP (full) 0.92206 0.92266 0.94886 0.94896
IEMOCAP (test) 0.78700 - 0.75000 0.75331
CREMA-D (self-reported) 0.51656 0.44441 0.51539 0.45723
CREMA-D (rated) 0.52195 0.46672 0.53754 0.50064
Emo-DB 0.60081 0.53310 0.61694 0.53472
ShEMO 0.51990 0.46678 0.56095 0.48596

Table 5.5: Results of the multimodal and unimodal models tested on CREMA-D.

5.4 Chapter summary
In this chapter I present comprehensive experiments evaluating various models for emotion recognition
across multiple datasets. The experiments include tests on unimodal speech models for classification
and regression, as well as a multiobjective task combining both of them. The speech classification
model was tested on IEMOCAP, CREMA-D, Emo-DB, and ShEMO datasets, showing varying degrees
of accuracy and robustness, particularly highlighting challenges in recognizing emotions like sadness and
happiness across different languages. The chapter further examines the performance of the regression
model, although there is no baseline to compare against. Additionally, the chapter evaluates the impact
of the multiobjective approach, emphasizing the improvements in robustness and accuracy achieved
through this method.
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Discussion

The experiments conducted in this study underscore the complexity and multifaceted nature of emotion
recognition systems. The performance of these systems is influenced by several factors, including the
modality, the language of the dataset, and the internal representation of the emotional state. It has
been proven in previous investigations that certain emotions are more readily recognized by specific
modalities. For instance, Anger is more accurately detected through audio, while happiness is better
recognized through video. Sadness, which generally performs poorly in unimodal models, shows sig-
nificant improvement when both audio and video inputs are utilized (as mentioned in the CREMA-D
paper [4]). All of these tendencies are observed in the model. Although this thesis did not focus on
multimodality, it is important to mention that strong skews in emotion recognition are to be expected
due to only using the speech modality.

Interestingly, experiments with non-English datasets challenge many of the assumptions drawn from
the English dataset analyses. The models exhibit better performance, both in accuracy and f1 score, on
non-English datasets compared to CREMA-D, but with notable differences in probability distribution.
While it is not possible to affirm without further research if it is a characteristic of the IEMOCAP
dataset with which all the speech models were trained, the CREMA-D dataset or the English language,
it is clear that for non-CREMA-D/non-English tests the model behaved in a different way, consistent
across all other datasets. The preference for predicting the neutral class in English datasets shifts to hap-
piness in non-English datasets, often accompanied by a decrease in the accuracy of other emotions, such
as neutral and anger. Sadness predictions are particularly affected, almost disappearing in non-English
datasets. Despite individual differences across datasets, a consistent trend emerges across languages as
diverse as German and Persian. This suggests the potential for developing more robust models that can
adapt to these trends and improve performance across multiple languages. The experiments also high-
light the benefits of incorporating multiple internal representations of emotions in the final prediction.
The results demonstrate that using emotional dimensions to complement emotional classes helps define
clearer classification boundaries. The multiobjective speech model, which combines classification and
regression tasks, demonstrates a stabilizing influence, balancing the scores across different emotions.
This effect is evident across languages, moderating the trend towards happiness, although the model
seems to lose the ability to predict sadness entirely. The multiobjective speech model achieved lower
accuracy only on the test subdataset of IEMOCAP and on the self-reported CREMA-D, which is of less
interest to us than the rated one. On all other datasets, including non-English ones, the multiobjective
model shows better accuracy. In the case of ShEMO, this difference is especially significant, improving
the results by 4%. On all tests, the F1 score is consistently better by using the multiobjective task,
which points to a more regular distribution of the correct prediction across emotions.

In summary, the results illustrate the complexities and challenges of emotion recognition across differ-
ent languages. Incorporating multiple internal representations of emotions shows promise in improving
model performance, but further research is needed to ensure their applicability across languages and
datasets and to refine them further.



CHAPTER7
Conclusions and future

recommendations
7.1 Conclusions
This master thesis aimed to explore the enhancement of emotion recognition systems, the performance
disparities of these systems in low-resource languages, and the impact of different emotional represen-
tations in speech systems and their generalization capabilities across languages. The findings provide
clear answers to these research questions.

1. What are the performance disparities of emotion recognition systems when applied
to low-resource language datasets?
The performance of emotion recognition systems in low-resource language datasets showed no-
table disparities compared to English datasets. While speech models demonstrated better overall
accuracy and F1 scores on non-English datasets than on CREMA-D, the distribution of predicted
probabilities differed significantly. In non-English datasets, the models exhibited a strong pref-
erence for predicting happiness over other emotions, which led to a decrease in the accuracy of
neutral and anger predictions and almost a complete absence of sadness predictions. This trend
was consistent across diverse languages, including German and Persian (considered both poor-
resource languages in this context due to not being used for training in any model), highlighting
the need for models that can adapt to different linguistic contexts and maintain their performance.

2. How does the emotional representation of speech affect speech systems and its capa-
bility to generalize across languages?
The incorporation of multiple internal representations of emotions, such as emotional dimensions
alongside emotional classes, proved beneficial for speech systems. The multiobjective model, which
combined classification and regression tasks, helped define clearer classification boundaries and
balanced the prediction scores across different emotions. This stabilizing effect was observed across
languages, moderating the tendency towards over-predicting neutral and happiness. However,
there were some cases where the method did not help to balance emotions, such as sadness in
non-English datasets. Speech models that included the multiobjective task achieved the highest
accuracy on most datasets and F1 scores on all experiments. While further research is necessary
to refine these approaches for better cross-linguistic applicability, these findings suggest that using
multiple emotional representations can enhance the performance of the models.

7.2 Future recommendations
Despite the progress made in this thesis, several avenues for future research remain unexplored due to
time constraints, limited resources, or being beyond the scope of this study. The results and discussions
have highlighted areas that warrant further investigation to provide more conclusive evidence. Notably,
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the observed differences in behavior between English and non-English datasets and the varying per-
formance of models across these datasets require more extensive experimentation. Testing the models
with multiple datasets within the same language and across different languages will help establish solid
foundations and mitigate the effects of particularly noisy datasets.

Both multimodality and multiobjective techniques have separately shown potential for enhancing emo-
tion recognition models, but it would be interesting to investigate their applicability when combined
on the same model. Further investigation would require applying the multiobjective task on the speech
module of a multimodality model and check the evolution of its results

The primary aim of this project was to contribute to the ongoing research on emotion recognition due
to its vast social and economic potential. Although it has developed some end-to-end applications and
explored various methods to address current technological challenges, the results showed that we are
still far from completely solving these issues. However, I believe that the technology is mature enough
for limited real-life applications. Applying the ideas presented in this thesis to perfect or build appli-
cations in real-world environments is beyond the scope of this study, but I hope that this work will
inspire and contribute to future advancements in this field.
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