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Abstract: The notions of modular b-metric and modular b-metric space were introduced by Ege and
Alaca as natural generalizations of the well-known and featured concepts of modular metric and
modular metric space presented and discussed by Chistyakov. In particular, they stated generalized
forms of Banach’s contraction principle for this new class of spaces thus initiating the study of the
fixed point theory for these structures, where other authors have also made extensive contributions.
In this paper we endow the modular b-metrics with a metrizable topology that supplies a firm
endorsement of the idea of convergence proposed by Ege and Alaca in their article. Moreover, for a
large class of modular b-metric spaces, we formulate this topology in terms of an explicitly defined
b-metric, which extends both an important metrization theorem due to Chistyakov as well as the
so-called topology of metric convergence. This approach allows us to characterize the completeness
for this class of modular b-metric spaces that may be viewed as an offsetting of the celebrated
Caristi–Kirk theorem to our context. We also include some examples that endorse our results.
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1. Introduction and Preliminaries

We start by pointing out the following issues: for notions and properties on general
topology, including uniformities and uniform spaces, we refer the reader to the valuables
classical texts [1,2].

If O is an open set in a topological space (S , Γ), we will say that it is Γ-open (recall
that the empty-set is open for every topological space), and if {xn}n≥1 is a sequence in S
that converges in (S , Γ), we will say that it is Γ-convergent or that Γ-converges. As usual,
a topological space (S , Γ) is called metrizable if there is a metric ϱ on S whose induced
topology Γϱ agrees with Γ. In such a case, we say that the topology Γ is metrizable.

The idea of exploring a notion of distance that simultaneously generalizes the concept
of a metric and the notion of a quasi-norm in the classical sense of functional analysis [3–7]
was independently discussed by several authors under different perspectives and denomi-
nations [8–13]. Here, we will use Czerwik’s terminology [10,11] as follows.

Definition 1 ([10,11]). A b-metric on a set S is a pair (D, K) such that D is a function from S ×S
to [0, ∞) and K is a real constant with K ≥ 1 satisfying the next conditions for every x, y, z ∈ S:

(bm0) x = y if and only if D(x, y) = 0;
(bm1) D(x, y) = D(y, x);
(bm2) D(x, y) ≤ K[D(x, z) +D(z, y)].

Then, the triple (S ,D, K) is called a b-metric space.

Note that if K = 1, we get the notions of a metric and a metric space, respectively.
Several examples of b-metric spaces can be meet in [14–16]. The following typical

instance will be utilized later (see, e.g., [14] (Example 2.2) and [16] (Example 12.2)).
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Example 1. Let (S , ϱ) be a metric space, and c and C be constants with c > 0 and C > 1. Then, the
pair (Dϱ, 2C−1) is a b-metric on S , with Dϱ given by Dϱ(x, y) = c(ϱ(x, y))C for every x, y ∈ S .

The study of the topological aspects of b-metric spaces has received the attention
of several authors, while the problem of obtaining relevant fixed point theorems in the
setting of these spaces has been the subject of considerable research (see, e.g., [17–23] and
the references therein). In this regard, Chapter 5 of the recent book by Karapinar and
Agarwal [24] offers a complete treatment of fixed point theory for b-metric spaces.

In the sequel, we recall some well-known and pertinent properties of b-metric spaces
(see, e.g., [23] (Section 2), [16] (Chapter 12)).

Each b-metric (D, K) on a set S induces a metrizable topology Γ(D,K) on S given by
Γ(D,K) = {O ⊆ S : for each x ∈O, there is ε > 0 such that B(D,K)(x, ε) ⊆ O},

where B(D,K)(x, ε) = {y ∈ S : D(x, y) < ε} for every x ∈ S and ε > 0.

Remark 1. Since the definition of the balls B(D,K)(x, ε) does not depend from the constant K, we
infer that if (D, K) and (D, K′) are b-metrics on a set S , we have B(D,K)(x, ε) = B(D,K′)(x, ε) for
every x ∈ S and ε > 0, which implies the well-known fact that the topologies Γ(D,K) and Γ(D,K′)
agree on S . For this reason, in the rest of the paper, we will write ΓD and BD(x, ε) instead of Γ(D,K)
and B(D,K)(x, ε), respectively, if there is no possibility of ambiguity.

The following fundamental property will be employed in the proof of Theorem 2 in
Section 2: a sequence {xn}n≥1 in a b-metric space (S ,D, K) is ΓD-convergent to x ∈ S if
and only if D(x, xn) → 0 as n → ∞.

We emphasize that, in contrast to the standard metric case, the balls BD(x, ε) are not
necessarily ΓD-open sets (see, e.g., [18] (Example 3.9)).

We also remind the reader that the notions of Cauchy sequence and completeness in
the context of b-metric spaces are defined in the same way as in the metric case.

In the next section we will need the following slight generalization of the notion of a
b-metric.

Definition 2. An enlarged b-metric on a set S is a pair (E , K) such that E is a function from
S × S to [0, ∞] and K is a real constant with K ≥ 1 satisfying conditions (bm0), (bm1) and (bm2)
in Definition 1. (As usual, we adopt the convention that ∞ = ∞ + ∞ = ∞ + x for every real
number x).

Encouraged in part by research concerning modulars on vector spaces [25–28], Chistyakov
introduced and deeply studied [29–31] the notions of modular metric and modular metric
space. In [32], Ege and Alaca introduced the notions of modular b-metric and modular b-
metric space as natural generalizations of Chistyakov’s concepts from a b-metric point of view.
In particular, they stated generalized forms of Banach’s contraction principle for this new class
of spaces, thus initiating the study of the fixed point theory for these structures, where several
authors have also made extensive contributions [33–37].

In this paper, we assign a topology upon modular b-metrics that robustly supports
the convergence concept introduced by Ege and Alaca in [32]. We authenticate that this
topology is susceptible to metrization, achieved through the construction of a compatible
uniformity possessing a countable base. This formulation, applicable across a broad
spectrum of modular b-metric spaces is articulated via a specifically defined b-metric.
Thus, we amplify an important metrization theorem due to Chistyakov, alongside the
extension of the so-called topology of metric convergence. Our methodology further
facilitates the characterization of the completeness of this subclass of modular b-metric
spaces, an analysis paralleling the characterization of complete metric spaces provided by
the renowned Caristi–Kirk theorem. We also present some instances (see Examples 4–8
below) that support our findings.
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2. Properties of Modular b-Metrics

We start this section by recalling the aforementioned concepts due to Ege and Alaca.

Definition 3 ([32]). A modular b-metric on a set S is a pair (M, K) such that M is a function
from (0, ∞)× S × S to [0, ∞] and K is a real constant, with K ≥ 1 satisfying the next conditions
for every x, y, z ∈ S :

(Mbm0) x = y if and only if M(t, x, y) = 0 for every t > 0;
(Mbm1) M(t, x, y) = M(t, y, x) for every t > 0;
(Mbm2) M(t + s, x, y) ≤ K[M(t, x, z) +M(s, z, y)] for every t, s > 0.

Then, the triple (S ,M, K) is called a modular b-metric space.

Note that if K = 1, we get the notions of a modular metric and a modular metric space
due to Chistyakov [29].

Remark 2. It is a well-known consequence of condition (Mbm2) that, for x, y ∈ S fixed, we have
M(t, x, y) ≤ KM(s, x, y) whenever t > s > 0.

Remark 3. As a consequence of Remark 2, we obtain the following useful modification of condition
(Mbm0): Let (S ,M, K) be a modular b-metric space and let x, y ∈ S . Then, x = y if and only if
M(t, x, y) ≤ Kt for every t > 0.

To find various examples of modular b-metric spaces see, e.g., [32,33]. We recall the
following representative one.

Example 2. Let (S ,D, K) be a b-metric space. Then, the triple (S ,M, K) is a modular b-metric
space where M(t, x, y) = D(x, y)/t for every x, y ∈ S and t > 0.

Combining Examples 1 and 2, we have the following one.

Example 3. Let (S , ϱ) be a metric space. Then, the triple (S ,M, 2C−1) is a modular b-metric
space, where c > 0 and C > 1 are real constants, and M(t, x, y) = c(ϱ(x, y)C)/t for every
x, y ∈ S and t > 0.

Regarding Remark 2, we point out that in contrast to what happens to modular
metric spaces, there are modular b-metric spaces (S ,M, K) for which the function t →
M(t, x, y) is not nonincreasing on (0, ∞), as the following example demonstrates (com-
pare [33] (Lemma 5.9 (iv)).

Example 4. Let us designate by R the set of real numbers and let M be the function from
(0, ∞)×R×R to [0, ∞) given by

M(t, x, y) = |x − y|2/t i f t ∈ (0, 1) and M(t, x, y) = 2|x − y|2 i f t ≥ 1.

We are going to show that (M, 4) is a modular b-metric on R.
Indeed, conditions (Mbm0) and (Mbm1) are obviously fulfilled, while condition (Mbm2) is

readily verified, taking into account the following relations for every x, y, z ∈ R:

|x − y|2 ≤ 2[|x − z|2 + |z − y|2],

|x − y|2

t + s
≤ 2[

|x − z|2

t
+

|z − y|2

s
],

whenever t, s > 0 with t + s < 1, and
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2|x − y|2 ≤ 4[
|x − z|2

t
+

|z − y|2

s
],

whenever t, s ∈ (0, 1) with t + s ≥ 1.
However, for x ̸= y, we have M(3/4, x, y) = 4|x − y|2/3 < 2|x − y|2 = M(1, x, y).

This scenario motivates the following notion.

Definition 4. A modular b-metric (M, K) on a set S is called strong if, for each x, y ∈ S , the
function t → M(t, x, y) is nonincreasing on (0, ∞). In such a case, we say that the modular
b-metric space (S ,M, K) is a strong modular b-metric space.

Remark 4. Note that Examples 2 and 3 provide interesting instances of strong modular b-metric
spaces.

Now, for a given modular b-metric (M, K) on a set S , we proceed to construct, in
a natural fashion, a topology Γ(M,K) on S . To this end, put B(M,K)(x, ε, t) = {y ∈ S :
M(t, x, y) < ε} for every x ∈ S and ε, t > 0, and define

Γ(M,K) := {∅}∪{O ⊆ S : for each x ∈O there are ε, t > 0 such that B(M,K)(x, ε, t) ⊆ O}.

We have the following.

Proposition 1. Let (M, K) be a modular b-metric on a set S . Then, Γ(M,K) is a topology on S .

Proof. Let O1, ...,On be a finite family of members of Γ(M,K). We show that
⋂n

j=1 Oj ∈
Γ(M,K). Indeed, let x ∈ ⋂n

j=1 Oj. Then, for every j ∈ {1, ..., n}, there exist ε j > 0 and tj > 0
such that B(M,K)(x, ε j, tj) ⊆ Oj. Choose ε = min{ε j : j = 1, ..., n} and t > 0 such that
t < min{tj : j = 1, ..., n}. Hence, for every y ∈ B(M,K)(x, ε/K, t) and j ∈ {1, ..., n}, we
obtain, by Remark 2,

M(tj, x, y) ≤ KM(t, x, y) < ε ≤ ε j,

which implies that

B(M,K)(x, ε/K, t) ⊆
n⋂

j=1

B(M,K)(x, ε j, tj) ⊆
n⋂

j=1

Oj.

Therefore,
⋂n

j=1 Oj ∈ Γ(M,K).
Finally, it is routine to check that the union of any family of members of Γ(M,K) belongs

to Γ(M,K), which concludes the proof.

Remark 5. Note that, as in the case of b-metric spaces, if (M, K) and (M, K′) are modular
b-metrics on a set S , then the topologies Γ(M,K) and Γ(M,K′) agree on S . For this reason, in the
rest of the paper, we will write ΓM instead of Γ(M,K) if there is no possibility of ambiguity.

We are going to prove that for any modular b-metric space (S ,M, K), the topology
ΓM is metrizable. To achieve it, the next result will be crucial.

Proposition 2. Let (M, K) be a modular b-metric on a set S . For each n ∈ N (the set of natural
numbers), define

Un = {(x, y) ∈ S × S : M(2−n, x, y) < 2−nK}.

Then, the following properties hold:

(P1) {(x, x) : x ∈ S} ⊆ Un for every n ∈ N.
(P2) For every x, y ∈ S with x ̸= y, there is n ∈ N such that (x, y) /∈ Un.
(P3) Un = U−1

n for every n ∈ N.
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(P4) For every n, m ∈ N, there is j ∈ N such that Uj ◦ Uj ⊆ Un ∩ Um.
(P5) For every ε, t > 0, one has that Un ⊆ {(x, y) ∈ S × S : M(t, x, y) < ε} whenever

2−nK2 < min{ε, t}.

Proof.

(P1): It is immediate by condition (Mbm0).
(P2): Since x ̸= y, there is t > 0 such that M(t, x, y) > 0 by condition (Mbm0). Pick

n ∈ N satisfying 2−n < t and 2−nK2 < M(t, x, y). Then, 2−nK2 < KM(2−n, x, y), by
Remark 2. Therefore, (x, y) /∈ Un.

(P3): It is immediate by condition (Mbm1).
(P4): For n, m ∈ N given, choose j ∈ N verifying

j > max{n + 1, m + 1} and 2−(j−1)K2 < min{2−n, 2−m}.

Now let (x, y) ∈ Uj ◦ Uj. Then, there exists z ∈ S such that (x, z) ∈ Uj and (z, y) ∈ Uj.
Since j > n + 1, we obtain 2−n > 2−(j−1), so, M(2−n, x, y) ≤ KM(2−(j−1), x, y) by

Remark 2.
Moreover, by our assumption that (x, z) ∈ Uj and (z, y) ∈ Uj, we get

M(2−j, x, z) < 2−jK and M(2−j, z, y) < 2−jK.

By applying condition (Mbm2) joint with the preceding two inequalities and the fact
that 2−(j−1)K2 < 2−n, we have

M(2−n, x, y) ≤ K2[M(2−j, x, z) +M(2−j, z, y)]

< 2−(j−1)K3 < 2−nK,

which implies that (x, y) ∈ Un. Similarly, we show that (x, y) ∈ Um.

(P5): Let ε, t > 0 and n ∈ N such that 2−nK2 < min{ε, t}. Given (x, y) ∈ Un, we have
M(2−n, x, y) < 2−nK, so

M(t, x, y) ≤ KM(2−n, x, y) ≤ 2−nK2 < ε.

From Proposition 2, we derive the next consequences for a given modular b-metric
space (S ,M, K) :

(Con1) By properties (P1), (P2), (P3) and (P4)), the family {Un : n ∈ N} constructed in
Proposition 2 forms a countable base for a separated uniformity U on S . Hence, there
is a metric ϱ on S such that the topology ΓU induced by U agrees with the topology
Γϱ induced by ϱ.

(Con2) The topologies ΓM and ΓU agree on S : Indeed, let O be a ΓM By property (P5),
there is n ∈ N such that Un(x) ⊆BM(x, ε, t), so, ΓM ⊆ ΓU . Now let O be a ΓU -
open set. For each x ∈ O, there is nx ∈ N such that Unx (x) ⊆ O. Since Unx (x) =
BM(x, 2−nx , 2−nx K), we conclude that ΓU ⊆ ΓM.

(Con3) The proof of (Con2), also shows the following statement:
A sequence {xn}n≥1 in S is ΓM-convergent to a point x ∈ S if and only if, for
each t > 0,M(t, x, xn) → 0 as n → ∞.

Moreover, from consequences (Con1) and (Con2), we obtain the following promised
result.

Theorem 1. Let (S ,M, K) be a modular b-metric space. Then, the topological space (S , ΓM) is
metrizable.
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Remark 6. In [32], Ege and Alaca introduced the following notion: a sequence {xn}n≥1 in
a modular b-metric space (S ,M, K) is said to be convergent to a point x ∈ S if, for each
t > 0,M(t, x, xn) → 0 as n → ∞.

Note that consequence (Con3) provides a solid topological support to Ege and Alaca’s concept.

Our next goal consists of constructing an explicitly formulated b-metric compatible
with the topology ΓM induced by any strong modular b-metric space (S ,M, K). In this way,
we extend both an important result on metrizability due to Chistyakov and the so-called
topology of metric convergence [31] (Chapter 4).

Theorem 2. Let (S ,M, K) be a modular b-metric space. Define a function EM from S × S to
[0, ∞] by

EM(x, y) = ∞ i f M(t, x, y) = ∞ f or all t > 0,

and
EM(x, y) = inf{t > 0 : M(t, x, y) ≤ Kt} otherwise, and, then, a function DEM from

S × S to [0, 1] by

DEM(x, y) = min{1, EM(x, y)} for every x, y ∈ S .

Then, the following statements hold:

(St1) EM and DEM satisfy conditions (bm0) and (bm1).
Furthermore, the next implications are satisfied for every x, y ∈ S and ε ∈ (0, 1) :

DEM(x, y) < ε ⇒ M(ε, x, y) ≤ Kε ⇒ DEM(x, y) ≤ ε. (1)

(St2) If (M, K) is strong, we get that (EM, K) is an enlarged b-metric on S and (DEM , K) is
a b-metric on S whose induced topology ΓDEM

agrees with the topology ΓM induced by
(M, K).

Proof. We first note that, indeed, EM is well-defined: let x, y ∈ S such that M(t0, x, y) < ∞
for some t0 > 0. Then, there is t1 > 0 such that M(t0, x, y) < t1. If t1 < t0, we get
M(t0, x, y) < t0 ≤ Kt0; otherwise, we obtain M(t1, x, y) ≤ KM(t0, x, y) < Kt1.

Now we show the statement (St1) for EM.

(bm0): Let x, y ∈ S . If x = y, we have M(t, x, y) = 0 for all t > 0, so EM(x, y) = 0.
If EM(x, y) = 0, we obtain M(t, x, y) ≤ Kt for every t > 0. Let t > 0 be arbitrary. Put
s = t/K. Thus, M(t, x, y) ≤ KM(s, x, y) ≤ Kt. Hence, x = y by Remark 3.

(bm1): It is immediate by (Mbm1).

By virtue of its definition, we directly infer that DEM also verifies conditions (bm0)
and (bm1).

Finally, the implications given in Equation (1) are a direct consequence of the defini-
tions of EM and DEM .

Next, we prove the statement (St2). To this end, we first check that (EM, K) is an
enlarged modular b-metric on S .

Let x, y, z ∈ S .
If EM(x, z) = ∞ or EM(z, y) = ∞, condition (bm2) is trivially fulfilled.
Assume then that EM(x, z) < ∞ and EM(z, y) < ∞. Let t, s > 0 such that M(t, x, z) <

∞ and M(s, z, y) < ∞. Thus, by condition (Mbm2), M(t + s, x, y) < ∞, so EM(x, y) < ∞.
Now, choose an arbitrary ε > 0. Then, there exist tε, sε > 0 such that tε < EM(x, z) + ε,
M(tε, x, z) ≤ Ktε, sε < EM(z, y) + ε and M(sε, z, y) ≤ Ksε. Hence,

M(K(tε + sε), x, y) ≤ M(tε + sε, x, y)

≤ K[M(tε, x, z) +M(sε, z, y)] ≤ K2(tε + sε).



Symmetry 2024, 16, 1333 7 of 12

By the definition of EM, we deduce that EM(x, y) ≤ K(tε + sε), so

EM(x, y) < K[EM(x, z) + EM(z, y) + 2ε].

Since ε is arbitrary, we conclude that EM(x, y) ≤ K[EM(x, z) + EM(z, y)]. Hence,
(EM, K) is an enlarged modular b-metric on S , which clearly implies that (DEM , K) is a
modular b-metric on S .

Lastly, notice that the fact that the topologies ΓM and ΓDEM
agree on S is easily

deduced combining the implications of Equation (1) joint with the next known equivalences
for any sequence {xn}n≥1 in S and any x ∈ S (in particular, equivalence (ii) below was
obtained as the consequence (Con3) of Proposition 2):

(i) {xn}n≥1 is ΓDEM
-convergent to x if and only if DEM(x, xn) → 0 as n → ∞,

and

(ii) {xn}n≥1 is ΓM-convergent to x if and only if, for each t > 0, M(t, x, xn) → 0 as
n → ∞.

In the rest of the paper, we will refer to (DEM , K) as the b-metric associated to the
strong modular b-metric (M, K).

Example 5. Let (S , ϱ) be a metric space and let (S ,M, 2C−1) be the strong modular b-metric
space constructed in Example 3. Since M(t, x, y) = c(ϱ(x, y)C)/t for every x, y ∈ S and t > 0,
we infer, by the definition of EM, that for the b-metric (DEM , 2C−1) associated to (M, 2C−1),
one has

DEM(x, y) = min{1,
ϱ(x, y)C/2
√

2C−1
},

for every x, y ∈ S .

Example 6. Let (S ,D, K)) be a b-metric space and let c > 0 be a constant. Define a function M
from (0, ∞)× S × S to [0, ∞) by M(t, x, x) = 0 for every x ∈ S and t > 0, and M(t, x, y) =
D(x, y) + c/t for every x, y ∈ S with x ̸= y and t > 0.

Then, (M, K) is a strong modular b-metric on S . To check it, it suffices to verify condition
(Mbm2). Let x, y, z ∈ S and t, s > 0. We get

M(t + s, x, y) = D(x, y) +
c

t + s
< K[D(x, z) +D(z, y)] + K(

c
t
+

c
s
)

= K[M(t, x, z) +M(s, z, y)].

Taking into account the definition of EM, an easy computation shows that the b-metric
(DEM , K) associated to (M, K) is given by DEM(x, x) = 0 for every x ∈ S and

DEM(x, y) = min

{
1,

D(x, y) +
√
(D(x, y))2 + 4cK
2K

}
,

for every x, y ∈ S with x ̸= y.
Since M(t, x, y) > c/t for every x, y ∈ S , with x ̸= y, and t > 0, we get that ΓM is the

discrete topology on S . Therefore, the topologies ΓDEM
and ΓD agree on S if and only if ΓD is the

discrete topology on S .

3. A Modular b-Metric Version of Caristi–Kirk’s Theorem

In [38], Caristi proved his famous fixed point theorem that every Caristi mapping
on a complete metric space has a fixed point. Kirk showed in [39] that Caristi’s theorem
characterizes the metric completeness. More precisely, we have the following important
result, named Caristi–Kirk’s theorem, where a self mapping T of a metric space (S , ϱ) is a
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Caristi mapping on (S , ϱ) provided that there is a lower semicontinuous function f from S
to [0, ∞) such that ϱ(x, T x) ≤ f (x)− f (T x) for all x ∈ S .

Theorem 3 ([38,39]). A metric space is complete if and only if every Caristi mapping on it has a
fixed point.

This theorem was extended and generalized by numerous authors in different contexts
(see, e.g. [40–46] and the references therein). In particular, a b-metric version of it has been
obtained in [40] in the terms that are detailed below.

Definition 5 ([40]). Let (S ,D, K) be a b-metric space. A function f from S to [0, ∞) is 0-lower
semicontinuous (0-lsc in short) provided that it fulfills the following condition: if {xn}n≥1 is a
sequence in S that ΓD-converges to x ∈ S and verifies that f (xn) → 0 as n → ∞, then f (x) = 0.

Note that every lower semicontinuous function from S to [0, ∞) is 0-lsc. However, the
converse is not true in general [40] (Remark 2.3).

Definition 6 ([40]). A self mapping T of a b-metric space (S ,D, K), with K > 1, is a b-Caristi
mapping on (S ,D, K) provided that there exist a constant r ∈ (1, K] and a 0-lsc function f such
that for each x ∈ S ,

D(x, T x) > 0 =⇒ D(x, T x) ≤ f (x)− r f (T x). (2)

Then, it was proved in [40] (Theorem 2.9) the following.

Theorem 4 ([40]). A b-metric space (S ,D, K), with K > 1, is complete if and only if every
b-Caristi mapping on it has a fixed point.

With the help of Theorems 2–4, we will characterize both complete modular metric
spaces and complete strong modular b-metric spaces.

Let us recall [32] that a sequence {xn}n≥1 in a modular b-metric space (S ,M, K)
is a Cauchy sequence provided that for each ε, t > 0, there is an nε,t ∈ N such that
M(t, xn, xm) < ε for every n, m ≥ nε,t, and that a modular b-metric space (S ,M, K) is
complete provided that every Cauchy sequence is ΓM-convergent.

Remark 7. It is well known that if (S , ϱ) is a complete metric space, then both the b-metric space
constructed in Example 1 and the strong modular b-metric space constructed in Example 3 are
complete.

Proposition 3. A strong modular b-metric space (S ,M, K) is complete if and only if the b-metric
space (S ,DEM , K) is complete.

Proof. It follows from the implications (1) in Theorem 2, St(1), and the fact that the topolo-
gies ΓM and ΓDEM

agree on S (Theorem 2, St(2)).

Due to the different peculiarities that present the formulations of Theorems 3 and 4,
we will split our study separating the case where K = 1 (i.e., the modular metric case) from
the case where K > 1. In fact, when K = 1, we will write (S ,M), (S ,DEM), M and DEM
instead of (S ,M, 1), (S ,DEM , 1), (M, 1) and (DEM , 1), respectively.

Definition 7. Let (S ,M) be a modular metric space. We say that a self mapping T of S is a
modular Caristi mapping if there exists a lower semicontinuous function f from S to [0, ∞) such
that for every x ∈ S and t ∈ (0, 1) the following contraction condition holds:

f (x)− f (T x) < t =⇒ M(t, x, T x) < t. (3)
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Proposition 4. Let (S ,M) be a modular metric space. Then, a self mapping of S is a modular
Caristi mapping if and only if it is a Caristi mapping on the metric space (S ,DEM).

Proof. First, we prove the “only if” part. Let T be a modular Caristi mapping of S .
Then, there exists a lower semicontinuous function f from S to [0, ∞) such that for ev-
ery x ∈ S and t ∈ (0, 1) the contraction condition (3) holds. Since ΓM = ΓDEM

, f is
lower semicontinuous for the metric space (S ,DEM). Suppose that there is x ∈ S such
that DEM(x, T x) > f (x) − f (T x). Then, f (x) − f (T x) < min{1, EM(x, T x}. Hence,
M(1, x, T x) < 1, which implies by the definition of EM that EM(x, T x) ≤ 1. Pick
µ ∈ (0, EM(x, T x)) such that f (x) − f (T x) < µ. It follows from condition (3) that
M(µ, x, T x) < µ, so, EM(x, T x) ≤ µ, which leads to a contradiction. Consequently, T is
a Caristi mapping on (S ,DEM).

Now, we prove the “if” part. Suppose that T is a Caristi mapping on (S ,DEM). Then,
there exists a lower semicontinuous function f from S to [0, ∞) such that
DEM(x, T x) ≤ f (x) − f (T x) for every x ∈ S . If f (x) − f (T x) < t with t ∈ (0, 1),
we infer that DEM(x, T x) ≤ f (x)− f (T x), so DEM(x, T x) = EM(x, T x) < t < 1. Choose
any s ∈ (EM(x, T x), t). Then, M(s, x, T x) ≤ Ks. Hence, M(t, x, T x) ≤ Ks < Kt. This
finishes the proof.

Combining Theorem 3 with Propositions 3 and 4, we obtain the following.

Theorem 5. A modular metric space (S ,M) is complete if and only if every modular Caristi
mapping on it has a fixed point.

Definition 8. Let (S ,M, K) be a modular b-metric space with K > 1. We say that a self
mapping T of S is a modular b-Caristi mapping if there exist a constant r ∈ (1, K] and a 0-lsc
function f from S to [0, ∞) such that for every x ∈ S and t ∈ (0, 1) the following contraction
condition holds:

f (x)− r f (T x) < t =⇒ M(t, x, T x) < Kt. (4)

Although in the proof of the following result we employ a technique similar to that
of Proposition 4, we will present it in detail both for completeness and to point out the
importance of the property of strongness.

Proposition 5. Let (S ,M, K) be a strong modular b-metric space with K > 1. Then, a self
mapping of S is a modular b-Caristi mapping if and only if it is a b-Caristi mapping on the b-metric
space (S ,DEM , K).

Proof. First, we prove the “only if” part. Let T be a modular b-Caristi mapping of S .
Then, there exist a constant r ∈ (1, K] and a 0-lsc function f from S to [0, ∞) such that for
every x ∈ S and t ∈ (0, 1), the contraction condition (4) holds. Since ΓM = ΓDEM

, f is 0-lsc
for the b-metric space (S ,DEM , K). Suppose that there is x ∈ S such that DEM(x, T x) >
0 and DEM(x, T x) > f (x) − r f (T x). Then, f (x) − r f (T x) < min{1, EM(x, T x}. So
M(1, x, T x) < 1 ≤ K, which implies by the definition of EM that EM(x, T x) ≤ 1. Pick
µ ∈ (0, EM(x, T x)/K) such that f (x)− r f (T x) < µ. It follows from condition (4) that
M(µ, x, T x) < Kµ, so, EM, EM(x, T x) ≤ Kµ, which leads to a contradiction. Conse-
quently, T is a b-Caristi mapping on (S ,DEM , K).

Now, we prove the “if” part. Suppose that T is a b-Caristi mapping on (S ,DEM , K).
Then, there exist a constant r ∈ (1, K] and a 0-lsc function f from S to [0, ∞) for
which contraction condition (2) holds. If f (x) − r f (T x) < t with t ∈ (0, 1), we infer
that DEM(x, T x) ≤ f (x) − r f (T x), so DEM(x, T x) = EM(x, T x) < t < 1. Choose any
s ∈ (EM(x, T x), t). Then, M(s, x, T x) ≤ Ks. Since (M, K) is strong, we deduce that
M(t, x, T x) ≤ Ks < Kt. This finishes the proof.

Combining Theorem 4 with Propositions 3 and 5, we obtain the following.
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Theorem 6. A strong modular b-metric space (S ,M, K), with K > 1, is complete if and only if
every modular b-Caristi mapping on it has a fixed point.

The following question remains open: are Theorems 2 and 6 valid in the framework of
non-strong modular b-metric spaces?

We conclude the paper with two examples illustrating the results of this section.

Example 7. Let S = (0, 1] and ϱ be the usual metric on S , i.e., ϱ(x, y) = |x − y| for every
x, y ∈ S .

Now let T be the self mapping of S given by T x = 1 if x ∈ [1/2, 1] and T x = 1/n if
x ∈ [1/(n + 1), 1/n), n ≥ 2.

Note that we cannot apply the “only if" part of Caristi–Kirk’s theorem to this self mapping and
the metric space (S , ϱ) because (S , ϱ) is not complete.

Define a function M from (0, ∞)× S × S to [0, ∞) by M(t, x, x) = 0 for every x ∈ S and
t > 0, and M(t, x, y) = |x − y|+ 1/t for every x, y ∈ S with x ̸= y and t > 0. By applying
Example 6 (with K = c = 1), we obtain that M is a modular metric on S , whose associated metric
DEM is given by DEM(x, x) = 0 for every x ∈ S , and

DEM(x, y) = min

1,
|x − y|+

√
|x − y|2 + 4

2

,

for every x, y ∈ S with x ̸= y.
Observe that

|x − y|+
√
|x − y|2 + 4

2
> 1,

for every x, y ∈ S with x ̸= y, so DEM is the discrete metric on S , i.e., DEM(x, y) = 1 for every
x, y ∈ S with x ̸= y. Hence, (S ,DEM) is a complete metric space for which every function f from
S to [0, ∞) is lower semicontinuous.

Choose f as follows: f (1) = 1 and f (x) = n + 1 if x ∈ [1/(n + 1), 1/n), n ∈ N.
We have DEM(1, T 1) = 0. Moreover, for every x ∈ S\{1}, there is n ∈ N such that

x ∈ [1/(n + 1), 1/n), and thus, T x = 1/n. Therefore,

DEM(x, T x) = 1 = (n + 1)− n = f (x)− f (T x),

which implies that T is a Caristi mapping on (S ,DEM). By Proposition 3, (S ,M) is a complete
modular metric space and by Proposition 4, T is a modular Caristi mapping on (S ,M). Conse-
quently, all conditions of the “only if" part of Theorem 5 are satisfied. In fact, T has a (unique) fixed
point x = 1.

Example 8. As usual, for 0 < p < 1, define

lp = {x := {xn}n≥1 such that xn ∈ R f or every n ∈ N and
∞

∑
n=1

|xn|p < ∞}.

Denote by dp the classical metric on lp given by dp(x, y) = ∑∞
n=1|xn − yn|p for every

x, y ∈ lp.
Now, let l+p = {x ∈ lp : xn ≥ 0 for every n ∈ N}, and denote also by dp the restriction of the

metric dp on l+p .
Since l+p is a closed subset of the complete metric space (lp, dp), we infer that (l+p , dp) is also a

complete metric space.
By applying Example 3 and Remark 4, we get that the triple (l+p ,M, 2(1/p)−1) is a strong

modular b-metric space, where M(t, x, y) = (dp(x, y))1/p/t for every x, y ∈ l+p and t > 0.
Furthermore, it is complete because (l+p , dp) is so (see Remark 7).
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Put Y := {x ∈ l+p : xn ≥ 2−n for every n ∈ N}, and let C be a constant such that
C ≥ 2(1/p)−1.

We show that the self mapping T of l+p given by (T x)1 = 0 and

(T x)n+1 =
xn − 2−n

C
,

for every x ∈ Y , and T x = x for every x ∈ l+p \Y , is a modular b-Caristi mapping on
(l+p ,M, 2(1/p)−1) for r =2(1/p)−1.

Let f be the function from l+p to [0, ∞) given by f (x) = ∑∞
n=1 xn for every x := {xn}n≥1 ∈

l+p (note that f is well-defined because ∑∞
n=1(xn)p < ∞, and thus, ∑∞

n=1 xn < ∞).
It is clear that f is lsc and, hence, 0-lsc on (l+p , ΓM).
Now, for each x ∈ Y , we get

f (x)− 2(1/p)−1 f (T x) = (
∞

∑
n=1

xn)− 2(1/p)−1(
∞

∑
n=1

xn − 2−n

C
)

≥ (
∞

∑
n=1

xn)−
∞

∑
n=1

(xn − 2−n) =
∞

∑
n=1

2−n = 1,

and for x ∈ l+p \Y , M(t, x, T x) = 0 for every t > 0. So, the contraction condition (4) is trivially
satisfied for every x ∈ l+p . Thus, all conditions of the “only if" part of Theorem 6 are fulfilled.

4. Conclusions

We have equipped modular b-metric spaces with a topology that provides solid
support to the idea of convergence proposed by Ege and Alaca. We have proved that this
topology is metrizable, which is carried out by constructing a compatible uniformity with
a countable base. We also introduced the notion of a strong modular b-metric space and
showed that for this class of spaces, our topology can be explicitly formulated by means of
a compatible b-metric, thereby extending an important metrization theorem by Chistyakov
as well as the so-called topology of metric convergence. This approach allowed us to obtain
a characterization of the completeness for this class of modular b-metric spaces that may be
viewed as an offsetting of the celebrated Caristi–Kirk theorem to our context.
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