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1. Introduction

Octahedral norms were introduced by Godefroy and Maurey in the unpublished work [10], and appeared 
for the first time in the literature at [8], where it was proved that a Banach space X admits an octahedral 
norm if and only if it contains a copy of �1. Octahedrality can be viewed as a strong non-differentiability—
in the sense of Fréchet—condition. Octahedrality has been extensively studied in recent years, see e.g. 
[1,3,5,17,20] and many others, in connection with various dentability conditions on a Banach space. Through 
its relation with the containment of �1 and thanks to Rosenthal’s �1 Theorem—see [21]—, octahedrality also 
has interesting applications in connection with the weak sequential completeness of the Banach space—see 
also [6, §III.4 and Theorem 3.7 in §III.3]—, and it is naturally connected with the problem of preserved 
Gâteaux smoothness points too,—see [8,22] and the paragraph below Theorem 1.1.

The coexistence of Gâteaux smoothness and octahedrality for a single norm has, therefore, been a known 
problem since the early nineties—see [11, Problem 197], [13, Problem 7] and [22,23]). Curiously, up to date, 
the only example of a Banach space X which admits such a norm is the Hardy space H1(D), as shown 
(using deep results from harmonic analysis) in the monograph [6, p. 120]. This space is a separable subspace 

* Corresponding author.
E-mail addresses: chcogo@upv.es (Ch. Cobollo), hajekpe8@fel.cvut.cz (P. Hájek).
https://doi.org/10.1016/j.jmaa.2024.128968
0022-247X/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

https://doi.org/10.1016/j.jmaa.2024.128968
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2024.128968&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:chcogo@upv.es
mailto:hajekpe8@fel.cvut.cz
https://doi.org/10.1016/j.jmaa.2024.128968
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 Ch. Cobollo, P. Hájek / J. Math. Anal. Appl. 543 (2025) 128968
of L1 containing a complemented copy of �1. To find such a renorming, even in the basic case X = �1, was 
open. Our main result in this note is the following.

Theorem 1.1. Let (X, ‖ · ‖) be a Banach space admitting a Gâteaux smooth (equivalent) norm and hav-
ing a complemented subspace isomorphic to �1. Then, X admits a renorming |||·||| which is simultaneously 
octahedral and Gâteaux smooth.

By [13, Lemma 28], a given element x ∈ SX is a very smooth point if and only if x is a point of Gâteaux 
smoothness in the bidual X∗∗. By [9, Lemma 9.1], for a separable Banach space X, its norm ‖ · ‖ being 
octahedral is equivalent to the existence of an element x∗∗ ∈ X∗∗ such that

||x + x∗∗|| = ||x|| + ||x∗∗||∗∗, for every x ∈ X.

This property is a stronger condition of the norm that implies octahedrality and also prevents the 
existence of preserved smooth points—see [22]. Although the existence of such a point x∗∗ is a consequence 
of octahedrality in the separable case by the aforementioned lemma, the implication does not hold when 
removing the separability assumption—see [18, Theorem 3.2]. In particular, for separable spaces X, our 
main result provides a norm | ‖ · | ‖ where every non-zero point is Gâteaux smooth but not very smooth. 
Notice that the notion of very smoothness coincides with the one of strong Gâteaux smoothness—see [13].

Our proof relies on a new method of construction based on controlled directional estimates of the norm 
on a dense subspace, which passes to the completion. It is somewhat subtle, and uses the complementability 
of �1 heavily. To some extent, this is inevitable, as octahedral norms cannot have a rotund dual norm, which 
is the standard condition in order to obtain a Gâteaux smooth norm. Indeed, octahedral spaces contain 
an asymptotically isometric �1-sequence ([2]), and spaces with such a sequence cannot have a dual rotund 
norm ([19]). The proof would be no simpler if we just assumed that X = �1, but it is not clear if there is a 
simple formal argument in our case, using the special case of �1, together with the complementability of �1
in X.

We are inclined to believe that the complementability condition in Theorem 1.1 is redundant (so, the 
containment of �1 should be sufficient and, of course, also necessary), but our method of proof does not 
cover this case.

The rest of the text is devoted to the proof of the main Theorem 1.1 through the construction of a 
renorming |||·||| being simultaneously Gâteaux smooth and octahedral. The document is organized as follows: 
the remaining part of this introductory section will contain preliminaries and notation. Section 2 consist of 
the inductive construction of the renorming and the proof of its elementary properties. Lemma 2.5 shows 
that it is an equivalent norm to the original one, and Proposition 2.6 contains the argument for octahedrality. 
The last Section 3 is completely dedicated to showing the Gâteaux smoothness of the final norm, which 
is the most delicate part of the proof. It consists of showing that the Gâteaux smoothness on the original 
construction—Proposition 3.1 and Corollary 3.2—is inherited to the whole space X. The argument depends 
on some suitable estimates of the directional derivatives and splitting in two cases, depending if there exists 
a Birkoff–James orthogonal relation between the point and the direction or not—Subsections 3.1 and 3.2, 
respectively.

1.1. Preliminaries and notation

We assume that our Banach space (X, ‖ · ‖) has a Gâteaux smooth norm ‖ · ‖, and X ∼= X0 ⊕ �1, for 
some Banach space X0. We will use {ei}∞i=1 to denote the canonical basis of �1. For every n ∈ N, consider 
the linear subspace
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Xn := X0 + span{ei : 1 ≤ i ≤ n},

and put

Y :=
⋃
n∈N

Xn = {x ∈ X : x ∈ Xn for some n ∈ N}.

Thus, the whole space X is the completion of the subspace Y .
It is clear that there exists a unique decomposition of every x ∈ X as

x = x0 +
∞∑
j=1

xjej , where x0 ∈ X0,
∞∑
j=1

|xj | < ∞.

For any n ∈ N, consider the n-th canonical projection (or the canonical projection to Xn) as the map 
Pn : X → Xn,

Pn(x) := x0 +
n∑

j=1
xjej .

To simplify the notation, we will also denote the n-th canonical projection of a given element x by the 
symbol

xn := Pn(x).

The final norm | ‖ · | ‖ will be obtained through the construction of a sequence of compatible renormings 
| ‖ · | ‖n on the spaces Xn. Such a sequence has, of course, a unique extension to the whole space X. It will 
be easy to check that | ‖ · | ‖ is octahedral, as it will have the property on Y , and octahedrality passes to the 
completion X. The construction will also be Gâteaux smooth at all points of Y—see Section 3. The difficult 
part of the argument is to prove the Gâteaux smoothness for every x ∈ X \ Y . This is equivalent to the 
existence of all directional derivatives ∂|||x|||∂h , where h ∈ Y .

We refer to [6,7,12,14] for standard results and notation.

2. The construction of the norm

This section will contain the inductive construction of the norm | ‖ · | ‖, which will be octahedral and 
Gâteaux smooth. As said before, it will start through an inductive process of constructing norms on the 
spaces Xn. Roughly speaking, the main idea behind this is to add one more dimension and construct a new 
norm as the Minkowski functional of a new convex body, defined through homothetic copies of the previous 
unit ball. Through the assumptions of the function that indicates the homothetic factor depending on the 
height, we may achieve the new convex body being still smooth, and that on each step, the norm for the 
new vectors is “asymptotically” an �1-sum.

We will start by consider sequences of real numbers {zn}n∈N , {ln}n∈N , and {sn}n∈N such that:

• 0 < zn < ln < sn < 1;
• zn strictly decreasing;
• ln strictly decreasing, {ln}n∈N ∈ �1;
• sn strictly increasing, sn → 1.

Also, take a sequence of continuous convex and real-valued functions {fn}n∈N , fn : [0, 1] → R with the 
following properties,
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Fig. 1. Shape of the function fn.

i. fn ≡ 0 in [0, zn];
ii. fn is smooth and strictly increasing in [zn, ln];

iii. fn(t) := t − zn + ln
2 when t ∈ [ln, sn];

iv. fn in [sn, 1] is strictly increasing, smooth, f(1) = 1 and limt→1 f
′(t) = ∞.

Then, the following holds.

Proposition 2.1. By the construction above, for every t ∈ [0, 1]

t− zn + ln
2 ≤ fn(t) ≤ t.

In particular, fn → | · | uniformly.

Proof. Is clear from the construction. See also Fig. 1. �
From the result above we also have that for every t ∈ [0, 1],

1 − t + zn + ln
2 ≥ 1 − fn(t) ≥ 1 − t.

Now, we are ready to start with the construction of the norms. For n = 0 just define | ‖ · | ‖0 := ‖ · ‖ as 
the restriction of the Gâteaux smooth norm from X to X0. For n ≥ 1, we will define a (equivalent) norm 
| ‖ · | ‖n in Xn by the Minkowski functional of the set

Bn := {x ∈ Xn : |||Pn−1x|||n−1 ≤ 1 − fn(|xn|), xn ∈ [−1, 1]}. (1)

Thus, | ‖ · | ‖n := μBn
, and so BXn

= Bn and

SXn
= {x ∈ Xn : |||Pn−1x|||n−1 = 1 − fn(|xn|), xn ∈ [−1, 1]}. (2)

Lemma 2.2. Let x ∈ Y . Then,

|||Pn−1x|||n−1 =
(

1 − fn

(
|xn|

|||Pnx|||n

))
|||Pnx|||n.

In particular, |||Pn−1x|||n−1 ≤ |||Pnx|||n.

Proof. We can assume without loss of generality that |||Pnx|||n > 0—otherwise, the result is trivial. Then, 

Pn

(
x

)
∈ SXn

, and by (2), the equality
|||Pnx|||n
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∣∣∣∣
∣∣∣∣
∣∣∣∣Pn−1

(
Pn

(
x

|||Pnx|||n

))∣∣∣∣
∣∣∣∣
∣∣∣∣
n−1

= 1 − fn

(
|xn|

|||Pnx|||n

)

follows. From here, we deduce

|||Pn−1x|||n−1 =
(

1 − fn

(
|xn|

|||Pnx|||n

))
|||Pnx|||n. �

For the previous description of the norm there are some easy consequences that follow naturally. We will 
state them for further reference.

Corollary 2.3. If x ∈ S(Xn,|||·|||n) and |t| < zn+1, then

|||x + ten+1|||n+1 = |||x|||n.

In particular,

Xn ∩B(Xn+1,|||·|||n+1) = B(Xn,|||·|||n).

Proof. The formulae follow readily from the properties of fn and the construction of |||·|||n. �
Now, we are ready to define the final renorming | ‖ · | ‖, through the supremum of the already constructed 

| ‖ · | ‖n, that is, for any x ∈ X

|||x||| := sup
n∈N

{|||Pnx|||n}.

We will prove that it is indeed an equivalent norm through being equivalent to the already equivalent 
norm | ‖ · | ‖0 ⊕1 ‖ · ‖1 in X (the computation of |||x0|||0 + ||(xn)∞n=1||1 for any x ∈ X).

Proceeding by induction again, for X0 take | · |0 := | ‖ · | ‖0—the original Gâteaux norm in X0. For n ≥ 1, 
consider | · |n := | ‖ · | ‖n−1 ⊕1 | · |. It is straightforward to see that for n ≥ 1 the unit ball associated to this 
norm is

B|·|n := {x ∈ Xn : |||Pn−1x|||n−1 ≤ 1 − |xn|} = conv (Bn−1, en).

Remark 2.4. In the following, we will use the fact that 
∏

n∈N(1 + zn+ln
2 ) converges. This is due to the fact 

that { zn+ln
2 }n∈N ∈ �1, because in the construction of the functions fn we took {ln}n∈N ∈ �1.

Lemma 2.5. For the constructed norms, it is satisfied that

1
1 + zn+ln

2
| · |n ≤ |‖ · |‖n ≤ | · |n.

In particular, by considering the norm | ‖ · | ‖0 ⊕1 ‖ · ‖1 on X, we have that

1∏
n∈N(1 + zn+ln

2 )
(|‖ · |‖0 ⊕1 ‖ · ‖1) ≤ |‖ · |‖ ≤ |‖ · |‖0 ⊕1 ‖ · ‖1.

Proof. First, it is clear by Proposition 2.1 that

B|·|n ⊂ Bn ⊂
(

1 + zn + ln
)
B|·|n .
2
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Now, on the one hand, from the right-hand side inclusion, we have that for every n,

|||Pnx|||n ≤ |Pnx|n = |||Pn−1x|||n−1 + |xn|.

Applying this inequation iteratively, we reach

|||Pnx|||n ≤ |||x0|||0 +
n∑

i=1
|xi| ≤ |||x0|||0 +

∞∑
i=1

|xi|.

In particular, by taking the supremum on n in the left side, we reach the first inequality
|‖ · |‖ ≤ |‖ · |‖0 ⊕1 ‖ · ‖1.

On the other hand, by the left-hand side inclusion, we have

|||Pnx|||n ≥ 1
1 + zn+ln

2
‖Pnx‖n = 1

1 + zn+ln
2

(
|||Pn−1x|||n−1 + |xn|

)
.

Once again, applying this iteratively

|||x||| = sup
k∈N

|||Pkx|||k ≥ |||Pnx|||n ≥

⎛
⎝ n∏

j=1

1
1 + zj+lj

2

⎞
⎠(

|||x0|||0 +
n∑

i=1
|xi|

)
.

In particular, by taking suprema on n ∈ N, we reach

|‖ · |‖ ≥ 1∏
n∈N(1 + zn+ln

2 )
(|‖ · |‖0 ⊕1 ‖ · ‖1).

The proof is over. �
2.1. Octahedrality of the norm

Here, we will show the octahedrality of | ‖ · | ‖. Recall that a norm ‖ · ‖ of a Banach space X is said to be
octahedral if for every ε > 0 and every finite-dimensional subspace F of X there exists x ∈ SX such that

‖y + αx‖ ≥ (1 − ε)(‖y‖ + |α|)

for every y ∈ F and α ∈ R.
The core of the idea is that, in the set Bn, the element en is “close” to witnessing the octahedrality of 

the norm for any element in Bn−1, and the closeness is reduced with the increasing of the n.

Proposition 2.6. Let ε > 0. Then, there exists n0 ∈ N such that, for any n ≥ n0,

|||Pn−1x + αen|||n ≥ (1 − ε)(|||Pn−1x|||n + |α|).

In particular, the norm |||·||| is octahedral.

Proof. Take n0 ∈ N such that zn+ln
zn+ln+2 ≤ ε. Then, applying Lemmata 2.2 and 2.5, we get

|||Pn−1x + αen|||n ≥ 1
zn+ln

‖Pn−1x + αen‖n
1 + 2
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Fig. 2. Shape of the unit ball Bn. The slice of Bn at height xn is a homotetic copy of Bn−1 with scalar factor 1 − fn(xn).

= 1
1 + zn+ln

2

(
|||Pn−1x|||n−1 + |α|

)

= 1
1 + zn+ln

2

(
|||Pn−1x|||n + |α|

)
,

and this last term is greater or equal than (1 − ε)(|||Pn−1x|||n + |α|) if and only if

1 − 1
1 + zn+ln

2
= zn + ln

zn + ln + 2 ≤ ε.

As this is satisfied because of the choice of n ∈ N, we conclude the proof. �
3. Gâteaux smoothness of the norm

This final section is fully devoted to showing the Gâteaux smoothness of | ‖ · | ‖. It will require splitting 
the argument into several steps. First, the smoothness of the norm | ‖ · | ‖n in Xn. Geometrically, this is due 
to the properties on the functions fn—see again Fig. 2. The smoothness of | ‖ · | ‖n in the points that belong 
to the previous Xn−1\{0} is due to the assumption fn ≡ 0 in [0, zn], and the smoothness in ±en is achieved 
because limt→1 f

′(t) = ∞.

Proposition 3.1. The space (Xn, |||·|||n) is Gâteaux smooth.

Proof. By induction, for n = 0, we know that the norm | ‖ · | ‖0 on X0 is Gâteaux smooth by hypothesis. By 
equation (2) we know that |||·|||n is the Minkowski functional of the 1-level set of the function

g(x) := |||Pn−1x|||n−1 + fn(|xn|).

By inductive assumption, |||·|||n−1 is Gâteaux smooth (except at the origin). Hence g(x) is also a Gâteaux 
smooth convex function in its domain, except for the origin and possibly the point ±en. Hence there is a 
unique tangent hyperplane to the graph of g at x and this immediately implies that there is also a unique 
tangent hyperplane to the Minkowski functional of SXn

. In other words, |||·|||n is Gâteaux differentiable at 
x. The remaining case when x = ±en is clear, since the only tangent hyperplane at this point is the kernel 
of the n-th coefficient functional on X, yielding Gâteaux smoothness again. �
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Corollary 3.2. The space (Y, |||·|||) is Gâteaux smooth.

Proof. Given x, h ∈ Y , there exists n ∈ N so that both x, h ∈ Xn, so the result follows from the previous 
one. �

In the remaining part of the section, we will prove that |||·||| is Gâteaux smooth on the whole X. This is 
the most delicate part of the argument. Our Banach space (X, |||·|||) is the completion of the normed space 
(Y, |||·|||) = ∪n(Xn, |||·|||n). To prove that the final norm is Gâteaux smooth, it suffices to prove that |||·||| has 
a directional derivative at any point 0 �= x ∈ X with respect to a dense set of directions, in our case, for 
any h ∈ Y . If x ∈ Y then this follows directly from Corollary 3.2, as both x and the direction h ∈ Y are 
contained in some Xn and we know that |||·|||n is Gâteaux smooth. It remains to deal with the delicate case 
x ∈ X \ Y .

In what follows, we assume without loss of generality that x = x0+
∑∞

j=1 xjej (where of course 
∑

n |xn| <
∞), |||x||| = 1. Since xn = x0 +

∑n
j=1 xjej , |||xn||| ≤ 1 for all n ∈ N.

In order to prove the Gâteaux smoothness at a fixed point x we will obtain an estimate of the function 
(of parameter t)

φx,h(t) := |||x + th||| − |||x|||

for every h ∈ Y . In the end this will lead to the desired conclusion because

φ′
x,h(0) = ∂|||x|||

∂h
.

We start by collecting some simple observations concerning the functions φx,h. The proof is omitted, as 
it is immediate.

Lemma 3.3. For any τ > 0,

φx,τh(t) = |||x + tτh||| − |||x||| = φx,h(τt);

φτx,τh(t) = |||τx + tτh||| − |||τx||| = τφx,h(t);

φτx,h(t) =
∣∣∣∣
∣∣∣∣
∣∣∣∣τx + tτ( 1

τ
h)
∣∣∣∣
∣∣∣∣
∣∣∣∣− |||τx||| = τφx, 1

τ h(t) = τφx,h( 1
τ
t).

Also, for fixed x ∈ X, h ∈ Y, t ∈ R, we have

φx,h(t) = lim
n

φxn,h(t).

Our strategy is to show that the sequence of functions φxn,h yields the estimates needed for Gâteaux 
smoothness at x.

We will split the argument into two cases through the well-known notion of orthogonality initially intro-
duced by Birkhoff at [4] and studied by James in [15,16].

Definition 3.4. Given a Banach space (X, ‖ · ‖), and x, h ∈ X\{0}. It is said that x is Birkhoff–James 
orthogonal to h if for every t ∈ R

‖x + th‖ ≥ ‖x‖.
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In our context, x is Birkhoff–James orthogonal to h if and only if φx,h(t) ≥ 0 for every t ∈ R. Geomet-
rically, the above definition allows us to think of h as a “tangent direction” on x, meaning that the vector 
x + th belongs to a tangent hyperplane of the multiple of the unit ball ||x||BX at x. Notice that if ‖ · ‖ is 
Gâteaux at x, then φ′

x,h(0) = 0 for any h tangent direction at x. Finally, one of the key properties of the 
renorming is that the norms are inductively constructed so that the sliced of unit ball Bn+1 in the direc-
tion of en+1 are homothetic copies of the previous step Bn—recall Fig. 2. This implies that Birkoff–James 
orthogonality for a projection is preserved at further steps.

Corollary 3.5. Let x ∈ (X, | ‖ · | ‖) such that xn �= 0. If xn is Birkoff–James orthogonal to a given direction 
h ∈ Xn, then xn+1 ∈ Xn+1 is Birkoff–James orthogonal to h.

Proof. By Lemma 2.2,
(

1 − fn+1

(
|xn+1|
|||xn+1|||

))
φxn+1,h(t) = φxn,h(t),

and the result follows. �
3.1. Case 1: xn is Birkoff–James orthogonal to h ∈ Xn

In this part, we will assume that the direction h belongs to Xn for a given n ∈ N, and furthermore, 
xn ∈ Xn is Birkoff–James orthogonal to h.

As xn is a smooth point, φ′
xn,h(0) = 0, or equivalently

φxn,h(t) = o(t). (3)

Let us now estimate φxn+1,h.
From the construction of the renormings | ‖ · | ‖n—see Lemma 2.2 and Corollary 2.3—we have that for 

every λ > 0 there is some λ̃ ≤ λ such that

λSXn+1 ∩ (Xn + xn+1en+1) = λ̃SXn
+ xn+1en+1.

i.e. for a fixed value xn+1 we have

|||xn||| = λ̃ ⇐⇒ |||xn + xn+1en+1||| =
∣∣∣∣∣∣xn+1∣∣∣∣∣∣ = λ.

Take P̃ := λ̃
|||xn+th||| (x

n + th), the point on the ray from the origin to the point xn + th which has norm 

λ̃ = |||xn|||.
Now, put P := P̃ + xn+1en+1. Then Pn(P ) = P̃ and |||P ||| = λ =

∣∣∣∣∣∣xn+1
∣∣∣∣∣∣.

Denote by

R := λ

|||xn+1 + th||| (x
n+1 + th)

the point of intersection of the ray from zero to (xn+1 + th) with λSXn+1 .
We claim that |||Pn(R)||| ≥ λ̃ as, from a simple geometric argument, we deduce that R must project 

farther away from the origin than P̃—see Fig. 3. Indeed, we may write

R =
∣∣∣∣∣∣xn+1

∣∣∣∣∣∣
n+1

((
|||xn + th|||

n
− 1

)
P̃ + P

)
,
|||x + th||| |||x |||
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Fig. 3. Geometric interpretation of the claim.

so R ∈ span{P, P̃}. Notice that P, R ∈ span{P, P̃} ∩λSXn+1 , but 
∣∣∣∣∣∣P̃ ∣∣∣∣∣∣ ≤ λ. Then, for every z ∈ conv (P̃ , P ), 

it is satisfied that |||z||| ≤ λ.
Then, the intersection of span{xn+1+th} ∩conv (P̃ , P ) is a unique point S, that clearly satisfies Pn(S) = P̃

and |||S||| ≤ λ. As both R,S ∈ span{xn+1 + th}, but |||R||| ≥ |||S|||, we finally deduce that

|||Pn(R)||| ≥ |||Pn(S)||| =
∣∣∣∣∣∣P̃ ∣∣∣∣∣∣.

So, the claim is proved.
But then, by the claim

∣∣∣∣∣∣xn+1
∣∣∣∣∣∣

|||xn+1 + th|||
|||xn + th|||

|||xn|||
∣∣∣∣∣∣P̃ ∣∣∣∣∣∣ = |||Pn(R)||| ≥

∣∣∣∣∣∣P̃ ∣∣∣∣∣∣.
So we just deduced

∣∣∣∣∣∣xn+1
∣∣∣∣∣∣

|||xn||| ≥
∣∣∣∣∣∣xn+1 + th

∣∣∣∣∣∣
|||xn + th||| .

Using Corollary 3.5 and this last inequality,

0 ≤ φxn+1,h(t) =
∣∣∣∣∣∣xn+1 + th

∣∣∣∣∣∣− ∣∣∣∣∣∣xn+1∣∣∣∣∣∣
≤

∣∣∣∣∣∣xn+1
∣∣∣∣∣∣

|||xn||| |||xn + th||| −
∣∣∣∣∣∣xn+1∣∣∣∣∣∣

=
∣∣∣∣∣∣xn+1

∣∣∣∣∣∣
|||xn||| φxn,h(t).

Now, we may fix n large enough so that h ∈ Xn and |||xn||| ≥ 1
2 |||x|||. Proceeding inductively as above, we 

get the estimate for every m ≥ n:

φxm,h(t) ≤ |||xm|||
|||xn||| φxn,h(t) ≤ 2φxn,h(t). (4)

Then, passing to a uniform limit for m → ∞ this clearly implies that

φx,h(t) ≤ 2φxn,h(t),

which using (3) means that φx,h(t) = o(t) and so ∂|||x||| = 0.
∂h
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Fig. 4. Decomposition of a direction h ∈ Xm.

3.2. Case 2: no projection xm is Birkoff–James orthogonal to the direction h

Let us pass to the general case. We may assume |||x||| = |||h||| = 1. For sufficiently large N ∈ N, h ∈ XN , 
and 

∣∣∣∣∣∣x− xN
∣∣∣∣∣∣ < 1

16 . In what follows, we tacitly assume that m ≥ n > N , i.e. without loss of generality, 
we assume that always |||xn||| > 15

16 and |||xn − xm||| < 1
8 . We may also consider |t| < 15

2·16 .
For m, let h = hm +Cmxm be a (unique) decomposition such that hm is a tangent direction at xm—see 

Fig. 4.
Notice that, considering gm ∈ SX∗

m
, the (unique) norming functional for xm ∈ Xm (i.e., 〈gm, xm〉 =

|||xm|||), it is well known that this functional gm is the one describing the value of the directional derivatives 
at xm, i.e., for any direction y ∈ Xm\{0}

∂|||xm|||
∂y

= 〈gm, y〉.

In particular, we have that 〈gm, hm〉 = 0. Geometrically, the unique tangent hyperplane of |||xm|||BXm
at 

xm is exactly xm + ker(gm).
As |〈gm, h〉| ≤ 1 and 〈gm, xm〉 = |||xm||| > 15

16 , we have

∂|||xm|||
∂h

= 〈gm, h〉 = Cm〈gm, xm〉 = Cm|||xm|||,

from where we deduce that

|Cm| ≤ 16
15 . (5)

Recall that, by the construction of the norm | ‖ · | ‖, tangent directions at one dimension are preserved in 
further dimensions (see Corollary 2.3), so hn ∈ ker gm, i.e. 〈gm, hn〉 = 0, whenever m ≥ n. Thus, as

gm(h) = gm(hm + Cmxm) = gm(hn + Cnx
n),

we deduce that Cmgm(xm) = Cngm(xn) and then we get

0 = Cmgm(xm) − Cngm(xn)

= (Cm − Cn)gm(xn) + Cm

m∑
i=n+1

xigm(ei).

Now, if we combine this equation above with the lower bound

|gm(xn)| ≥ |gm(xm)| − |||xm − xn||| > 15 − 1
,
16 8
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and using also the upper bound |Cm| ≤ 16
15 from (5), we achieve

|Cm − Cn| ≤
|Cm|

|gm(xn)|

m∑
i=n+1

|xi| < 2
m∑

i=n+1
|xi|

and, in particular,

|Cn+1 − Cn| < 2|xn+1|. (6)

With this, we will get the estimation

|||hn+1 − hn||| < 4|xn+1|. (7)

Indeed, using equations (5) and (6),

|||hn+1 − hn||| =
∣∣∣∣∣∣Cn+1x

n+1 − Cnx
n
∣∣∣∣∣∣

≤
∣∣∣∣∣∣(Cn+1 − Cn)xn+1 + Cnx

n+1 − Cnx
n
∣∣∣∣∣∣

≤
∣∣∣∣∣∣(Cn+1 − Cn)xn+1∣∣∣∣∣∣ +

∣∣∣∣∣∣Cnx
n+1 − Cnx

n
∣∣∣∣∣∣

≤ 2|xn+1| + Cn|||xn+1en+1|||
< 4|xn+1|.

Now, using Lemma 3.3,

φxn,h(t) = |||xn + thn + tCnx
n||| − |||xn|||

= |||(1 + tCn)xn + thn||| − |||(1 + tCn)xn||| + |||(1 + tCn)xn||| − |||xn|||
= φ(1+tCn)xn,hn

(t) + tCn|||xn|||

= (1 + tCn)φxn,hn

(
1

1 + tCn
t

)
+ tCn|||xn|||.

Notice that the above formula gives an expression of φxn,h(t) that depends on the tangent direction hn. 
By (re-)writing the formula for the n + 1-dimension, we would get an expression depending on the next 
tangent direction hn+1. The idea is that, thanks to (7), we can estimate the function φxn+1,h, but still use 
the previous tangent direction hn. In fact, by writing the formula and adding and subtracting the vector 
vn := 1

1+tCn+1
thn, we get

φxn+1,h(t) = (1 + tCn+1)φxn+1,hn+1

(
1

1 + tCn+1
t

)
+ tCn+1

∣∣∣∣∣∣xn+1∣∣∣∣∣∣
= (1 + tCn+1)

(∣∣∣∣
∣∣∣∣
∣∣∣∣xn+1 + 1

1 + tCn+1
thn+1

∣∣∣∣
∣∣∣∣
∣∣∣∣− ∣∣∣∣∣∣xn+1∣∣∣∣∣∣)

+ tCn+1
∣∣∣∣∣∣xn+1∣∣∣∣∣∣

= (1 + tCn+1)
(∣∣∣∣
∣∣∣∣
∣∣∣∣xn+1 + vn + 1

1 + tCn+1
thn+1 − vn

∣∣∣∣
∣∣∣∣
∣∣∣∣− ∣∣∣∣∣∣xn+1∣∣∣∣∣∣)

+ tCn+1
∣∣∣∣∣∣xn+1∣∣∣∣∣∣.

We may now use the triangular inequality on the last step of the formula above (where the vectors vn
are introduced). This means that, for a certain error En(t), we are able to express
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φxn+1,h(t) = φ(1+tCn+1)xn+1,hn
(t) + tCn+1

∣∣∣∣∣∣xn+1∣∣∣∣∣∣ + En(t) (8)

where the error is estimated by

|En(t)| ≤ |t||||hn+1 − hn||| < 4|t||xn+1|. (9)

Notice that comparing the two formulas that we achieved for φxn+1,h, we have that the error is exactly

En(t) = φ(1+tCn+1)xn+1,hn+1(t) − φ(1+tCn+1)xn+1,hn
(t). (10)

We can then use (8), getting

φxn+k,h(t) − φxn,h(t) =
k−1∑
j=0

(φxn+j+1,h(t) − φxn+j ,h(t))

= A + B + C, (11)

where we have the three terms

A :=
k−1∑
j=0

(
φ(1+tCn+j+1)xn+j+1,hn+j

(t) − φ(1+tCn+j)xn+j ,hn+j
(t)

)
,

B :=
k−1∑
j=0

t(Cn+j+1 − Cn+j)
∣∣∣∣∣∣xn+j+1∣∣∣∣∣∣ +

k−1∑
j=0

tCn+j

(∣∣∣∣∣∣xn+j+1∣∣∣∣∣∣− ∣∣∣∣∣∣xn+j
∣∣∣∣∣∣) ,

C := En+k(t) −En(t).

We can estimate separately the three of them. First, notice that using previous estimations on | ‖ · | ‖ and 
using inequalities (5) and (6) to control |Cn+j+1| and |Cn+j+1 − Cn+j | respectively, we get the bound

|B| ≤ 2|t|
k−1∑
j=0

|xn+j+1| +
16
15 |t|

k−1∑
j=0

|xn+j+1|.

Also, the bound on the error that we had at inequality (9) yields

|C| ≤ 4|t||xn+k| + 4|t||xn|.

So, with respect to B and C—and for the sake of simplicity—we might take the same bound,

|B| ≤ 4|t|
∞∑
j=0

|xn+j | (12)

|C| ≤ 4|t|
∞∑
j=0

|xn+j | (13)

Now, we only need to estimate A. Notice that we may split again

|A| ≤ |A1| + |A2|,

where
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A1 := φ(1+tCn+k)xn+k,hn+k−1(t) − φ(1+tCn)xn,hn
(t) (14)

A2 :=
k−2∑
j=0

∣∣φ(1+tCn+j+1)xn+j+1,hn+j
(t) − φ(1+tCn+j+1)xn+j+1,hn+j+1(t)

∣∣ (15)

For A2, by the error expression at (10), we have for j = 0, . . . , k − 1

∣∣φ(1+tCn+j+1)xn+j+1,hn+j
(t) − φ(1+tCn+j+1)xn+j+1,hn+j+1(t)

∣∣ ≤ |En+j(t)|

≤ 4|t||xn+j+1|. (16)

So, A2 can be bounded as

A2 ≤ 4|t|
k−2∑
j=0

|xn+j+1| = 4|t|
k−1∑
j=0

|xn+j |. (17)

For A1, we may express the first of its two terms as

φ(1+tCn+k)xn+k,hn+k−1(t) =
(
φ(1+tCn+k)xn+k,hn+k−1(t) − φ(1+tCn+k)xn+k,hn

(t)
)

(18)

+ φ(1+tCn+k)xn+k,hn
(t)

For the first summand of (18)

∣∣φ(1+tCn+k)xn+k,hn+k−1(t) − φ(1+tCn+k)xn+k,hn
(t)

∣∣ ≤ |t||||hn+k−1 − hn|||

≤ 4|t|
k−1∑
j=1

|xn+j |. (19)

And for the second term of (18), as xn is Birkoff–James orthogonal to hn, we can reduce the last term 
of the above formula to the previous Case 1 in Subsection 3.1, so applying (4) and re-writing through 
Lemma 3.3, we get

∣∣φ(1+tCn+k)xn+k,hn
(t)

∣∣ ≤
∣∣∣∣∣(1 + tCn+k)

∣∣∣∣∣∣xn+k
∣∣∣∣∣∣

|||xn||| φxn,hn

(
1

1 + tCn+k
t

)∣∣∣∣∣ ,
and recalling the estimates of |Cm| ≤ 16

15 in (5), and the initial assumptions on the norms |||xm||| and that 
we took |t| < 15

2·16 , we get that for any k ∈ N

∣∣φ(1+tCn+k)xn+k,hn
(t)

∣∣ ≤ 16
15

(
1 + 15

2 · 16
16
15

) ∣∣∣∣φxn,hn

(
1

1 + tCn+k
t

)∣∣∣∣
≤ 2φxn,hn

(
1

1 + tCn+k
t

)
, (20)

where for every k ∈ N, 1
2 ≤ 1 + tCn+k ≤ 3

2 and

2|t| ≤
∣∣∣∣ t

∣∣∣∣ ≤ 2|t|. (21)
3 1 + tCn+k
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So, by (18) and (19) we get the estimation on A1,

|A1| =
∣∣φ(1+tCn+k)xn+k,hn+k−1(t) − φ(1+tCn)xn,hn

(t)
∣∣

≤
∣∣φ(1+tCn+k)xn+k,hn+k−1(t)

∣∣ +
∣∣φ(1+tCn)xn,hn

(t)
∣∣

≤ 4|t|
k−1∑
j=1

|xn+j | +
∣∣φ(1+tCn+k)xn+k,hn

(t)
∣∣ +

∣∣φ(1+tCn)xn,hn
(t)

∣∣ . (22)

Combining the bounds of A1 and A2 (adding equations (22) and (17) respectively), we get the remaining 
estimation of A,

|A| ≤ 8|t|
k−1∑
j=1

|xn+j | +
∣∣φ(1+tCn+k)xn+k,hn

(t)
∣∣ +

∣∣φ(1+tCn)xn,hn
(t)

∣∣ (23)

Combining together the bounds of A, B and C (equations (23), (12) and (13) respectively) and returning 
to (11), we finally achieve

∣∣φxn+k,h(t) − φxn,h(t)
∣∣ ≤ A + B + C

≤ (8 + 4 + 4)|t|
∞∑
j=0

|xn+j |

+
∣∣φ(1+tCn+k)xn+k,hn

(t)
∣∣ +

∣∣φ(1+tCn)xn,hn
(t)

∣∣ (24)

Finally, applying (20) to bound the last two terms in the equation above, we reach

∣∣φxn+k,h(t) − φxn,h(t)
∣∣ ≤ 16|t|

∞∑
j=0

|xn+j | + 2φxn,hn

(
1

1 + tCn+k
t

)

+ 2φxn,hn

(
1

1 + tCn
t

)

And this last inequality implies that φx,h(t) is differentiable at t = 0—with derivative equal to limn→∞ Cn. 
Indeed, given any ε > 0 we may pick n large enough so that 

∑∞
j=0 |xn+j | < ε. We know that φxn,h(t) and 

φxn,hn
(t) are differentiable at t = 0 by the previous case—with values being equal to Cn and 0, respectively. 

So,

∣∣φxn+k,h(t) − φxn,h(t)
∣∣ ≤ 16ε|t| + o(t) (25)

where the o(t) estimate is independent of k because of (21). This finishes the argument and the proof of the 
main result.
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