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Abstract: The Internet of Things (IoT) is a network of interconnected physical devices, vehicles, and
buildings that are embedded with sensors, software, and network connectivity, enabling them to
collect and exchange data. This exchange of data between the physical and digital worlds allows for
a wide range of applications, from smart homes and cities to industrial automation and healthcare.
However, a key challenge faced by IoT nodes is the limited availability of energy to support their
operations. Typically, these nodes can only function for a few days based on their duty cycle. This
paper introduces a solution that aims to ensure the sustainability of IoT applications by addressing
this energy challenge. Thus, we develop a design of a hybrid sustainable energy system designed
specifically for IoT nodes, using solar photovoltaic (PV) and wind turbines (WT) chosen for their
multiple benefits and complementarity. The system uses the single-ended primary-inductance con-
verter (SEPIC) and is controlled using a hybrid approach, combining Harris Hawks Optimization
and Particle Swarm Optimization (HHHOPSO). Each SEPIC converter boost the electrical energy
generated to attain the required voltage level when charging the battery. The proposed methodology
is implemented in MATLAB/Simulink and its performance is measured using appropriate metrics. In
terms of efficiency and average power, the results show that the suggested method outperforms pre-
vious strategies. Our system powers also many sensor nodes, leading to a high level of sustainability
and lowering the carbon footprint associated with traditional energy sources.

Keywords: IoT; energy harvesting; PV; WT; SEPIC; PSO; HHO

1. Introduction

The increase of Internet of Things devices has a significant impact on society, particu-
larly in the fields of healthcare, entertainment, personal communication, and environmental
monitoring [1–3]. One of the significant challenges faced by these low-power devices is
their reliance on batteries that require frequent charging or replacement. This challenge has
led to the emerging technology of energy harvesting as an attractive alternative solution
for IoT devices. Energy harvesting refers to the process of transforming various types of
energy resources, such as temperature, vibration, pressure and electromagnetic radiation
including light and RF waves into usable electrical energy. In recent years, there has been a
growing need for sustainable energy sources due to the increasing demand for clean energy
production with minimal environmental impact. One of the most promising alternatives to
traditional fossil fuels is hybrid energy harvesting, which combines multiple renewable
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sources such as solar and wind power. It is anticipated that integrating both PV and wind
energy harvesting can yield significant benefits in terms of enhancing the lifetime of IoT
sensors, owing to their complementary nature [4]. In cases where one energy source is
insufficient or unavailable, the other energy source can compensate to meet storage bat-
tery demands. However, the output of these two energy sources can be uncertain due
to factors such as environmental conditions or day-night variations. To achieve a stable
voltage output, these two systems are connected in parallel to one another, so that if one
source is unavailable, the system can be balanced by the other. As such, both systems can
function independently or simultaneously. Due to the variable nature of solar radiation
and wind speed, the present PV/wind arrangement has limited conversion capability [5].
Factors such as radiation level, temperature, and wind speed all have a significant impact
on the performance of PV panels and wind turbines. As a result, additional Maximum
Power Point Tracking (MPPT) approaches are urgently needed to achieve higher efficiency,
maximize power extraction from PV panels and wind turbines and ensure optimal per-
formance. A range of techniques has been developed for this purpose [6]. The constant
voltage method is used in hybrid solar-wind energy systems to achieve a consistent voltage
during battery charging [7]. Nonetheless, this method produces significant oscillations and
necessitates a lengthy convergence time. On the other hand, the Perturb and Observe (P&O)
algorithm serves as an active power control in a hybrid system and demonstrates strong
dynamic performance in response to variations in wind and solar irradiation [8]. P&O
modifications involving step size changes have also been performed and implemented
in the hybrid system [9]. The incremental conductance method is also utilized in hybrid
systems [10]. Traditional MPPT approaches have drawbacks such as dynamic response
concerns and steady-state oscillation issues, which make them ineffective in adjusting to
changing environmental conditions [11]. To address these issues, academics have created
clever and advanced processing systems that employ techniques such as genetic algorithms
(GA), neural networks (NN), and fuzzy logic controllers (FLC). However, the use of FLC,
GA, and NN techniques for intelligent MPPT controllers in hybrid solar-wind systems
is frequently limited due to variables such as limited fuzzy deduction rules [12] small
population numbers, and limited data availability. While these techniques function well
under specific conditions, they may fail to monitor the Maximum Power Point (MPP)
precisely when facing fluctuations in the power curve [13,14]. In PV-wind system, efficient
extraction of the maximum power point is critical. As a result, the purpose of this work is
to devise an efficient way for accomplishing this goal.

The main contributions of this work can be listed as follows:

• The power is generated from a hybrid sustainable energy system that combines solar
and wind power to supply the IoT node for the communication process, and the power
is charged in the Lithium battery of 3.7 V.

• The generated power is then fed into a SEPIC converter, which is responsible of con-
verting the voltage amplitude to the desired level. To maximize the energy production
from both solar and wind turbine sources, the MPPT algorithm is applied.

• An energy-efficient algorithm that combines Particle Swarm Optimization (PSO) and
Harris Hawks Optimization (HHO) methodologies is used to optimize the MPPT
to track appropriately the maximum power from both the solar and wind sources.
The maximum power generated from these sources is given then to the IoT nodes.

This document is structured as follows: Section 2 provides an overview on the MPPT
technique in solar-wind systems. Section 3 includes a thorough discussion of solar and
wind energy harvesting technologies. Section 4 provides detailed information on the design
of our proposed hybrid solar-wind energy harvesting system, including the modeling of
solar and wind components, the SEPIC converter and the rechargeable battery. Section 5
discusses the MPPT principle and outlines the chosen control algorithm. Section 6 presents
information on IoT devices and network lifetime. Section 7 provides the results of our
research and provides a corresponding discussion. Finally, Section 8 highlights the main
findings of our research.
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2. Literature Review

This section includes an overall review of the existing literature on the Maximum
Power Point Tracking (MPPT) technique in solar-wind systems.

S. Mahdi et al. [15] demonstrated the performance of the MSX-64 PV module with
a boost DC-DC converter for MPPT applications. The paper investigates three MPPT
techniques under partial shadowing and real-world weather conditions. The results focus
on energy efficiency, rising time, the ability to track global MPP, and reactivity to changing
weather. The results show that the MPPT techniques are excellent at simulating MPP
during partial shading and adapting to changing weather conditions.

V. Dhanunjaya et al. [16] introduced the Cuckoo search MPPT Algorithm (CSA) for
Maximum Power Point Tracking (MPPT) in a PV-Wind hybrid system. Traditional MPPT
algorithms struggle with changing environmental variables, making CSA an appropriate
evolutionary algorithmic technique. The suggested system integrates DC-DC step-up boost
converters and successfully optimizes power under different irradiance situations using
simulation findings.

Preeti Gupta et al. [17] introduced an improved solar energy harvesting system for
wireless sensor networks (WSNs) based on Maximum Power Point Tracking (MPPT) and the
Emperor Penguin Optimization (EPO) algorithm. The system employs solar photovoltaic
energy and a SEPIC converter to extend network lifetime by harvesting and storing solar
energy efficiently. The system powers several sensor nodes, allowing for longer operation
and improving overall WSN performance.

Hai, Tao, et al. [18] proposed an intelligent power extraction approach for a grid-
connected hybrid generating system. It combines a fuzzy gain scheduling PD controller
and radial basis function network sliding mode control. The setup consists of a wind
turbine and a solar panel. The suggested technique exhibits efficient and accurate tracking
of maximum generated power, with the added benefits of pitch angle control for the
wind turbine and protection against catastrophic operations. The suggested controller’s
effectiveness is validated by simulation results using MATLAB.

Linus A. Aloo et al. [19] presented the modeling of a PV-Wind hybrid microgrid with
a Battery Energy Storage System (BESS) is discussed in this literature review, and a Genetic
Algorithm-Adaptive Neuro-Fuzzy Inference System (GAANFIS) controller for voltage
management is proposed. When compared to other controllers, the GA-ANFIS outperforms
them in terms of rise time, settling time, overshoot, and nonlinear handling capacity.

A. Renjith et al. [20] presented a hybrid system for sustainable power generation that
combines Photovoltaic (PV) and Wind Turbine (WT) technology. The system addresses the
issue of partial shading in power generation and presents a hybrid technique for maximum
power extraction and compensation utilizing the Adaptive Neuro Fuzzy Interference
System-Honey Badger Algorithm (ANFIS-HBA). MATLAB simulations show that the
suggested method outperforms other approaches in terms of power tracking under various
partial shading conditions.

Ahmed Hussain Elmetwaly et al. [21] proposed a new MPPT strategy based on
jellyfish search optimization (JSO). In addition, the study offers a unified power-quality
conditioner (UPQC) to improve microgrid performance and handle power-quality concerns.
The proposed algorithm’s effectiveness is compared to previous MPPT algorithms, and four
case studies are completed to validate the benefits brought by the new UPQC. The research
findings illustrate the proposed approach’s high performance, which is demonstrated
through simulation with the MATLAB/Simulink program and experimental tests with PV
module simulation models.

In our proposal, we aim to fill the gap between existing studies on hybrid solar and
wind systems and their application in IoT sensors. While previous research has explored the
potential of combining solar and wind energy sources, there is a lack of focus on integrating
these systems specifically for IoT applications. Our proposal fills this gap by designing
a sustainable energy system tailored for IoT sensors, using the advantages of both solar
photovoltaic (PV) and wind turbines (WT). Additionally, our optimization algorithm, which
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integrates Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO),
offers improved efficiency in maximizing power generation and mitigating energy wastage.
By incorporating these elements, our proposal presents a comprehensive and innovative
solution that enhances the overall performance of IoT networks powered by renewable
energy sources.

Moreover, the integration of solar PV and wind turbines within the specific domain
of this study offers several significant contributions. These include adaptation to IoT
requirements, enabling sustainable and renewable energy sources that are specifically
adjusted to efficiently power IoT devices. The incorporation of solar PV and wind turbines
also provides network independence, allowing IoT networks to operate autonomously
without relying on traditional power sources, thus extending their operational lifespan.
This integration promotes environmental sustainability by reducing reliance on fossil fuels
and minimizing the environmental impact. Additionally, the energy efficiency of solar PV
and wind turbines enables optimal power utilization for IoT devices, leading to reduced
energy consumption and increased overall system efficiency.

Furthermore, these technologies offer scalability and flexibility, making them adaptable
to different IoT applications and environments. They can be deployed in various settings,
ranging from urban to remote locations, supporting the growth and expansion of IoT
networks. In terms of cost-effectiveness, solar PV and wind turbines have the potential to
reduce operational costs associated with traditional energy sources, providing long-term
cost savings and enhancing the economic feasibility of deploying IoT networks.

To sum up, these contributions improve the overall performance, reliability and
sustainability of IoT networks that use renewable energy sources.

3. Energy Harvesting Techniques

The drawbacks of using batteries, such as environmental pollution, have prompted
the exploration of alternative methods to power IoT sensors with the energy available
in their surroundings, a process known as energy harvesting. The main advantage of
this technology is the continuity of the power supply. Theoretically, it lasts to operate as
long as there is energy in the environment [22–24]. The future society, which largely relies
on energy, highly depends on energy harvesting technology. This is mostly due to the
fact that energy may be obtained from a variety of sources, as seen in Figure 1, making
it a ubiquitous and environmentally friendly process. Moreover, the maintenance costs
associated with such systems are relatively low. There are numerous sources of ambient
energy that can be used with energy harvesting technology, some of which occur naturally
and others human-generated [25]. These energy sources are gaining increasing attraction
in the literature, including vibrations energy, radio frequency energy, thermal energy, solar
photovoltaic energy (indoor and outdoor), and wind energy.

Figure 1. Energy harvesting sources.
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3.1. Solar Energy Harvesting

Light is a plentiful energy source that can power a variety of indoor and outdoor appli-
cations, including wireless sensors and devices in the burgeoning IoT industry. To capture
sunlight, solar or photovoltaic (PV) cells made of semiconductor materials such as silicon
can be used. Through the photovoltaic effect, this technology directly converts sunlight
into usable electricity. The semiconductor absorbs the energy of the photons, causing
electrons to move out of their regular positions and create holes. This generates a current
flow for the electric circuit. A photovoltaic cell forces the electrons and holes to move
forward in opposite directions, creating a voltage and current between the two parts, like a
battery. Sunlight is the most suitable energy source for harvesting, estimated to provide
1.4 kW/m2 [26]. While the theoretical efficiency of a PV cell is 90%, the practical efficiency
is around 40% [27]. PV cells can maintain high performance for up to 25 years, after which
the generated power decreases. Recently, numerous solar energy harvesting (SEH) proto-
types have been developed for WSN and IoT networks. In building management, a WSN
system designed with a Tyndall 25 mm mote uses energy harvesting from indoor light via
a photovoltaic cell to reduce energy consumption [28]. An intelligent SEH system for WSN
nodes is proposed in [29], utilizing a hardware-based comparator circuit to manage battery
charging for increased system robustness. The potential of solar cells to supply energy for
a single node is examined in detail in [30], including discussions on cell characteristics and
control circuit design for battery voltage regulation. Sharma et al. conduct a comprehensive
survey on SEH for WSN nodes in [31], covering solar cell efficiency, DC-DC converters,
MPPT, energy prediction algorithms, and design challenges and solutions. An efficient
SEH system with MPPT and PWM techniques is proposed in [31], with simulation, opti-
mization, and hardware implementation. A wireless sensor system utilizing solar energy
harvesting for agriculture development is proposed in [32]. The HaLOEWEn solar energy
harvester charges a 4.6 AH Li-ion battery using tiny solar panels, and the quantity of energy
harvested is determined by the prevailing light conditions [33]. A flexible wearable body
sensor node with indoor photovoltaic energy harvesting is designed in [34], while solar
micro panels placed in shirts tissue are used to harvest energy in [35].

3.2. Wind Energy Harvesting

Wind energy, similarly to solar energy, can be harnessed to produce usable electricity.
While solar energy is dependent on sunlight, wind energy can be accessible during the
day and night, as well as in rainy and cloudy conditions. Windy regions, including
civil structures such as bridges and high buildings, are potential sources for wind energy
harvesting for wireless sensor nodes. Researchers have explored the feasibility of wind
energy harvesting, and numerous studies in this field have been carried out. For instance,
Park et al. designed a bridge health monitoring system in [36] that used a wireless sensor
node powered by a wind turbine generator (WTG). With a maximum output power of
27.3 mW at 3.0 m/s wind speed, the WTG generated enough electricity to power the
wireless sensor node. Another work in [37] addressed the development of a small wind
energy harvester with MPPT for monitoring wildfires with wireless sensor nodes. In [38],
an anemometer-based solution was used to harvest wind energy, where the motion of
an anemometer shaft was used to generate energy. The harvested energy was converted
to battery potential using a pulsed buck-boost converter, and trickle charging was used
to power the battery. The analysis showed that the energy harvesting capability ranged
from ten to hundreds of micro-watts up to approximately one milli watt, which could
significantly extend the lifetime of sensor devices.

4. Proposed Energy Harvesting Design for IoT Devices

When solar and wind energy sources are combined, a hybrid power system is created
to provides numerous advantages over a single system. The ability to integrate the outputs
of both solar and wind energy systems in parallel, compensating for the absence of either
system, is a significant advantage of this system. Furthermore, within the hybrid power
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system, both of the energy sources can operate independently or in tandem. The solar
system consists of a photovoltaic panel, while the wind turbine system includes a PMSG
and a rectifier. The SEPIC converter is used to boost the input generated power from both
the PV and wind turbine. Hence, an effective MPPT algorithm based on the Hybrid of
HHO and PSO (HHHOPSO) is developed to extract the maximum power from the hybrid
solar-wind system. The proposed hybrid approach is intended to achieve good tracking
performance and quick convergence speed while minimizing computing costs and keeping
the design structure simple. The output power from both converters can then be combined
in a DC bus. A voltage control strategy is used to keep the DC bus voltage stable. This
control strategy maintains the DC bus voltage within a specified range by adjusting the
duty cycle of the SEPIC converters. This proposed energy harvesting system charges a
rechargeable battery to ensure that the IoT devices are powered on. An IoT sensor node
typically consists of a sensing unit, a microcontroller processing unit, and a communication
unit. Figure 2 illustrates a block diagram of the hybrid solar-wind energy harvesting system
that uses HHHOPSO MPPT to charge IoT nodes.

Figure 2. Block diagram of the proposed solar-wind hybrid system.

Thus, this research focuses on improving the power generation from solar and wind
by using an energy-efficient technique in MPPT for enhancing the IoT network lifetime.

The following subsections provide detailed information on the various components of
the proposed energy harvesting receiver design.

4.1. Modeling of Solar Photovoltaic Systems

This section will introduce the mathematical models of the solar PV component within
the hybrid energy system proposed. To achieve the desired power output, PV modules are
connected in series and parallel within the PV field. Each module comprises individual
cells [39]. To model the PV field, we begin with the basic element, which is the cell. It can
be seen as an ideal current source that provides a current, Iph, proportional to the incident
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light power, in parallel with a diode that is indicated by the P-N junction. Depending on
Kirchhoff’s current law, the equation for the output current is as follows [40]:

I = Iph − ID (1)

The photo-current (Iph) is directly proportional to the solar irradiation and temperature,
as shown by this equation:

Iph = [Isc − Ki(T − TSTC)]
G

GSTC
(2)

where Isc is the short-circuit current, Ki represents the short-circuit current temperature
coefficient, GSTC and TSTC denote the irradiation and temperature values under standard
test conditions, while G and T represent the actual values of irradiation and temperature.
The module diode current can be determined using Equation (3), which is dependent on
the saturation current I0:

ID = I0(exp
VD
Vth
− 1) (3)

Here, VD represents the voltage diode, and Vth = (A×K×T)
q represents the thermal

voltage. The saturation current is given by:

I0 = Irs(
T

TSTC
)3 exp[

q× Eg

A× k
(

1
TSTC

− 1
T
)] (4)

With q = (1.6× 10−19C) being the electron charge, K = 1.38× 10−23 J/k being the
Boltzmann’s constant, (A = 2) being the diode ideality factor, Eg ' 1.1 eV at T = 25 ◦C
being the semiconductor band-gap energy, and Irs being the reverse saturation current.

When selecting a solar panel, it is crucial to consider various parameters, such as open
circuit voltage (Voc), short circuit current (Isc), maximum output power (Pmax), and the
surface area. Additionally, durability is important to withstand outdoor conditions and
minimize replacement costs. Taking all these factors into account, we have chosen solar
panel for simulating a low power device according to the specifications provided in Table 1.

Table 1. Technical characteristics of the solar panel used.

Parameter Value

Open circuit voltage (Voc) 5.6 V
Short circuit current (Isc) 660 mA

Maximum output power (Pmax) 2.4 W
Voltage at maximum power (Vmp) 4 V
Current at maximum power (Imp) 600 mA

Surface area 36 cm2

4.2. Modeling of Wind System

The wind turbine system is designed to transform the wind’s kinetic energy into
mechanical energy, which is then transferred into electrical energy by a generator. A rectifier
then converts the electrical energy into direct current (DC) [41]. The generated power in a
steady condition is expressed as follows:

Pmc =
1
2

Cp(λ, β)ρADπR2
bdV3

W (5)

The air density (ρAD = 1.225 kg/m3), the turbine radius (Rbd in meters), the wind speed
(VW in m/s), the turbine performance coefficient (Cp), the ratio of the rotor blade speed
to the wind velocity (λ), and the blade pitch angle (β) are all included in the wind power
Equation (5). Increasing the value of Cp is essential to maximize the output power of a wind
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turbine. The coefficient of performance is strongly influenced by the “Tip Speed Ratio”,
which exhibits a nonlinear relationship and depends on factors such as blade quantity, pitch,
and shape. The maximum attainable value for Cp is approximately 59%, often referred to
as the Betz limit. The speed ratio λ is defined as follows:

λ =
ΩRbds

VW
(6)

The following formula is used to determine the turbine’s output torque:

Tmc =
Pmc

Ω
=

1
2

Cp(λ, β)ρADπR2
bdV3

W
Ω

(7)

The power coefficient is at its highest value CpM = Cp(λopt) if the speed ratio is kept
at its ideal value λopt. In this case, the wind turbine’s maximum power production can be
calculated as follows:

Popt
m =

1
2

CpMρπR2
bdV3

W (8)

The ideal rotor speed can be determined as follows when the speed ratio is expected
to be maintained at the ideal value:

λopt =
ΩRbd
VW

⇒ Ωopt =
λoptVW

Rbd
(9)

Thus, there is an optimal rotor speed Ωopt that optimizes the power output for each
wind speed.

In our system, we used a commercial wind turbine toy to generate wind power.
The manufacturer claims it to be the “World’s smallest wind turbine” [42]. Although the
manufacturer did not provide any performance data, the same turbine was tested in a
separate study [37]. This last provides valuable information regarding the performance of
the wind turbine, offering then insights of its abilities and efficiency.

4.3. Modeling of SEPIC Converter

A SEPIC converter’s output voltage may differ from the input voltage because it can be
either higher or lower [43]. Figure 3 depicts the SEPIC converter, which uses two inductors,
L1 and L2, wound on the same core and subjected to the same voltages throughout the
switching cycle. The output voltage of the SEPIC converter controls the MOSFET duty
cycle. When the switch is depressed, the output voltage falls to 0 V. The SEPIC converter is
notably useful in battery charging applications, where the voltage can be below or above
the regulator’s output.

Figure 3. SEPIC converter circuit.

The output voltage of a SEPIC converter is typically expressed as:

Vout =
D

D− 1
Vin (10)

where Vout is the output voltage, Vin is the input voltage, and D is the duty cycle.
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The SEPIC converter duty cycle (D) in continuous conduction mode (CCM) is given
by the following equation:

D =
Vout + VD

Vin + Vout + VD
(11)

The voltage across the diode can be denoted as VD, and the maximum duty cycle can
be expressed as:

Dmax =
Vout + VD

VIN(Min) + Vout + VD
(12)

The symbol VIN(Min) represents the minimum input voltage.
In this paper we used two SEPIC converters. The first one is connected to the solar

system with an input voltage of 4 V. The second one is connected to the wind system with
an input voltage of 3.5 V.

Rechargeable Battery

There are primarily two types of energy storage devices in IoT networks: batteries
and supercapacitors. Rechargeable batteries are widely used in both solar and wind energy
systems and have higher energy densities than supercapacitors. For IoT networks, many
rechargeable batteries have been commonly used, such as nickel-cadmium (NiCd), nickel-
zinc (NiZn), nickel metal hydride (NiMH), and lithium-ion (Li-ion). In our proposed work,
a lithium-ion battery of 740 mAh capacity and a nominal voltage of 3.7 V is used. This
modern battery has several advantages over traditional rechargeable batteries, including a
higher energy density, faster discharge rate, higher cell voltage, extended life cycle, and the
absence of memory effects [44].

5. MPPT Technique

MPPT is a commonly used technique in solar and wind power systems to increase
their efficiency. It entails tracking the maximum power peak of nonlinear electrical gener-
ators, such as solar photovoltaic and wind turbine generators. The power peak in wind
systems is determined by the turbine size and wind speed passing through the rotor
blades, whereas the power peak in solar systems is influenced by the sun radiation level
and temperature range. Failure to track the power peak can result in damage to the in-
terconnected system and power loss. The incremental conduction method, perturb and
observe method, and current sweep method are some of the MPPT methods available,
with different techniques tailored to specific system specifications. Although these methods
offer maximum power from the solar and wind systems, they have drawbacks such as
increased complexity, limited convergence, and more limitations. As a result, we employed
the hybrid HHHOPSO approach, which has higher efficiency, better convergence and faster
tracking. The effective model is particularly useful in actively tracking the MPP in both
stable and unstable conditions.

5.1. Particle Swarm Optimization (PSO)

The concept of Particle Swarm Optimization (PSO) is inspired by natural phenomena,
such as swarms of bees, schools of fish, or flocks of birds [45]. Swarm intelligence-based
optimization techniques are considered evolutionary methods that are suitable for opti-
mizing multivariate renewable systems. In this approach, a swarm of particles is initially
distributed randomly in a multidimensional space, and they move collectively without any
collision to search for optimal solutions, similar to the way swarms of animals search for
shelter or food. Each particle utilizes its own intelligence and the collective intelligence of
the swarm to remember the best position (PBest) it has discovered. If one member of the
swarm finds an optimal solution, others can quickly follow by modifying their position
and velocity, which are given in Equations (13) and (14). Each particle’s status is defined by
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its position and velocity, with Equations (13) and (14) indicating the updating velocity and
position, respectively [46,47].

Vk+1
i = ωVk

i + c1r1(XK
Pbesti − Xk

i ) + c2r2(Xk
Gbesti − Xk

i ) (13)

Xk+1
i = Xk

i + Vk+1
i (14)

where ω is a constant called the inertia weight, c1, c2 represent acceleration constants,
and r1, r2 represent random functions generated in the range [0, 1] at each iteration k. The
steps of the PSO algorithm are outlined in Algorithm 1.

Algorithm 1 PSO

Inputs: Generate an initial random population with size N and PSO parameters (v, c1, c2
and w)
Outputs: The best solution Xbest

Repeat
Compute the fitness value for each particle.
Determine the global best solution (Xgbest) and the personal best solution (Xpbest)

Update the position of each solution using Equation (13).
Update the velocity of each solution using Equation (14).
(stop conditions)

5.2. Harris Hawks Optimization (HHO)

The HHO algorithm is based on the hunting process of Harris’ hawks, in which they
cooperate to capture their prey [48]. HHO is a population-based optimization algorithm
that works without using gradients. The central concept of HHO is based on Harris hawks’
cooperative hunting behavior, specifically their “surprise pounce” technique or “seven
kill” strategy. During this approach, multiple hawks work together to attack the prey from
various angles, creating confusion and making the prey easier to catch. The hawks’ pursuit
model influences the behavior of the prey during the chase, and the birds collaborate
during the attack. The group’s leader leads the initial attack, following the prey and
then soaring out of sight, allowing the next Harris hawk to take command. These hawks’
chasing patterns vary depending on the dynamics of the situation and the prey’s escape
strategy. This behavior is mathematically reproduced in order to create an optimization
algorithm. The HHO algorithm is divided into two phases, the first of which is concerned
with exploration ability and is written as follows.

5.2.1. Exploration Phase

During the exploration phase of the Harris Hawks Optimization (HHO) algorithm,
the behavior of Harris hawks when attempting to track prey is replicated. They sit and wait
for new prey, similar to how hawks represent candidate solutions, and the best solution
identified thus far is the prey. To identify prey, these hawks sit in random locations and use
two operations depending on a probability, q, obtained from Equation (15). Hawks orient
themselves based on population and prey location if q is less than 0.5. If q is larger than or
equal to 0.5, hawks perch at random on a tree.

X(k + 1) =
{

Xrandom(k)− |Xrandom(k)− Xr2X(k)| q ≥ 0.5
(Xra(k)− Xp(k))− r3(LB + r4(UB− LB)) q < 0.5

(15)

where the hawk’s current position, X(k), and the next position, X(k + 1), are calculated us-
ing the prey’s position, Xra(k), and other random variables, such as q, r1, r2, r3, and r4. To de-
termine the next position, the model chooses a position at random, Xrandom(k), from the
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available options and computes the average position of the existing positions, Xp(t), using
the equation:

Xp(k) =
1
N

N

∑
i=1

Xi(k) (16)

The position of a hawk in iteration k is denoted as Xi(k), where there are N hawks in
total. As the hawk approaches its target prey, convergence must be enhanced, which is why
energy equations are employed.

E = 2E0(1−
k
T
) (17)

E0 denotes the baseline energy, T the maximum number of iterations, k the current iteration,
and E the current energy.

The beginning energy level of the search operation is represented by E0. T denotes the
maximum number of iterations for the search procedure. The current iteration number is
kt and the current energy level is represented by E. If the absolute value of E0 is greater
than or equal to one during the search process, the algorithm enters the search phase. If the
absolute value of E0 is less than one, the algorithm enters the exploitation phase.

5.2.2. Exploitation Phase

The Harris hawks launch a surprise attack on the prey they discovered in the previous
phase during the exploitation phase. During this phase, the HHO algorithm employs one
of four strategies depending on the values of |E| and r. The quantity of energy in the
rabbit is represented by |E|, and the possibility of the prey escaping is represented by
r. A value of r less than 0.5 indicates that the prey successfully escaped, whereas r larger
than or equal to 0.5 indicates that the escape was unsuccessful. The Harris hawks have
surrounded their victim at this point, and they proceed with either a hard or soft besiege
depending on their energy level. When |E| is larger than or equal to 0.5, a light besiege is
used, whereas a hard besiege is used.

Soft Besiege

As stated previously, a soft attack occurs when r and |E| is greater than or equal to
0.5. Equations (18) and (19), respectively, present the formulation of soft besiege

X(k + 1) = ∆X(k)− E|JXra(k)− X(k)| (18)

δX(k) = Xra(k)− X(k) (19)

The formulation of gentle besiege is represented by the Equations (18) and (19), where
δX(k) represents the difference between the position vector of the prey and its present
location in iteration t. r5 is a random number within (0, 1), and J = 2(1− r5) represents the
rabbit’s random jump strength throughout the escaping procedure. To simulate the nature
of rabbit motions, the J value changes at random during each iteration.

Hard Besiege

When the prey’s escape probability r is more than or equal to 0.5 and the prey’s energy
level |E| is less than 0.5, the hard besiege occurs. In this case, Equation (28) is used to
updating the current positions [49].

X(k + 1) = Xra(k)− E|δX(k)| (20)
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Soft Besiege with Progressive Rapid Dives

Soft attack with progressive quick dives occurs when r is less than 0.5 and |E| is more
than or equal to 0.5. To carry out a soft besiege with progressive rapid dives, it is assumed
that the Hawks can evaluate (decide) their next move using Equation (21) [49].

M = Xra(k)− E|JXra(k)− X(k)| (21)

They are expected to dive based on LF-based patterns using Equation (22):

Q = Y + P× LF(D) (22)

where D is the number of dimensions of the problem, P is a random vector of size 1 · D,
and LF is the levy flight function calculated using Equation (23) [49].

LF(x) = 0.01× µ× σ

|ν|
1
β

, σ = (
ζ(1 + β)× sin(πβ

2 )

ζ( 1+β
2 )× β× 2

β−1
2

(23)

where µ and σ are random values ranging from 0 to 1 and β is a constant that is set to 1.5.
As a result, the last strategy for adjusting hawk positions during the soft besiege phase can
be performed by Equation (24) [49]:

X(t + 1) =
{

M i f F(M) < F(X(K))
Q i f F(Q) < F(X(K))

(24)

The values of M and Q are found using Equations (21) and (22), respectively [49].

Hard Besiege with Quick Progressive Dives

In the case of a hard besiege with progressive quick dives, the current location is
updated using Equation (25) when r < 0.5 and |E| < 0.5 [49]:

X(t + 1) =
{

M′ i f F(M′) < F(X(K))
Q′ i f F(Q′) < F(X(K))

(25)

where M′ and Q′ are computed using the following Equations (26) and (27) [49]:

M′ = Xra(K)− E|JXra(K)− Xp(K)| (26)

Q′ = Y + P× LF(D) (27)

5.3. Proposed Hybrid Algorithm (HHHOPSO)

Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) are two
algorithms that have been combined in the proposed method to optimize maximum
power point tracking (MPPT) in a solar-wind system. The selection of these algorithms
is based on their distinctive characteristics in addressing optimization problems. HHO
draws inspiration from the hierarchical hunting behavior of Harris hawks, while PSO is
influenced by the collective behavior of a particle swarm. By leveraging these natural
mechanisms, these algorithms offer benefits in exploring and optimizing complex search
spaces. In comparison to other optimization techniques, as presented in Table 2, the HHO
and PSO algorithms exhibit several advantages. The inclusion of HHO enhances the
algorithm’s robustness, enabling efficient exploration and avoiding local optima solution.
Additionally, Particle Swarm Optimization improves convergence speed, enabling the
attainment of the maximum power point more quickly, even in dynamic and changing
environmental conditions. Moreover, both HHO and PSO algorithms are renowned for their
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global search capabilities, which are crucial for MPPT in the hybrid system characterized
by extensive and intricate search spaces.

MPPT presents a multi-modal optimization problem, wherein multiple optimal solu-
tions or local maxima may exist. HHO and PSO algorithms have demonstrated effectiveness
in addressing such challenges by maintaining population diversity and exploring various
regions in local search space. This capability facilitates the identification of multiple op-
timal duty cycles for both solar and wind systems, consequently enhancing the overall
performance of the hybrid system.

HHO and PSO algorithms offer also more flexibility in terms of tuning and customiza-
tion parameters. The performance of these algorithms can be improved by adjusting popu-
lation size, acceleration coefficients, and inertia weight criteria. This allows for adaptation to
the specific characteristics and requirements of the MPPT problem in a solar-wind system.

Additionally, HHO and PSO have been widely applied to various optimization prob-
lems and have demonstrated success in finding optimal solutions [50–52].

This provides a solid foundation for using the above algorithms for MPPT in a solar-
wind system.

By combining the strengths of HHO and PSO, the proposed method aims to achieve
robust and efficient MPPT in a solar-wind system, leveraging their global search capabilities
and adaptability to changing conditions.

Table 2. MPPT methods benefits and drawbacks.

MPPT Techniques Benefits Drawbacks

Perturb & Observe (P&O) Simplicity and cost-effectiveness.
Oscillations, slow tracking response,

and inaccurate tracking under
partial shading.

Fuzzy Logic (FL)
Adaptability to varying environmental
conditions and robustness in handling

noise and partial shading.

Computational complexity depend on
the system.

Cuckoo Search Algorithm (CSA) Global optimization capability, efficient
convergence, and robustness.

Computational complexity, tuning
sensitivity, lack of standardization,

and limited research.
Adaptive Neuro-Fuzzy Inference

System (ANFIS)
Adaptability, accuracy, robustness,

and flexibility.
Complexity in computing and the

implementation process.

Emperor Penguin Optimization
algorithm (EPO)

Robustness, potential for global
optimization, and efficient searching of

the power-voltage curve.

Computational complexity. Requires
extensive experimentation and

optimization, for parameter tuning.

PSO
Global optimization capability, high

efficiency, fast convergence,
and robustness to partial shading.

Imbalanced exploration-exploitation and
slow adaptation to dynamic conditions.

HHO
Global search capability, efficient
convergence, and robustness to

local optima.

Ignore previous best positions and
requiring parameter tuning.

In this regard, the proposed methodology HHHOPSO-MPPT technique is used to
determine the best duty cycle for each SEPIC converter that manages power demand.
The fitness function is considered as the output duty cycle. To improve the search process
in the proposed methodology, the HHO algorithm with the help of PSO is used. The use of
global and local best points in the PSO algorithm is predicted to improve the efficiency of
the HHO algorithm in addressing optimization challenges. By optimizing the duty cycle
for each converter the power generated by the proposed hybrid energy harvesting system
is enhanced.

Below is an explanation of the proposed HHHOPSO algorithm, and Algorithm 2
presents the pseudocode depicting the basic steps in this proposed methodology process.
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Algorithm 2 Pseudocode of the proposed methodology

1: Inputs: The population size n and a maximum number of iterations Tmax.
2: Outputs: Save the best Energy and duty cycle
3: Initialize the HHO and PSO parameters.
4: Initialize the population of HHO hawks.
5: Compute fitness function.
6: Store optimal position and assign fitness function.
7: while T < Tmax do
8: Repeat until Fitness threshold
9: Evaluate the fitness

10: Update the best positions and fitness values
11: Update the positions of the hawks using HHO equations
12: Checking the Stopping Criteria
13: If condition satisfied, stop the HHO algorithm
14: Initialize the population of PSO particles with the optimized positions from HHO.
15: Initialize the velocities for each particle
16: Repeat until Fitness threshold
17: Evaluate the fitness
18: Update the best positions and fitness values
19: Update the global best position and fitness value
20: Update the velocities and positions of the particles using PSO equations
21: Checking the Stopping Criteria
22: If condition satisfied,
23: stop the HHO algorithm
24: end while stop condition satisfied save the optimal parameter
25: Return

The HHO and PSO method for MPPT optimization involves several steps.
Step 1: Initially, the parameters of either the photovoltaic or wind turbine system must

be initialized.
Step 2: The first step of the exploration process entails implementing HHO. This

is achieved by initializing a hawks population n. Additionally, a fitness function is cre-
ated to evaluate the performance of the MPPT system. In the case of utilizing a photo-
voltaic (PV) system, the fitness function is represented as f (n) = MaximizePPV(d0), where
dmin ≤ d0 ≤ dmax and Vpvmin < VPV < Vpvmax. On the other hand, in the case of utilizing
a wind turbine (WT) system, the fitness function is represented as f (n) = MaximizePwt(d1),
where dmin ≤ d1 ≤ dmax and Vwtmin < Vwt < Vwtmax. It is important to note that the
output power from the PV system is represented as PPV , while that of the WT system
is represented as Pwt. The duty cycle of each SEPIC converter is represented as d0 and
d1, respectively. Additionally, the maximum and minimum duty cycles of the DC-DC
converter are represented as dmax and dmin. HHO is an optimal search space exploration
technique that provides best solutions. Finally, each solution is assessed for its fitness using
the aforementioned function.

Step 3: In this step, the optimal solutions derived from the HHO approach are carefully
selected. These solutions serve as the initial positions for the PSO algorithm, thereby
ensuring the highest level of performance and efficiency.

Step 4: Particle Swarm Optimization (PSO) optimization: the optimal solutions from
HHO are used to populate the PSO population. The fitness function for PSO is defined,
and the fitness of each particle is evaluated. The positions and velocities of the particles
are updated based on their previous positions and velocities, as well as the best solutions
determined. The fitness function is used to calculate the fitness of the updated particles.
The procedure of updating the locations and velocities of the particles is repeated until
convergence is reached or a halting requirement is met.

Step 5: Following each PSO iteration, the Harris hawks’ positions are updated using
the best PSO solutions. The Harris hawks are permitted to adjust their positions based on
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the information acquired by PSO, allowing them to explore previously unexplored regions
of the search space.

Step 6: Steps 5–6 must be repeated until the termination criteria are met.
Step 7: The HHHOPSO algorithm extracts the maximum power of the PV panels

or rectifier.
Step 8: Send the duty cycle to the SEPIC converter.
This proposed methodology is used to select the optimal duty cycles of each SEPIC con-

verters at the maximum power of the PV panels and the rectifier. This results in improved
power generation performance. The proposed method may improve the efficiency and
stability of hybrid renewable energy systems, which are becoming increasingly important
renewable energy sources.

6. IoT Devices and Network Lifetime

IoT sensors play a critical role in enabling the accumulation and analysis of data for
various applications, such as environmental monitoring, security surveillance, and health-
care. In this context, to ensure proper operation and optimal performance, it is essential
to consider their specific working voltage range and power requirements. The effective
voltage varies depending on the sensor type and intended application from millivolts to
a few volts. This low voltage is necessary to conserve energy and extend the sensor’s
battery lifespan, considering that most IoT sensors require power for a brief period with
an extended period of inactivity. Furthermore, lower power consumption is particularly
essential in IoT applications where a large number of electronic devices are typically em-
ployed. In such systems powered by energy harvesters, the voltage level required for a
launch often determines the mechanisms used.

In our work, we set the functional voltage and power requirements for some applied
IoT sensors based on the manufacturer specification sheets. To calculate the initial energy
of each IoT node, we used alkaline batteries with a voltage of 1.5 V, AA dimensions, and a
1000 mAh capacity. Since each node has two AA-size batteries, the initial energy of one
node with two batteries is 7200 J. In our study, we created a network of 500 sensor nodes,
having the same initial energy. Thus, the resulting energy amounts of the entire network is
3,600,000 J.

The IoT network lifetime refers to the duration in which the network remains opera-
tional before becoming non-operational. It depends on the data gathering and measurement
activities. The formula to calculate the network lifetime E(IoT) is as follows:

E(IoT) =
(Eo − E(WE))

(PC + P(Rate))× Es
(28)

Here, Eo represents the initial energy of the network, E(WE) and Es are the wasted
energy and the energy consumed, respectively, PC refers to the overall power consumed
and P(Rate) denotes the rate at which packets are received.

Every sensor node consists of a transmitter and a receiver. The first one provides
energy to both radio electronics and power amplifier, whereas the receiver provides energy
to the radio electronics.

This energy transfer process takes into account the multipath fading model. When
compared to the defined threshold d0, the distance d between the transmitter and receiver
increases and determines the dominant energy dissipation mechanism.

The energy dissipation encountered in free space is denoted as d2. The energy dissipa-
tion relating to the multipath is then denoted by d4. The energy dissipation model during
the k-bit data packet transmission is represented in Equation (29)

ETX(K, d)
{

= Eelec × K + ε f s × K× d2 i f d < d0
= Eelec × K + εmp × K× d4 i f d ≥ d0

(29)
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where the energy dissipated by the electronic circuits is denoted as Eelec. Free space
amplifier energy ε f s, and multipath amplifier energy εmp, contribute to energy dissipation.

The threshold distance, d0, is determined by: d0 =
√

ε f s
εmp

.
The energy dissipation experienced by a sensor node when receiving a k-bit data

packet is described by Equation (30).

ERX(K) = Eelec × K (30)

7. Results and Discussion

This section validates and justifies the proposed methodology. Our study was carried
out on the MATLAB/Simulink environment. To improve the lifetime of IoT networks, we
propose using a hybrid solar-wind turbine (PV-WT) system. We constructed a network of
500 sensor nodes with identical initial and maximum energy capacities.

Figures 4 and 5 illustrate the subsystems of the solar and wind energy harvester.
The primary main objective of this research is to optimize power extraction from the hybrid
system. To accomplish this, the HHHOPSO algorithm is used, aiming to maximize the
overall power generation.

Figure 4. Simulink model of the solar system using the HHHOPSO MPPT technique.

Figure 5. Simulink diagram of the wind energy system.
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Table 3 lists the essential parameters of the PV module under standard conditions
(1000 W/m2 at 25 ◦C), wind turbines, and battery characteristics.

Table 3. Simulation parameters.

Method Description Parameters

PV Max. PV Current 600 mA
Max. PV voltage 4 V

Wind Wind speed 12 m/s
Wind power 245 mW

Battery Battery Voltage 3.7 V
Battery type lithium-ion

Battery capacity 730 mAh
IoT-WSN Load Model R 10 Ω

The PSO technique involves the creation of an initial population with the assistance of
the HHO algorithm. The proposed methodology is designed to extract maximum power
from the system and determine the optimal duty cycle of each DC-DC SEPIC converter.
The hybrid PV-WT approach is used in this proposed methodology for charging the IoT
nodes and enhance the network’s lifetime.

The power generated by the PV system is affected by temperature and irradiance,
as shown in Figure 6. Figure 7 shows the PV system’s output of voltage and current. In this
system, the PV system generates power is based on a fixed irradiance of 1000 W/m2 and a
temperature of 25 °C. The PV system produces a voltage of 4.7 V and a current of 0.6 A.
The generated power from the PV system is used to charge a storage battery.

Figure 6. Stable irradiance and temperature of PV system.
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Figure 7. PV voltage and current.

In the proposed methodology, the utilization of wind energy is also taken into account
for the purpose of charging IoT nodes. Wind speed of 12 m/s is considered for wind power
generation, as depicted in Figure 8. The wind power generated is quantified at 958 mW,
as shown in Figure 9.

Figure 8. Wind speed vs. time.



Sustainability 2023, 15, 10252 19 of 28

Figure 9. Wind power generation.

Additionally, the power generated by PV is illustrated in Figure 10, with a value of
2.4 W.

Figure 11 demonstrate that the MPPT algorithm has efficiently tracked close to the
maximum power from both the PV array and the WT. The tracking time of the proposed
MPPT in the PV system and wind system is less than 0.2 s, with the highest tracking
efficiency of 98.24% achieved at a solar irradiance of 1000 W/m2 and wind speed of 12 m/s.

Figure 10. Tracking performance of the HHHOPSO-MPPT algorithm in a PV system.

Based on the amount of current and voltage coming from the PV panel and rectifier,
the HHHOPSO MPPT controller generates the optimum duty cycles that are used to
activate each SEPIC converter. The SEPIC converter controls how much voltage is sent to
the battery before sending the collected voltage. Figure 12 depicts the DC bus voltage of
4.5 V for the proposed design, which needs to be maintained at a constant level for efficient
operation. To combine the outputs of solar and wind sources in a DC bus, both sources
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must be operating at the same voltage level. A DC-DC SEPIC converter can step up each
source’s voltage to meet the DC bus’s voltage level.

Figure 11. Efficiency of the proposed method.

Figure 12. DC link voltage vs. time.

Figures 13–18 show the comparison study of the proposed technique. The perfor-
mance of a hybrid solar-wind energy harvesting battery charger is compared using the
proposed methodology with the conventional methods namely PWM and P&O-MPPT.
The performance is evaluated in terms of the battery state of charge (SoC), voltage, current
and efficiency.

Figure 13 shows the results for the PWM control technique. The voltage ranges from
0 to 2.8 V, the current ranges from 0 to −1.3 A, and the battery’s SoC ranges from 50% to
51.6% over a 10 s simulation.
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Figure 14 displays the results for the P&O-MPPT controller. The voltage ranges from
0 to 4 V, the current ranges from 0 to−2 A, and the battery’s SoC ranges from 50% to 56.14%
over the same simulation time.

Figure 15 presents the results of the proposed technique. The voltage ranges from 0 to
4.8 V, the current ranges from 0 to −1 A, and the battery’s SoC ranges from 50% to 66%.
During charging, the battery current is negative, indicating the oxidation process occurring
within the electrochemical cells.

Additionally, the comparative study of the battery performance among different
control techniques is depicted in Figures 16–18 within an increased simulation time of
100 s. Figure 16 shows the results of the PWM controller, Figure 17 represents the P&O-
MPPT controller, and Figure 18 presents the performance of our proposed HHHOPSO-
MPPT system.

In terms of battery performance, the HHHOPSO-MPPT system outperforms the other
two controllers. It achieves 100% state of charge (SoC) in the shortest simulation time of
88 s. On the other hand, the P&O-MPPT and PWM systems take longer to reach 91% and
82% SoC, respectively, within a simulation time of 100 s.

Figure 18 illustrates the results obtained with our proposed method for an extended
simulation time of 100 s. The voltage ranges from 0 to 4.8 volts, while the current
ranges from 0 to −1 A. Both the current and voltage exhibit constant values through-
out the simulation.

Comparing these results with those presented in Figure 16 for the PWM controller and
Figure 17 for the MPPT-P&O controller, notable differences in voltage and current ranges
can be observed. In Figure 16, the voltage ranges from 0 to 2.8 V, and the current ranges
from 0 to −1.3 A. In Figure 17, the voltage ranges from 0 to 3.8 V, and the current ranges
from 0 to −2 A.

These figures provide insights into the performance differences among the control
techniques, highlighting the improved battery SoC and voltage ranges achieved by the
proposed technique compared to conventional methods.

Choosing an appropriate load resistance that balances power requirements, discharge
rate, and overall system efficiency is crucial. Therefore, we conducted an evaluation of
battery performance under varying loads. Specifically, we ran tests with load variations
of 2 ohms, 10 ohms and 30 ohms. The voltage and current variations of battery for the
three load values are depicted in the following Figure 19.

Figure 13. Battery performance using PWM controller for 10 s.
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Figure 14. Battery perfermance using MPPT-P&O controller for 10 s.

Figure 15. Battery performance using HHHOPSO-MPPT controller for 10 s.

Figure 16. Battery performance using PWM controller for 100 s.
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Figure 17. Battery performance using MPPT-P&O controller for 100 s.

Figure 18. Battery performance using HHHOPSO-MPPT controller for 100 s.

Figure 19a shows the results for the load resistance R = 2 ohms. The voltage varies
from 0 to 8 V and whereas the current range from 0 to −4 A. When the load resistance is
very low, the battery is subject to a heavy current draw, potentially leading to a significant
drop in voltage.

Figure 19b illustrates the outcomes for the load resistance R = 10 ohms. The voltage
varies from 0 to 4.8 V, while the current ranges from 0 to−1 A. Increasing the load resistance
to 10 ohms would limit the current flowing through the circuit. As a result, the voltage
across the battery may remain relatively stable compared to the case with a lower resistance.

In Figure 19c, the results for the load resistance R = 30 ohms are depicted. The volt-
age ranges from 4 to 2.3 V, while the current ranges from −1 to 2.2 A. When increasing
the load resistance to 30 ohms would further restrict the current flowing through the cir-
cuit. Consequently, the voltage across the battery may experience drop compared to the
previous scenarios.

Thus, it is obvious that changing the load resistance has a direct impact on battery
performance, affecting the discharge rate, voltage stability, and overall efficiency. Lower
load resistance leads to higher discharge rates and increased power consumption. However,
higher load resistance reduces the discharge rate, resulting in lower power consumption.

We can conclude that the system efficiency is optimized when the load resistance
matches the internal resistance of the battery. This ensures efficient power transfer without
significant losses. Balancing load resistance with system requirements is essential for
achieving optimal battery performance and maximizing overall system effectiveness.
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Figure 19. Effect of load resistance on battery voltage and current. (a) R = 2 ohms, (b) R = 10 ohms,
(c) R = 30 ohms.

Figure 20 compares the efficiency of the proposed hybrid MPPT controller with an
existing controller algorithm. The results indicate that the proposed technique achieved an
efficiency of 98.24%, while the existing PWM and MPPT-P&O controllers had efficiencies
of 88.72% and 96.6%, respectively. The results indicate that the proposed technique exhibits
higher efficiency compared to the other two methods.

Figure 20. Comparison of PWM, P&O-MPPT and proposed HHHOPSO-MPPT harvesting system ef-
ficiency.

Table 4 shows the simulation results comparing PWM, P&O-MPPT, and HHHOPSO-MPPT
control algorithms for solar-wind energy harvesting system. This table presents the average
power, tracking time, and tracking efficiency for each algorithm. The results demonstrate
that the proposed technique achieves an average traking time of 0.1751, faster than the two
conventional algorithms. Moreover, it delivers higher average power and improved efficiency,
with an increase of 9.68% and 1.8% compared to PWM and P&O-MPPT, respectively.

Table 4. Comparative analysis of MPPT method.

Methods Average Power Tracking Time (s) Harvester System Efficiency (%)

PWM 2.67 W 2.016 s 88.72%
P&O 2.94 W 0.1876 s 96.6%

Proposed 3.3 W 0.1751 s 98.24%
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Figure 21 describes the influence of the energy harvesting mechanism on extending
the lifetime of the network. A comparison of network lifetimes is conducted between using
or not a hybrid energy harvesting system. The network lifespan is presently quite limited,
as demonstrated by the 20-day lifespan in the absence of energy harvesting. However,
when a hybrid energy harvesting approach is employed and the MPPT is appropriately
optimized, the network lifecycle is substantially extended to 122 days. This is accomplished
by achieving the maximum power output from solar, wind, or both at the same time.
Therefore, the integration of energy harvesting mechanisms is critical for maintaining
system operation and enhancing its longevity.

Figure 21. IoT network lifetime comparison before and after energy harvesting.

A comparison was made of various recently published energy-harvesting systems
for WSNs or IoT as shown in Table 5. Similarly, in Refs. [17,31], other researchers have
proposed their own energy harvesting models with different simulation parameters. The
results demonstrate that the proposed energy-harvesting system achieved the highest
efficiency rate of up to 98.24% compared to other simulation works.

Table 5. An overview of different energy harvesting systems used in IoT networks.

Author&Year Energy Sources Converter Type MPPT Peak Efficiency (ν)

Sharma, H., et al. [31], 2018 Solar Buck Converter PWM & MPPT both 96.06%
Saraereh, O. A., et al. [53], 2020 TEG-RF Boost converter No Not Reported
Tran, Hoang T., et al. [54], 2022 Solar-RF Boost converter P&O-MPPT Not Reported

P. Gupta et al. [17], 2022 Solar SEPIC Boost
converter MPPT-EPO 98%

Xiao, Heng, et al. [55], 2023 PV-TEG unidirectional
DC/DC converter Not Reported Not Reported

Proposed methodology Solar PV-wind SEPIC Buck-boost
DC/DC converter HHHOPSO-MPPT 98.24%

8. Conclusions

This study presents the design and analysis of a hybrid solar-wind system equipped
with a SEPIC converter. Our approach combines HHO and PSO optimization algorithms to
extract maximum power and enhance the lifetime of IoT devices. The primary objective of
the proposed methodology is to maximize power generation from both solar and wind sys-
tems. Thus, to evaluate the performance of the suggested method, the MATLAB/Simulink
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platform is used, and a comparison is made with conventional techniques such as PWM
and MPPT-P&O. The analysis focuses on key parameters such as battery current, voltage,
state of charge (SoC), IoT network lifetime, and efficiency. Switches were assessed for the
following simulation periods: 0 to 10 s and 0 to 100 s.

Hence, the battery power is significantly increased by optimizing the MPPT algorithm
to harness more power from both the solar and wind energy harvesting systems. Fur-
thermore, the overall efficiency is calculated by considering the efficiencies of the SEPIC
converter and HHHOPSO-MPPT for both subsystems. The simulation results demonstrate
that our proposed methodology achieves an impressive overall efficiency of 98.24%.

This work suggests several potential future research directions. These include integrat-
ing new energy storage systems, implementing real-time monitoring, control, conducting
cost and economic analysis. Obviously, these areas will mainly enhance the efficiency,
reliability, and economic viability of hybrid solar-wind systems in IoT applications and
renewable energy systems.
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