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Abstract. Many of today’s problems require techniques that involve the
solution of arbitrarily large systems Ax = b. A popular numerical ap-
proach is the so-called Greedy Rank-One Update Algorithm, based on
a particular tensor decomposition. The numerical experiments support
the fact that this algorithm converges especially fast when the matrix of
the linear system is Laplacian-Like. These matrices that follow the ten-
sor structure of the Laplacian operator are formed by sums of Kronecker
product of matrices following a particular pattern. Moreover, this set of
matrices is not only a linear subspace it is a Lie sub-algebra of a matrix
Lie Algebra. In this paper, we characterize and give the main properties
of this particular class of matrices. Moreover, the above results allow us
to propose an algorithm to explicitly compute the orthogonal projection
onto this subspace of a given square matrix A ∈ R

N×N .
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1. Introduction

The study of linear systems is a problem that dates back to the time of the
Babylonians, who used words like ‘length’ or ‘width’ to designate the unknowns
without being related to measurement problems. The Greeks also solved some
systems of equations, but using geometric methods [1]. Over the years, mecha-
nisms to solve linear systems continued to be developed until the discovery of
iterative methods, the practice of which began at the end of the 19th century,
by the hand of the mathematician Gauss. The development of computers in
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the mid-20th century prompted numerous mathematicians to delve into the
study of this problem [2,3].

Nowadays, linear systems are widely used to approach computational
models in applied sciences, for example, in mechanics, after the discretization
of a partial differential equation. There are, in the literature, numerous mech-
anisms to deal with this type of problem, such as matrix decompositions (QR
decomposition, LU decomposition), iterative methods (Newton, quasi-Newton,
. . . ), and optimization algorithms (stochastic gradient descendent, alternative
least squares,. . . ), among others, see for instance [4–6]. However, most of them
lose efficiency as the size of the matrices or vectors involved increases. This
effect is known as the curse of the dimensionality problem.

To try to solve this drawback, we can use tensor-based algorithms [7],
since their use significantly reduces the number of operations that we must
employ. For example, we can obtain a matrix of size 100 × 100 (i.e. a total
of 10.000 entries), from two matrices of size 10 × 10 multiplied, by means the
tensor product, 100 + 100 = 200 entries [8].

Among the algorithms based on tensor products strategies [9], the Proper
Generalized Decomposition (PGD) family, based on the so-called Greedy Rank-
One Updated (GROU) algorithm [10,11], is one of the most popular tech-
niques. PGD methods can be interpreted as ‘a priori’ model reduction tech-
niques because they provide a way for the ‘a priori’ construction of optimally
reduced bases for the representation of the solution. In particular, they impose
a separation of variables to approximate the exact solution of a problem with-
out knowing, in principle, the functions involved in this decomposition [12,13].
The GROU procedure in the pseudocode is given in the Algorithm 1 (where
⊗ denotes the Kronecker product, that is briefly introduced in Sect. 2).

Algorithm 1 Greedy Rank-One Update
1: procedure GROU(b ∈ R

n1···nd , A ∈ R
n1···nd×n1···nd , ε >

0, tol, rank max)
2: r0 = b
3: x = 0
4: for i = 0, 1, 2, . . . , rank max do
5: y = argminy=y1⊗···⊗yd

‖ri − Ay‖2
2

6: ri+1 = ri − Ay
7: x ← x+ y
8: if ‖ri+1‖2 < ε or |‖ri+1‖2 − ‖ri‖2| < tol then goto 13
9: end if

10: end for
11: return u and ‖rrank max‖2.
12: break
13: return u and ‖ri+1‖2
14: end procedure
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Figure 1. CPU time comparative to solve the discrete Pois-
son equation. For this numerical test, we have used a com-
puter with the following characteristics: 11th Gen Intel(R)
Core(TM) i7-11370 H @ 3.30GHz, RAM 16 GB, 64 bit oper-
ating system; and a Matlab version R2021b [14]

A good example is provided by the Poisson equation −Δφ = f . Let us
consider the following problem in 3D,

⎧
⎨

⎩

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= −f(x, y, z), in Ω = (0, 1)3,

φ = 0 in ∂Ω,
(1)

where f(x, y, z) = 3·(2π)2 ·sin(2πx−π) sin(2πy−π) sin(2πz−π). This problem
has a closed form solution

φ(x, y, z) = sin(2πx − π) sin(2πy − π) sin(2πz − π).

By using the Finite Element Method (see [10] for more details), we can write
the Poisson equation (1) in discrete form as a linear system A · φijk = −fijk,
where the indices i, j, k correspond to the discretization of x, y and z respec-
tively, and A is matrix having a particular representation, called Laplacian-like
(see Definition 2.2 below), that allows to solve efficiently a high dimensional
linear system. In Fig. 1, we compare the CPU time employed in solving this
discrete Poisson problem using the GROU Algorithm and the Matlab operator
x = A\b, for different numbers of nodes in (0, 1)3.

So, we will use this fact to study if, for a given generic square matrix,
a characterization can be stated such that we can decide whether is either
Laplacian-like or not. Clearly, under a positive answer, we expect that the
analysis of the associated linear system Ax = b would be simpler. This kind
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of linear operator also exists in infinite dimensional vector spaces to describe
evolution equations in tensor Banach spaces [15]. Its main property is that
the associated dynamical system has an invariant manifold, the manifold of
elementary tensors (see [16] for the details about its manifold structure).

Thus, the goal of this paper is to obtain a complete description of this
linear space of matrices, showing that is, in fact, a Lie subalgebra of RN×N ,
and provide an algorithm in order to obtain the best approximation to this
linear space, that is, to compute explicitly is the orthogonal projection on that
space.

The paper is organized as follows: in Sect. 2, we introduce the linear
subspace of Laplacian-like matrices and prove that it is also a matrix Lie sub-
algebra associated to a particular Lie group. Then, in Sect. 3, we prove that any
matrix is uniquely decomposed as the sum of a Laplacian matrix and a matrix
which is the subspace generated by the identity matrix, and we show that
any Laplacian matrix is a direct sum of some particular orthogonal subspaces.
Section 4 is devoted, with the help of the results of the previous section, to
propose an algorithm to explicitly compute the orthogonal projection onto the
subspace of Laplacian-like matrices. To illustrate this result, we also give two
different numerical examples: the first one on the adjacency matrix of a simple
graph; and the second on the numerical solution of the Poisson equation (1)
by using a Finite Difference Scheme. Finally, in Sect. 5 some conclusions and
final remarks are given.

2. The Algebraic Structure of Laplacian-Like Matrices

First of all, we introduce some definitions, that will be used along this work.

Definition 2.1. Let A ∈ R
M×N . Then, the Fröbenius norm (or the Hilbert-

Schmidt norm) is defined as

‖A‖F =

√
√
√
√

M∑

i=1

N∑

j=1

|aij |2 =
√

tr (A�A).

The Fröbenius norm is the norm induced by the trace therefore, when
N = M , we can work with the scalar product given by 〈A,B〉 = tr

(
A�B
)
.

Let us observe that, in R
N×N ,

1. 〈A,B〉RN×N = tr
(
A�B
)

2. 〈A, idN 〉RN×N = tr(A) = tr
(
A�)

3. 〈idN , idN 〉RN×N = ‖idN‖2
F = N.

Given a linear subspace U ⊂ R
N×N we will denote:
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(a) the orthogonal complement of U in R
N×N by

U⊥ =
{
V ∈ R

N×N : 〈U, V 〉RN×N = 0 for all U ∈ U} ,

and,
(b) the orthogonal projection of RN×N on U as

PU (V ) := arg min
U∈U

‖U − V ‖F ,

and hence

PU⊥ = idN − PU .

Before defining a Laplacian-like matrix, we recall that the Kronecker
product of two matrices A ∈ R

N1×M1 , B ∈ R
N2×M2 is defined by

A ⊗ B =

⎛

⎜
⎜
⎜
⎝

A1,1B A1,2B . . . A1,M1B
A2,1B A2,2B . . . A2,M1B

...
...

. . .
...

AN1,1B AN1,2B . . . AN1,M1B

⎞

⎟
⎟
⎟
⎠

∈ R
N1N2×M1M2 .

Some of the well-known properties of the Kronecker product are:
1. A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.
2. (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C).
3. AB ⊗ CD = (A ⊗ C)(B ⊗ D).
4. (A ⊗ B)−1 = A−1 ⊗ B−1.
5. (A ⊗ B)� = A� ⊗ B�.
6. tr(A ⊗ B) = tr(A)tr(B).

From the example given in the introduction, we observe that there is a
particular type of matrices to solve high-dimensional linear systems for which
the GROU algorithm works particularly well: very fast convergence and also
a very good approximation of the solution. These are the so-called Laplacian-
Like matrices that we define below.

Definition 2.2. Given a matrix A ∈ R
N×N , where N = n1 · · · nd, we say that

A is a Laplacian-like matrix if there exist matrices Ai ∈ R
ni×ni for 1 ≤ i ≤ d

be such that

A =
d∑

i=1

Ai ⊗ id[ni]
.=

d∑

i=1

idn1 ⊗ · · · ⊗ idni−1 ⊗ Ai ⊗ idni+1 ⊗ · · · ⊗ idnd
,

(2)

where idnj
is the identity matrix of size nj × nj .

Observe that for 1 < i < d,

idn1 ⊗ · · · ⊗ idni−1 = idn1···ni−1 and idni+1 ⊗ · · · ⊗ idnd
= idni+1···nd

,

hence

Ai ⊗ id[ni] = idn1···ni−1 ⊗ Ai ⊗ idni+1···nd
.
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Figure 2. CPU time comparative to solve an Ax = b prob-
lem. This graph has been generated by using the follow-
ing data in Algorithm 1: tol = 2.22e − 6; ε = 1.0e − 06;
rank max = 3000; (an iter-max = 15 was used to perform an
ALS strategy); and the matrices have been randomly gener-
ated for each different size, in Laplacian and classical form.
The characteristics of the computer used here are the same as
in the case of Fig. 1

Moreover,

A1 ⊗ id[n1] = A1 ⊗ idn2···nd
and Ad ⊗ id[nd] = idn1···nd−1 ⊗ Ad.

It is not difficult to see that the set of Laplacian-like matrices is a linear
subspace of RN×N . From now on, we will denote by L (RN×N

)
the subspace

of Laplacian-like matrices in R
N×N for a fixed decomposition of N = n1 · · · nd.

These matrices can be easily related to the classical Laplacian operator
[17,18] by writing:

∂2

∂x2
i

=
∂0

∂x0
1

⊗ · · · ⊗ ∂0

∂x0
i−1

⊗ ∂2

∂x2
i

⊗ ∂0

∂x0
i+1

⊗ · · · ⊗ ∂0

∂x0
d

and where ∂0

∂x0
j

is the identity operator for functions in the variable xj for j 	= i.

As the next numerical example shows, matrices written as in (2) provide
very good performance of the GROU algorithm. In Fig. 2 we give a comparison
of the speed of convergence to solve a linear system Ax = b, where for each
fixed size, we randomly generated two full-rank matrices: one given in the
classical form and a Laplacian-like matrix. Both systems were solved following
Algorithm 1.
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The above results, together with the previous Poisson example given in
the introduction, motivate the interest to know for a given matrix A ∈ R

N×N

how far it is from the linear subspace of Laplacian-like matrices. More precisely,
we are interested in decomposing any matrix A as a sum of two orthogonal
matrices L and L⊥, where L is in L(R) and L⊥ in L(R)⊥. Clearly, if we obtain
that L⊥ = 0, that is, A ∈ L(R), then we can solve any associated linear system
by means of the GROU algorithm.

Recall that the set of matrices RN×N is a Lie Algebra that appears as the
tangent space at the identity matrix of the linear general group GL(RN ), a Lie
group composed by the non-singular matrices of RN×N (see [19]). Furthermore,
the exponential map

exp : RN×N −→ GL(RN ), A �→ exp(A) =
∞∑

n=0

An

n!

is well-defined, however it is not surjective because det(exp(A)) = etr(A) > 0.
Any linear subspace S ⊂ R

N×N is a Lie-subalgebra if for all A,B ∈ S its Lie
crochet is also in S, that is, [A,B] = AB − BA ∈ S.

The linear space L(RN×N ) is more than a linear subspace of RN×N , it is
also a Lie sub-algebra of RN×N as the next result shows.

Proposition 2.1. Assume R
N×N , where where N = n1 · · · nd. Then the follow-

ing statements hold.
(a) The linear subspace L(RN×N ) is a Lie subalgebra of the matrix Lie algebra

R
N×N .

(b) The matrix group

L(RN×N ) =

{
d⊗

i=1

Ai : Ai ∈ GL(Rni) for 1 ≤ i ≤ d

}

is a Lie subgroup of GL
(
R

N
)
.

(c) The exponential map exp : L(RN×N ) −→ L(RN×N ) is well defined and
it is given by

exp

(
d∑

i=1

Ai ⊗ idn[i]

)

=
d⊗

i=1

exp(Ai).

Proof. (a) To prove the first statement, take A,B ∈ L(RN×N ). Then there
exist matrices Ai, Bi ∈ R

ni×ni for 1 ≤ i ≤ d be such that

A =
d∑

i=1

Ai ⊗ id[ni] and B =
d∑

j=1

Bj ⊗ id[nj ].

Observe, that for i < j

(Ai ⊗ id[ni])(Bj ⊗ id[nj ]) and (Bj ⊗ id[nj ])(Ai ⊗ id[ni])
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both products are equal to

idn1···ni−1 ⊗ Ai ⊗ idni+1···nj−1 ⊗ Bj ⊗ idnj+1···nd
.

A similar expression is obtained for i > j. Thus,
[
Ai ⊗ id[ni], Bj ⊗ id[nj ]

]
= 0

for all i 	= j.
On the other hand, for i = j we have

(Ai ⊗ id[ni])(Bi ⊗ id[ni]) = (AiBi ⊗ id[ni])

and

(Bi ⊗ id[ni])(Ai ⊗ id[ni]) = (BiAi ⊗ id[ni]).

Thus,
[
Ai ⊗ id[ni], Bi ⊗ id[ni]

]
= (AiBi − BiAi) ⊗ id[ni],

that is,
[
Ai ⊗ id[ni], Bi ⊗ id[ni]

]
= [Ai, Bi] ⊗ id[ni].

Here [Ai, Bi] is the Lie crochet in R
ni×ni .

In consequence, from all said above, we conclude

[A,B] =
d∑

i=1

d∑

j=1

[
Ai ⊗ id[ni], Bj ⊗ id[nj ]

]
=

d∑

i=1

[Ai, Bi] ⊗ id[ni] ∈ L (RN×N
)
.

This proves that L(RN×N ) is a Lie sub-algebra of RN×N .
(b) It is not difficult to see that L(RN×N ) is a subgroup of GL(RN ). From

Theorem 19.18 in [19], to prove that L(RN×N ) is a Lie subgroup of GL(RN )
we only need to show that L(RN×N ) is a closed set in GL(RN ). This follows
from the fact that the map

Φ : GL(Rn1) × · · · × GL(Rnd) −→ GL(RN ) (A1, · · · , Ad) �→
d⊗

i=1

Ai

is continuous. Assume that there exists a sequence, {An}n∈N ⊂ L(RN×N ) con-
vergent to A ∈ GL(Rn). Then the sequence {An}n∈N is bounded. Since there
exists a sequence {(A(n)

1 , . . . , A
(n)
d )}n∈N ⊂ GL(Rn1)× · · ·×GL(Rnd) such that

An =
⊗d

j=1 A
(n)
j , the sequence {(A(n)

1 , . . . , A
(n)
d )}n∈N is also bounded. Thus,

there exists a convergent sub-sequence, also denoted by {(A(n)
1 , . . . , A

(n)
d )}n∈N,

to (A1, . . . , Ad) ∈ GL(Rn1)× · · · ×GL(Rnd). The continuity of Φ, implies that
A =
⊗d

i=1 Ai. Thus L(RN×N ) is closed in GL(RN ), and hence a Lie subgroup.
(c) From Lemma 4.169(b) [8], the following equality

exp

(
d∑

i=1

idn1 ⊗ · · · ⊗ idni−1 ⊗ Ai ⊗ idni+1 ⊗ · · · ⊗ idnd

)

=
d⊗

i=1

exp(Ai)
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holds. Thus, the exponential map is well defined. This ends the proof of the
proposition. �

We conclude this section describing in a more detail the structure of
matrices A ∈ R

N×N for which there exists Ai ∈ R
ni×ni for 1 ≤ i ≤ d such

that

A =
d∑

i=1

idn1···ni−1 ⊗ Ai ⊗ idni+1···nd
.

For dealing easily with Laplacian-like matrices, we introduce the following
notation. For each 1 < i ≤ d consider the integer number n1n2 · · · ni−1. Then,
we will denote by

⎛

⎜
⎜
⎜
⎝

� � · · · �
� � · · · �
...

...
. . .

...
� � · · · �

⎞

⎟
⎟
⎟
⎠

n1n2···ni−1×n1n2···ni−1

a block square matrix composed by n1n2 · · · ni−1 × n1n2 · · · ni−1-blocks.
Since Ai ⊗ idni+1···nd

=

⎛

⎜
⎜
⎜
⎝

(Ai)1,1idni+1···nd
(Ai)1,2idni+1···nd

. . . (Ai)1,ni
idni+1···nd

(Ai)2,1idni+1···nd
(Ai)2,2idni+1···nd

. . . (Ai)2,ni
idni+1···nd

...
...

. . .
...

(Ai)ni,1idni+1···nd
(Ai)ni,2idni+1···nd

. . . (Ai)ni,ni
idni+1···nd

⎞

⎟
⎟
⎟
⎠

,

then idn1···ni−1 ⊗ Ai ⊗ idni+1···nd

=

⎛

⎜
⎜
⎜
⎝

Ai ⊗ idni+1···nd Oi ⊗ idni+1···nd · · · Oi ⊗ idni+1···nd

Oi ⊗ idni+1···nd Ai ⊗ idni+1···nd · · · Oi ⊗ idni+1···nd

...
...

. . .
...

Oi ⊗ idni+1···nd Oi ⊗ idni+1···nd · · · Ai ⊗ idni+1···nd

⎞

⎟
⎟
⎟
⎠

n1n2···ni−1×n1n2···ni−1

,

where Oi denotes the zero matrix in R
ni×ni for 1 ≤ i ≤ d. To conclude, we

have the following cases

A1 ⊗ idn2···nd
=

⎛

⎜
⎜
⎜
⎝

(A1)1,1idn2···nd
(A1)1,2idn2···nd

. . . (A1)1,n1 idn2···nd

(A1)2,1idn2···nd
(A1)2,2idn2···nd

. . . (A1)2,n1 idn2···nd

...
...

. . .
...

(A1)n1,1idn2···nd
(A1)n1,2idn2···nd

. . . (A1)n1,n1 idn2···nd

⎞

⎟
⎟
⎟
⎠

and

idn1···nd−1 ⊗ Ad =

⎛

⎜
⎜
⎜
⎝

Ad Od · · · Od

Od Ad · · · Od

...
...

. . .
...

Od Od · · · Ad

⎞

⎟
⎟
⎟
⎠

n1n2···nd−1×n1n2···nd−1

.
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We wish to point out that the above operations are widely used in quantum
computing.

3. A Decomposition of the Linear Space of Laplacian-Like
Matrices

We start by introducing some definitions and preliminary results needed to give
an interesting decomposition of the linear space of Laplacian-like matrices. The
next lemma lets us show how is the decomposition of RN×N as a direct sum
of span{idN} and its orthogonal space span{idN}⊥, with respect the inner
product 〈A,B〉RN×N = tr(AT B). From now one, we will denote by

hn := span{idn}⊥ = {A ∈ R
n×n : tr(A) = 0},

the linear subspace of null trace matrices in R
n×n.

Lemma 3.1. Consider (Rn×n, ‖ · ‖F ) as a Hilbert space. Then there exists a
decomposition

R
n×n = span{idn} ⊕ hn,

Moreover, the orthogonal projection from R
n×n on span{idn} is given by

Pspan{idn}(A) =
tr(A)

n
idn,

and hence for each A ∈ R
n×n we have the following decomposition,

A =
tr(A)

n
idn +

(

A − tr(A)
n

idn

)

,

where
(
A − tr(A)

N idN

)
∈ hn.

Proof. The lemma follows from the fact that

Pspan{idn}(A) =
〈idn, A〉Rn×n

‖idN‖2
F

idn =
tr(A)

n
idn,

is the orthogonal projection onto span{idn}. �

Now, we consider the matrix space RN×N where N = n1 · · · nd, and hence
R

N×N =
⊗d

i=1 R
ni×ni can be considered as a tensor space. A norm ‖·‖ defined

over RN×N is called a tensor norm if and only if there exists a norm ‖ · ‖i over
R

ni×ni for 1 ≤ i ≤ d, such that for any tensor A = A1 ⊗ · · · ⊗ Ad ∈ R
N×N ,

where Ai ∈ R
ni×ni (1 ≤ i ≤ d), it holds

‖A‖ = ‖A1 ⊗ · · · ⊗ Ad‖ =
d∏

i=1

‖Ai‖i.
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We remark that for tensors A = A1 ⊗ · · · ⊗ Ad and B = B1 ⊗ · · · ⊗ Bd

where Ai, Bi ∈ R
ni×ni , we have

〈A,B〉RN×N = 〈A1 ⊗ · · · ⊗ Ad, B1 ⊗ · · · ⊗ Bd〉RN×N

= tr((A1 ⊗ · · · ⊗ Ad)T (B1 ⊗ · · · ⊗ Bd))

= tr((AT
1 ⊗ · · · ⊗ AT

d )(B1 ⊗ · · · ⊗ Bd))

= tr(AT
1 B1 ⊗ · · · ⊗ AT

d Bd)

=
d∏

i=1

tr(A�
i Bi) =

d∏

i=1

〈Ai, Bi〉Rni×ni ,

and hence ‖A‖F =
√〈A,A〉RN×N , is a tensor-norm. In particular, the inner

product 〈·, ·〉RN×N satisfies

〈id[ni] ⊗ Ai, id[ni] ⊗ Bi〉RN×N = tr(A�
i Bi)

d∏

j=1
j �=i

nj , (3)

The next result gives a first characterization of the linear space L (RN×N
)
.

Theorem 3.1. Let RN×N , where N = n1 · · · nd. Then

L (RN×N
)

= span {idN} ⊕ Δ, (4)

where Δ = hN ∩ L(RN×N ). Furthermore, L(RN×N )⊥ is a subspace of hN .

Proof. Assume that a given matrix A ∈ R
N×N can be written as in (2) and

denote each component in the sum representation of A by Li = id[ni] ⊗ Ai,

where Ai ∈ R
ni×ni for 1 ≤ i ≤ d. Then Li ∈ span{id[ni]} ⊗ R

ni×ni for
1 ≤ i ≤ d, and in consequence,

d∑

i=1

span{id[ni]} ⊗ R
ni×ni = L (RN×N

)
.

Thus, span{idN} ⊂ L (RN×N
)
, and, by Lemma 3.1, we have the following

decomposition

L (RN×N
)

= Δ ⊕ span{idN}. (5)

where Δ = hN ∩ L(RN×N ). The last statement is consequence of Lemma 3.1.
This ends the theorem. �

Now, given any square matrix in R
N×N , we would like to project it onto

L(RN×N ) to obtain its Laplacian approximation. To compute this approxi-
mation explicitly, the following result, which is a consequence of the above
theorem, will be useful.
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Corollary 3.1. Assume R
N×N , with N = n1 · · · nd ∈ N. Then

PL(RN×N ) = Pspan{idN } + PΔ,

that is, for all A ∈ R
N×N it holds

PL(RN×N )(A) =
tr(A)

N
idN + PΔ(A).

Next, we need to characterize Δ in order to explicitly construct the or-
thogonal projection onto L(RN×N ). From the proof of the Theorem 3.1 we see
that the linear subspaces given by

hN ∩ (span{id[ni]} ⊗ R
ni×ni),

for 1 ≤ i ≤ d, are of interest to characterize Δ as the next result shows.

Theorem 3.2. Let RN×N with N = n1 · · · nd ∈ N, and let Hi be the orthogonal
complement of span{idN} in the linear subspace R

ni×ni ⊗ span{id[ni]} for 1 ≤
i ≤ d. Then,

Δ =
d⊕

i=1

Hi. (6)

Furthermore, a matrix A belongs to Δ if and only if it has the form

A =
d∑

i=1

Ai ⊗ id[ni], with tr(Ai) = 0, i = 1, . . . , d.

Proof. First, we take into account that Rni×ni ⊗span{id[ni]} a linear subspace
of L(RN×N ) linearly isomorphic to the matrix space R

ni×ni . Thus, motivated
by Lemma 3.1 applied on R

ni×ni , we write

R
ni×ni ⊗ span{id[ni]} = (span{idni

} ⊕ hni
) ⊗ span{id[ni]}

= (span{idni
} ⊗ span{id[ni]}) ⊕ (hni

⊗ span{id[ni]}).

Now, we claim that hni
⊗ span{id[ni]} it is the orthogonal complement of

the linear subspace generated by the identity matrix idN = idni
⊗ id[ni] in the

linear subspace Rni×ni ⊗id[ni]. To prove the claim, observe that for Ai⊗id[ni] ∈
hni

⊗ span{id[ni]} (1 ≤ i ≤ d), by using (3), it holds

〈Ai ⊗ id[ni], idN 〉RN×N = 〈Ai ⊗ id[ni], id[ni] ⊗ idni
〉RN×N = tr(Ai)

d∏

j=1
j �=i

nj = 0,

because Ai ∈ hni
and hence tr(Ai) = 0, for 1 ≤ i ≤ d. Thus, the claim follows

and hence
Hi = hni

⊗ span{id[ni]}
= {Ai ⊗ id[ni] ∈ R

ni×ni ⊗ span{id[ni]} : tr(Ai) = 0}
=
{
Ai ⊗ id[ni] ∈ R

ni×ni ⊗ span{id[ni]} : 〈Ai ⊗ id[ni], idN 〉RN×N = 0
}

.
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To prove (6), we first consider 1 ≤ i < j ≤ d, and take Ak ⊗ id[nk] ∈ Hk for
k = i, j. Then the inner product satisfies

〈Ai ⊗ id[ni], Aj ⊗ id[nj ]〉RN×N = tr
(
(Ai ⊗ id[ni])

T (Aj ⊗ id[nj ])
)

= tr
(
(AT

i ⊗ id[nk])(Aj ⊗ id[nj ])
)

= tr
(
idn1···ni−1 ⊗ AT

i ⊗ idni+1···nj−1 ⊗ Aj ⊗ idnj+1···nd

)

=
d∏

�=1
��=i,j

〈id�, id�〉Rn�×n� tr(Ai)tr(Aj) = 0,

because tr(Ai) = tr(Aj) = 0. The same equality holds for j < i. Thus, we
conclude that Hi is orthogonal to Hj for all i 	= j. So, the subspace

Δ′ =
d⊕

i=1

Hi,

is well defined and it is a subspace of L(RN×N ).
To conclude the proof (6), we will show that Δ′ = Δ. Since, for each

1 ≤ i ≤ d, hi is orthogonal to span{idN} we have

span{idN} ⊕ Δ′ ⊂ L(RN×N ).

To obtain the equality, take A ∈ L(RN×N ). Then there exists Ai ∈ R
ni×ni for

1 ≤ i ≤ d be such that

A =
d∑

i=1

Ai ⊗ id[ni].

From Lemma 3.1 we can write

Ai =
tr(Ai)

ni
idni

+
(

Ai − tr(Ai)
ni

idni

)

for each 1 ≤ i ≤ d. Then,

A =
d∑

i=1

(
tr(Ai)

ni
idni

+
(

Ai − tr(Ai)
ni

idni

))

⊗ id[ni]

=
d∑

i=1

tr(Ai)
ni

idni
⊗ id[ni] +

d∑

i=1

(

Ai − tr(Ai)
ni

idni

)

⊗ id[ni]

=
d∑

i=1

tr(Ai)
ni

(idni
⊗ id[ni]) +

d∑

i=1

(

Ai − tr(Ai)
ni

idni

)

⊗ id[ni]

=

(
d∑

i=1

tr(Ai)
ni

)

idN +
d∑

i=1

(

Ai − tr(Ai)
ni

idni

)

⊗ id[ni].
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Observe that
(∑d

i=1
tr(Ai)

ni

)
idN ∈ span{idN} and

d∑

i=1

(

Ai − tr(Ai)
ni

idni

)

⊗ id[ni] ∈ Δ′.

Thus, L(RN×N ) ⊂ span{idN} ⊕ Δ′. In consequence Δ′ = Δ, and this proves
the theorem. �

A direct consequence of the above theorem is the next corollary.

Corollary 3.2. Assume R
N×N , with N = n1 · · · nd ∈ N. Then

PL(RN×N ) = Pspan{idN } +
d∑

i=1

Phi
,

that is, for all A ∈ R
N×N it holds

PL(RN×N )(A) =
tr(A)

N
idN +

d∑

i=1

Ai ⊗ id[ni],

where Ai ∈ R
ni×ni satisfies tr(Ai) = 0 for 1 ≤ i ≤ d.

4. A Numerical Strategy to Perform a Laplacian-Like
Decomposition

Now, in this section we will study some numerical strategies in order to com-
pute, for a given matrix A ∈ R

N×N , with the help of Proposition 3.1 and
Theorem 3.2, its best Laplacian-like approximation. Then, we will present two
numerical examples to give consistency to the results obtained. In the first
example, we will work with the adjacency matrix of a simple graph of 6 nodes;
with it, we intend to show, step by step, the procedure to follow to calcu-
late the Laplacian decomposition of a square matrix. The second example will
complete the study of the discrete Poisson equation described in Sect. 1; with
this example, we will illustrate the goodness of the Laplacian decomposition
to solve PDEs in conjunction with the GROU Algorithm. We start with the
following Greedy Algorithm.

Theorem 4.1. Let A be a matrix in R
N×N , with N = n1 · · · nd, such that

tr(A) = 0. Consider the following iterative procedure:

1. Take X
(0)
k = 0 for 1 ≤ k ≤ d.

2. For each � ≥ 1 compute for 1 ≤ i ≤ d the matrix U
(�)
i as

U
(�)
i = arg min

Ui∈hi

∥
∥
∥
∥
∥
A −

i−1∑

k=1

X
(�)
k ⊗ id[nk] − ξ(Ui) ⊗ id[ni] −

d∑

k=i+1

X
(�−1)
k ⊗ id[nk]

∥
∥
∥
∥
∥

,
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where

ξ(Ui) = X
(�−1)
i + Ui,

and put X
(�)
i = X

(�−1)
i + U

(�)
i .

Then

lim
�→∞

d∑

k=1

X
(�)
k ⊗ id[nk] = PΔ(A).

Proof. Recall that PΔ(A) solves the problem

min
A∗∈Δ

‖A − A∗‖ .

To simplify notation put P
(�)
Δ (A) =

∑d
k=1 X

(�)
k ⊗ id[nk] for � ≥ 0. By construc-

tion we have that

‖A − P
(1)
Δ (A)‖ ≥ ‖A − P

(2)
Δ (A)‖ ≥ · · · ≥ ‖A − P

(�)
Δ (A)‖ ≥ · · · ≥ 0,

holds. Since the sequence {P
(�)
Δ (A)}�∈N is bounded, there is a convergent sub-

sequence also denoted by {P
(�)
Δ (A)}�∈N, so that

LA = lim
�→∞

P
(�)
Δ (A) ∈ Δ.

If LA = PΔ(A), the theorem holds. Otherwise, assume that LA 	= PΔ(A) (see
Fig. 3), then it is clear that

‖A − PΔ(A)‖ ≤ ‖A − LA‖.

Suppose that ‖A − PΔ(A)‖ < ‖A − LA‖ and let λ ∈ (0, 1). Now, consider the
linear combination λLA + (1 − λ)PΔ(A). Since LA, PΔ(A) ∈ Δ, they can be
written as

LA =
d∑

i=1

Ai ⊗ id[ni], and PΔ(A) =
d∑

i=1

A∗
i ⊗ id[ni]

so λLA + (1 − λ)PΔ(A) =
∑d

i=1 id[ni] ⊗ (λAi + (1 − λ)A∗
i ) ∈ Δ. Hence,

‖A − PΔ(A)‖ < ‖A − (λLA + (1 − λ)PΔ(A)) ‖ < ‖A − LA‖.

That is, we have found d matrices Zi = λAi + (1 − λ)A∗
i , i = 1, . . . , d, such

that

‖A − LA‖ =

∥
∥
∥
∥
∥
A −

d∑

i=1

Ai ⊗ id[ni]

∥
∥
∥
∥
∥

>

∥
∥
∥
∥
∥
A −

d∑

i=1

Zi ⊗ id[ni]

∥
∥
∥
∥
∥

,

which is a contradiction with the definition of LA. �
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PΔ(A)LAP
(2)
Δ (A)P

(1)
Δ (A) P

(3)
Δ (A)

A

Figure 3. Situation described in reasoning by Reductio ad absurdum

The previous result allows us to describe the procedure to obtain the
Laplacian approximation of a square matrix, in the form of an algorithm. We
can visualize the complete algorithm in the form of pseudocode in Algorithm 2.

Algorithm 2 Laplacian Decomposition Algorithm
1: procedure Lap(A∗, iter max, tol)
2: A = A∗ − (tr(A)/N)idN , iter = 1, Lap = 0
3: while iter < iter max do
4: A ← A − Lap
5: for k = 1, 2, . . . , d do
6: Pk(A) = idn1 ⊗ · · · ⊗ idnk−1 ⊗ Xk ⊗ idnk+1 ⊗ · · · ⊗ idnd

7: Xk ← minXk
‖A − ∑k

i=1 Pi(A)‖
8: Lap = Lap+ Pk(A)
9: end for

10: if ‖A − Lap‖ < tol then goto 14
11: end if
12: iter = iter+ 1
13: end while
14: return Lap
15: end procedure

4.1. Numerical Examples

4.1.1. The Adjacency Matrix of a Simple Graph. First, let us show an ex-
ample in which the projection PΔ(A) coincides with A and how the tensor
representations is provided by the aforementioned proposed algorithm. Let us
consider the simple graph G(V,E), with V = {1, 2, . . . , 6} the set of nodes and
E = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 5), (5, 6)} the set of edges. Then, the
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adjacency matrix of G is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We want to find a Laplacian decomposition of the matrix A ∈ R
6×6. Since

tr(A) = 0, we can do this by following the iterative scheme given by Theorem
4.1. So, we look for X1 ∈ R

2×2, X2 ∈ R
3×3 matrices such that

PΔ(A) = X1 ⊗ idn2 + idn1 ⊗ X2,

where n1 = 2, n2 = 3. We proceed according to the algorithm:
1. Computing X1 by

min
X1

‖A − X1 ⊗ idn2‖,

we obtain

X1 =
(

0 1
1 0

)

.

2. Computing X2 by

min
X2

‖A − X1 ⊗ idn2 − idn1 ⊗ X2‖,

we obtain

X2 =

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ .

Since the residual value is ‖A − PΔ(A)‖ = 0, the matrix A ∈ Δ. Thus, we can
write it as

A = PΔ(A)=
(

0 1
1 0

)

⊗ idn2 + idn1 ⊗
⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ .

4.1.2. The Poisson’s Equation. Now, let us consider the Poisson’s equation (1)
with homogeneous boundary condition given in Sect. 1. For each u ∈ {x, y, z}
we fix h = 1

n , where n ∈ N, and take u� = (� − 1)h for 1 ≤ � ≤ n. Next, we
consider a derivative approximation scheme given by

∂2ψ

∂u2
≈ ψ(u�+1) − 2ψ(u�) + ψ(u�−1)

h2
,

in (1) for u ∈ {x, y, z}. It allows to obtain a linear system written as

Aφ(xi, yj , zk) = f(xi, yj , zk) (7)
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Figure 4. Matlab spy(A) representation of A given in (8)
for n = 4

where the indices 1 ≤ i, j, k ≤ n correspond to the discretization of x, y and z

respectively, and A ∈ GL
(
R

n3
)

is the matrix given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T −idn2

−idn2 T −idn2

. . . . . . . . .
−idn2 T −idn2

−idn2 T

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where T ∈ R
n2×n2

is the matrix

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D −idn

−idn D −idn

. . . . . . . . .
−idn D −idn

−idn D

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

6 −1 0 . . . 0
−1 6 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 6 −1
0 . . . 0 −1 6

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n.

We can visualize a representation of the sparsity of the matrix A with the spy
command from Matlab (see Fig. 4). Since tr(A) = 6n3 	= 0, instead of looking
for the Laplacian approximation of A, we will look for Â = (A − 6 idn3) , which
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has null trace. Proceeding according Algorithm 2 for sizes n1 = n2 = n3 = n,
we obtain the decomposition

Â = X ⊗ idn ⊗ idn + idn ⊗ X ⊗ idn + idn ⊗ idn ⊗ X,

where

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 0 . . . 0
−1 0 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 0 −1
0 . . . 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n,

and the residual of the approximation of Â is ‖Â−PΔ(Â)‖ = 0. Thus, following
Corollary 3.2, we can write the original matrix A as

A = 6 idn3 + X ⊗ idn ⊗ idn + idn ⊗ X ⊗ idn + idn ⊗ idn ⊗ X. (9)

Note that the first term is 6 · idn3 = 6 · idn ⊗ idn ⊗ idn, and hence A can be
written as

A = Y ⊗ idn ⊗ idn + idn ⊗ Y ⊗ idn + idn ⊗ idn ⊗ Y,

where

Y = X + 2 idn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 2 −1
0 . . . 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Next, we study the CPU-time used to solve the linear system (7) by
using (a) the Matlab command A\b, (b) the GROU Algorithm 1 with A in
the compact form (8), and (c) the GROU Algorithm with A in Laplacian-Like
form (9), previously obtained from the Laplacian Decomposition Algorithm 2.

We have used in the numerical experiments the following parameters
values. For the GROU Algorithm 1: tol = 2.2204e − 16; ε = 2.2204e − 16;
rank max = 15; (an iter-max = 5 was used to perform an ALS strategy); and
the number of nodes in (0, 1)3 (that is, the number of rows or columns of the
matrix A) increase from 103 to 353. For the Laplacian Decomposition Algo-
rithm we fixed iter max = 4 and a tolerance tol = 10−5. The characteristics
of the computer are the same as we give in Sect. 1.

In the first experiment (see Fig. 5) the algorithms were implemented by
means the Matlab standard environment to perform basic matrix calculations
whereas we have done a second experiment to increase the size of the high di-
mensional matrices (see Fig. 6). To this end, the algorithms were implemented
under the Matlab environment for sparse matrices, which require less CPU
memory. In this second experience we consider matrices with a number of
rows (or columns) in a range from 103 to 1003.
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Figure 5. CPU Time, in seconds, employed to solve (7) by
using the Matlab command A\b, the GROU Algorithm 1, and
the GROU Algorithm 1 with A written in Laplacian form,
obtained from the Laplacian decomposition Algorithm 2. All
algorithms were performed under the Matlab standard envi-
ronment for basic matrix calculations
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Figure 6. CPU Time, in second, employed to solve (7) by
using the Matlab command A\b, the GROU Algorithm 1, and
the GROU Algorithm 1 with A written in Laplacian form,
obtained from the Laplacian decomposition Algorithm 2. All
algorithms were performed under the Matlab environment for
matrices in sparse form
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In both figures we observe how, for high-dimensional matrices, the GROU
Algorithm 1 improves the CPU time of Matlab’s command A\b. But certainly
the Laplacian Decomposition Algorithm 2 combined with the GROU Algo-
rithm 1 significantly reduces the CPU time of the two previous methods.

5. Conclusions

We have presented a result to approximate a generic square matrix by its
Laplacian form, and thus decompose it as the sum of two linearly indepen-
dent matrices. This decomposition is motivated by the fact that tensor al-
gorithms are more efficient when working with Laplacian matrices. We have
also described the procedure to perform this approximation in the form of an
algorithm and illustrated how it works on some basic examples.

With the proposed algorithm, we may provide an alternative way to solve
linear systems, especially interesting if we combine algorithms 1 and 2, as
shown in the second example presented above. Due to its structure, this ma-
trix decomposition can be interesting for studying various types of matrices,
such as sparse matrices, matrices resulting from the discretization of a PDE,
adjacency matrices of simple graphs, and others. We will explore the compu-
tational benefits of this approach in future works.
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