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Background and Objectives: Accurate diagnosis of cardiovascular diseases
often relies on the electrocardiogram (ECG). Since the cardiac vector is
located within a three-dimensional space and the standard ECG comprises 12
projections or leads derived from it, redundant information is inherently present.
This study aims to quantify this redundancy and its impact on classification tasks
using Convolutional Neural Networks (CNNs) in cardiovascular diseases.

Methods: We employed signal theory and mutual information to introduce
a novel redundancy metric and explored techniques for redundancy
augmentation and reduction. This involved lead selection and transformation to
evaluate the effects on neural network performance.

Results: Our findings indicate that optimizing input configurations through
redundancy reduction techniques can enhance the performance of deep
learning models in cardiovascular diagnostics, provided that the information is
preserved and minimally distorted.

Conclusion: For the first time, this research has quantified the redundancy
present in the input by validating various redundancy reduction techniques using
a CNN. This discovery paves the way for advancing biomedical signal processing
research, simplifying model complexity, and enhancing diagnostic performance
in cardiovascularmedicinewithin reduced lead systems, such as Holtermonitors
or wearables.

KEYWORDS

cardiovascular diseases, electrocardiogram, deep learning, redundancy reduction,
model performance, cardiac signal processing

1 Introduction

Cardiovascular diseases (CVDs), including both arrhythmias and non-arrhythmic
cardiac conditions such as myocardial infarction or cardiomyopathies, pose significant
health challenges (Goldsborough et al., 2023), demanding precise and timely diagnostic
methods for effective intervention and risk reduction. With the rising prevalence of
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cardiovascular diseases as life expectancy increases, accurate early
diagnostic tools become essential (Flora and Nayak, 2019). Among
these, the ECG remains the most common tool to assess cardiac
health (Holst et al., 1999). Widely available across healthcare
centers, even in modest settings, and highly cost-effective, the
ECG serves as a fundamental non-invasive screening technique for
initial cardiovascular diagnostics, offering insights into the heart’s
electrical activity (Berkaya et al., 2018).

The standard ECG recording comprises 12 leads capturing
information from the cardiac dipole through 12 non-orthogonal
projections, including 6 limb leads (I, II, III, aVR, aVL, and
aVF) and 6 precordial leads (V1-V6) irregularly spaced in the
axial plane. Other common configurations consist of only a few
leads, including out-of-hospital ECG monitoring with devices
such as Holter monitors (Moody and Mark, 2001; Sharma
and Baranchuk, 2021) or wearable devices (Dagher et al., 2020;
Smital et al., 2020; Zepeda-Echavarria et al., 2023). Less common
modalities with a higher number of leads are also available,
such as Body Surface Potential Mapping, which uses varying
numbers of leads, including the 67 leads used in Giffard-
Roisin et al. (2017).

The integration of automated diagnostic approaches like
Machine Learning and particularly Deep Learning (DL), applied
to massive and publicly available ECG datasets, has led to
breakthroughs in the automated diagnosis of cardiac conditions
(Mincholé and Rodriguez, 2019; Siontis et al., 2021). Within DL,
Convolutional Neural Networks (CNNs) are commonly employed,
leveraging raw signal data as input. While numerous studies
have adopted a broad multipathology approach (Anand et al.,
2022; Zhang et al., 2021; Wang et al., 2020), others have focused
on specific conditions such as atrial fibrillation (Baek et al.,
2021; Raghunath et al., 2021) or classification based on acuteness
(van de Leur et al., 2020). Additionally, the ECG is commonly used
in multimodal settings, such as in the prediction of malignant
ventricular arrhythmias (Sahoo et al., 2020). These ECG recordings
are typically digitized, although a significant volume of data
still exist in paper format. To utilize these records in CNN
models, prior digitization and synchronization are required
(Ramírez et al., 2024).

Although the visual representation of the standard ECG,
comprising 12 non-orthogonal projections, is undoubtedly suitable
for human interpretation, the high redundancy of this data
format, if directly put into DL models, may introduce biases
in the learning process or lead to overfitting. Notably, only
two out of the six limb leads are mathematically independent.
Previous studies have focused on lead reduction for diagnosing
cardiac pathologies (Jiménez-Serrano et al., 2022; Bruoth et al.,
2021; Donnelly et al., 2008; Natarajan et al., 2021; Nejedly et al.,
2021), yet concerns regarding redundancy emerged with
research such as (van de Leur et al., 2020), who trained a
deep neural network using eight independent ECG leads,
including two limb and six precordial leads. Furthermore,
the study by Lai et al. (2021) underscored the impact of ECG
redundancy on the generalizability of DL models, despite
the primary aim of assessing prediction with a limited
data volume.

Whether redundancy affects CNN training and how this
impacts accurate diagnosis across pathologies has hitherto not

been studied in-depth. To address this research gap, we propose
a novel framework to quantify ECG redundancy and evaluate
its impact on 2D-CNN learning. Different strategies have been
defined for reducing redundancy, including lead elimination
and linear transformation to achieve maximum orthogonality.
Additionally, we performed a comparative analysis of various
levels of redundancy and their impact on CNN performance.
This provides insights into optimal input configurations for
DL models in cardiovascular diagnosis, potentially advancing
diagnostic accuracy, particularly for automated diagnosis. In
applications where a reduced number of leads is required, such
as in Holter monitors or wearables, the results of this study may
guide the selection of the ECG data format to be input into the
learning model.

2 Materials

For this study, we used the PTB-XL dataset (Wagner et al.,
2020), sourced from Physionet (Goldberger et al., 2000). This
dataset consists of 21,837 12-lead synchronous ECG recordings
from 18,885 patients, each spanning 10 s. The dataset maintains
a gender balance (52% male, 48% female) and covers a wide
age range (from 1 to 95 years). It consists of a control group of
healthy (normal) ECGs (NORM), and various heart pathologies
annotated by two cardiologists including myocardial infarction
(MI), ST/T changes (STTC), conduction disturbance (CD),
and hypertrophy (HYP). The ECGs are sampled at both
500 Hz and 100 Hz.

The dataset is partitioned into 10 folds, ensuring that a subject’s
data is present in only one fold to prevent data leakage among folds.
For our experimental settings, the initial 9 folds (88%) were used for
training and validation (88% and 12% respectively), while the 10th
fold served as a hold-out test group (12%).

3 Methods

The projections of the standard 12-lead ECG on the Frontal,
Transverse and Sagittal planes are depicted in Figure 1. In our
framework, we explore the influence of redundancy on CNN
performance, as shown in Figure 2. To evaluate it, we considered
modifications of the ECG data including augmentation, reduced
lead subsets and linear transformations.

3.1 Redundancy quantification

Several metrics are proposed to quantify redundancy for each
input, primarily based on the concept of mutual information
(I) (Equation 1) which quantifies the dependence between two
random variables X and Y from entropy (H) measurements:

I (X;Y) =H (X) +H (Y) −H (X,Y) (1)

The H (Equation 2) of a random variable X presents the
following equation:

H (X) = −
n

∑
i=1

p(xi) log p(xi) (2)
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FIGURE 1
Cardiac dipole projections of the standard 12-lead ECG system on the three anatomical planes: Frontal, Transverse and Sagittal.

FIGURE 2
Methodology Design. (A) Modification of the ECG data format: lead augmentation, lead selection and linear transformation; (B) All devised inputs
underwent testing within a CNN framework, aimed at classifying data across five distinct diseases.

In Equation 2, p(xi) corresponds to the probability of each
possible value xi.

Given that the ECG values are continuous, binning
was required to calculate the probabilities p(xi). After
an empirical search, we selected a bin size of 0.5 mV.
Sampling frequency can have an impact on the entropy
computation as the higher it is, more variations can be
captured. The difference in entropy between 100 Hz and
500 Hz is negligible as it differs in the order of the hundreds;
however, we employed a sampling frequency of 500 Hz for all
calculations.

Additionally, theNormalizedMutualInformation(NMI)(Equation
3), ranging between 0 and 1, allows a direct comparison of I.

NMI (X;Y) =
I (X;Y)
H (X,Y)

(3)

According to this definition, a value of 0 represents variables
with non-dependence, while a value of 1 denotes identical variables.

Figure 3A represents the NMI dependence on the angle
difference between the projections of two leads in the Frontal and
Transverse planes. The absolute angle, which indicates the smallest
angle in absolute value between two lead directions (see angle
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directions in Figure 1), ranges from 0 to 90°. Higher orthogonality
leads to reduced dependence, resulting in a lower NMI value.
Conversely, when lead directions exhibit greater similarity, the
information conveyed by both leads becomes more similar, leading
to a higher NMI value. Furthermore, Figure 3B displays the NMI
matrix for each ECG lead, illustrating the dependency between each
pair of leads. This calculation was performed using healthy signals
from the dataset to mitigate potential inaccuracies stemming from
variations in cardiac dipolemorphology due to different pathologies.
Additionally, Figure 3C relates angle with NMI and changes in
ECG morphology quantified by means of Pearson Correlation
Coefficient (PCC). In Figures 3C.1, C.2, when using a common lead
in both cases (lead II), it is observed that as the angle increases,
the morphology becomes more distinct. However, as illustrated in
Figures 3C.2, C.3, when the angle is held constant at 30° but the
orientation varies, the morphology remains similar in the first case,
where the directionality closely aligns with themaximumvariability.
In contrast, the similarity decreases in the second case, where the
directionality diverges.

Figure 3C.4 also intends to show that there is a relationship
between theNMI and themorphology similarity between leads even
though in the NMI, each sample is treated as an independent and
identically distributed (iid) sample without taking into account the
temporal relationship between them. That is, higher values of NMI
show also absolute value of PCC and vice-versa.

While Figure 1 illustrates the ideal projection directions of
each lead, angles deviate slightly due to variations in electrode
placement in real-world settings. Additionally, precordial leads not
only display variance in angle in the axial plane but also exhibit
minor deviations in the frontal plane, causing actual angles to be
larger than those depicted. These factors contribute to the observed
standard deviation (approximately 0.03) in Figure 3A, highlighting
NMI as a superior and more reliable criterion for assessing lead
dependence compared to angle differences. Furthermore, even if two
pairs of leads present the same angle (see Figures 3.C1, 3.C2), the
mutual information varies depending on their relationship with the
direction of maximum variability of the cardiac vector. For instance,
two leads with an angle closer to the direction of variability (such as
II and aVF) will exhibit higher NMI than two leadsmore orthogonal
to it (such as III and aVL). For these reasons, a similarity criterion
based solely on the angle between leads is insufficient to quantify the
shared information.

To estimate the extent of information from one lead (Xi) that is
present in the othern leads and, conversely, the extent of information
from the other leads that is contained in one specific lead, we define
the redundancy (R) (Equation 4) for a single channel as:

R(Xi) =
H(Xi) −H(Xi|X1,…,Xi−1,Xi+1…,Xn)

H(Xi)
(4)

Building upon this concept, we measure the amount of
redundant information present in a set of leads, which indicates how
much of the total information is shared among at least two leads. To
achieve this, the definition of R can be extended for a set of channels
according to the following Equation 5:

R(X1,X2,…,Xn)

=
H(X1,X2,…,Xn) −H(X1|X2,…,Xn) −⋯−H(Xn|X1,…,Xn−1)

H(X1,X2,…,Xn)
(5)

The presented metrics range from 0 to 1; however, can be
rescaled from 0 to 100 in order to express a percentage.

For the computation of all metrics detailed above avoiding the
influence of other sources of variability caused by certain pathologies
we selected only healthy patients, as their ECG’s morphology is
more homogeneous. This homogeneity among subjects allowed
us to assume that each lead for all records captures equivalent
information. Concatenating all the records increases the number
of samples for the computation of the metrics, which increases the
reliability of the probability distribution in the calculation of the
entropies. These metrics were calculated across all selected patients
by concatenating their ECGs. This approach improves histogram
resolution, leading to greater accuracy in the calculations.

3.2 Redundancy reduction

In this section we describe two redundancy reduction strategies.
On the one hand, a strategy based on lead selection, which extracts
the optimal subset of leads for the desired number of channels. In
this method, the selected signals match the waveforms from the
original data. On the other hand, linear transformation methods,
which derive a number of signals, each of them being a linear
combination of the ECG leads. This way, none of the signals match
any lead from the original data. In any case, the standard 12-lead
ECG served as the baseline for performance assessment.

3.2.1 Redundancy reduction through Lead
selection

To reduce input redundancy while preserving essential
information, the input was streamlined by retaining leads with
higher score values. Consequently, selections were made to retain
as few leads as feasible while minimizing redundancy. We derived
and evaluated subsets comprising eight, six, three, and one lead, as
described below.

Firstly, the 8-lead set was obtained by removing leads III, aVR,
aVL, and aVF, as they can be mathematically reconstructed from
linear combinations of leads I and II (Figure 4A). Consequently,
despite this reduction, the original information is fully preserved,
resulting in no loss of information with respect to the 12-lead ECG.

For the 6-lead subset, two additional precordial leads were
removed. Upon examination of the transverse plane, due to the
proximity of V2, V3, and V4 (Figure 4B), high redundancy among
them was inferred. Therefore, leads V2 and V4 were removed.
Additionally, to achievemaximal orthogonality between leads, three
pairs of orthogonal leads were identified from the frontal plane:
I-aVF, II-aVL, and III-aVR, with redundancy scores of 32.64%,
30.25%, and 30.57%, respectively. Since the frontal lead pair II-
aVL exhibited the lowest redundancy, the final 6-lead subset
was defined by leads II, aVL, V1, V3, V5, and V6. For the 3-
lead subset, the selection involved leads aVR, III, and V2 as
the lead combination with maximum orthogonality and minimal
redundancy (Figure 4C). Finally, the criterion to choose the single-
lead input was the channel containing the highest redundancy with
the rest of the leads. As illustrated in Figure 4D, lead V6 was
identified as the most representative.
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FIGURE 3
(A) Relation NMI vs. Lead direction in Frontal Plane and Transverse Plane angles. (B) Normalized Mutual Information between Leads. (C) Relation NMI
vs. Morphology: Comparison between two leads with low orthogonality (II-aVF), two orthogonal leads (II-aVL) and low orthogonality between them
but high orthogonality to the maximum variability direction (III-aVL).

3.2.2 Redundancy reduction through Lead
transformations

In addition to direct examination of original ECG leads,
several transformations were explored seeking orthogonality
and minimizing redundancy. These transformations include
the Inverse Dower Transform (IDT) and Principal Component
Analysis (PCA).

3.2.2.1 Inverse dower transformation
The vectorcardiogram (VCG) recorded using the Frank lead

system (Frank, 1956) captures the cardiac dipole in three orthogonal
spatial dimensions XYZ, hence preserving 3-dimensional
information of the electrical activity. In the context of this study,
the VCG was approximated using the IDT (Edenbrandt and
Pahlm, 1988) (see Supplementary Appendix SA for a more detailed
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FIGURE 4
Lead Selection Strategy. (A) 8 Leads: Independent lead selection. (B) 6 Leads: In the frontal plane, three pairs of orthogonal leads are identified: I-aVF,
II-aVL, and III-aVR. Additionally, in the Transverse plane, V2, V3, and V4 exhibit similar directions, allowing for their reduction to the V3 lead. By
combining these orthogonal pairs with selected precordial leads, redundancy is reduced using II-aVL pair of leads (R = 30.25%). (C) 3 Leads: The
selection process focuses on three orthogonal directions by combining the orthogonal pairs from the frontal plane with precordial leads situated in the
perpendicular plane, optimizing for orthogonality. (D) 1 Lead: Utilizing the Channel Redundancy metric identifies the most representative lead, aligning
most closely with the cardiac axis direction.

description). This transformation permits a linear conversion to a
3-channel space (refer to Supplementary Appendix Table S1).

3.2.2.2 Principal component analysis
PCA is a mathematical technique used for dimensionality

reduction and data compression. Given a dataset of P signals
or channels (also called observations), PCA seeks a linear
transformation that provides a set of Q uncorrelated signals, also
called Principal Components (PC), with Q ≤ P, that comprises
as much information as possible of the original data. For this,
the first PC is obtained from the transformation that retrieves
a signal with the highest variance. The subsequent PC are then
obtained from a linear transformation that, being orthogonal to
those of the previous PCs, retrieves the highest possible variance.

Therefore, the PCA approach can be regarded as a decomposition
of components that capture maximal variability or representativity
of the original data. So far, PCA has been successfully applied to
ECG data in clinical applications related to myocardial ischemia,
atrial fibrillation or the analysis of ventricular repolarization,
among others (Castells et al., 2007).

When PCA is applied to the 12-lead ECG, up to 8 orthogonal
components can be expected, since only 8 out of the 12 original
ECG leads are independent. The PCs are ordered with decreasing
explainability according to variance criterion (see Figure 5).
Consistent with the fact that the resultant dipole is a 3-d vector, the
three first components are able to capture most of the variance of
the full 12-lead ECG. On the other hand, from the fourth to the
eighth components can be associated to the weaker non-dipolar
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FIGURE 5
(A)Comparison of PCA direction projections onto the frontal plane with the morphological similarity observed in leads sharing similar directions.
(B)PCA components: Explained variability for all records in the dataset. The first three components correspond to spatial directions known as dipolar
components, while the remaining components correspond to other orthogonal directions beyond the spatial dimensions.

components, although not for this reason they can be exempt of
diagnostic value.

In light of a fair comparison with the performance of lead
selection subsets, PCA subsetswith the samenumber of components
were created, i.e., PCA-12 PCA-8, PCA-6, PCA-3 and PCA-1,
respectively. It is worth noting that mathematically, there are only 8
independent leads; however, a set of 12 components can be obtained
due to noise in signal acquisition. Nonetheless, these additional 4
components have amplitudes close to zero and practically negligible
explainability. However, it will be examined how adding null
components that contribute neither redundancy nor information
may impact the model’s performance.

3.2.3 Redundancy augmentation
In order to evaluate how the increase in redundancy affects the

input of a neural network, we designed an input composed of the 12
leads of the ECG and added three more channels corresponding to
the estimated VCG with the IDT.

3.3 Deep learning model

A CNN was used with two objectives: 1) to evaluate how
redundancy affects a neural network and 2) to validate whether the
strategic reduction of redundancy retains the clinical information
for each of the pathologies in this study. Therefore, for the second
objective, if the performance does not decrease for a given input
with respect to the 12-lead baseline, it means that it contains all the
information.

Anand et al. (2022) proposed various 2D-CNN models,
subsequently evaluated using the same dataset (PTB-XL
database), to perform multiclass classification of the five heart
conditions (HYP, STTC, MI, NORM, CD) present in the
database from 10-s length, 12-lead ECG records. We tuned
the architecture of their best-performing model, which consists
of a 6-layer design integrating two-dimensional convolutional
layers, as illustrated in Supplementary Appendix Figure S1 in
Supplementary Appendix SB. The initial five layers focus on
temporal aspects with kernels of dimensions (1, N), where N
represents the kernel width. Conversely, the last convolutional
layer before flattening leverages spatial features by using kernels
of shape (N, 1), with N as the kernel height matching the
number of input channels. This layer is designed for multi-
class classification of the five heart conditions included in the
selected database. The hyperparameters used were consistent with
those presented in (Anand et al., 2022), although the learning
rate was fine-tuned using the validation set (see fine-tuned
hyperparameters in Supplementary Appendix SC).

In addition to the multiclass classification model, the effect
of redundancy in binary classification will be observed. For this
purpose, the same architecture has been used, changing the last layer
to binary classification. For this evaluation, we have selected two
experiments: 1) Healthy vs. Non-Healthy classification: in this set of
experiments, all the data in the database have been used grouping all
the pathologies as “Non-Healthy” category and the NORM label as
“Healthy”. The data ratio in this case is 34.2% for Healthy and 65.8%
for Non-Healthy. 14,620 for training and 1,652 for testing. 2) MI vs.
Normal classification: Since MI is one of the most clinically relevant
pathologies due to its frequency and lethality, it was decided to study
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TABLE 1 Metrics and their equations.

Metric Equation Description

SN SN = TP
TP+FN

Sensitivity (SN), also known as True Positive Rate (TPR) or Recall (Rec), measures the proportion of actual positives that are
correctly identified by the model

SP SP = TN
TN+FP

Specificity (SP) measures the proportion of actual negatives that are correctly identified by the model

Prec Prec = TP
TP+FP

Precision (Prec) measures the proportion of positive identifications that are actually correct

AUPRC AUPRC = ∫10Prec(Rec) dRec AUPRC is the area under the Precision-Recall curve

AUC AUC = ∫10TPR(FPR) dFPR AUC is the area under the Receiver Operating Characteristic (ROC) curve

F1 score F1 = 2×Prec×SN
Prec+SN

F1 score is the harmonic mean of precision and recall

the binary classification of this pathology. The total amount of data
for trainingwas 10,452 and for testing 1,169 samples.Theproportion
of data is 36.5% for MI and 63.5% for NORM.

Additionally, weights (w) were integrated into the loss function
to address learning bias stemming from class imbalance. A limited
number of samples from a specific class can influence the learning
process of the neural network. Different input configurations, such
as reducing channels or applying linear transformations (e.g., PCA
or IDT), can also impact the performance in recognizing individual
classes. For instance, a linear transformation that accentuates
anomalous behavior in a particular pathology, or the exclusion of
leads that are clinically irrelevant for detecting a pathology, may
significantly affect the model’s performance.

Based on these factors, weights were determined based on the
inverse of the number of data points for each class (nc) and a λ
parameter as:

wc = (
nc
∑

i
ni
)

λ

(6)

Equation 6 assigns greater weight to the minority classes and vice
versa. The parameter λ plays a critical role in determining how
effectively the model learns each class in an imbalanced dataset.
When λ exceeds 1, the model exaggerates the difference in assigned
weights, allowing it to focus more on instances from these minority
classes during training. Conversely, when λ is less than 1, the model
tends to distribute weights more evenly across all classes.

Given the two outlined factors—class imbalance and input
transformations—we devised a strategy to search for the optimal
value of λ that better weights each class for every designed input
configuration, explained in detail in Supplementary Appendix SC.

3.4 Model evaluation

Each trainedmodel underwent evaluation using variousmetrics
to gain a comprehensive understanding of its behavior in different
scenarios. Each metric assesses the model’s performance by
measuring the degree of alignment between the predicted labels and
the actual ones. The employed metrics are gathered in Table 1.

4 Results

The results highlighting the contributions of this work are
organized as follows: first, we present the analysis of redundancy for
each data subset. Subsequently, we detail their overall classification
performance. Finally, we provide a breakdown by pathology. For
additional results, refer to Supplementary Appendix SD.

4.1 Trainable parameters

As the number of channels decreases, the count of trainable
model parameters diminishes, with a potential reduction of up
to 27.13% when only one channel is used. Table 2 presents
these findings. This parameter reduction is directly influenced
by the architecture of the convolutional network, particularly in
convolutional layer 6 (see Supplementary Appendix Figure S1).

4.2 Redundancy analysis

Among equivalent numbers of channels, ECG exhibits the
highest redundancy, followed byVCGandPCA. Both lead reduction
and lead transformation strategies effectively decrease the inherent
redundancy in the input, from 64.43% in the original input to
16.46% with 3 channels, 17.13% with IDT, and 9.31% with PCA of
three components. Table 2 illustrates how PCA results in the least
redundancy for a given number of channels.

4.3 Overall performance Implications of
reducing ECG channels

Both Table 2 and Figure 6A.6 show that lead reduction results
in a performance plateau from 12 to 6 leads in F1, with a
variation of less than 0.29. However, there is a larger decrease in
performance from 6 to 3 channels (7.98) and from 3 to 1 channel
(18.06). The behavior with PCA is similar, though with only 3
components, both AUC and F1 are closer to saturation. Comparing
the two redundancy reduction strategies, lead transformation with 3
channels (both VCG and PCA-3) outperformed the ECG. However,
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TABLE 2 Macro average results in % for all metrics: Sensitivity (SN), Specificity (SP), Precision (Prec.), Area Under Precision-Recall Curve (AUPRC), Area
Under the Curve (AUC), and F1 score, along with the redundancy metric (R) and the total number of parameters for each input model.

Input R Params SN SP Prec AUPRC AUC F1

R Augm. ECG 15 71.23 178,373 (7.40%) 74.49 94.78 70.48 73.88 93.97 71.32

Baseline ECG 12 64.08 166,085 (0%) 68.74 94.53 79.50 75.51 94.43 73.35

R Red.

Lead Selection

ECG 8 27.46 149,701 (−9.86%) 68.82 94.59 74.83 74.83 93.60 73.09

ECG 6 24.42 141,509 (−14.80%) 69.67 94.48 78.00 75.20 93.29 73.38

ECG 3 16.46 129,221 (−22.20%) 60.89 93.46 72.22 68.22 91.54 65.40

ECG 1 0 121,029 (−27.13%) 49.58 89.36 72.44 60.77 83.06 55.59

Lead Transform

IDT 17.13 129,221 (−22.20%) 64.69 94.24 71.15 69.00 92.73 67.69

PCA 8 17.33 149,701 (−9.86%) 64.55 93.87 75.75 71.74 92.73 69.15

PCA 6 19.78 141,509 (−14.80%) 66.99 94.14 74.92 72.39 92.60 70.51

PCA 3 9.31 129,221 (−22.20%) 65.98 93.93 71.59 70.49 92.31 68.29

PCA 1 0 121,029 (−27.13%) 52.73 93.95 62.62 58.96 83.61 52.62

Bold and italic values refer to the highest and second-highest F1 score for each class, respectively.

when extending to 6 channels, the ECG subset performed better
than PCA-6. Furthermore, increasing redundancy to 15 channels
was counterproductive, as all parameters worsened compared to the
standard 12-lead ECG.

For the binary classification (see Figure 6B), the performance
does not decrease bymore than 2 points until 3 channels are reached.
For 1 channel, ECG and PCA performance vary by less than 1 point
in both classifications and are approximately 3 points below baseline
in the Healthy vs. Not Healthy (Figure 6B.1) scenario and 16 points
in the MI vs. NORM case (Figure 6B.2).

4.4 Pathology-specific performance
analysis

The general trend across all pathologies is characterized by
a plateau, a bend, and a decline in performance (see Table 3;
Figures 6A.1–A5). However, variations in behavior among the
different pathologies warrant further analysis.

PCA shows a pronounced increase in performance from 1 to 3
components, followed by a slight progressionwith fluctuations as the
number of components increases. The performance of PCA-3 was
similar to the ECG-3 subset, except for the HYP group, where PCA-
3 outperformed ECG-3. The peak performance in the HYP group
was achieved with the ECG-6 subset, which exceeded the baseline
performance with 12 leads, reaching an F1 score of 58.25 (the lowest
among all pathologies).

In the case of STTC, saturation was reached with ECG-6,
achieving an F1 score of 76.77, higher than that of ECG-8. However,
with only 3 components, both VCG transformations and PCA-
3 outperformed ECG-3. Conversely, in the case of MI, greater
redundancy led to optimal performance, with the input of 15

channels yielding the highest results with an F1 score of 74.72. For
CD, the peak performance was achieved with ECG-8, using the full
information, resulting in an F1 score of 78.26. Noticeably, adding
more redundancy with 12 or 15 leads resulted in inferior outcomes.

Regarding normal ECGs, overall performance across all input
types is superior to other pathologies. Reducing redundancy does
not result in decreases greater than 3.4 points in F1 across all three
channels (either ECG, VCG, or PCA).

5 Discussion

5.1 Redundancy management in ECG data

The redundancy in the 12-dimensional ECG is notably high,
comprising 64.08% of the total information. When incorporating
the VCG derived from linear transformations of the ECG, all new
information becomes redundant, resulting in a total redundancy
of 71.23% in the 15-lead ECG. The designed strategies effectively
reduced redundancy by both selecting and transforming leads.

When considering inputs with three channels (ECG-3, IDT,
and PCA-3), PCA demonstrates the least redundancy for two key
reasons. Firstly, unlike IDT and the 3-lead ECG, PCA channels are
perfectly orthogonal. Secondly, PCA captures more independent
variables by representing variability along each of the three spatial
axes. These findings are captured in Figure 6 and Table 2.

Once three orthogonal channels corresponding to spatial
coordinates are obtained in PCA, adding threemore channels, while
they may provide explained variance, also introduces redundancy.
However, when increasing from 6 to 8 components, the new
channels have low amplitude, providing minimal information but
also redundancy. Consequently, the proportion of total redundancy
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FIGURE 6
F1-Score results for diminishing number of channels in the original ECG representation and linear transformations (PCA and IDT) for (A) Multiclass
Classification and (B) Binary Classification.

decreases. Finally, in PCA-12, the information is identical to that of
PCA-8, and so is the redundancy, as the added channels are null,
resulting in almost identical redundancy.

5.2 Global trends in model performance

In CNNs, the primary objective is to extract meaningful features
while minimizing noise and irrelevant information. Redundant
features fail to provide additional valuable insights for the
learning process. By reducing redundancy, the learning process
is streamlined, allowing the model to concentrate on the most
informative features. This focus can lead to improved performance,
as the network is not burdened with the task of filtering out or
compensating for redundant data.

Additionally, efficiently reducing redundancy allows for a
reduction in the number of model parameters to be trained

without sacrificing information, thereby improving both the
training and prediction processes. Such simplification is
advantageous as it reduces computational complexity and
enhances both training and inference efficiency. Consequently,
the model becomes more focused and efficient in its
learning process.

In the macro analysis, this effect is observed as the
performance remains largely unaffected until the number
of channels is reduced to between 6 and 3, representing a
reduction in input size by half and a quarter, respectively (see
Figure 6A.6; Table 2).

This phenomenon arises from the cardiac dipole’s three-
dimensional nature; thus, with just three channels, it is possible
to capture all the necessary information with minimal redundancy.
That said, the three sets of 3-channel inputs used in this study
may still lose information for various reasons. In the case
of lead selection, while efforts have been made to maximize
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TABLE 3 F1 score results in % for each designed input.

Input R HYP STTC MI NORM CD H vs. NH NORM vs. MI

R Augm ECG 15 71.23 50.34 74.04 74.72 81.46 76.04 85.62 78.78

Baseline ECG 12 64.08 52.08 76.95 73.28 88.04 76.41 84.03 79.85

R Red

Lead Selection

ECG 8 27.46 56.88 75.30 67.83 87.19 78.26 84.29 74.82

ECG 6 24.42 58.25 76.77 68.52 86.79 76.57 84.13 79.35

ECG 3 16.46 32.56 69.90 65.95 84.85 73.75 81.23 77.94

ECG 1 0 38.16 66.67 33.62 74.40 65.10 77.78 63.70

Lead Transform

IDT 17.13 37.84 72.72 71.31 84.99 71.59 81.87 77.56

PCA 8 17.33 48.42 74.09 64.79 86.80 71.69 83.41 77.82

PCA 6 19.78 49.06 73.52 67.52 86.14 76.30 84.48 81.12

PCA 3 9.31 47.62 72.32 66.67 84.66 70.15 83.41 74.65

PCA 1 0 26.62 65.79 49.16 64.46 57.07 78.51 64.54

Acronyms: R, Redundancy Score; HYP, Hypertrophy; STTC, ST-T Changes; MI, Myocardial Infarction; NORM, Normal; CD, Conduction Disturbance; H, Healthy; NH, Not Healthy. Bold and italic
values refer to the highest and second-highest F1 score for each class, respectively.

orthogonality among the chosen leads, perfect orthogonality
is not achievable, leading to distortion of the cardiac dipole.
Similarly, in the case of PCA and VCG transformations, a single
transformation is applied to all records without accounting for
slight variations in the angles between leads during electrode
placement, resulting in further distortions (see effect on
Figure 6A.6; Table 2).

Therefore, the optimal performance is achieved with 6 channels
(Figure 6A.6; Table 2), as the potential information distortions that
occur with 3 channels are mitigated by redundancy without being
significantly affected by excessive redundancy, which could lead to
overfitting.

Although it is not possible to perform a direct comparison with
the work of Lai et al. (2021), since they used a different database,
deep learning architecture and pathologies, the results obtained are
consistent with the conclusions of their study. Both their research
and ours indicate that the use of three or fewer channels causes a
notable decrease in the results.

Similar to how the VCG condenses all spatial information
into just three projections, the ECG distributes the same
information across 12 leads, thereby introducing inherent
redundancy. The three spatial coordinates derived from the
Frank leads are sufficient to capture all relevant features of the
cardiac dipole without compromising any clinical information.
When selecting leads based on reduced redundancy, there is
no prior certainty that clinically relevant information from
pathologies has not been discarded. However, the neural network
results indicate that predictive performance remains consistent
even when certain leads are excluded. This suggests that the
criteria used to discard leads effectively eliminate redundant
information while preserving the essential clinical features for all
pathologies.

5.3 Do pathologies respond differently to
redundancy reduction? Disease-specific
analysis

The impact of information distortion varies across different
pathologies, with some being more sensitive than others. In the case
of MI, for example, including more leads proves more beneficial for
detecting the pathology than the potential overfitting it may cause
(Figure 6A.3). One reason could be that the specific leads where the
morphological changes of the ECG are reflected strongly depend
on the location of the infarcted area, as described in (Hwang and
Levis, 2014).Therefore, the removal of leads containing information
about the location of the infarction may prove counterproductive
in detecting it by the neural network. In contrast, for STTC,
performance remains unaffected, with the reduction in redundancy
compensating for possible information distortion (Figure 6A.2). For
HYP and CD, reducing redundancy has been beneficial, improving
results with 6 and 8 channels, respectively (Figures 6A.1, 6.A.5).
Interestingly, for the NORM class, remarkable outcomes can be
achieved with only 3 input leads (Figure 6A.4). This suggests that
a reduced subset could be adopted at an early stage for screening
and fast discrimination of normal vs. abnormal ECGs, whereas a
more complete input could be employed once an abnormal ECG has
been detected.

Comparing redundancy reduction techniques, lead selection
generally outperforms transformations across most numbers
of channels and pathologies (see Table 3). Nonetheless, lead
transformation yields better results in all pathologies except
for CD when utilizing three channels to represent spatial
coordinates (see Table 3). This implies that IDT and PCA
better maintain orthogonality between channels and preserve
information compared to lead selection. This finding holds
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particular significance in applications with a limited number
of leads, such as in Holter devices or wearables, where
maximizing orthogonality among recorded leads while reducing
redundancy can be of interest to both clinicians and machine
learning models.

Focusing on PCA transformation, we observe that with
3 orthogonal channels, the majority of the variance (93.50%)
is explained. Notably, adding non-dipolar components does
not significantly increase the explained variance. The results
support this observation, as adding more than 3 components
hardly changes the outcomes (Table 3). Specifically, when
transitioning from 8 to 12 components, only 8 are independent
leads, and the remaining 4 correspond to channels with
practically insignificant amplitude. Therefore, the differences
between the 8 and 12-channel PCA models may stem from the
random initialization of parameters rather than the information
within the input.

Since binary classification is a simpler task, the overall
performance in both cases is slightly superior to that of multiclass
classification (Figure 6). However, the trend with respect to
redundancy is aligned with the results obtained in multiclass
classification. This may be due to the fact that in both scenarios
(multiclass classification and binary classification) the architecture
of the feature extraction model is identical and the only thing that
changes is the final class discrimination layer. Since redundancy
affects the feature extraction part, it is consistent that it affects
binary classification and multiclass classification in a similar
way. In the case of healthy vs. unhealthy (Figure 6B.1) the
performance is very similar to the NORM case in multiclass
classification, since the latter shows the NORM results against
the rest just like the binary classification. The only difference is
that while the former model has been trained on a multiclass
classification task by training the model parameters for learning
5 classes, the latter has only focused on discriminating two.
As for the MI vs. NORM (Figure 6B.2) binary classification,
the results tend to fluctuate more compared to the Healthy
vs. Unhealthy classification. This variability can be attributed
to two facts: the small number of samples for training and
the smaller number of samples in the pathological class within
the test set (256 samples), where a few errors can significantly
affect the overall performance. However, if the performance of
multiclass classification is compared with binary classification,
a correspondence in trend can be observed, where 8-channel
performance is lower than 6- and 12-channel performance in both
PCA and ECG lead selection.

5.4 Limitations and future directions

In this study, we focused solely on the redundancy present in
the input, which may be a limitation since preserving information
could be also of interest. The next step would be to assess howmuch
information from the original set of 12 leads is retained in each input
studied to more clearly determine how input reduction influences
the neural network.

An additional aspect that could be explored is the quantification
of the similarity of the beats in time. In a 10-s recording, beats
are cyclical and with a high degree of similarity mainly in healthy

patients or even in certain pathologies. Evaluating the reduction of
this temporal repetitiveness and condensing this information in a
reduced number of samples could be an interesting object of study
in the realm of a CNN.

While a 2D CNN model captures both spatial and temporal
relationships, reducing input dimensions can increase model
complexity and the risk of overfitting. Relying on a single model
in the study may limit the generalizability of how redundancy
affects CNNs. Therefore, future research should compare this
model with one that treats each channel independently, eliminating
dependency on input dimensionality. This comparison would allow
the identification of the optimalmodelling strategy by evaluating the
effectiveness of capturing spatial and temporal relationships versus
treating leads independently.

Finally, the study used a single dataset containing five cardiac
conditions, focusing primarily on evaluating how redundancy
affects CNN learning. Future research should explore additional
datasets with the same or different conditions to validate the results
and provide a more comprehensive evaluation. On the other hand,
it would be clinically interesting to analyze the information of other
clinical variables to maximize the results and link them with other
clinical situations. The result obtained could be clinically relevant
in different cardiovascular settings like coronary artery disease and
cardiac arrhythmias.

6 Conclusion

In this study, we introduced a novel metric to quantify the
redundancy within a set of channels. The developed metric
has demonstrated two main functions. On the one hand, it
provides an objective criterion to reduce the volume of data
and the complexity of models in CNNs; on the other hand,
it facilitates the selection of leads or even the development of
new electrode configurations, especially in environments with a
limited number of leads, as is the case with Holters or wearable
devices. Our findings reveal that redundancy reduction does
not exert uniform effects across all pathologies. Instead, it offers
advantages in both performance enhancement and computational
complexity reduction through redundancy reduction. Using
6 leads, we achieved nearly identical results compared to
using 12 leads; when only 3 leads are used, transformations
outperform the non-transformed leads. Additionally, employing
3 leads allows for efficient discrimination of normal ECGs,
which is both faster and more cost-effective. These insights are
particularly valuable for applications requiring fewer channels,
such as enhancing efficiency in deep learning models or utilizing
redundancy as a criterion for lead selection in Holter monitors or
wearables.
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