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We introduce and study the notions of (generalized) hyperbol-
icity, topological stability and (uniform) topological expansiv-
ity for operators on locally convex spaces. We prove that every 
generalized hyperbolic operator on a locally convex space has 
the finite shadowing property. Contrary to what happens in 
the Banach space setting, hyperbolic operators on Fréchet 
spaces may fail to have the shadowing property, but we find 
additional conditions that ensure the validity of the shadowing 
property. Assuming that the space is sequentially complete, 
we prove that generalized hyperbolicity implies the strict peri-
odic shadowing property, but we also show that the hypothesis 
of sequential completeness is essential. We show that oper-
ators with the periodic shadowing property on topological 
vector spaces have other interesting dynamical behaviors, in-
cluding the fact that the restriction of such an operator to 
its chain recurrent set is topologically mixing and Devaney 
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chaotic. We prove that topologically stable operators on lo-
cally convex spaces have the finite shadowing property and the 
strict periodic shadowing property. As a consequence, topolog-
ically stable operators on Banach spaces have the shadowing 
property. Moreover, we prove that generalized hyperbolicity 
implies topological stability for operators on Banach spaces. 
We prove that uniformly topologically expansive operators 
on locally convex spaces are neither Li-Yorke chaotic nor 
topologically transitive. Finally, we characterize the notion 
of topological expansivity for weighted shifts on Fréchet se-
quence spaces. Several examples are provided.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The shadowing property is one of the most important concepts in the modern theory 
of dynamical systems. It originated with works by Anosov, Bowen and Sinăı from the late 
1960s and early 1970s, leading to the famous shadowing lemma in differentiable dynamics, 
which asserts that a diffeomorphism has the shadowing property in a neighborhood of 
its hyperbolic set [2,19,49]. In the setting of linear dynamics, it is well known that every 
invertible hyperbolic operator on a Banach space has the shadowing property in the 
full space [38,39]. Moreover, the converse holds in the finite dimensional setting [38,39]
and for invertible normal operators on Hilbert spaces [35]. It remained open for a while 
whether or not this converse is always true. The solution was given by means of the 
following theorem (where r(T ) denotes the spectral radius of T ): Let T be an invertible 
operator on a Banach space X. Suppose that X = M ⊕N , where M and N are closed 
subspaces of X with T (M) ⊂ M and T−1(N) ⊂ N . If r(T |M ) < 1 and r(T−1|N ) < 1, 
then T has the shadowing property [8, Theorem A].

The class of operators considered in the above theorem clearly contains all invertible 
hyperbolic operators, but it also enabled the construction of the first examples of oper-
ators that have the shadowing property but are not hyperbolic [8, Theorem B], thereby 
solving the above-mentioned problem in the negative. The operators considered in the 
above theorem were named generalized hyperbolic in [22], where additional dynamical 
properties of these operators were investigated. The class of generalized hyperbolic op-
erators is also closely related to another fundamental concept in dynamical systems, 
namely: structural stability. A classical theorem in linear dynamics, often called Hart-
man’s theorem, asserts that every invertible hyperbolic operator on a Banach space is 
structurally stable [28,41,45]. It was soon realized that the converse holds in the finite 
dimensional setting [46], but whether or not the converse of Hartman’s theorem is al-
ways true remained open for more than 50 years. This problem was finally settled in 
[10], where it was obtained a class of weighted shifts on classical Banach sequence spaces 
that are structurally stable but are not hyperbolic [10, Theorem 9]. It turns out that 
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these weighted shifts are generalized hyperbolic. A little later, it was proved that every 
generalized hyperbolic operator is structurally stable [11, Theorem 1], which enabled the 
proof of a generalized Grobman-Hartman theorem [11, Theorem 3].

Another important concept in dynamical systems is that of topological stability, which 
was introduced by Walters [51]. A classical result due to Walters [52] asserts that: Every 
topologically stable homeomorphism h : X → X, where X is a closed topological manifold 
of dimension at least two, has the shadowing property (see also [4, Theorem 2.4.9]). Recall 
that a closed topological manifold is a compact connected metrizable topological manifold 
without boundary [4, Page 28]. Motivated by this result, we will begin a study of the 
concept of topological stability in the setting of linear dynamics, with emphasis on its 
connections with generalized hyperbolicity and the shadowing property.

Yet another fundamental concept in dynamical systems is that of expansivity, which 
was introduced by Utz [50]. Expansive and uniformly expansive operators on Banach 
spaces were studied in [1,8,10,24,29,35], for instance. Let us mention three of the main 
results obtained so far:

• An invertible operator on a Banach space is uniformly expansive if and only if its 
approximate point spectrum does not intersect the unit circle [24,29].

• An invertible operator on a Banach space is hyperbolic if and only if it is expansive 
and has the shadowing property [10,22].

• A uniformly expansive operator on a Banach space is never Li-Yorke chaotic [8].

Moreover, complete characterizations of expansive and uniformly expansive weighted 
shifts on classical Banach sequence spaces were obtained in [8].

All the works on linear dynamics mentioned above deal with operators on Banach 
spaces, but the first results on linear dynamical systems go back to Birkhoff [13] for 
the translation operator on the (non-normable) Fréchet space H(C) of all entire func-
tions, and to MacLane [34] for the differentiation operator on H(C), which are the 
classical examples of chaotic operators. Moreover, even the dynamics of operators on 
non-metrizable topological vector spaces has attracted the interest of many researchers 
and experienced a great development in recent years (see, e.g., Chapter 12 in [27], the 
articles [14–17,21,23,26,43,47], and references therein). Our main objective in the present 
work is to propose a concept of (generalized) hyperbolicity, a notion of topological sta-
bility and a concept of (uniform) expansivity for operators on locally convex spaces, with 
the purpose to initiate investigations on these notions.

A diagram summarizing the known implications (arrows with number (1)) and the 
implications that will be proved in the present article (arrows with number (2)), for 
invertible operators in the Banach setting, is presented in Fig. 1.

In Section 2 we introduce a concept of hyperbolicity and a concept of generalized hy-
perbolicity for operators on an arbitrary locally convex space (Definition 1). We prove 
that every generalized hyperbolic operator on a locally convex space has the finite shad-
owing property (Theorem 2), but the shadowing property may fail even for hyperbolic 
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Fig. 1. Implications between various properties for invertible operators on Banach spaces.

operators on the Fréchet space H(C) of all entire functions (Remark 9). Nevertheless, we 
give additional conditions to ensure the validity of the shadowing property (Theorem 6). 
For sequentially complete locally convex spaces, we prove that generalized hyperbolic-
ity implies the strict periodic shadowing property (Theorem 2), but we also show that 
the hypothesis of sequential completeness is essential for the validity of this result (Re-
mark 5). We show that operators with the periodic shadowing property on topological 
vector spaces have other interesting dynamical behaviors (Theorem 3), including the fact 
that the restriction of such an operator to its chain recurrent set is topologically mixing 
and Devaney chaotic. Some examples illustrating the theorems are also presented.

In Section 3 we prove that every topologically stable operator on a locally convex 
space has the finite shadowing property and the strict periodic shadowing property 
(Theorem 13) and that every topologically stable operator on a Banach space has the 
shadowing property (Corollary 15). For this purpose, we show that open convex sets in 
locally convex spaces of dimension greater than two have a certain multihomogeneity 
property (Theorem 18) and we establish a very general version of the previously men-
tioned theorem of Walters [52] in the setting of uniform spaces (Theorem 23). Moreover, 
we show that every invertible generalized hyperbolic operator on a sequentially complete 
locally convex space has a certain stability property (Theorem 26). As a consequence, 
we obtain that every invertible generalized hyperbolic operator on a Banach space is 
topologically stable (Corollary 27).

In Section 4 we introduce the notions of topological expansivity and uniform topological 
expansivity for invertible operators on an arbitrary locally convex space (Definition 33). 
These concepts generalize the well-known notions of expansivity and uniform expan-
sivity for operators on normed spaces, but they seem to be more adequate when we 
go beyond the normed space setting. For invertible generalized hyperbolic operators on 
locally convex spaces, the notions of topological expansivity, uniform topological expan-
sivity and hyperbolicity coincide (Theorem 36). In particular, every invertible hyperbolic 
operator on a locally convex space is uniformly topologically expansive (Corollary 37). 
Our main result in this section asserts that uniformly topologically expansive opera-
tors on locally convex spaces are neither Li-Yorke chaotic nor topologically transitive 
(Theorem 38).
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In Section 5 we characterize the notion of topological expansivity for weighted shifts 
on Fréchet sequence spaces (Theorem 42) and, in particular, on Köthe sequence spaces 
(Corollary 45). Several concrete examples are presented.

In our final Section 6 we propose some open problems.

2. Generalized hyperbolic operators on locally convex spaces

Throughout K denotes either the field R of real numbers or the field C of complex 
numbers, N denotes the set of all positive integers and N0 := N ∪ {0}.

Given a topological vector space X over K (all topological vector spaces will be as-
sumed to be Hausdorff), we denote by L(X) the set of all continuous linear operators on 
X and by GL(X) the set of those operators that have a continuous inverse. Recall that 
X is the topological direct sum of the subspaces M1, . . . , Mn if X is the algebraic direct 
sum of M1, . . . , Mn and the canonical algebraic isomorphism

(y1, . . . , yn) �→ y1 + · · · + yn

is a homeomorphism from the product space M1 × · · · ×Mn onto X. Recall also that a 
family (‖ · ‖α)α∈I of seminorms on X is said to be directed if for every α, β ∈ I, there 
exists γ ∈ I such that ‖ · ‖α ≤ ‖ · ‖γ and ‖ · ‖β ≤ ‖ · ‖γ .

Our first goal is to introduce a notion of generalized hyperbolicity for operators on 
locally convex spaces. It is well known that the concept of spectrum of an operator does 
not behave so well when we go beyond the Banach space setting. In fact, even on Fréchet 
spaces, the spectrum of an operator may fail to be a bounded set, so that we loose the 
concept of spectral radius and the extremely useful spectral radius formula. Thus, the 
conditions

r(T |M ) < 1 and r(T−1|N ) < 1,

that appear in the definition of generalized hyperbolicity on Banach spaces, should be 
replaced by something else. If S is an operator on a Banach space Y , it follows from 
the spectral radius formula that the condition r(S) < 1 is equivalent to the existence of 
constants c > 0 and t ∈ (0, 1) such that

‖Sny‖ ≤ c tn‖y‖ whenever y ∈ Y and n ∈ N0.

On the other hand, there are some classical situations in which the spectral conditions in 
the concept of hyperbolicity are replaced by the validity of certain exponential estimates. 
This is the case in the definition of a hyperbolic set of a diffeomorphism in the area of 
differentiable dynamics [20, Section 5.2]. As another example, we can mention the concept 
of exponential dichotomy in non-autonomous dynamics [42, Definition 2.6], which extends 
the idea of hyperbolicity to the non-autonomous case. In view of these considerations, 
we propose the definition below.
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Definition 1. Let X be a locally convex space over K whose topology is induced by a 
directed family (‖ ·‖α)α∈I of seminorms. We say that an operator T ∈ L(X) is generalized 
hyperbolic if there is a topological direct sum decomposition

X = M ⊕N (1)

with the following properties:

(GH1) T (M) ⊂ M .
(GH2) T (N) ⊃ N and T |N : N → T (N) is an isomorphism.
(GH3) For every α ∈ I, there exist β ∈ I, c > 0 and t ∈ (0, 1) such that

‖Tny‖α ≤ c tn‖y‖β and ‖Snz‖α ≤ c tn‖z‖β whenever y ∈ M, z ∈ N,n ∈ N0,

(2)
where S := (T |N )−1|N ∈ L(N).

If T ∈ GL(X), then condition (GH2) is equivalent to

(GH2’) T−1(N) ⊂ N ,

and the second inequality in (2) can be rewritten as

‖T−nz‖α ≤ c tn‖z‖β .

If M and N are T -invariant, then we say that the operator T is hyperbolic. If, in addition, 
M = {0} or N = {0}, then we say that the hyperbolic operator T has trivial splitting.

Note that the above notions are independent of the choice of the directed family (‖ ·
‖α)α∈I of seminorms inducing the topology of X. Moreover, they generalize to operators 
on arbitrary locally convex spaces the corresponding notions for operators on Banach 
spaces.

As we mentioned in the Introduction, [8, Theorem A] asserts that every invertible gen-
eralized hyperbolic operator on a Banach space has the shadowing property. Surprisingly 
enough, there exist invertible hyperbolic operators on the Fréchet space H(C) of all en-
tire functions that do not have the shadowing property (Remark 9). Nevertheless, we will 
prove below that we can always guarantee the finite shadowing property for generalized 
hyperbolic operators on locally convex spaces. Also, it was proved in [12, Theorem 18]
that generalized hyperbolic operators on Banach spaces have the strict periodic shad-
owing property. We will see below that the arguments in [12] can be adapted to extend 
this result to arbitrary sequentially complete locally convex spaces, but we will also give 
a counterexample showing that the hypothesis of sequential completeness is essential for 
the validity of this result (Remark 5). Recall that a topological vector space X is said 
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to be sequentially complete if every Cauchy sequence in X converges to a point in X, 
where a sequence (xn)n∈N in X is a Cauchy sequence if for every neighborhood V of 0
in X, there exists n0 ∈ N such that xn − xm ∈ V whenever n, m ≥ n0.

Before stating and proving our results, let us recall the basic definitions related to the 
concept of shadowing. If T ∈ L(X) and U is a neighborhood of 0 in X, recall that a U -
pseudotrajectory of T is a finite or infinite sequence (xj)i<j<k in X (−∞ ≤ i < k ≤ ∞), 
consisting of at least two terms, such that

Txj − xj+1 ∈ U for all i < j < k − 1.

A finite U -pseudotrajectory of the form (xj)kj=0 is also called a U -chain for T (from x0
to xk). If, in addition, xk = x0, then we say that (xj)kj=0 is a U -cycle for T . Recall that 
T has the finite shadowing property (resp. the positive shadowing property) if for every 
neighborhood V of 0 in X, there is a neighborhood U of 0 in X such that every U -chain 
(xj)kj=0 (resp. every U -pseudotrajectory (xj)j∈N0) of T is V -shadowed by the trajectory 
of some x ∈ X, in the sense that

xj − T jx ∈ V for all j ∈ {0, . . . , k} (resp. for all j ∈ N0).

If T ∈ GL(X), then the shadowing property is defined by replacing the set N0 by the set 
Z in the definition of positive shadowing. Recall also that T has the periodic shadowing 
property [32,40] if for every neighborhood V of 0 in X, there is a neighborhood U of 0
in X such that every periodic U -pseudotrajectory (xj)j∈N0 of T is V -shadowed by some 
x ∈ Per(T ) (the set of all periodic points of T ). By adding the condition that the periodic 
point x can be chosen to satisfy T kx = x if (xj)j∈N0 has period k, then we obtain the 
strict periodic shadowing property [31].

Theorem 2. Every generalized hyperbolic operator T on a locally convex space X has the 
finite shadowing property. If, in addition, X is sequentially complete, then T also has 
the strict periodic shadowing property.

Proof. Choose a directed family (‖ ·‖α)α∈I of seminorms inducing the topology of X and 
let M , N and S be as in the definition of generalized hyperbolicity. Let PM : X → M and 
PN : X → N be the canonical projections associated to the direct sum decomposition 
(1). Given a neighborhood V of 0 in X, there exist α ∈ I and ε > 0 such that

{x ∈ X : ‖x‖α < ε} ⊂ V.

Let β ∈ I, c > 0 and t ∈ (0, 1) be such that (2) holds. Since the projections PM and PN

are continuous, there exist γ ∈ I and d > 0 such that

‖PMx‖β ≤ d ‖x‖γ and ‖PNx‖β ≤ d ‖x‖γ for all x ∈ X. (3)
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Let δ := (1−t)ε
3 c d > 0 and U := {x ∈ X : ‖x‖γ < δ}, which is a neighborhood of 0 in X. 

Let (xj)pj=0 be a U -chain for T and define yj := xj+1 − Txj for each j ∈ {0, . . . , p − 1}. 
Then

‖yj‖γ < δ for all j ∈ {0, . . . , p− 1}. (4)

Consider the vector

x := x0 +
p∑

j=1
SjPNyj−1. (5)

We claim that

xm − Tmx =
m−1∑
j=0

T jPMym−j−1 −
p−m∑
j=1

SjPNym+j−1 for all m ∈ {0, . . . , p}, (6)

where sums of the form 
∑−1

j=0 aj and 
∑0

j=1 aj are assumed to be 0. Clearly, (6) holds 
for m = 0. Assume that it holds for a certain m ∈ {0, . . . , p − 1}. Then

xm+1 − Tm+1x = ym + T (xm − Tmx)

= PMym + PNym +
m−1∑
j=0

T j+1PMym−j−1 −
p−m∑
j=1

Sj−1PNym+j−1

=
m∑
j=0

T jPMym−j −
p−m−1∑
j=1

SjPNym+j .

Hence, by induction, we obtain (6). By (2), (3), (4) and (6), for each m ∈ {0, . . . , p},

‖xm − Tmx‖α ≤
m−1∑
j=0

‖T jPMym−j−1‖α +
p−m∑
j=1

‖SjPNym+j−1‖α

≤
m−1∑
j=0

c tj‖PMym−j−1‖β +
p−m∑
j=1

c tj‖PNym+j−1‖β

≤
m−1∑
j=0

c d tj‖ym−j−1‖γ +
p−m∑
j=1

c d tj‖ym+j−1‖γ

<
2 c d δ
1 − t

< ε.

This shows that the U -chain (xj)pj=0 is V -shadowed by (T jx)pj=0, proving that T has the 
finite shadowing property.
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Now, assume that X is sequentially complete. Assume also that (xj)pj=0 is a U -cycle 
for T . We extend this U -cycle to a periodic U -pseudotrajectory of T by defining

(xj)j∈N0 := (x0, x1, . . . , xp, x1, . . . , xp, x1, . . . , xp, . . .).

Let yj := xj+1 − Txj for each j ∈ N0. Note that the sequence (yj)j∈N0 is also periodic 
with period p and that

‖yj‖γ < δ for all j ∈ N0.

The vector x defined in (5) may fail to be periodic. However, we can follow the proof of 
[12, Theorem 18] and replace (5) by the following definition:

x := x0 +
∞∑
j=1

SjPNyj−1 −
p−1∑
j=0

∞∑
k=0

T kp+jPMyp−j−1. (7)

Since the sequence (yj)j∈N0 is bounded, the estimates in (2) imply that the sequence of 
partial sums of each infinite series in (7) is a Cauchy sequence. Since we are assuming 
that X is sequentially complete, the vector x is well-defined. The computations done in 
the proof of [12, Theorem 18] show that

T px = x

and

xm − Tmx =
m−1∑
j=0

T jPMym−j−1 −
∞∑
j=1

SjPNym+j−1 +
p−1∑
j=0

∞∑
k=0

T kp+j+mPMyp−j−1,

for all m ∈ {0, . . . , p}. Hence, x is a periodic point of T with period p and estimates like 
to the ones we made before give

‖xm − Tmx‖α <
3 c d δ
1 − t

= ε for all m ∈ {0, . . . , p}.

This proves that T has the strict periodic shadowing property. �
Let X be a topological vector space. Given T ∈ L(X), recall that x ∈ X is a chain 

recurrent point of T if for every neighborhood U of 0 in X, there is a U -chain (actually 
a U -cycle) for T from x to itself. The set CR(T ) of all chain recurrent points of T
is called the chain recurrent set of T and T is chain recurrent if CR(T ) = X. Clearly, 
Per(T ) ⊂ CR(T ). Recall also that T is topologically transitive (resp. topologically mixing) 
if for any pair A, B of nonempty open sets in X, there exists n ∈ N0 (resp. n0 ∈ N0) 
such that Tn(A) ∩B �= ∅ (resp. for all n ≥ n0). Finally, recall that T is Devaney chaotic
if T is transitive and Per(T ) is dense in X.
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Operators with the periodic shadowing property have some additional interesting 
dynamical properties, which are described in the next theorem.

Theorem 3. Let X be a topological vector space. If T ∈ L(X) has the (strict) periodic 
shadowing property, then the following properties hold:

(a) Per(T ) is dense in CR(T ).
(b) T |CR(T ) has the finite shadowing property and the (strict) periodic shadowing prop-

erty.
(c) T |CR(T ) is topologically mixing and Devaney chaotic.

Proof. By [12, Proposition 26], Y := CR(T ) is a closed T -invariant subspace of X. 
Hence, S := T |Y is a well-defined continuous linear operator on Y . Given a symmetric 
neighborhood V of 0 in X, let U be a neighborhood of 0 in X associated to V according 
to the fact that T has the (strict) periodic shadowing property.
Step 1. Per(T ) is dense in CR(T ):

Given x ∈ CR(T ), there exists a U -chain for T from x to itself. By periodic shadowing, 
this U -cycle for T must be V -shadowed by the trajectory under T of some y ∈ Per(T ). 
In particular, y ∈ x + V .
Step 2. S has the finite shadowing property:

Let (xj)kj=0 be a (U ∩ Y )-chain for S. Since x0, xk ∈ CR(T ), [12, Proposition 25] says 
that there is a U -chain (xk, xk+1, . . . , xp) for T from xk to x0. Hence, (xj)pj=0 is a U -cycle 
for T . By periodic shadowing, it must be V -shadowed by the trajectory under T of some 
x ∈ Per(T ). In particular,

x ∈ Y and xj − Sjx ∈ V ∩ Y for all j ∈ {0, . . . , k}.

Step 3. S has the (strict) periodic shadowing property:
If (xj)kj=0 is a (U ∩ Y )-cycle for S, then it is also a U -cycle for T , and so it must be 

V -shadowed by the trajectory under T of some x ∈ Per(T ). Then, x ∈ Y and (xj)kj=0 is 
(V ∩ Y )-shadowed by the trajectory under S of x. In the strict case, x can be chosen so 
that T kx = x, that is, Skx = x.
Step 4. S is topologically mixing:

By Step 1,

CR(S) ⊂ CR(T ) = Per(T )X = Per(S)X = Per(S)Y ⊂ CR(S). (8)

Hence, CR(S) = CR(T ) = Y , proving that S is a chain recurrent operator. Since the 
concepts of chain recurrence and topological mixing coincide for operators with the finite 
shadowing property [12, Theorem 7] (see also [3, Theorem A]), we conclude from Step 2 
that S is topologically mixing.
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Step 5. S is Devaney chaotic:
By Step 4, S is topologically transitive, and by (8), Per(S) is dense in Y . �
By combining Theorems 2 and 3, we obtain the following result.

Corollary 4. Let X be a sequentially complete locally convex space. If T ∈ L(X) is 
generalized hyperbolic, then the following properties hold:

(a) Per(T ) is dense in CR(T ).
(b) T |CR(T ) has the finite shadowing property and the strict periodic shadowing property.
(c) T |CR(T ) is topologically mixing and Devaney chaotic.

For invertible generalized hyperbolic operators on Banach spaces, it was proved in 
[22] that T |Ω(T ) is topologically mixing and Devaney chaotic, where Ω(T ) denotes the 
set of all nonwandering points of T . Recall that x ∈ X is a nonwandering point of T
if for every neighborhood A of x in X, there exists n ∈ N such that Tn(A) ∩ A �= ∅. 
This result from [22] can be seen as a particular case of the above corollary, since the 
denseness of Per(T ) in CR(T ) implies that Ω(T ) = CR(T ).

Remark 5. The hypothesis of sequential completeness is essential for the validity of the 
second assertion in Theorem 2 and for the validity of Corollary 4, even in the case of 
normed spaces. As a counterexample, let X be the vector space of all sequences (xn)n∈Z
of scalars with finite support endowed with any �p-norm (1 ≤ p ≤ ∞) and let T ∈ GL(X)
be the generalized hyperbolic operator given by

T ((xn)n∈Z) := (wn+1xn+1)n∈Z,

where wn := 1/2 if n ≤ 0 and wn := 2 if n ≥ 1. Given any δ > 0, choose n ∈ N such that 
2nδ > 1. Then,

(0, δen, 2δen−1, . . . , 2n−1δe1, 2nδe0, 2n−1δe−1, . . . , 2δe−n+1, δe−n, 0)

is a δ-cycle for T that cannot be 1-shadowed by a periodic point of T , since Per(T ) = {0}. 
Moreover, CR(T ) = X, that is, T is chain recurrent, but T is not Devaney chaotic.

Our next goal is to present additional conditions to guarantee the validity of the 
shadowing property for generalized hyperbolic operators on locally convex spaces.

Given a seminorm ‖ · ‖ on a vector space X, we define the kernel of ‖ · ‖ by

Ker(‖ · ‖) := {x ∈ X : ‖x‖ = 0}.

A sequence (xn)n∈N in X is said to be a Cauchy sequence with respect to ‖ · ‖ if ‖xn −
xm‖ → 0 as n, m → ∞. The seminorm ‖ · ‖ is said to be complete if every Cauchy 



12 N.C. Bernardes et al. / Journal of Functional Analysis 288 (2025) 110696
sequence (xn)n∈N with respect to ‖ · ‖ has a limit x ∈ X, in the sense that ‖xn−x‖ → 0
as n → ∞. In this case, note that the set of all limits of the sequence (xn)n∈N is exactly 
x + Ker(‖ · ‖).

Theorem 6. Suppose that the topology of a locally convex space X is induced by a directed 
family (‖ · ‖α)α∈I of complete seminorms.

(a) If T ∈ GL(X) is generalized hyperbolic and T (Ker(‖ ·‖α)) = Ker(‖ ·‖α) for all α ∈ I, 
then T has the shadowing property.

(b) If T ∈ L(X) is generalized hyperbolic and T (Ker(‖ · ‖α)) ⊂ Ker(‖ · ‖α) for all α ∈ I, 
then T has the positive shadowing property.

Proof. (a): Let X = M ⊕ N be the topological direct sum decomposition given by the 
generalized hyperbolicity of T and let PM : X → M and PN : X → N be the canonical 
projections. Given a neighborhood V of 0 in X, there exist θ ∈ I and ε > 0 such that

{x ∈ X : ‖x‖θ < ε} ⊂ V.

Choose α ∈ I and a > 0 such that

‖x‖θ ≤ ‖x‖α, ‖Tx‖θ ≤ a‖x‖α and ‖T−1x‖θ ≤ a‖x‖α for all x ∈ X. (9)

Let β ∈ I, c > 0 and t ∈ (0, 1) be such that

‖Tny‖α ≤ c tn‖y‖β and ‖T−nz‖α ≤ c tn‖z‖β for all y ∈ M, z ∈ N,n ∈ N0.

Choose γ ∈ I and d > 0 such that

‖PMx‖β ≤ d ‖x‖γ and ‖PNx‖β ≤ d ‖x‖γ for all x ∈ X.

Let η ∈ I and b ≥ 1 satisfy

‖x‖γ ≤ ‖x‖η and ‖T−1x‖γ ≤ b ‖x‖η for all x ∈ X.

Put δ := (1−t)ε
3 b c d > 0 and U := {x ∈ X : ‖x‖η < δ}. Let (xj)j∈Z be a U -pseudotrajectory 

of T and define yj := xj+1 − Txj and zj := x−j−1 − T−1x−j for each j ∈ N0. Then

‖yj‖γ < δ and ‖zj‖γ < b δ for all j ∈ N0.

For each k ∈ N, let

uk :=
k∑

T−jPNyj−1 and vk :=
k∑

T jPMzj−1.

j=1 j=1
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For m ∈ Z and j ∈ N, we have that

‖Tm−jPNyj−1‖α ≤ c tj−m‖PNyj−1‖β ≤ c d tj−m‖yj−1‖γ < cd δ tj−m if j ≥ m,

and

‖Tm+jPMzj−1‖α ≤ c tj+m‖PMzj−1‖β ≤ c d tj+m‖zj−1‖γ < b c d δ tj+m if j ≥ −m.

This implies that the sequences (Tmuk)k∈N and (Tmvk)k∈N are Cauchy with respect to 
‖ · ‖α. Since we are assuming that ‖ · ‖α is complete, there exist pm, qm ∈ X such that

‖pm − Tmuk‖α → 0 and ‖qm − Tmvk‖α → 0 as k → ∞ (m ∈ Z).

Let us prove that

‖Tmp0 − Tmuk‖θ → 0 as k → ∞, for all m ∈ Z. (10)

The case m = 0 is clear. Suppose that (10) holds for a certain m ∈ Z. Since

‖pm−1 − Tm−1uk‖α → 0 and ‖pm+1 − Tm+1uk‖α → 0 as k → ∞,

we obtain from (9) that

‖Tpm−1 − Tmuk‖θ → 0 and ‖T−1pm+1 − Tmuk‖θ → 0 as k → ∞.

The induction hypothesis tells us that ‖Tmp0 − Tmuk‖θ → 0 as k → ∞. Therefore,

Tpm−1 − Tmp0 ∈ Ker(‖ · ‖θ) and T−1pm+1 − Tmp0 ∈ Ker(‖ · ‖θ).

Since T (Ker(‖ · ‖θ)) = Ker(‖ · ‖θ), we conclude that

pm−1 − Tm−1p0 ∈ Ker(‖ · ‖θ) and pm+1 − Tm+1p0 ∈ Ker(‖ · ‖θ),

which implies that (10) holds with m − 1 and with m + 1 in the place of m.
Analogously,

‖Tmq0 − Tmvk‖θ → 0 as k → ∞, for all m ∈ Z. (11)

Now, by arguing as in the proof of (6), we obtain

xm − Tm(x0 + uk) =
m−1∑
j=0

T jPMym−j−1 −
k−m∑
j=1

T−jPNym+j−1

and
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x−m − T−m(x0 + vk) =
m−1∑
j=0

T−jPNzm−j−1 −
k−m∑
j=1

T jPMzm+j−1,

whenever 0 ≤ m ≤ k. Hence,

‖xm − Tm(x0 + uk + vk)‖α ≤ ‖xm − Tm(x0 + uk)‖α + ‖Tmvk‖α (12)

≤ c d δ

(
m−1∑
j=0

tj +
k−m∑
j=1

tj

)
+ b c d δ

k∑
j=1

tm+j

and

‖x−m − T−m(x0 + uk + vk)‖α ≤ ‖x−m − T−m(x0 + vk)‖α + ‖T−muk‖α (13)

≤ b c d δ

(
m−1∑
j=0

tj +
k−m∑
j=1

tj

)
+ c d δ

k∑
j=1

tm+j ,

whenever 0 ≤ m ≤ k. Consider the vector

x := x0 + p0 + q0.

By fixing m ∈ N0 and letting k → ∞, it follows from (10), (11), (12) and (13) that

‖xm − Tmx‖θ ≤ b c d δ

(
m−1∑
j=0

tj + 2
∞∑
j=1

tj

)
< ε

and

‖x−m − T−mx‖θ ≤ b c d δ

(
m−1∑
j=0

tj + 2
∞∑
j=1

tj

)
< ε.

Thus, the U -pseudotrajectory (xj)j∈Z of T is V -shadowed by the trajectory of x under 
T , proving that T has the shadowing property.
(b): The proof is analogous (but slightly simpler) and is left to the reader. �
Remark 7. As an immediate consequence of Theorem 6, we obtain the following known 
results:

• Every invertible generalized hyperbolic operator on a Banach space has the shadow-
ing property [8, Theorem A].

• Every generalized hyperbolic operator on a Banach space has the positive shadowing 
property [9, Proposition 19].
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These results can also be derived directly from Theorem 2, since it was proved in [12, 
Theorem 1] that (positive) shadowing and finite shadowing coincide for operators on 
Banach spaces.

Example 8. Let H(C) be the Fréchet space of all entire functions endowed with the 
compact-open topology, that is, the topology induced by the sequence of seminorms 
(actually norms) given by

‖f‖k := max
|z|≤k

|f(z)| (f ∈ H(C), k ∈ N). (14)

Given a zero-free entire function φ, consider the multiplication operator

Mφ : f ∈ H(C) �→ φ · f ∈ H(C).

We have that the following assertions are equivalent:

(i) Mφ has the finite shadowing property;
(ii) Mφ is generalized hyperbolic;
(iii) Mφ is hyperbolic with trivial splitting;
(iv) φ is a constant function with modulus �= 1.

Indeed, (iv) ⇒ (iii) is easy, (iii) ⇒ (ii) is obvious, and (ii) ⇒ (i) follows from Theorem 2. 
It remains to prove that (i) ⇒ (iv). For this purpose, suppose that (i) is true and (iv) 
is false. Then, there exists z0 ∈ C with |φ(z0)| = 1 and there exist H ⊂ C compact and 
δ > 0 such that the condition

|(Mφ(fj))(z) − fj+1(z)| ≤ δ for all z ∈ H and j ∈ {0, . . . , k − 1}, (15)

where k ∈ N and f0, . . . , fk ∈ H(C), implies the existence of an f ∈ H(C) with

|fj(z0) − ((Mφ)j(f))(z0)| < 1 for all j ∈ {0, . . . , k}. (16)

Note that (16) implies that

|fk(z0)| < 2 + |f0(z0)|. (17)

However, by defining f0 := 0 and fj := φ · fj−1 +φ(z0)j−1 · δ for j ≥ 1, we have that (15)
holds for every k ∈ N, but (17) fails for k large enough. This contradiction completes 
the proof.

Remark 9. We have just seen that the invertible multiplication operators on H(C) that 
have the finite shadowing property are exactly those of the form
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Mλ : f ∈ H(C) �→ λf ∈ H(C),

where λ ∈ C and |λ| �∈ {0, 1}. Nevertheless, it was proved in [12, Theorem 2] that none of 
these operators has the shadowing property. More precisely, Mλ has the finite shadowing 
property but does not have the positive shadowing property whenever |λ| > 1, and Mλ

has the positive shadowing property but does not have the shadowing property whenever 
0 < |λ| < 1 (see [12, Remark 3]). This shows that, in general, an invertible hyperbolic 
operator may fail to have the (positive) shadowing property, even in the Fréchet space 
setting. This also shows that the hypothesis of completeness of the seminorms ‖ · ‖α is 
essential for the validity of Theorem 6 (note that the seminorms in (14) are not complete).

In strong contrast to the case of the space H(C) of entire functions, we will now see 
that shadowing and finite shadowing coincide for invertible multiplication operators on 
C(Ω) spaces.

Example 10. Let Ω be a locally compact Hausdorff space and let C(Ω) be the complete 
locally convex space of all continuous maps f : Ω → K endowed with the compact-open 
topology, that is, the topology induced by the family of seminorms

‖f‖K := max
x∈K

|f(x)| (f ∈ C(Ω), K ⊂ Ω nonempty and compact). (18)

Note that C(Ω) is a Fréchet space if Ω is σ-compact. Given a zero-free continuous map 
φ : Ω → K, consider the multiplication operator

Mφ : f ∈ C(Ω) �→ φ · f ∈ C(Ω).

We have that the following assertions are equivalent:

(i) Mφ has the finite shadowing property;
(ii) Mφ has the shadowing property;
(iii) Mφ is generalized hyperbolic;
(iv) Mφ is hyperbolic;
(v) |φ(x)| �= 1 for every x ∈ Ω.

Indeed, contrary to the case of Example 8, the seminorms in (18) are complete. Thus, 
(iii) ⇒ (ii) follows from Theorem 6. Moreover, (ii) ⇒ (i) is obvious, (i) ⇒ (v) is analogous 
to the proof of (i) ⇒ (iv) in the previous example, and (iv) ⇒ (iii) is also obvious. It 
remains to prove that (v) ⇒ (iv). For this purpose, assume (v) and define

A := {x ∈ Ω : |φ(x)| < 1} and B := {x ∈ Ω : |φ(x)| > 1}.

In view of (v), we have that Ω = A ∪B and both A and B are simultaneously open and 
closed in Ω. Let
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M := {f ∈ C(Ω) : f = 0 on B} and N := {f ∈ C(Ω) : f = 0 on A},

which are closed Mφ-invariant subspaces of C(Ω). It is easy to check that C(Ω) = M⊕N

as a topological direct sum. In order to prove (GH3), given a nonempty compact subset 
K of Ω, define

t := max
{

max
x∈K∩A

|φ(x)|, max
x∈K∩B

1
|φ(x)|

}
< 1,

and note that

‖(Mφ)nf‖K ≤ tn‖f‖K and ‖(Mφ)−ng‖K ≤ tn‖g‖K ,

whenever f ∈ M , g ∈ N and n ∈ N0. Hence, (iv) holds.

Example 8 can be generalized as follows.

Example 11. Let H(Ω) be the Fréchet space of all holomorphic functions f : Ω → C

endowed with the compact-open topology, where Ω is a nonempty open set in C. Given 
a zero-free holomorphic function φ : Ω → C, consider the multiplication operator

Mφ : f ∈ H(Ω) �→ φ · f ∈ H(Ω).

We have that the following assertions are equivalent:

(i) Mφ has the finite shadowing property;
(ii) Mφ is generalized hyperbolic;
(iii) Mφ is hyperbolic;
(iv) |φ(z)| �= 1 for all z ∈ Ω.

The proof of (i) ⇒ (iv) is essentially the same as the proof given in Example 8, and 
(iv) ⇒ (iii) follows from the argument used in Example 10. Contrary to the case of the 
space of entire functions, we cannot guarantee in general that the hyperbolic splitting in 
(iii) is trivial nor that φ is a constant function in (iv).

It follows immediately from the definition that the inverse T−1, the rotations λT , 
|λ| = 1, and the powers Tn, n ∈ N, of a (generalized) hyperbolic operator T ∈ GL(X)
are (generalized) hyperbolic.

Proposition 12. Suppose that X is the product of a family (X
)
∈L of locally convex 
spaces, T
 ∈ GL(X
) for each � ∈ L, and T ∈ GL(X) is the product operator given by

T ((x
)
∈L) := (T
x
)
∈L.

If each T
 is (generalized) hyperbolic, then so is T .
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Proof. For each � ∈ L, let (‖ · ‖α�
)α�∈I� be a directed family of seminorms that induces 

the topology of X
. Recall that the product topology on X is induced by the family of 
seminorms given by

‖(x
)
∈L‖α�1 ,...,α�k
:= max{‖x
1‖α�1

, . . . , ‖x
k‖α�k
},

for k ∈ N, �1, . . . , �k ∈ L and α
1 ∈ I
1 , . . . , α
k ∈ I
k .
Suppose that each T
 is generalized hyperbolic and let X
 = M
⊕N
 be the topological 

direct sum decomposition given by the definition of generalized hyperbolicity. Consider 
the subspaces M :=

∏

∈L M
 and N :=

∏

∈L N
 of X. It is routine to verify that 

X = M ⊕ N as a topological direct sum decomposition and that properties (GH1), 
(GH2’) and (GH3) hold.

If each T
 is hyperbolic, then it is clear that T is hyperbolic. �
Concrete examples of generalized hyperbolic operators on Banach (and Hilbert) spaces 

that are not hyperbolic can be found in [8,10]. In Section 5 we will exhibit some examples 
of this type on the (non-normable) Fréchet space s(Z) of rapidly decreasing sequences 
on Z.

3. Topological stability for operators

Our main goal in the present section is to establish the following result.

Theorem 13. Let X be a locally convex space. If T ∈ GL(X) is topologically stable, then 
T has the finite shadowing property and the strict periodic shadowing property.

The operator T is said to be topologically stable if for every neighborhood V of 0 in 
X, there is a neighborhood U of 0 in X such that for any homeomorphism S : X → X

with

Tx− Sx ∈ U for all x ∈ X,

there is a continuous map φ : X → X satisfying

T ◦ φ = φ ◦ S and φ(x) − x ∈ V for all x ∈ X.

We will talk more about this concept later in this section, where we will consider it in 
the more general setting of uniform spaces (see Definition 22 and the comments following 
it).

In view of Theorem 3, we obtain the following result.

Corollary 14. Let X be a locally convex space. If T ∈ GL(X) is topologically stable, then 
the following properties hold:
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(a) Per(T ) is dense in CR(T ).
(b) T |CR(T ) has the finite shadowing property and the strict periodic shadowing property.
(c) T |CR(T ) is topologically mixing and Devaney chaotic.

Since the notions of shadowing and finite shadowing coincide for operators on Banach 
spaces [12, Theorem 1], the above theorem implies the following result.

Corollary 15. Let X be a Banach space. If T ∈ GL(X) is topologically stable, then T has 
the shadowing property and the strict periodic shadowing property.

In order to prove Theorem 13, we shall introduce a certain concept of multihomogeneity
for uniform spaces. So, let us begin by fixing some notations regarding uniform spaces 
(see [18, Chapter II] for the basics on uniform spaces). Consider a uniform space X with 
uniformity U . Given A ⊂ X and U ∈ U , the set

U(A) := {y ∈ X : (x, y) ∈ U for some x ∈ A}

is called the U -neighborhood of A in X. If A is a singleton, say A = {x}, it is usual to 
write U(x) instead of U({x}). Recall that, for each x ∈ X, the family {U(x) : U ∈ U}
constitutes a fundamental system of neighborhoods of x in the topology induced by the 
uniformity U . Given U, V ∈ U , we define

U ◦ V := {(x, y) ∈ X ×X : (x, z) ∈ V and (z, y) ∈ U for some z ∈ X}.

Finally, U ∈ U is said to be symmetric if (y, x) ∈ U whenever (x, y) ∈ U .
Now, recall that a topological space Y is said to be homogeneous if for any a, b ∈ Y , 

there is a homeomorphism h : Y → Y with h(a) = b. This concept was introduced by 
Sierpiński [48] in 1920. Since then, many variations, including several notions of local 
homogeneity, have been introduced and investigated by several authors. The definition 
given below can be seen as a “multihomogeneous” version of Ford’s concept [25] of a 
strongly locally homogeneous space.

Definition 16. A uniform space X with uniformity U is said to be strongly locally mul-
tihomogeneous if for every V ∈ U , there exists U ∈ U such that U ⊂ V and for any 
integer k ≥ 1, any pairwise distinct points a1, . . . , ak ∈ X and any pairwise distinct 
points b1, . . . , bk ∈ X with (aj , bj) ∈ U for all j ∈ {1, . . . , k}, there is a homeomorphism 
h : X → X satisfying the following conditions:

(a) h(aj) = bj for all j ∈ {1, . . . , k};
(b) h(U(aj)) ⊂ V (aj) for all j ∈ {1, . . . , k};
(c) h(x) = x for all x ∈ X\(U(a1) ∪ . . . ∪ U(ak)).

Remark 17. If X is strongly locally multihomogeneous, then the following property holds:
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(P) For each V ∈ U , there exists U ∈ U such that for any integer k ≥ 1, any pairwise 
distinct points a1, . . . , ak ∈ X and any pairwise distinct points b1, . . . , bk ∈ X with 
(aj , bj) ∈ U for all j ∈ {1, . . . , k}, there is a homeomorphism h : X → X such that

• h(aj) = bj for all j ∈ {1, . . . , k};
• (x, h(x)) ∈ V for all x ∈ X.

Property (P) was called property∗ in [31] in the setting of compact metric spaces. It 
is well known that closed topological manifolds of dimension at least two have property 
(P) (see [4, Lemma 2.4.11], for instance) and it was proved in [31] that any Cantor space 
(X, d) has property (P). In the sequel we shall prove that open convex sets in locally 
convex spaces of dimension at least two also have property (P).

Theorem 18. Every open convex set in a locally convex space of real dimension at least 
three is strongly locally multihomogeneous.

For the proof we will need the lemma below.

Lemma 19. Let C be an open connected set in a locally convex space X. For any a, b ∈ C, 
there is a homeomorphism h : X → X such that

h(a) = b and h(x) = x for all x ∈ X\C.

Proof. We shall divide the proof in five steps.
Step 1. Let U := {x ∈ X : ‖x − x0‖ < r}, where ‖ · ‖ is a continuous seminorm on X, 
x0 ∈ X and r > 0. For any a, b ∈ U with ‖a − x0‖ > 0 and b − x0 = λ(a − x0) for some 
λ > 0, there is a homeomorphism h : X → X such that

h(a) = b and h(x) = x for all x ∈ (X\U) ∪ (x0 + Ker ‖ · ‖).

It is enough to consider the case where x0 = 0 and r = 1. Choose k ∈ N such that

1 < λ(1 + k‖a‖) < 1 + k.

Let φ : [1, ∞) → [1, ∞) be the map that linearly interpolates the points

(1, 1), (1 + k‖a‖, λ(1 + k‖a‖)) and (1 + k, 1 + k),

and equals the identity on [1 + k, ∞). We define h : X → X by

h(x) := φ(1 + k‖x‖)
x.
1 + k‖x‖



N.C. Bernardes et al. / Journal of Functional Analysis 288 (2025) 110696 21
Note that h is continuous, h(a) = b and h(x) = x whenever ‖x‖ = 0 or ‖x‖ ≥ 1. In order 
to prove that h is bijective, we consider the auxiliary function

ψ : t ∈ [0,∞) �→ φ(1 + kt) t
1 + kt

∈ [0,∞),

which is a homeomorphism. We define g : X → X by

g(x) := x if ‖x‖ = 0, g(x) := ψ−1(‖x‖)
‖x‖ x if ‖x‖ > 0.

Simple computations show that h(g(x)) = g(h(x)) = x for all x ∈ X, that is, h is bijective 
and g is its inverse. It remains to prove that g is continuous. For this purpose, suppose 
that a net (xα)α∈I in X\ Ker ‖ · ‖ converges to a point x ∈ Ker ‖ · ‖ in the topology of 
X. We have to prove that (g(xα))α∈I converges to x in the topology of X. Since

g(xα) = ψ−1(‖xα‖)
‖xα‖

xα for all α ∈ I,

it is enough to show that

lim
t→0+

ψ−1(t)
t

= 1,

which can be obtained from an application of L’Hôpital’s rule.

Step 2. Let U := {x ∈ X : ‖x − x0‖ < r}, where ‖ · ‖ is a continuous seminorm on X, 
x0 ∈ X and r > 0. For any a ∈ U with ‖a − x0‖ > 0, there is a homeomorphism 
h : X → X such that

h(a) = x0 and h(x) = x for all x ∈ X\U.

Indeed, let

t := r − ‖a− x0‖
3 > 0 and r′ := r − t = 2r + ‖a− x0‖

3 > 0.

Let

x′
0 := x0 − t · a− x0

‖a− x0‖
and U ′ := {x ∈ X : ‖x− x′

0‖ < r′}.

Simple computations show that x0 ∈ U ′ and U ′ ⊂ U . Moreover,

a− x′
0 = ‖a− x0‖ + t

‖a− x0‖
(a− x0) = ‖a− x0‖ + t

t
(x0 − x′

0),

which implies that a ∈ U ′, ‖a − x′
0‖ > 0 and x0 − x′

0 = λ(a − x′
0), where
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λ := t

‖a− x0‖ + t
> 0.

Hence, by Step 1, there is a homeomorphism h : X → X such that h(a) = x0 and 
h(x) = x for all x ∈ X\U ′. Since U ′ ⊂ U , we are done.

Step 3. Let U := {x ∈ X : ‖x − x0‖ < r}, where ‖ · ‖ is a continuous seminorm on X, 
x0 ∈ X and r > 0. For any a, b ∈ U , there is a homeomorphism h : X → X such that

h(a) = b and h(x) = x for all x ∈ X\U.

We may assume that ‖ · ‖ is not identically zero. Hence, for any ε > 0, there exists 
x′

0 ∈ X such that ‖x′
0 − x0‖ < ε, ‖a − x′

0‖ > 0 and ‖b − x′
0‖ > 0. In particular,

U ′ := {x ∈ X : ‖x− x′
0‖ < r − ε} ⊂ U.

Moreover, by choosing ε > 0 small enough, we have that a, b ∈ U ′. Thus, by Step 2, 
there are homeomorphisms f : X → X and g : X → X such that

f(a) = x′
0, g(b) = x′

0 and f(x) = g(x) = x for all x ∈ X\U ′.

Hence, h := g−1 ◦ f does the job.

Step 4. Proof of the case where C is convex.
Let L be the line segment joining a and b, that is,

L := {(1 − t)a + tb : t ∈ [0, 1]}.

Since we are assuming that C is convex, L ⊂ C. Since L is compact, there is a continuous 
seminorm ‖ · ‖ on X such that the open convex neighborhood

V := {x ∈ X : ‖x‖ < 1}

of 0 in X satisfies

L + V ⊂ C.

By compactness, there are finitely many points c1, . . . , ck ∈ L such that

L ⊂ (c1 + V ) ∪ . . . ∪ (ck + V ).

By reordering the cj ’s in a suitable way, if necessary, we may assume that a ∈ c1 + V , 
b ∈ ck + V and, for each 1 ≤ j ≤ k − 1, we can choose a point

dj ∈ (cj + V ) ∩ (cj+1 + V ) ∩ L.
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By Step 3, there are homeomorphisms h1, . . . , hk from X onto itself such that

h1(a) = d1, h2(d1) = d2, . . . , hk−1(dk−2) = dk−1, hk(dk−1) = b, and

hj(x) = x for all x ∈ X\(cj + V ) (1 ≤ j ≤ k).

Consequently, the homeomorphism h := hk ◦ · · · ◦ h1 has the desired properties.

Step 5. Proof of the general case.
Since C is open and connected, there is a piecewise linear path ψ : [0, 1] → X such 

that

ψ(0) = a, ψ(1) = b and P := ψ([0, 1]) ⊂ C.

We can write P = L1 ∪ . . . ∪ Lk, where each Lj is a line segment, a is the initial point 
of L1, b is the final point of Lk and, for each j ∈ {1, . . . , k − 1}, the final point dj of 
Lj coincides with the initial point of Lj+1. Let V be an open convex neighborhood of 0
in X such that P + V ⊂ C. Since each set Lj + V is open and convex, Step 4 gives us 
homeomorphisms h1, . . . , hk from X onto itself such that

h1(a) = d1, h2(d1) = d2, . . . , hk−1(dk−2) = dk−1, hk(dk−1) = b, and

hj(x) = x for all x ∈ X\(Lj + V ) (1 ≤ j ≤ k).

Hence, h := hk ◦ · · · ◦ h1 is the homeomorphism we were looking for. �
We are now in position to prove Theorem 18.

Proof. Let C be an open convex set in a locally convex space X of real dimension at 
least three. Recall that a basis for the uniformity of C (induced by that of X) is given 
by the sets

Ṽ := {(x, y) ∈ C × C : y − x ∈ V },

as V runs through the set of all neighborhoods of 0 in X. Note that

Ṽ (x) = (x + V ) ∩ C for all x ∈ C.

Given a neighborhood V of 0 in X, choose a neighborhood W of 0 in X with W +W ⊂
V . Let U be an open absolutely convex neighborhood of 0 in X with U+U+U+U ⊂ W . 
Take k ≥ 1, a1, . . . , ak ∈ C pairwise distinct and b1, . . . , bk ∈ C pairwise distinct with 
(aj , bj) ∈ Ũ for all j ∈ {1, . . . , k}. We have to find a homeomorphism h : C → C with 
the following properties:

(a) h(aj) = bj for all j ∈ {1, . . . , k};
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(b) h(Ũ(aj)) ⊂ Ṽ (aj) for all j ∈ {1, . . . , k};
(c) h(x) = x for all x ∈ C\

(
Ũ(a1) ∪ . . . ∪ Ũ(ak)

)
.

Let U ′ be an open absolutely convex neighborhood of 0 in X such that U ′ ⊂ U ,

bj + U ′ ⊂ Ũ(aj) for all j ∈ {1, . . . , k},

and the sets b1 + U ′, . . . , bk + U ′ are pairwise disjoint. Choose points b′j ∈ bj + U ′, j ∈
{1, . . . , k}, so that the points a1, . . . , ak, b′1, . . . , b

′
k are pairwise distinct. Since dimRX ≥

3, if D is an open connected set in X and {L1, . . . , Lm} is a finite set of closed line 
segments in X, then the set D\(L1 ∪ . . . ∪ Lm) is also open and connected (this is not 
necessarily true if dimRX = 2). Thus, there exist piecewise linear paths

ψj : [0, 1] → X, j ∈ {1, . . . , k},

such that

ψj(0) = aj , ψj(1) = b′j , Pj := ψj([0, 1]) ⊂ Ũ(aj) (j ∈ {1, . . . , k})

and the sets P1, . . . , Pk are pairwise disjoint. Let Z be an open convex neighborhood of 
0 in X such that

Cj := Pj + Z ⊂ Ũ(aj) for all j ∈ {1, . . . , k},

and the sets C1, . . . , Ck are pairwise disjoint. Since Cj is open and connected, Lemma 19
guarantees that there is a homeomorphism gj : X → X such that

gj(aj) = b′j and gj(x) = x for all x ∈ X\Cj .

Consider the homeomorphism g := gk ◦ · · · ◦ g1 : X → X. Also by Lemma 19, there is a 
homeomorphism fj : X → X such that

fj(b′j) = bj and fj(x) = x for all x ∈ X\(bj + U ′).

Consider the homeomorphism f := fk ◦ · · · ◦ f1 : X → X. Since

C1 ∪ . . . ∪ Ck ⊂ Ũ(a1) ∪ . . . ∪ Ũ(ak) ⊂ C,

it follows from the construction of g that

g(x) = x for all x ∈ X\C.

A similar reasoning shows that
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f(x) = x for all x ∈ X\C.

Hence, the homeomorphism f ◦ g : X → X maps C onto C, and so it induces a homeo-
morphism h : C → C. It is clear that properties (a) and (c) hold. We claim that

g(x) ∈ x + U + U and f(x) ∈ x + U ′ + U ′ for all x ∈ C.

Indeed, if x �∈ C1 ∪ . . . ∪Ck, then g(x) = x ∈ x + U + U . If x ∈ Cj for some (necessarily 
unique) j ∈ {1, . . . , k}, then

g(x) = gj(x) ∈ Cj ⊂ Ũ(aj).

Since x ∈ Ũ(aj), we conclude that g(x) ∈ x + U + U . The proof in the case of the map 
f is analogous. Therefore,

h(x) = f(g(x)) ∈ (x + U + U + U + U) ∩ C ⊂ W̃ (x).

This implies property (b) and completes the proof. �
Corollary 20. Every open convex set in a locally convex space of real dimension at least 
two has property (P).

Proof. Let C be an open convex set in a locally convex space X of real dimension at least 
two. If dimRX ≥ 3, then the result follows from the previous theorem. If dimRX = 2, 
then we may assume that X = R2 endowed with the max norm. Given δ > 0, consider 
the following collections of pairwise disjoint open convex sets:

C1 :=
{(

]2nδ, (2n + 2)δ[ × ]2mδ, (2m + 2)δ[
)
∩ C : n,m ∈ Z

}
,

C2 :=
{(

](2n + 1)δ, (2n + 3)δ[ × ]2mδ, (2m + 2)δ[
)
∩ C : n,m ∈ Z

}
,

C3 :=
{(

]2nδ, (2n + 2)δ[ × ](2m + 1)δ, (2m + 3)δ[
)
∩ C : n,m ∈ Z

}
,

C4 :=
{(

](2n + 1)δ, (2n + 3)δ[ × ](2m + 1)δ, (2m + 3)δ[
)
∩ C : n,m ∈ Z

}
.

Take k ≥ 1, a1, . . . , ak ∈ C pairwise distinct and b1, . . . , bk ∈ C pairwise distinct with 
‖aj − bj‖ < δ for all j ∈ {1, . . . , k}. An argument used in the previous proof shows that 
it is enough to consider the case in which a1, . . . , ak, b1, . . . , bk are pairwise distinct. Let

I1 := {j ∈ {1, . . . , k} : some A ∈ C1 contains both aj and bj},

I2 := {j ∈ {1, . . . , k}\I1 : some A ∈ C2 contains both aj and bj},

I3 := {j ∈ {1, . . . , k}\(I1 ∪ I2) : some A ∈ C3 contains both aj and bj},

I4 := {j ∈ {1, . . . , k}\(I1 ∪ I2 ∪ I3) : some A ∈ C4 contains both aj and bj}.
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Then I1 ∪ . . . ∪ I4 = {1, . . . , k}. Now, for each � ∈ {1, . . . , 4}, we consider a homeomor-
phism h
 : C → C in the following way: if A ∈ C
 does not contain any pair aj, bj with 
j ∈ I
, then h
 is the identity map on A (closure relative to C); if A ∈ C
 contains such a 
pair aj , bj , then h
 maps A onto itself, maps aj to bj for each aj , bj ∈ A with j ∈ I
 and 
equals the identity on the boundary of A (relative to C) and at each of the other ai’s 
and bi’s. The existence of h
 in the second case follows from the fact that we can join aj
and bj by a piecewise linear path Pj contained in A, for each j ∈ I
 with aj , bj ∈ A, in 
such a way that the paths Pj’s are pairwise disjoint and do not contain any of the other 
ai’s or bi’s. Then, we can choose ε > 0 small enough so that the sets

Cj := Pj +
(
] − ε, ε[ × ] − ε, ε[

)
are contained in A, are pairwise disjoint, and do not contain any of the other ai’s or bi’s. 
Finally, we can argue as in the construction of the map g in the previous proof to obtain 
h
 : A → A with the desired properties. Now, the homeomorphism h := h4 ◦ · · · ◦ h1 :
C → C maps aj to bj for all j and satisfies ‖h(x) − x‖ < 8δ for all x ∈ C. This proves 
that C has property (P). �
Remark 21. In the case of complex scalars, Corollary 20 holds without any restriction 
on the dimension of the space. But in the case of real scalars, the result is clearly false 
if the dimension of the space is one.

Let us now define the concepts of finite shadowing and strict periodic shadowing in 
the setting of uniform spaces. Let X be a uniform space with uniformity U and let 
f : X → X be a continuous map. Given U ∈ U , a finite sequence (xj)kj=0 is said to be a 
U -chain (resp. a U -cycle) for f if

(f(xj), xj+1) ∈ U for all j ∈ {0, . . . , k − 1} (resp. and xk = x0).

The map f has the finite shadowing property (resp. the strict periodic shadowing prop-
erty) if for every V ∈ U , there exists U ∈ U such that for any U -chain (resp. U -cycle) 
(xj)kj=0 for f , there exists a ∈ X with

(xj , f
j(a)) ∈ V for all j ∈ {0, . . . , k} (resp. and fk(a) = a).

The classical notion of topological stability for homeomorphisms on compact metric 
spaces can be extended to the uniform space setting in the following natural way.

Definition 22. Let X be a uniform space with uniformity U . A homeomorphism h : X →
X is said to be topologically stable if for every V ∈ U , there exists U ∈ U such that for 
any homeomorphism g : X → X with

(h(x), g(x)) ∈ U for all x ∈ X,
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there is a continuous map φ : X → X satisfying

h ◦ φ = φ ◦ g and (x, φ(x)) ∈ V for all x ∈ X.

The concept of topological stability was introduced by Walters [51] in 1970. Later 
Walters [52] established the following result: If X is a closed topological manifold of 
dimension at least two and h : X → X is a topologically stable homeomorphism, then h
has the shadowing property.

Recently, Kawaguchi [31] observed that Walters’ original arguments can be used to 
prove the following more general result: If X is a perfect compact metric space with 
property (P) and h : X → X is a topologically stable homeomorphism, then h has the 
shadowing property and the strict periodic shadowing property.

It is an amazing fact that Walters’ original arguments can actually be adapted to 
establish the following very general result.

Theorem 23. Let X be a Hausdorff uniform space with uniformity U . If X has property 
(P) and no isolated point, then every topologically stable homeomorphism h : X → X

has the finite shadowing property and the strict periodic shadowing property.

Recall that the notions of shadowing and finite shadowing coincide for homeomor-
phisms on compact metric spaces [44, Lemma 1.1.1]. With this basic result in hand, we 
see that Theorem 23 generalizes the above-mentioned results.

Proof. Fix V ∈ U and choose V ′ ∈ U with V ′ ◦ V ′ ⊂ V . Take a symmetric W ′ ∈ U
associated to V ′ according to the topological stability of h. Let U ′ ∈ U be associated to 
W ′ according to the fact that X has property (P) and take a symmetric U ∈ U with 
U ◦ U ◦ U ⊂ U ′. Given a U -chain (xj)kj=0 for h, we will find a point a ∈ X such that

(xj , h
j(a)) ∈ V for all j ∈ {0, . . . , k}.

By the continuity of h, there exists Z ∈ U , Z ⊂ U ∩ V ′, such that

h(Z(xj)) ⊂ U(h(xj)) for all j ∈ {0, . . . , k}.

Since X is a Hausdorff space without isolated points, we can choose points x′
j ∈ Z(xj), 

j ∈ {0, . . . , k}, so that x′
0, . . . , x

′
k are pairwise distinct. Since

(h(x′
j), x′

j+1) ∈ U ′ for all j ∈ {0, . . . , k − 1},

property (P) gives us a homeomorphism f : X → X such that

f(h(x′
j)) = x′

j+1 for all j ∈ {0, . . . , k − 1}

and
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(x, f(x)) ∈ W ′ for all x ∈ X.

Consider the homeomorphism g := f ◦ h. By topological stability, there is a continuous 
map φ : X → X such that

h ◦ φ = φ ◦ g and (x, φ(x)) ∈ V ′ for all x ∈ X.

Put a := φ(x′
0) ∈ X. Since gj(x′

0) = x′
j , we get

(xj , h
j(a)) = (xj , φ(gj(x′

0))) = (xj , φ(x′
j)) ∈ V (j ∈ {0, . . . , k}).

This proves that h has the finite shadowing property.
In the case in which (xj)kj=0 is a U -cycle for h, the points x′

j ∈ Z(xj), j ∈ {0, . . . , k}, 
can be chosen so that x′

0, . . . , x
′
k−1 are pairwise distinct and x′

k = x′
0. With this choice, 

we have that the point a has the following additional property:

hk(a) = hk(φ(x′
0)) = φ(gk(x′

0)) = φ(x′
k) = a.

This proves that h has the strict periodic shadowing property. �
In view of Corollary 20 and Theorem 23, we obtain the following result.

Corollary 24. Let C be an open convex set in a locally convex space X of real dimension 
at least two. If a homeomorphism h : C → C is topologically stable, then h has the finite 
shadowing property and the strict periodic shadowing property.

Theorem 13 is a special case of the above corollary in the case of spaces of real 
dimension greater than 1. But in the case of the real line R, it is easy to see that 
if T ∈ GL(R) is topologically stable, then T must be hyperbolic, and so it has the 
shadowing property and the strict periodic shadowing property. This completes the proof 
of Theorem 13.

Our next goal is to investigate the topological stability of generalized hyperbolic op-
erators. For this purpose, recall that a subset E of a locally convex space X is said to 
be bounded if for each neighborhood V of 0 in X, there exists r > 0 such that E ⊂ λV

whenever |λ| ≥ r. If (‖ · ‖α)α∈I is a family of seminorms inducing the topology of X, 
then this is equivalent to say that E is bounded with respect to ‖ · ‖α for every α ∈ I.

Given locally convex spaces X and Y , we denote by Fb(X; Y ) (resp. Cb(X; Y ), 
Ub(X; Y )) the vector space of all bounded maps (resp. all bounded continuous maps, 
all bounded uniformly continuous maps) from X into Y . The next lemma generalizes 
Step 1 of the proof of [11, Theorem 1]. The proof given below is based on the original 
proof from [11].

Lemma 25. Let X be a sequentially complete locally convex space. Let T ∈ GL(X) be a 
generalized hyperbolic operator, let
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X = M ⊕N

be the direct sum decomposition given by the definition of generalized hyperbolicity, and 
let PM : X → M and PN : X → N be the canonical projections. Consider the closed 
subspace Y := M + T−1(N) of X. For any bijective map R : X → X, the linear map

Ψ : ϕ ∈ Fb(X;Y ) �→ ϕ ◦R− T ◦ ϕ ∈ Fb(X;X)

is bijective and its inverse is given by

Ψ−1(φ)(x) =
∞∑
k=0

T kPM (φ(R−k−1x)) −
∞∑
k=1

T−kPN (φ(Rk−1x)). (19)

Moreover, if R is a homeomorphism (resp. a uniform homeomorphism), then

Ψ(Cb(X;Y )) = Cb(X;X) (resp. Ψ(Ub(X;Y )) = Ub(X;X)).

Proof. Let (‖ · ‖α)α∈I be a directed family of seminorms inducing the topology of X. By 
the definition of generalized hyperbolicity, for each α ∈ I, there exist βα ∈ I, cα > 0 and 
tα ∈ (0, 1) such that

‖Tny‖α ≤ cα tnα ‖y‖βα
and ‖T−nz‖α ≤ cα tnα ‖z‖βα

,

whenever y ∈ M , z ∈ N and n ∈ N0. We shall now divide the proof in three steps.

Step 1. Ψ is injective.

Suppose that ϕ ∈ Fb(X; Y ) and Ψ(ϕ) = 0. Then ϕ ◦Rn = Tn ◦ϕ for all n ∈ N, which 
gives the following formulas

ϕ(x) = T−n(ϕ(Rnx)) and ϕ(x) = Tn(ϕ(R−nx)) (x ∈ X,n ∈ N). (20)

By the first of these equalities, ϕ(x) = yn(x) + zn(x), where

yn(x) = T−nPM (ϕ(Rnx)) and zn(x) = T−nPN (ϕ(Rnx)).

Clearly, zn(x) ∈ T−1(N) for all x ∈ X and n ∈ N. Write

yn(x) = an(x) + bn(x) with an(x) ∈ M and bn(x) ∈ N.

We claim that yn(x) ∈ M (i.e., bn(x) = 0) for all x and n. For n = 1,

T (b1(x)) = T (y1(x)) − T (a1(x)) = PM (ϕ(Rx)) − T (a1(x)) ∈ M.
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Since ϕ(x) = a1(x) + (b1(x) + z1(x)), a1(x) ∈ M and b1(x) + z1(x) ∈ N , the fact that 
ϕ(x) ∈ Y implies that b1(x) ∈ T−1(M) ∩ T−1(N) = {0}. Suppose that, for a certain 
n ≥ 1, bn(x) = 0 for all x. Then,

T (bn+1(x)) = T (yn+1(x)) − T (an+1(x)) = yn(Rx) − T (an+1(x)) ∈ M.

By arguing as above, we conclude that bn+1(x) = 0. By induction, our claim is proved. 
This implies that PN (ϕ(x)) = zn(x) for all n ∈ N. Hence, for each α ∈ I,

‖PN (ϕ(x))‖α ≤ cαt
n
α‖PN (ϕ(Rnx))‖βα

→ 0 as n → ∞,

since PN (ϕ(X)) is a bounded subset of X. Thus,

PN (ϕ(x)) = 0 for all x ∈ X. (21)

By the second equality in (20), ϕ(x) = y′n(x) + z′n(x), where

y′n(x) = TnPM (ϕ(R−nx)) and z′n(x) = TnPN (ϕ(R−nx)).

Clearly, y′n(x) ∈ M for all x and n. Since ϕ(R−1x) ∈ Y , we have that PN (ϕ(R−1x)) ∈
T−1(N), that is, z′1(x) = TPN (ϕ(R−1x)) ∈ N . Hence, z′1(x) ∈ T−1(N). If n ≥ 1 and 
z′n(x) ∈ T−1(N) for all x, then z′n+1(x) = T (z′n(R−1x)) ∈ N , and so z′n+1(x) ∈ T−1(N). 
By induction, z′n(x) ∈ T−1(N) for all x and n. Thus, PM (ϕ(x)) = y′n(x) for all n ∈ N. 
As in the proof of (21), we obtain

PM (ϕ(x)) = 0 for all x ∈ X. (22)

By (21) and (22), ϕ = 0, proving the injectivity of Ψ.

Step 2. Ψ is surjective (hence bijective) and its inverse is given by (19).

Take φ ∈ Fb(X; X). Since PM (φ(X)) and PN (φ(X)) are bounded subsets of X,

∥∥∥ j∑
k=i

T kPM (φ(R−k−1x))
∥∥∥
α
≤ cα

j∑
k=i

tkα‖PM (φ(R−k−1x))‖βα
→ 0 as i, j → ∞

and

∥∥∥ j∑
k=i

T−kPN (φ(Rk−1x))
∥∥∥
α
≤ cα

j∑
k=i

tkα‖PN (φ(Rk−1x))‖βα
→ 0 as i, j → ∞.

Hence, by the sequential completeness of X, we can define

ϕ(x) :=
∞∑

T kPM (φ(R−k−1x)) −
∞∑

T−kPN (φ(Rk−1x)) (x ∈ X).

k=0 k=1
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Note that the first series lies in M and the second one lies in T−1(N). Moreover, the 
above estimates imply that ϕ(X) is a bounded subset of X. So, ϕ ∈ Fb(X; Y ). Finally,

Ψ(ϕ)(x) = ϕ(Rx) − T (ϕ(x))

=
(
PM (ϕ(Rx)) − TPM (ϕ(x))

)
+
(
PN (ϕ(Rx)) − TPN (ϕ(x))

)
=
( ∞∑

k=0

T kPM (φ(R−kx)) −
∞∑
k=0

T k+1PM (φ(R−k−1x))
)

+
(
−

∞∑
k=1

T−kPN (φ(Rkx)) +
∞∑
k=1

T−k+1PN (φ(Rk−1x))
)

= PM (φ(x)) + PN (φ(x))

= φ(x).

Thus, Ψ is surjective (hence bijective) and (19) holds.

Step 3. The last assertion in the theorem holds.

This follows from the definition of Ψ and the fact that both series in (19) are uniformly 
convergent on X (in view of the estimates obtained in Step 2). �
Theorem 26. Let T ∈ GL(X) be a generalized hyperbolic operator, where X is a sequen-
tially complete locally convex space. For every neighborhood V of 0 in X, there exists a 
neighborhood U of 0 in X such that for any homeomorphism (resp. any uniform home-
omorphism) S : X → X satisfying

T − S is a bounded map and Tx− Sx ∈ U for all x ∈ X, (23)

there is a continuous map (resp. a uniformly continuous map) φ : X → X with

T ◦ φ = φ ◦ S and φ(x) − x ∈ V for all x ∈ X.

Proof. Let (‖ · ‖α)α∈I be a directed family of seminorms inducing the topology of X. 
Let X = M ⊕N be the direct sum decomposition given by the generalized hyperbolicity 
of T and let PM : X → M and PN : X → N be the canonical projections. Given a 
neighborhood V of 0 in X, there exist α ∈ I and ε > 0 such that

{x ∈ X : ‖x‖α < ε} ⊂ V.

There exist β ∈ I, c > 0 and t ∈ (0, 1) such that

‖Tny‖α ≤ c tn‖y‖β and ‖T−nz‖α ≤ c tn‖z‖β , (24)

whenever y ∈ M , z ∈ N and n ∈ N0. By the continuity of the projections PM and PN , 
there exist γ ∈ I and d > 0 such that
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‖PMx‖β ≤ d ‖x‖γ and ‖PNx‖β ≤ d ‖x‖γ (x ∈ X). (25)

Let δ := (1−t)ε
2cd and consider the neighborhood U := {x ∈ X : ‖x‖γ < δ} of 0 in X. Let 

S : X → X be a homeomorphism such that T − S is a bounded map and

Tx− Sx ∈ U for all x ∈ X. (26)

By Lemma 25, the linear map

Ψ : ϕ ∈ Cb(X;Y ) �→ ϕ ◦ S − T ◦ ϕ ∈ Cb(X;X)

is bijective, where Y := M + T−1(N). Let

φ := I + Ψ−1(T − S),

which is a continuous map from X into X. Since

T − S = Ψ(φ− I) = Ψ(φ) − Ψ(I) = φ ◦ S − T ◦ φ + T − S,

we get

T ◦ φ = φ ◦ S.

Now, by (19),

φ(x) − x =
∞∑
k=0

T kPM ((T − S)(S−k−1x)) −
∞∑
k=1

T−kPN ((T − S)(Sk−1x)),

for every x ∈ X. Hence, simple computations using (24), (25) and (26) give

‖φ(x) − x‖α < ε for all x ∈ X,

which implies that φ(x) − x ∈ V for all x ∈ X.
If S is a uniform homeomorphism, then we can consider Ψ as a bijection from Ub(X; Y )

onto Ub(X; X); hence, the map φ obtained above is uniformly continuous. �
If X is a Banach space, then the first condition in (23) is superfluous, and so we obtain 

the following result.

Corollary 27. Every invertible generalized hyperbolic operator on a Banach space is topo-
logically stable.
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Given a metric space M with metric d, recall that a homeomorphism h : M → M

is said to be expansive if there is a constant c > 0 (an expansivity constant for h) such 
that, for every x, y ∈ M with x �= y, there exists n ∈ Z with d(hn(x), hn(y)) ≥ c.

A famous result known as Walters’ stability theorem asserts that:

If a homeomorphism of a compact metric space is expansive and has the shadowing 
property, then it is topologically stable [52, Theorem 4].

In linear dynamics, the following more precise result is known:

For invertible operators on Banach spaces, expansivity plus the shadowing property is 
equivalent to hyperbolicity [10, Theorem 1].

In particular, expansive operators with the shadowing property on Banach spaces are 
topologically stable. Moreover, by Corollaries 15 and 27, we also obtain the following 
characterization of hyperbolicity.

Corollary 28. An invertible operator on a Banach space is hyperbolic if and only if it is 
expansive and topologically stable.

Since hyperbolicity and the shadowing property coincide for invertible operators in 
the finite-dimensional setting, Corollaries 15 and 27 also imply the following fact.

Corollary 29. For invertible operators on finite-dimensional normed spaces, the concepts 
of hyperbolicity and topological stability coincide.

Remark 30. Let X, T , M , N and Y be as in the previous theorem and its proof. The 
proof of the theorem shows that: For any homeomorphism S : X → X such that

T − S is a bounded map,

there exists a continuous map φ : X → X such that

T ◦ φ = φ ◦ S and φ− I is a bounded map. (27)

Moreover, φ is unique as long as we require that (φ −I)(X) ⊂ Y . If T is hyperbolic, then 
Y = X and we have the uniqueness of the continuous map φ : X → X satisfying (27). 
However, in the nonhyperbolic case, such a map φ : X → X is never unique. Indeed, if 
T is not hyperbolic, then we can choose a nonzero vector y ∈ T−1(M) ∩N . Hence,

z :=
∞∑

Tny

n=−∞
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defines a nontrivial fixed point of T and the continuous map ψ : X → X given by 
ψ(x) := φ(x) + z (x ∈ X) also satisfies (27).

Remark 31. Let T be the invertible generalized hyperbolic operator defined in Remark 5. 
Since T does not have the periodic shadowing property, it follows from Theorem 13 that 
T is not topologically stable. This shows that the hypothesis of sequential completeness 
(resp. of completeness) is essential for the validity of Theorem 26 (resp. of Corollary 27).

4. Expansivity and uniform expansivity for operators

Given a seminorm ‖ · ‖ on a vector space X, we define the unit sphere of ‖ · ‖ by

S‖·‖ := {x ∈ X : ‖x‖ = 1}.

If X is a normed space with norm ‖ · ‖, we also write SX instead of S‖·‖.
If X is a normed space and T ∈ GL(X), then it is well known that T is expansive if 

and only if the following property holds:

• For every x ∈ SX , there exists n ∈ Z such that ‖Tnx‖ ≥ 2.

Actually, this property is often used as the definition of expansive operators on normed 
spaces and motivated the concept of uniform expansivity. Recall that the operator T is 
said to be uniformly expansive if the following property holds:

• There exists n ∈ N such that, for every x ∈ SX , ‖Tnx‖ ≥ 2 or ‖T−nx‖ ≥ 2.

We refer the reader to [1,8,10,24,29,35] for the study of expansive and uniformly 
expansive operators on Banach spaces.

Let us now consider the following simple example in the Fréchet space setting.

Example 32. Let C(C) be the Fréchet space of all continuous maps f : C → C endowed 
with the compact-open topology, which is induced by the seminorms

‖f‖k := max
|z|≤k

|f(z)| (k ∈ N).

A canonical compatible invariant metric on C(C) is given by

d(f, g) :=
∞∑
k=1

1
2k min{1, ‖f − g‖k}.

Let T := 2I be twice the identity operator on C(C). Since d(Tnf, Tng) = d(2nf, 2ng) ≤
1
2k for all n ∈ Z, whenever f, g ∈ C(C) have supports disjoint from the disk {z ∈ C :
|z| ≤ k}, it follows that T is not expansive.
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Intuitively speaking, an operator of the form 2I should be expansive. Hence, the 
above example shows that the metric notion of expansivity does not behave so well in 
the Fréchet space setting as it does in the Banach space setting.

Below we will propose an alternative notion of (uniform) expansivity for operators on 
locally convex spaces, which is motivated by the following simple characterizations in 
the case of invertible operators on normed spaces, as observed in [8, Proposition 19]:

• T is expansive ⇔ supn∈Z ‖Tnx‖ = ∞ for every nonzero x ∈ X.
• T is uniformly expansive ⇔ SX = A ∪ B where limn→∞ ‖Tnx‖ = ∞ uniformly on 

A and limn→∞ ‖T−nx‖ = ∞ uniformly on B.

Our definition is also motivated by the fact that the important notion of bounded set
in functional analysis is the topological one: a subset E of a topological vector space X
is said to be bounded if for each neighborhood V of 0 in X, there exists r > 0 such that 
E ⊂ λV whenever |λ| ≥ r. If X is a normed space, then the set E is bounded if and only 
if it is bounded in the metric sense, i.e., it has finite diameter. Nevertheless, the metric 
notion of bounded set becomes essentially useless when we go beyond the normed space 
setting, while the topological notion plays a central role in all of functional analysis. As 
we have seen above, in normed spaces, expansivity means that the orbit of each nonzero 
vector is an unbounded set. These comments together with Example 32 suggest that 
the metric notion of expansivity may not be the most appropriate one in more general 
settings.

Definition 33. Let X be a locally convex space over K whose topology is induced by 
a directed family (‖ · ‖α)α∈I of seminorms. We say that an operator T ∈ GL(X) is 
topologically expansive if the following condition holds:

(E) For each nonzero x ∈ X, there exists α ∈ I such that supn∈Z ‖Tnx‖α = ∞.

We say that the operator T is uniformly topologically expansive if:

(UE) For every α ∈ I, there exists β ∈ I such that we can write S‖·‖α
= Aα∪Bα, where

‖Tnx‖β → ∞ uniformly on Aα as n → ∞

and

‖T−nx‖β → ∞ uniformly on Bα as n → ∞.

Note that the above notions are independent of the choice of the directed family 
(‖ · ‖α)α∈I of seminorms inducing the topology of X. Moreover, condition (E) means 
that the orbit Orb(x, T ) := {Tnx : n ∈ Z} is an unbounded set in X for every nonzero 
x ∈ X.
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Remark 34. If X is a metrizable locally convex space, then its topology is induced by 
an increasing sequence (‖ · ‖k)k∈N of seminorms and a canonical compatible invariant 
metric on X is given by

d(x, y) :=
∞∑
k=1

1
2k min{1, ‖x− y‖k}.

In this case, it is easy to show that every expansive operator on X is topologically 
expansive. However, the converse is not true in general, since operators of the form 
λI, with |λ| �∈ {0, 1}, are always uniformly topologically expansive but may fail to be 
expansive (Example 32).

Proposition 35. Let X be a locally convex space whose topology is induced by a directed 
family (‖ · ‖α)α∈I of seminorms. An operator T ∈ GL(X) is topologically expansive if 
and only if for every x ∈ X\{0}, there exists α ∈ I such that ‖x‖α �= 0 and, for each 
y ∈ Orb(x, T ), there exists n ∈ Z with ‖Tny‖α ≥ 2‖y‖α.

Proof. (⇒): Let x ∈ X\{0} and let α ∈ I be as in (E). Without loss of generality, we 
may assume that ‖x‖α �= 0. Given y ∈ Orb(x, T ), since the set {‖Tny‖α : n ∈ Z} is 
unbounded in R, there exists n ∈ Z with ‖Tny‖α ≥ 2‖y‖α.
(⇐): Given x ∈ X\{0}, let α ∈ I be as in the hypothesis. By induction, we obtain a 
sequence (nj)j∈N in Z such that

‖Tn1+···+njx‖α ≥ 2j‖x‖α for all j ∈ N.

Thus, {‖Tnx‖α : n ∈ Z} is unbounded in R, giving (E). �
Note that the constant 2 can be replaced by any constant c > 1 in the above propo-

sition.

Theorem 36. For any invertible generalized hyperbolic operator T on a locally convex 
space X, the following assertions are equivalent:

(i) T is topologically expansive;
(ii) T is uniformly topologically expansive;
(iii) T is hyperbolic.

Proof. Let (‖ · ‖α)α∈I be a directed family of seminorms that induces the topology of X. 
Let X = M ⊕N be the topological direct sum decomposition given by the generalized 
hyperbolicity of T and let PM : X → M and PN : X → N be the canonical projections.
(iii) ⇒ (ii): Given α ∈ I, there exist β ∈ I, c > 0 and t ∈ (0, 1) such that

‖T−ny‖β ≥ c−1t−n‖y‖α and ‖Tnz‖β ≥ c−1t−n‖z‖α for all y ∈ M, z ∈ N,n ∈ N0.
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Choose γ ∈ I and d > 0 such that

‖PMx‖β ≤ d ‖x‖γ and ‖PNx‖β ≤ d ‖x‖γ for all x ∈ X.

Let

Aα := {x ∈ S‖·‖α
: ‖PNx‖α ≥ 1/2} and Bα := {x ∈ S‖·‖α

: ‖PMx‖α ≥ 1/2}.

Then S‖·‖α
= Aα ∪Bα and

‖Tnx1‖γ ≥ 1
2 c d tn and ‖T−nx2‖γ ≥ 1

2 c d tn for all x1 ∈ Aα, x2 ∈ Bα, n ∈ N0,

which proves that T is uniformly topologically expansive.
(ii) ⇒ (i): Clear.
(i) ⇒ (iii): Take x ∈ M ∩ T (N) and α ∈ I. Let β ∈ I, c > 0 and t ∈ (0, 1) be as in 
(GH3). Since x ∈ M and T−1x ∈ N , we have that

‖Tnx‖α ≤ c tn‖x‖β and ‖T−nT−1x‖α ≤ c tn‖T−1x‖β for all n ∈ N0.

Hence,

sup
n∈Z

‖Tnx‖α ≤ c max{‖x‖β , ‖T−1x‖β} < ∞.

Since α ∈ I is arbitrary and T is topologically expansive, we conclude that x = 0. This 
proves that M ∩ T (N) = {0}, which implies that T is hyperbolic. �
Corollary 37. Every invertible hyperbolic operator on a locally convex space is uniformly 
topologically expansive.

In the next section we will exhibit some examples of uniformly topologically expansive 
operators on the Fréchet space s(Z) of rapidly decreasing sequences on Z that are not 
hyperbolic. Examples of this type on the infinite-dimensional separable Hilbert space 
were given in [24].

The study of chaotic properties for linear operators, since the work of Birkhoff almost 
100 years ago, derived in the well established theory of Linear Dynamics, which nowadays 
is very active. Once a dynamical notion is analyzed in the context of linear operators, it is 
natural to ask about its compatibility with classical chaotic properties. We want to finish 
this section by showing that uniform topological expansivity avoids the possibility of even 
the weakest properties related to chaotic behavior, namely, topological transitivity and 
Li-Yorke chaos.

Given a metric space M with metric d, recall that a continuous map f : M → M is 
said to be Li-Yorke chaotic if there is an uncountable set S ⊂ M such that each pair 
(x, y) of distinct points in S is a Li-Yorke pair for f , in the sense that
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lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

An extensive study of Li-Yorke chaos in the setting of linear dynamics was developed 
in [6,7]. In particular, the following useful characterizations were obtained: For any con-
tinuous linear operator T on a Fréchet space X, the following assertions are equivalent:

(i) T is Li-Yorke chaotic;
(ii) T admits a semi-irregular vector, that is, a vector x ∈ X such that the sequence 

(Tnx)n∈N does not converge to zero but has a subsequence converging to zero;
(iii) T admits an irregular vector, that is, a vector x ∈ X such that the sequence 

(Tnx)n∈N is unbounded but has a subsequence converging to zero.

The notion of Li-Yorke chaos was extended to group actions on Hausdorff uniform 
spaces in [5]. In the case of a continuous linear operator T on a topological vector space X, 
the definition reads as follows: the operator T is said to be Li-Yorke chaotic if there is 
an uncountable set S ⊂ X such that each pair (x, y) of distinct points in S is a Li-Yorke 
pair for T , in the sense that the following conditions hold:

(LY1) For every neighborhood V of 0 in X, there exists n ∈ N such that Tnx −Tny ∈ V .
(LY2) There exists a neighborhood U of 0 in X such that Tnx − Tny �∈ U for infinitely 

many values of n.

It was observed in [21] that the equivalence (i) ⇔ (ii) remains true in this more gen-
eral setting, where x semi-irregular for T means that the sequence (Tnx)n∈N does not 
converge to zero but has a subnet converging to zero.

We are now in a position to show that uniform topological expansivity avoids the 
possibility of Li-Yorke chaos or topological transitivity. In particular, the following result 
generalizes [8, Theorem C] from Banach spaces to arbitrary locally convex spaces.

Theorem 38. A uniformly topologically expansive operator on a locally convex space is 
neither Li-Yorke chaotic nor topologically transitive.

Proof. We will divide the proof into two steps.

Step 1. If a continuous linear operator T on a locally convex space X, whose topology 
is induced by a directed family (‖ · ‖α)α∈I of seminorms, is topologically transitive or 
Li-Yorke chaotic, then it satisfies the following property:

∃α0 ∈ I, ∀β ∈ I, ∃ε > 0, ∀k ∈ N, ∃m,n ∈ N, ∃x ∈ X such that

k < m < n− k, ‖x‖β < 1, ‖Tnx‖β < 1, and ‖Tmx‖α0 > ε. (28)
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Suppose that T is topologically transitive. Select any α0 ∈ I such that ‖ · ‖α0 is non-
zero. Given β ∈ I arbitrary, we fix ε := 1, and once k ∈ N is fixed, by transitivity of T
we select m ∈ N, m > k, with Tm(A) ∩B �= ∅, where

A := {u ∈ X : ‖u‖β < 1} and B := {v ∈ X : ‖v‖α0 > 1}.

Thus, C := A ∩T−m(B) is a non-empty open set, and applying the transitivity property 
once again we find n ∈ N, n > m +k, with Tn(C) ∩A �= ∅. Selecting any x ∈ C∩T−n(A)
yields property (28).

In case that T is Li-Yorke chaotic, fix any semi-irregular vector u ∈ X for T . In 
particular, there exist α0 ∈ I, δ ∈ ]0, 1[ and an increasing sequence (mj)j∈N of positive 
integers such that ‖Tmju‖α0 > δ for all j ∈ N. Given any β ∈ I, by semi-irregularity 
of u we also find another increasing sequence (nj)j∈N of positive integers such that 
‖Tnju‖β < 1 for all j ∈ N. We pick λ ∈ ]0, 1[ such that ‖λu‖β < 1. If we fix ε := δλ and 
x := λu, then ‖x‖β < 1 and, for an arbitrary k ∈ N, we have the existence of m > k

with ‖Tmx‖α0 > ε and also the existence of n > m + k with ‖Tnx‖β < 1, as desired.
Step 2. No uniformly topologically expansive operator is Li-Yorke chaotic or topologically 
transitive.

Let T be a uniformly topologically expansive operator on a locally convex space X. 
Let (‖ ·‖α)α∈I be a directed family of seminorms that induces the topology of X. Suppose 
that T is Li-Yorke chaotic or topologically transitive. Then it satisfies property (28) of 
Step 1. Let α := α0 ∈ I be given by this property. By Definition 33, we can decompose 
S‖·‖α

= Aα ∪ Bα and find β ∈ I (w.l.o.g., β ≥ α) satisfying the conditions of uniform 
topological expansivity. Let ε > 0 be associated with α0 and β in property (28). Since 
‖T ju‖β → ∞ and ‖T−jv‖β → ∞, uniformly on u ∈ Aα and v ∈ Bα, as j → ∞, we find 
k ∈ N with

min{‖T ju‖β , ‖T−jv‖β} > 1/ε

for each pair (u, v) ∈ Aα ×Bα and for any j ≥ k. By property (28), there are m, n ∈ N, 
k < m < n − k, and x ∈ X so that

‖x‖β < 1, ‖Tnx‖β < 1, and ‖Tmx‖α0 > ε.

We set y :=
(
‖Tmx‖−1

α

)
Tmx ∈ S‖·‖α

. If y ∈ Aα, then

1
ε
< ‖Tn−my‖β = 1

‖Tmx‖α
‖Tnx‖β <

1
ε
,

a contradiction. If y ∈ Bα, then

1
< ‖T−my‖β = 1

m
‖x‖β <

1
,

ε ‖T x‖α ε
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which yields a contradiction too, and we conclude that T cannot satisfy property (28), 
so T is neither Li-Yorke chaotic nor topologically transitive. �
Remark 39. Observe that property (28) is trivially satisfied for a unimodular multiple of 
the identity operator, so it cannot be identified as a “chaotic” property, per se.

5. Weighted shifts on Fréchet sequence spaces

Our main goal in this section is to explore the notion of topological expansivity for 
weighted shifts on Fréchet sequence spaces, but some weighted shifts with other dynam-
ical properties will be presented at the end of the section.

Let ω(Z) := KZ be the Fréchet space of all scalar sequences equipped with the prod-
uct topology. Recall that the bilateral forward (resp. backward) shift on ω(Z) is the 
continuous linear operator F : ω(Z) → ω(Z) (resp. B : ω(Z) → ω(Z)) given by

F ((xn)n∈Z) := (xn−1)n∈Z (resp. B((xn)n∈Z) := (xn+1)n∈Z).

More generally, given a sequence w := (wn)n∈Z of nonzero scalars (called a weight se-
quence), recall that the bilateral weighted forward (resp. backward) shift on ω(Z) is the 
continuous linear operator Fw : ω(Z) → ω(Z) (resp. Bw : ω(Z) → ω(Z)) given by

Fw((xn)n∈Z) := (wn−1xn−1)n∈Z (resp. Bw((xn)n∈Z) := (wn+1xn+1)n∈Z).

Note that the operators Fw and Bw are invertible on ω(Z), and their inverses are given 
by

F−1
w = Bv and B−1

w = Fu, where v :=
( 1
wn−1

)
n∈Z

and u :=
( 1
wn+1

)
n∈Z

.

We will also consider these operators on a Fréchet sequence space over Z, that is, a 
subspace X of ω(Z) equipped with a topology under which X is a Fréchet space and 
the embedding X ↪→ ω(Z) is continuous. This continuity is equivalent to the continuity 
of each coordinate functional (xn)n∈Z ∈ X �→ xj ∈ K, j ∈ Z. It follows from the closed 
graph theorem that Fw (resp. Bw) induces a continuous linear operator on X as soon 
as it maps X into itself. In this case, by abuse of notation, we also write Fw : X → X

(resp. Bw : X → X). The canonical vectors en := (δj,n)j∈Z, n ∈ Z, of ω(Z) form a basis
in X if they belong to X and every sequence x := (xn)n∈Z ∈ X satisfies

x = lim
m,n→∞

(. . . , 0, 0, x−m, x−m+1, . . . , xn−1, xn, 0, 0, . . .).

This means that each x ∈ X has a unique representation x =
∑

n∈Z xnen, with scalars 
xn ∈ K, n ∈ Z. Clearly (en)n∈Z is a basis of the following Fréchet sequence spaces: 
�p(Z), 1 ≤ p < ∞, c0(Z) and ω(Z).
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Our main goal in this section is to characterize topological expansivity for weighted 
shifts on Fréchet sequence spaces. In order to state our results, we will need the following 
definition.

Definition 40. Let X be a locally convex space over K whose topology is induced by a di-
rected family (‖ ·‖α)α∈I of seminorms. We say that an operator T ∈ L(X) is topologically 
positively expansive if the following condition holds:

(PE) For each nonzero x ∈ X, there exists α ∈ I such that supn∈N ‖Tnx‖α = ∞.

Theorem 41. Suppose that X is a Fréchet sequence space over Z in which the sequence 
(en)n∈Z of canonical vectors is a basis, (‖ ·‖k)k∈N is an increasing sequence of seminorms 
that induces the topology of X, and the bilateral forward shift F is an invertible operator 
on X. Then the following assertions are equivalent:

(i) F : X → X is topologically expansive;
(ii) there exists k ∈ N such that

(a) sup
n∈N

‖en‖k = ∞ or

(b) sup
n∈N

‖e−n‖k = ∞;

(iii) (a) F : X → X is topologically positively expansive or
(b) F−1 : X → X is topologically positively expansive.

Proof. (i) ⇒ (ii): Assume that F is topologically expansive. By Definition 33, there exists 
k ∈ N such that

sup
n∈N

‖Fne0‖k = ∞ or sup
n∈N

‖F−ne0‖k = ∞,

which gives (ii).
(ii) ⇒ (iii): First, assume that there exists k ∈ N such that

sup
n∈N

‖en‖k = ∞. (29)

Since (en)n∈Z is a basis of X, for any x := (xn)n∈Z ∈ X, the sequence (xnen)n∈Z
converges to 0 in X as n → ±∞. Hence, by the Banach–Steinhaus theorem, the family 
of operators Tn on X, n ∈ Z, defined by x �→ xnen, is equicontinuous. Hence, there are 
C > 0 and � ∈ N such that

‖Tnx‖k ≤ C‖x‖
 for all x ∈ X and n ∈ Z. (30)

Let x := (xn)n∈Z be any nonzero vector in X and choose j ∈ Z such that xj �= 0. Then
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Fmx = (xn−m)n∈Z =
∑
n∈Z

xn−men for all m ∈ N.

By (30), we get

‖xjem+j‖k = ‖Tm+j(Fmx)‖k ≤ C‖Fmx‖
 for all m ∈ N.

In view of (29), we conclude that

sup
m∈N

‖Fmx‖
 = ∞.

Hence, F is topologically positively expansive. Analogously, sup
n∈N

‖e−n‖k = ∞ implies 

that F−1 is topologically positively expansive.
(iii) ⇒ (i): Trivial. �
Now we will see that, using a suitable conjugacy, this result can be generalized to 

bilateral weighted forward shifts. Let Fw : X → X be an invertible bilateral weighted 
forward shift on a Fréchet sequence space X and define the sequence of weights v :=
(vn)n∈Z by

vn :=
( 0∏

ν=n

wν

)−1

for n ≤ 0, v1 := 1, vn :=
n−1∏
ν=1

wν for n ≥ 2.

By setting

Xv := {(xn)n∈Z ∈ ω(Z) : (vnxn)n∈Z ∈ X},

the mapping φv : Xv → X, given by (xn)n∈Z �→ (vnxn)n∈Z, is an algebraic isomorphism. 
If, in addition, we consider the topology of Xv given by

a subset U of Xv is open if and only if φv(U) is open in X,

then X becomes a Fréchet sequence space. If (en)n∈Z is a basis in X, then it is also a 
basis in Xv, and the following diagram commutes:

Xv
F

φv

Xv

φv

X
Fw

X

Hence, F and Fw are conjugate operators. Moreover, F and Fw are simultaneously 
invertible operators. The previous construction is similar to the construction of [27, pp. 
96, 101]. Combining these facts and Theorem 41, we easily obtain the result below.
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Theorem 42. Suppose that X is a Fréchet sequence space over Z in which the sequence 
(en)n∈Z of canonical vectors is a basis, (‖ ·‖k)k∈N is an increasing sequence of seminorms 
that induces the topology of X, and the bilateral weighted forward shift Fw is an invertible 
operator on X. Then the following assertions are equivalent:

(i) Fw : X → X is topologically expansive;
(ii) there exists k ∈ N such that

(a) sup
n∈N

|w1 · . . . · wn|‖en+1‖k = ∞ or

(b) sup
n∈N

|w−n+1 · . . . · w0|−1‖e−n+1‖k = ∞;

(iii) (a) Fw : X → X is topologically positively expansive or
(b) F−1

w : X → X is topologically positively expansive.

Remark 43. (a) Note that, in Theorems 41 and 42, (ii.a) is equivalent to (iii.a), and 
(ii.b) is equivalent to (iii.b). In particular, if X is a Fréchet sequence space over N, 
then a similar formulation of the above result gives a characterization for topologically 
positively expansive weighted forward shifts.

(b) The study of topological expansiveness for invertible bilateral weighted backward 
shifts can be reduced to the corresponding case of forward shifts. In this case, Bw is 
topologically expansive if and only if Bw or B−1

w is topologically positively expansive, 
and this is equivalent to the existence of k ∈ N such that

sup
n∈N

|w−n+2 · . . . · w0w1|‖e−n+1‖k = ∞ or sup
n∈N

|w2 · . . . · wn+1|−1‖en+1‖k = ∞,

respectively.
(c) If X is a Fréchet sequence space over N which contains the sequence a :=

(1, 0, 0, . . . ), then the unilateral weighted backward shift Bw is not topologically pos-
itively expansive, since Bwa = 0.

Remark 44. If T is an invertible operator on a locally convex space X, it is clear that

T or T−1 topologically positively expansive ⇒ T topologically expansive.

As seen above, the converse holds for bilateral weighted shifts. Nevertheless, the converse 
is not true in general, even in the Banach space setting, as observed in [8, Remark 33]. 
In fact, any invertible hyperbolic operator with nontrivial hyperbolic splitting provides 
a counterexample.

An infinite matrix A := (aj,k)j,k∈N is said to be a Köthe matrix if 0 ≤ aj,k ≤ aj,k+1
for all j, k ∈ N, and for each j ∈ N, there exists k ∈ N with aj,k > 0. For 1 ≤ p < ∞, 
consider
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λp(A) :=

⎧⎪⎨⎪⎩x := (xj)∞j=1 ∈ ω(N) : ‖x‖k :=

⎛⎝ ∞∑
j=1

|xjaj,k|p
⎞⎠1/p

< ∞ for all k ∈ N

⎫⎪⎬⎪⎭ ,

and, for p = 0,

λ0(A) :=
{
x := (xj)∞j=1 ∈ ω(N) : lim

j→∞
xjaj,k = 0, ‖x‖k := sup

j∈N
|xj |aj,k for all k ∈ N

}
,

which are the corresponding Köthe echelon spaces (see [30,33,37]). These spaces con-
stitute a natural class of Fréchet sequence spaces (whose topology is given by the 
corresponding sequence (‖ · ‖k)k∈N of seminorms) in which many authors have stud-
ied the dynamical properties of weighted shifts (see, for instance, [36,53] and references 
therein). In a natural way, the Köthe spaces can be extended to sequence spaces indexed 
over Z. In this setting, A := (aj,k)j∈Z,k∈N is a Köthe matrix on Z if 0 ≤ aj,k ≤ aj,k+1

for all j ∈ Z and k ∈ N, and for each j ∈ Z, there exists k ∈ N with aj,k > 0.
The spaces λp(A, Z) and λ0(A, Z) are defined as in the case of N, with the sums and 

the supremum taken over the Z (see [36, Section 3.3]). A simple computation shows that 
(en)n∈Z is a basis of λp(A, Z). Moreover, the bilateral weighted forward shift Fw defines 
an operator on λp(A, Z) if and only if

∀ k ∈ N, ∃ m ∈ N, m > k : sup
j∈Z

|wj |
aj+1,k

aj,m
< ∞, (31)

and Fw is invertible if and only if

∀ k ∈ N, ∃ m ∈ N, m > k : sup
j∈Z

aj,k
|wj |aj+1,m

< ∞, (32)

where aj,m = 0 in (31) implies aj+1,k = 0, and aj+1,m = 0 in (32) implies aj,k = 0. In 
these cases we adopt 0/0 as 1. By applying Theorem 42 to the bilateral weighted shifts 
on the Köthe spaces, we deduce the following result.

Corollary 45. Let A be a Köthe matrix on Z, w be a weight sequence satisfying (31) and 
(32), and 1 ≤ p < ∞ or p = 0. Then the following assertions are equivalent:

(i) Fw : λp(A, Z) → λp(A, Z) is topologically expansive;
(ii) there exists k ∈ N such that

(a) sup
n∈N

|w1 · . . . · wn|an+1,k = ∞ or

(b) sup
n∈N

|w−n+1 · . . . · w0|−1a−n+1,k = ∞.

Example 46. Let w := (wn)n∈Z be a weight sequence and 1 ≤ p < ∞ or p = 0.
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(i) If aj,k = 1 for all j ∈ Z and k ∈ N, then

λp(A,Z) = �p(Z) (resp. λ0(A,Z) = c0(Z)).

If, in addition,

sup
j∈Z

|wj | < ∞ and inf
j∈Z

|wj | > 0,

which means that Fw is a well-defined invertible operator on �p(Z) (resp. on c0(Z)), 
then from Corollary 45 we recover [8, Theorem E(1)].

(ii) If the matrix A is such that for each k ∈ N, there is jk ∈ Z satisfying aj,k = 0 for 
all |j| > jk, then

λp(A,Z) = ω(Z).

Furthermore, the bilateral weighted shifts on ω(Z) are never topologically expansive. 
Indeed, consider a weighted forward shift Fw on ω(Z). Since, for each k ∈ N, we 
can choose jk ∈ Z such that

sup
n∈N

|w1 · . . . · wn|an+1,k = sup
1≤n≤|jk|−1

|w1 · . . . · wn|an+1,k < ∞

and

sup
n∈N

|w−n+1 · . . . · w0|−1a−n+1,k = sup
1≤n≤|jk|+1

|w−n+1 · . . . · w0|−1a−n+1,k < ∞,

the result follows from Corollary 45.
(iii) If aj,k = (|j| + 1)k for all j ∈ Z and k ∈ N, then

λp(A,Z) = λ1(A,Z) = s(Z),

where s(Z) denotes the space of rapidly decreasing sequences on Z. Assume that 
supj∈Z |wj | < ∞ and infj∈Z |wj | > 0. Then clearly Fw defines an invertible op-
erator on s(Z). Although these conditions are sufficient to Fw be invertible, they 
are not necessary, since if wj =

√
|j| + 1, then Fw also defines an invertible opera-

tor on s(Z). Under these assumptions we obtain, from Corollary 45, the following 
equivalences:
(I) Fw : s(Z) → s(Z) is topologically expansive;

(II) there exists k ∈ N such that
(a) sup

n∈N
|w1 · . . . · wn|nk = ∞ or

(b) sup
n∈N

|w−n · . . . · w−1|−1nk = ∞;



46 N.C. Bernardes et al. / Journal of Functional Analysis 288 (2025) 110696
(iv) Let l, r > 0. If wj = (|j| +1)r for every j ≥ 1 and wj = (|j| +1)−l for every j ≤ 0, it 
follows from Corollary 45 that both operators Fw and F−1

w on s(Z) are topologically 
positively expansive.

(v) If v = (vj)j∈Z is a positive weight sequence and aj,k = vj for all j ∈ Z and k ∈ N, 
then

λp(A,Z) = �p(Z, v) (resp. λ0(A,Z) = c0(Z, v)).

If, in addition,

sup
j∈Z

|wj |vj+1

vj
< ∞ and sup

j∈Z

vj
|wj |vj+1

< ∞,

which means that Fw is a well-defined invertible operator on �p(Z, v) (resp. on 
c0(Z, v)), then Corollary 45 implies that the topologically positively expansive bi-
lateral weighted forward shifts are characterized by

sup
n∈N

|w1 · . . . · wn|vn+1 = ∞.

As we promised after the statement of Corollary 37, we will now exhibit some examples 
of uniformly topologically expansive operators on s(Z) that are not hyperbolic.

Example 47. Consider s(Z) as being λ1(A, Z) (Example 46(iii)), that is, consider s(Z)
endowed with the seminorms

‖x‖k :=
∞∑

j=−∞
(|j| + 1)k|xj |, x := (xj)j∈Z ∈ s(Z), k ∈ N.

Given a > 1, consider the weight sequence

w := (. . . , a−1, a−1, a−1, a, a, a, . . .),

where the first a appears at position 0. Then Fw is an invertible operator on s(Z). Let 
PM : s(Z) → M and PN : s(Z) → N denote the canonical projections associated to the 
topological direct sum decomposition s(Z) = M ⊕N , where

M := {x ∈ s(Z) : xj = 0 for all j ≤ −1} and N := {x ∈ s(Z) : xj = 0 for all j ≥ 0}.

For each k ∈ N, let

Ak := {x ∈ S‖·‖k
: ‖PMx‖k ≥ 1/2} and Bk := {x ∈ S‖·‖k

: ‖PNx‖k ≥ 1/2}.

Clearly, S‖·‖k
= Ak ∪Bk. Moreover, for each n ∈ N,
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‖Fn
wx‖k ≥ ‖Fn

wPMx‖k ≥ an‖PMx‖k ≥ an/2 for all x ∈ Ak

and, similarly, ‖F−n
w x‖k ≥ an/2 for all x ∈ Bk. This proves that Fw is uniformly topo-

logically expansive. On the other hand, since ‖Fn
wx‖k → +∞ as n → ±∞, for every 

nonzero x ∈ s(Z), Fw is not hyperbolic.

By choosing a ∈ (0, 1) in the above example, we can fulfill the promise we made at 
the end of Section 2 and exhibit some examples of generalized hyperbolic operators on 
s(Z) that are not hyperbolic.

Example 48. Given a ∈ (0, 1), let w, M and N be as in the previous example. For each 
k ∈ N, define

ck := sup
n∈N0

[(n + 1)k(
√
a)n] < ∞.

For any y ∈ M and n ∈ N0,

‖Fn
wy‖k = (n + 1)kan|y0| + (n + 2)kan|y1| + (n + 3)kan|y2| + · · ·

= an
(
(n + 1)k|y0| +

(n + 2)k

2k 2k|y1| +
(n + 3)k

3k 3k|y2| + · · ·
)

≤ (n + 1)kan‖y‖k
≤ ck(

√
a)n‖y‖k.

Analogously, for any z ∈ N and n ∈ N0,

‖F−n
w z‖k ≤ ck(

√
a)n‖z‖k.

Thus, Fw is generalized hyperbolic. However, Fw is not hyperbolic because it is not 
topologically expansive. Indeed, for any k ∈ N, since

‖Fn
we0‖k → 0 as n → ±∞,

we have that supn∈Z ‖Fn
we0‖k < ∞. Another way to see that Fw is not topologically 

expansive is to note that the weight sequence w does not satisfy condition (II) in Exam-
ple 46(iii).

6. Some open problems

If someone asks for an example of an operator with the shadowing property on a 
Banach space X, one would certainly mention an operator such as 2IX or 1

2IX . The fact 
that these operators do not have the shadowing property when X = H(C) is somehow 
surprising and suggests the following question.



48 N.C. Bernardes et al. / Journal of Functional Analysis 288 (2025) 110696
Problem A. Does every Fréchet space (or locally convex space) support an operator with 
the shadowing property? How about the Fréchet space H(C)?

Similarly, the simplest examples of expansive operators on a Banach space X are 
operators such as 2IX of 1

2IX . But these operators are not expansive when X = KZ.

Problem B. Does every Fréchet space (or locally convex space) support an expansive 
operator? How about the Fréchet space KZ? (We emphasize that expansive is meant in 
the metric sense.)

It was observed in Remark 9 that the hypothesis of completeness of the seminorms 
is essential for the validity of Theorem 6, but we do not know if the other technical 
hypothesis in Theorem 6 can be removed or not. In other words, we have the following 
question.

Problem C. Let X be a locally convex space whose topology is induced by a directed 
family of complete seminorms. Is it true that generalized hyperbolicity implies shadowing 
for operators on X?

We proved that every invertible generalized hyperbolic operator on a Banach space 
is topologically stable (Corollary 27). However, in the case of an arbitrary sequentially 
complete locally convex space, we proved that invertible generalized hyperbolic operators 
have a stability property which seems to be pretty close to topological stability (Theo-
rem 26), but we had to require the additional hypothesis that T − S is a bounded map 
(see (23)) in order to be able to apply Lemma 25. So, we have the following question.

Problem D. Can we remove the additional hypothesis that T − S is a bounded map 
from (23)? In other words, is every invertible generalized hyperbolic operator on a non-
normable sequentially complete locally convex space topologically stable? How about 
the case of non-normable Fréchet spaces?

Topologically expansive weighted shifts on Fréchet sequence spaces were characterized 
in Theorem 41.

Problem E. Characterize the concept of uniform topological expansivity for weighted 
shifts on Fréchet sequence spaces.

As a final problem, let us mention that the following basic questions are still open.

Problem F. Let T ∈ GL(X), where X is a Banach space.

• If T has the shadowing property, is T necessarily generalized hyperbolic?
• If T is structurally stable, is T necessarily generalized hyperbolic?
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