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Abstract

In dense stellar clusters like galactic nuclei and globular clusters, stellar densities are so high that stars might
physically collide with each other. In galactic nuclei the energy and power output can be close to, and even exceed,
those from supernovae events. We address the event rate and the electromagnetic characteristics of collisions of
main-sequence stars (MS) and red giants (RGs). We also investigate the case in which the cores form a binary and
emit gravitational waves. In the case of RGs, this is particularly interesting because the cores are degenerate. We
find that MS event rate can be as high as tens per year, and that of RGs 1 order of magnitude larger. The collisions
are powerful enough to mimic supernovae or tidal disruptions events. We find Zwicky Transient Facility
observational data that seem to exhibit the features we describe. The cores embedded in the gaseous debris
experience a friction force that has an impact on the chirping mass of the gravitational wave. As a consequence, the
two small cores in principle mimic two supermassive black holes merging. However, their evolution in frequency
along with the precedent electromagnetic burst and the ulterior afterglow are efficient tools to reveal the impostors.
In the particular case of RGs, we derive the properties of the degenerate He cores and their H-burning shells to
analyze the formation of the binaries. The merger is such that it can be misclassified with SN Ia events. Because the
masses and densities of the cores are so dissimilar in values depending on their evolutionary stage, the argument
about standard candles and cosmic ladder should be reevaluated.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Gravitational wave sources (677)

1. Motivation

Dense stellar systems such as globular clusters and galactic
nuclei have stellar densities ranging between 106 and 108 stars
per cubic parsec. In them, relative velocities of the order of
∼a few tens of kilometers per second in the case of globular
clusters and of ∼100–1000 km s−1 in the case of galactic nuclei
can be reached (Spitzer 1987; Binney & Tremaine 2008;
Neumayer et al. 2020). In these exceptional conditions, and
unlike anywhere else in the host galaxy, collisional effects
come into play. With “collisional” we mean in general mutual
gravitational deflections that lead to an exchange of energy and
angular momentum, but also in particular genuine contact
collisions. The possibility that collisions between stars play a
fundamental role both in explaining particular observations and
in the global influence of dense stellar systems has been studied
with dedicated numerical studies (Spitzer & Saslaw 1966;
Sanders 1970; Benz & Hills 1987, 1992; David et al.
1987a, 1987b; Davies et al. 1991, 1998; Murphy et al. 1991;
Lai et al. 1993; Lombardi et al. 1995, 1996; Bailey &
Davies 1999; Lombardi et al. 2002; Shara 2002; Adams et al.
2004; Trac et al. 2007; Dale et al. 2009; Wu et al. 2020;
Mastrobuono-Battisti et al. 2021; Vergara et al. 2021).

We have chosen to first focus on galactic nuclei. We then
address globular clusters, in which the rates are larger due to
the smaller relative velocities between the stars participating in
the collision (which is of the order of the velocity dispersion).

For galactic nuclei, we first derive the event rate of these
collisions as a function of the host galaxy cusp (Section 2) and
analyze analytically the nonthermal properties of the outcome
of such collisions (Sections 3 and 4). This analysis is performed
for both main-sequence stars and, later, for red giants
(Section 6). The electromagnetic analysis reveals that these
collisions can mimic over periods of time tidal disruptions but
also Type Ia supernovae (Da Silva 1993). Our analysis is a
dynamical and analytical one, and depends on solely two free
parameters, the values of which should be extracted with
dedicated numerical simulations.
We extend the analysis to the gravitational radiation phase as

emitted by a subset of these collisions, namely those in which
the core survives and forms a binary (Section 5). Red giants
have a very compact nucleus and can always withstand the
onslaught of the collision.
We find that the number of gravitational-wave sources that

form is not negligible, and leads to the emergence of a type of
source that can be misleading. A source that drastically changes
its characteristics within a very short time. In a matter of
months, the binary that forms initially appears to have a few
solar masses to later appear as a supermassive black hole
binary. Similarly, the luminosity distance varies tremendously
in that short interval of time.
Due to the multimessenger characteristics of this source, the

extraction of information is very interesting and complemen-
tary. That is, electromagnetic data can help us to break various
degeneracies in the analysis of gravitational waves and
vice versa. In the particular case of the red giants, the rates
are very high and, because the electromagnetic nature of the
process very strongly depends on the stage of the evolution of

The Astrophysical Journal, 947:8 (32pp), 2023 April 10 https://doi.org/10.3847/1538-4357/acb8b9
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

mailto:amaro@riseup.net
http://astrothesaurus.org/uat/739
http://astrothesaurus.org/uat/677
https://doi.org/10.3847/1538-4357/acb8b9
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acb8b9&domain=pdf&date_stamp=2023-04-11
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acb8b9&domain=pdf&date_stamp=2023-04-11
http://creativecommons.org/licenses/by/4.0/


the colliding red giants, if these collisions were confused with
supernovae events, which are used as a kind of standard
candles, the ladder argument to calculate cosmological
distances would be in danger of revision.

Although galactic nuclei are often left out from the
supernova searches, it is often difficult if not impossible to
discern the nucleus due to a lack of resolution. Moreover,
collisions happen more frequently in globular clusters, as
mentioned before, which are located off the plane and away
from the galactic nucleus, and are hence not excluded in the
searches. However, the low relative velocities lead to a
different kind of phenomenon: stellar pulsations. In Section 7
we find that the collisions in globular clusters can lead to the
classical Cepheids pulsation phenomenon. We show that in the
adiabatic, spherical case this is a stable phenomenon, and we
calculate the associated timescale (Sections 7.4 and 7.3).
However, ulterior inputs of energy are required if the
vibrational or thermal instability dissipate the oscillations.
These additional inputs of energy can happen if further
collisions take place with the same companion star in the case
of binary formation, or with another star, or in the case in
which internal instabilities lead to them.

The classical pulsation problem has been envisaged as
another rung in the standard candle classification of the
cosmological ladder, so that this must be addressed in more
detail than we present here, and will be presented elsewhere.
We discuss the supernovae and pulsating star misclassification
in the context of the cosmological ladder in Section 8.

Finally, in Section 9 we present a summary of all of the
conclusions from our investigations.

2. Event Rate Derivation

The quasi-steady solution for how stars distribute around a
massive black hole (MBH) follows an isotropic distribution
function in physical space of the form ρ(r)∼ R− γ, where ρ is
the stellar density, and R is the radius (Peebles 1972; Bahcall &
Wolf 1976). This mathematical derivation has been corrobo-
rated using numerical techniques (Shapiro & Marchant 1978;
Marchant & Shapiro 1979, 1980; Shapiro & Teukolsky 1985;
Freitag & Benz 2001; Amaro-Seoane et al. 2004; Preto et al.
2004) and, recently, a comparison with data from the Galactic
Center yields a very good match between observations, theory,
and numerical simulations (Baumgardt et al. 2018; Gallego-
Cano et al. 2018; Schödel et al. 2018).

Therefore, we assume a power-law mass distribution for the
numerical density of stars around the MBH, n*(R)∝ R− γ,
where R is the radius. Following this, we can derive that the
enclosed stellar mass around the MBH within a given radius is
(see, e.g., Amaro-Seoane 2019)
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In this last equation, M*(R) is the stellar mass at a radius R,
M• is the mass of the MBH, Rinfl is the influence radius of the
MBH (i.e., the radius within which the potential is dominated
by the MBH), and γ is the exponent of the power law. Hence,
the total number of stars at that radius is
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where m* is the mass of one star, and we are assuming for
simplicity that all stars have the same mass and radius R*, so
that the stellar mass density at a given radius is
ρ*(R)=m* n*(R). Therefore, we have that the numerical
density is
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since * *dN dR R n4 2p= .
At the radii of interest, those close to the MBH, within the

radius of influence, the typical relative velocity between stars
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is Vrel(R)� Vesc, with Vesc the escape velocity from the stellar
surface,
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and Kv depends on γ and is of order unity.
The collision rate for one star can be estimated as
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with S the cross section,

*( ) ( )S f R2 , 7coll
2p=

since we are neglecting the gravitational focusing, because
Vrel(R)� Vesc, so that S can be computed geometrically. In
practice this means that we are looking at a lower-limit case,
since the rates could be slightly enhanced. This is particularly
true in globular clusters, where the relative velocity is lower.
As stated in Section 1, nonetheless, we are focusing on galactic
nuclei, which is a lower-limit case of the general scenario. In
this equation, fcoll defines how deep a collision is.
Introducing Equation (7), n*(R) and Vrel(R) in Equation (6),

we have that
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The total collisional rate in the cusp around the MBH is
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since N* = 4πR2n*, and we take into account that for a
collision we need two stars. Therefore,
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In this integral we choose the maximum radius Rmax to be the
distance within the influence radius at which Vrel(R)= Vesc(R),
i.e.,
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and the minimum radius Rmin to be the radius that contains on
average one star. From Equation (2), we derive that
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We note that the interior mass enclosed in Rmax is
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where σv is the velocity dispersion at large distances from the
MBH. This last equation means that R Rmax infl.

We can now integrate Equation (10),
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We note that, since R Rmin max, the rates are dominated at
short distances from the MBH, so that the first term in the
square brackets of Equation (14) can in principle be neglected.
However, since this could artificially increase the rates, we do
not neglect it. We have normalized fcoll to 0.25 because we are
interested in collisions that lead to a total disruption of the stars.
This situation is achieved when the periastron distance of a
gravitational two-body hyperbolic encounter in the center-of-
mass reference frame dmin has the value

( ) ( )d R R , 16min half,1 half,2= +

with Rhalf,1 the half-mass–radius of the first star participating in
the collision (and Rhalf,1= Rhalf,2 since we assume they have the
same radius and mass). Therefore, for a complete disruptive
collision fcoll, a measure of the depth of the impact, as we
explained, is

*
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As we can see in, e.g., Figure 4 of Freitag & Benz (2005; and
see also their Figure 9), for m* = 1Me, R* = 1 Re, and then
fcoll= 0.25. For m* = 10Me, R* = 6 Re, and fcoll= 0.2.

As for the influence radius, we use the so-called “mass–
sigma” correlation (McConnell et al. 2011; Kormendy &
Ho 2013; Davis et al. 2017) for black hole masses in nearby

galaxies,
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with σ the velocity dispersion of the stars. This, combined with
the definition of the influence radius, which takes into account
the overall effect on the motion of a star by the bulge, including
those that have moved away from the MBH, as introduced by
Peebles (1972),
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and note that for M•= 4× 106Me such as the one in the
Galactic Center, Rinfl= 2.5 pc, which is close to the value
observed of ∼3 pc (Schodel et al. 2014; Schödel et al. 2018).
Hence, for M•= 107Me, Rinfl= 4.2 pc, and for M•= 105Me,
Rinfl= 0.27 pc.
For a Bahcall-Wolf power law (Bahcall & Wolf 1976),

γ= 7/4, taking fcoll= 0.25, and the default values given in
Equation (14), we obtain that Γcoll,6≅ 10−4 yr−1 for a Milky
Way–like nucleus, i.e., with an MBH in this mass range,
M•= 106Me (as indicated with the subindex 6).
The calculation of the event rate applies to nuclei hosting

MBHs with masses between ∼105 and 107Me, since for larger
MBH masses the relaxation time would exceed a Hubble time,
and for lighter MBH masses the MBH is in the intermediate-
mass regime and hence cannot be envisaged as fixed in the
center of the potential, but wandering, which renders the
calculation much more complicated. For M•= 107Me, and
taking the same parameters as for the M•= 106Me case but for
the influence radius, we obtain that Γcoll,7≅ 2× 10−4 yr−1, and
for M•= 105Me, Γcoll,5≅ 10−5 yr−1.
Assuming an observable distance of 100Mpc for these

events, this translates into an observable volume of
∼4.2× 106 Mpc3. Within this volume, and assuming 10−2

MBH of M•= 106Me per Mpc3 (see Figure 2 of Kelly &
Merloni 2012), we derive a total of 4.2× 104 sources, i.e.,
nuclei hosting MBHs with a mass of M•= 106Me, so that this
multiplied by Γcoll,6 leads to a total event rate of

4.2 yrcoll,6
tot 1G ~ - . For MBHs with masses of 107Me, the work

of Kelly & Merloni (2012) yields 6× 10−3 MBH per Mpc3,
and hence 5 yrcoll,7

tot 1G ~ - . For MBHs with masses of 105Me,
and extrapolating the results of Kelly & Merloni (2012) to
about 10−2 MBH per Mpc3 as well, we have that coll,5

totG ~
0.42 yr 1- . Therefore, neglecting the contribution of 105Me
MBHs, and for a mass range for the MBH between [106,
a few 107]Me, we have a total integrated event rate of
100 yr−1 in 100Mpc. In Figure 1 we show coll,6

totG and coll,7
totG

for various typical values of γ in a volume of 100Mpc of
radius.

3. Energy Release

During the collision, release of nuclear energy is negligible
(see Mathis 1967; Różyczka et al. 1989). Gravitational energy
can also be neglected in the kind of collisions we are
considering (very high velocities and f∼ 0.2). We can also
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neglect radiative transport, since the merging stars are
obviously optically thick while the collision it taking place.
During it, the energy transport by radiation is diffusive.

In this kind of almost head-on stellar collision and in our
framework of high relative velocities, the colliding stars merge
into a single object surrounded by a gaseous structure that is
approximately spherical (see, e.g., the numerical work of
Freitag & Benz 2005). This gaseous cloud will expand at a
speed that is equivalent to the average relative speeds one
observes at galactic centers harboring MBHs of masses
M•= [106, a few 107]Me.

In this section, we first estimate the timescale for the energy
to diffuse from the center of the cloud to the surface and the
timescale associated for the cloud to become transparent. Then
we calculate the total emission of the energy and its time
dependency, as well as the luminosity.

3.1. Diffusion of Energy: Timescales

We estimate the associated timescales for a cloud to diffuse
energy to the surface and for it to become fully transparent. We
consider it to be transparent when the mean free path of
photons is larger than the radius of the cloud.

We define the mean free path l(t) (which changes over time)
as the average distance for a photon between two interactions
with two electrons at a given time, so that the time to cover it is
l(t)/c, with c the speed of light. Since we are talking about a
random-walk process, the average number of steps of length l
(t) for the photon to cover a distance R(t) (the radius of the
cloud, function of time) is

⎜ ⎟
⎛
⎝

⎞
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( ) ( )
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( )N t
R t

l t
, 21

2

=

because the average of the squared distance is proportional to
the time in a random walk.

We define the diffusion time as this number of steps
multiplied by the time to cover the distance between two

interactions, so that

( ) ( ) ( ) ( )T t
N t l t

c
. 22diff @

We now calculate the mean free path by estimating the
probability Pcoll that an electron collides with a photon after a
distance x,

( )dP S n dx, 23coll eff=

where Seff is the effective area, and n is the numerical density of
electrons. Hence, the collisional rate for one electron is

( )dP

dt
S n v, 24e

coll
effG = =

with v the relative velocity between the electron and the
photon, i.e., v= c. Therefore, the average number of collisions
over a distance x is

( )N S n x. 25coll eff=

By setting Ncoll= 1 in this last equation, we derive the value
of x, i.e., the mean free path,

( )l
S n

1
. 26

eff
=

Since n= ρg/m, with m the mass of one “gas particle” (i.e.,
the proton mass, since we assume that we have completely
ionized H) per electron,

( )l
m

S
, 27

g effr
=

which allows us to introduce the usual definition of opacity,
κ= Seff/m. If we assume that the ionization degree does not
change, then l∝ 1/ρg, and since  ( )M R tg

3r , we derive that

( ) ( )l t R t 3µ . Therefore, there must be a time in which l(t)> R
(t) and the cloud is transparent, t= ttransp. If at that moment,
which we denote as t= ttransp, there is still enough energy in the
form of photons in the cloud, they will be able to escape it
instantaneously even if they are located at the center of the
cloud, in a straight line, without diffusion.
In other words, if t is the time passed since the formation of

the cloud (i.e., right after the collision), and Tdiff= t, then most
of the photons are still trapped in the cloud. Nonetheless, t
obviously increases and Tdiff varies in time, so that there might
be a moment in which t> Tdiff before we reach t= ttransp. We
need to estimate these timescales. From the previous equations,
we have that

( )
( )

( )T t
c

M

R t
, 28diff

k

with κ= 0.04 m2 kg−1 (a lower bound for an ionized gas due to
electron scattering). In the right-hand side of this last equation,
everything is constant, except R(t), which increases, so that
Tdiff(t) decreases with time. We can calculate at what time Tdiff
is reached, so as to compare it with t= ttransp. An approx-
imation is to set Tdiff= t in Equation (28), so that if we
approximate the expansion velocityVexp to the relative velocity,
V 10 km sexp

4 1= - (we will elaborate on this choice later), we
have that ( )t M V cexpk= . Hence,

( )T 0.16 yr 2 months. 29diff ~ ~

Figure 1. Total amount of events per year in a volume of 100 Mpc of radius for
two different values of MBHs and for typical values of the power index γ. We
note that γ = 1.75 corresponds to the theoretical expectation of a relaxed
nucleus for a single-mass population (Peebles 1972; Bahcall & Wolf 1976). We
show lower values as an illustration for the dependency of coll

totG with γ, which is
not obvious from Equation (14). At smaller values of γ, 106 Me is the upper
curve and from γ ∼ 1.625 the situation reverts and the upper one corresponds
to 107 Me.
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After reaching this time, approximately half of the total energy
contained in the cloud has been released and the remaining half
is still trapped in it. If we wait two times this amount of time,
half of half the initial energy will still be in the cloud, so that
the remaining amount of energy in the cloud goes as 1/2n the
initial amount, with n the amount of temporal intervals
corresponding to Tdiff. We note that this assumes that Tdiff(t)
is the same as Tdiff(0). This is of course not true, but it gives us
a first rough estimate of the initial timescale for half of the
energy to be released. We will improve this approximation in
Section 3.3.

To calculate at what time ttransp is reached, we substitute R
(t)= l(t), so that,

( ) ( )R t M . 30k

Adopting the same values as before, we find that ttransp∼ 9 yr.
When the cloud has become transparent, all of the energy will
have been already radiated away via diffusion.

3.2. Total Emission of Energy

The total energy involved in the collision Etot is the sum of
three contributions: the binding energy of the stars (Ebin),
which take place in the collision plus the kinetic energy Ekin at
infinity. For one of the stars participating in the collision, these
values are

*
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, 31

kin rel
2

bin

2

m
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with μ: = m*,1m*,2/(m*,1+m*,2) the reduced mass, and α= 3/
(5− n), with n= 3 for a Sun-like star (see Chandrasekhar 1942,
for the equation and value). We can approximate *E m Vbin esc

2» ,
so that for the two stars

* *( ) ( )E m V m V V . 32tot ,1 esc,1
2

,2 esc,2
2

rel
2m» - + +

As mentioned in Section 2, since R Rmin max, the collisional
rate will be dominated at smaller radii. For M•= 106Me, and for
the adopted value of γ= 7/4, Equation (12) yields Rmin ~
10 pc5- , so that Vrel≅ 20,000 kkm s−1. One order of magnitude
farther away from the center in radius, at 10−4 pc,
Vrel≅ 6500 km s−1. For M•= 107Me, the minimum radius is
also R 10 pcmin

5~ - but Vrel≅ 65,000 km s−1. At a distance from
the MBH of ∼10−4 pc Vrel≅ 20,000 km s−1.

At such high relative velocities, we can ignore the contribution
of the binding energy of the stars in Equation (32). To consider
two limiting cases, an M•= 107Me at R 10 pcmin

5~ - , yields
Etot≈ 42 foe (4.2× 1052 erg), while an M•= 106Me at a distance
of 10−4 pc yields Etot≈ 0.42 foe (4.2× 1050 erg). A “typical” case
would range between these two limits; i.e., Etot≈ 1 foe, which is
the usual energy release of a supernova (considering
Vrel≅ 10,000 km s−1 at 10−4 pc).

3.3. Time Evolution of the Released Energy and Power

We define the loss of energy in the cloud as

( )
( )dE

dt

E

T t
, 33

diff
= -

with Tdiff(t) as given by Equation (28). The physical meaning
of the last equation is that we are identifying Tdiff(t) as the time
for the photons to escape the cloud as the main sink of energy
of it and, hence, the right-hand side is negative. Therefore,

( )dE

E
t dt

1
, 34

x
= -

with ( )cV M:1
expx k=- . The solution to Equation (34) is

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )E t E t0
1

exp
1

2
. 352h

x
= -

Here η is a parameter quantifying the amount of initial kinetic
energy E(0) that goes into radiation. The value of η depends on
the details of the collision and in particular on the slowing
down of the shock downstream; i.e., how the shock evolves
during the collision will alter the relative velocity of the parts of
the stars that have still not collided and translate into a total
efficiency conversion of the kinetic into radiation. See for
instance the work of Calderón et al. (2020), in particular their
Figures 4–10. In this work they focus on relatively low
velocities and stellar winds, but it illustrates the nonlinearity of
our problem. The derivation of this parameter requires detailed
numerical simulations.
We now introduce

( ) ( ) ( )T
M

c V
T

R

V
0

0
, 36E

exp
diff

exp

k
º =

as we can see from Equation (28). This corresponds to t in the
approximation we did before, to obtain Equation (29). Indeed,
for the values we adopted to derive Equation (29), we have that
TE= 0.16 yr. We can now rewrite Equation (34) as

⎜ ⎟⎛
⎝
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T
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1
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2
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E

2h
= -

Normalizing to standard values, we have
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⎛
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.

38

51
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2h
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In Figure 2 we depict this time evolution for an initial energy
of E(0)= 1051 erg.
With Equation (37) we can obtain the emitted power by

deriving this last equation,
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⎝

⎞
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⎣
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⎛
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⎠
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T
t
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T
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1
exp

1

2
. 39

E
2

E

2h
= - = -

We can normalize the equations by defining τ := t/TE and
Pnorm≡ E(0)/TE, so that

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )E E 0
1

exp
2

40
2

t
h t

= -

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ( )P P
1

exp
2

. 41norm

2
t t

h t
= -

We note here that τ contains the information relative to the
scattering length of the environment, in κ, since the mean free
path l= 1/(ρg κ), as we can see in Equation (26), so that
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encoded in TE in Equation (37) we have the information about
the location of the peak of the distribution, which is, as we
derived, after 2 months.

Adopting typical values, we can express Pnorm as follows:
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Therefore, the final equation for the evolution of power with
time is
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In Figure 3 we depict this power for various values of η.
Decreasing η shifts the peak of the power, lowers its maximum
and broadens the distribution, as expected from Equation (33).
We have added a line that follows a power law of time, t−5/3,
which corresponds to a stellar tidal disruption (see, e.g.,
Rees 1988). If the observation of the event takes place between
the third and fourth months after the collision, it could easily be
misinterpreted as a tidal disruption. At later times, the curves
diverge, so that depending on the observational errors one
could discern the two, or not.

4. Temperature and Spectral Power

4.1. Effective Temperature

From the previous section, we can now estimate the
evolution of the effective temperature of the cloud, which
expands at a constant velocity Vexp. We use the approximation

of Stefan-Boltzmann of blackbody radiation, ( )P t T 4eff
4s p=

( )R t 2, with σ the Stefan-Boltzmann constant and Teff the
effective temperature of the body, and assume that the radius of
the cloud coincides with the photosphere. The physical
interpretation of the definition of this temperature corresponds
to the observed temperature, i.e., what a telescope would
measure from the moment of the impact onwards.
From Equation (43), we obtain
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where we have not neglected the “1” in ( ) ( )R t R 0= +
V texp in the last bracket because this would lead to an artificial
value of Teff at t= 0. In Figure 4 we display the evolution of the
effective temperature as a function of time for the values of η of
Figure 3.
Since we are dealing with short wavelengths, we can

calculate the peak wavelength λpeak of the spectral radiance of
the cloud as a function of time using an approximation. This is
Wien’s displacement law, which relates the absolute temper-
ature T in K and the peak wavelength as T= b/λpeak, with
b∼ 2.89 × 10−3 m K Wien’s displacement constant. In
Figure 5 we show the evolution of λpeak in the different
regimes of frequencies as a function of time.

Figure 2. Time evolution of the released energy for four different values of η,
ranging from 1 (uppermost curve) to 0.1 (lowest curve).

Figure 3. Evolution of the power by a stellar disruption of masses 1 Me and
Vrel = 104 km s−1, corresponding to the default values of Equation (43) for
different efficiency parameters η. The uppermost curve corresponds to the
maximum value of η and the lowermost to the minimum value. We add a
power-law curve proportional to t−5/3, which is the typical value one expects
from a stellar tidal disruption.
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4.2. Kinetic Temperature

A different definition of temperature is the conversion of
kinetic energy into heat as a result of the impact of the stars.
This definition will be useful for the derivation of the sound
velocity at the innermost region of the outcome of the collision,
which will be derived later.

Assuming an ideal gas, the energy and kinetic temperature of
the environment are linked via the usual equation

( )E N k T
3

2
, 45kin=

with and k the Boltzmann constant, N=Mtot/μ, Mtot= 2Me is
the total mass, μ= 0.6mp= 5.05× 10−58Me the mean
molecular mass for fully ionized matter, and mp is the mass
of the proton. We adopt this value because it corresponds to the
radiative zone of a star with a mass similar to the Sun, where
hydrogen and helium constitute most of all elements. In the
surface, where the temperature drops significantly, this
assumption would be wrong.

It follows from Equation (38) that

⎜ ⎟
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exp
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kin
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51

2

h
= ´

-

We show the evolution of this last equation in Figure 6.

4.3. Spectral Power

In the previous sections we have estimated the total amount
of energy released, as well as the power and the peak
wavelength, which can be used as an approximation to
understanding the distribution of energy over different
bandwidths. In this section we will derive how the power
distributes over different ranges of energy. For that, we first
have to obtain the distribution of energy in function of time
t and frequency ν. Hence, we have to evaluate the following

quantity, which we will call the spectral power

( ) ( ( ) ) ( )dE

dt d
P t b T t , . 47eff

n
n=

In this equation, the function ( ( ) )b T t ,eff n is the blackbody
spectrum normalized to 1 for Teff(t) (i.e., the “observable
temperature”) and ν. In terms of integration, Teff(t) can be
envisaged as a constant, because we have to integrate in
frequencies. In other words, the function corresponds to the
spectral radiance of the cloud for frequency ν at absolute
temperature, Planck’s law, but normalized to one,

( ( ) ) ( ( ) )
( ( ))

( )b T t
B T t

C T t
,

,
. 48eff

eff

eff
n

n
=

Here ( ( ) )B T t ,eff n is

( ( ) ) ( )( )B T t
h

c e
,

2 1

1
, 49

h kTeff

3

2
n

n
=

-n

with h the Planck constant, c the speed of light, and we are
identifying T≡ Teff(t) for clarity. The integral of this equation
over the whole range of ν does not yield 1, which is why we
need to obtain the normalization factor,

( ( )) ( ( ) ) ( )C T t B T t d, . 50eff
0

effò n n=
n

n

=

=¥

If we change the variable α= hν/(kT) so that dα= hdν/(kT),
we obtain

( ( )) ( ) ( )C T t
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c h e
d2

1
. 51eff

4

2 3 0

3

ò
a

a=
-a

¥

The integral of Equation (51) is a special function and a
particular case of a Bose–Einstein integral, the Riemann zeta
function ζ(s), a function of a complex variable s. The integral is
analytical and has the solution

( ) ( ) ( )
e

d
1

4 4 , 52
0

3

ò
a

a z
-

= G
a

¥

with Γ(n) the Gamma function, Γ(n)= (n− 1)! if n is a positive
integer. Hence, ζ(4)Γ(4)= 6ζ(4)= π4/15 and so, Equation (51)
becomes

( ( )) ( ) ( )C T t
Tk

c h

2

15
. 53eff

4

2 3

p
=

Plugging this result into Equation (48) and using Equation (49),
we derive that
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Therefore, the spectral power of the cloud is

( )
( ) [ ( )] ( )[ ( )]

dE

dt d

dE

dt d
P t

h kT

eln

15

1
, 55

h kT4

4
n

n n p
n

= =
-n

where we have multiplied Equation (47) by ν to obtain the
spectral power in ln n , and P(t) is given by Equation (43). In
Figure 7 we depict the spectral power as a function of ν for the
different values of η taken into consideration. With decreasing
η values, the spectral power is obviously lowered but in the
range of observable frequencies, i.e., from 106MHz, the values
achieve relatively high values.

Figure 4. Time evolution of Teff for various values of η, following the same
order as in Figure 3. We include two zooms; the top embedded zoom shows in
logarithmic scale on the x-axis the whole range of time, from 10−13 to 9
months, and the bottom one shows in linear scale the last few months, from
1–9, in logarithmic scale on the y-axis.
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4.4. Photometric Colors and AB Magnitude

We now display the same information but in a different way.
If we define a set a set of passbands (or optical filters), with a
known sensitivity to incident radiation, we are in the position of
comparing with real data taken from surveys. For that, we first
adopt Equation (55) and remove the factor ν on the left-hand
side of the equation, so that we are left with this integral to
solve

( ) ( )[ ( ( ))] ( )[ ( ( ))]t P t h kT t
e

d
15

1
, 56

h kT t4
4

3

min

max

òp
n

n=
-n

n

n


where we have identified dE dtº as the “color.” Depending
on the range of frequencies of interest, we will be looking at
different bands. In particular, we define the following ranges for
the bands of interest (ν is given in Hz): U band, 7.54 10min

14n = ´ ,
9.04 10max

14n = ´ ; B band, 6.10 10min
14n = ´ , 7.54 10max

14n = ´ ;
G band, 5.68 10min

14n = ´ , 7.50 10max
14n = ´ ; V band, minn =

5.04 1014´ , 5.92 10max
14n = ´ ; and R band, 4.13minn = ´

1014, 5.09 10max
14n = ´ .

Figure 5. Top, left panel: evolution of the peak wavelength λpeak of the spectral radiance for the cloud. We display the approximate ranges of the spectrum that it will
cover in time. The color scheme follows that of Figure 4, meaning that η = 1 is the lower curve, and the upper one corresponds to η = 0.5. Top, right panel: same as
the left panel for η = 0.3 (upper curve) and η = 0.1 (lower curve). Bottom, left panel: same as the top, left one, but for different time intervals. We add vertical lines to
delimit the different ranges in λpeak in time.

Figure 6. Evolution of the kinetic temperature as the outcome of the collision
with time, given by Equation (46). We include an embedded zoom of the last
few months of evolution and note that in it both axes are in log scale.
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The integral in Equation (56) is a nontrivial one. However,
since the ranges of frequencies that are of our interest are very
narrow, what we can do is to approximate the integral by the
value of the rectangle delimited by those values; i.e., we simply
calculate

⎜ ⎟
⎛
⎝

⎞
⎠

( )
[ ( ( ))]

( )[ ( ( ))]
dE

dt
P t

h kT t

e

15

1
ln . 57

h kT t4

avrg
4

max

minavrgp
n n

n
=

-n

In this expression, maxn and minn are determined by the color
of interest, and νavrg is the characteristic frequency associated
with that particular band. We can obtain its value by knowing
that the length in nanometers for the various bands is in the U
band l= 365 nm, so that νavrg= 8.21× 1014 Hz, in the B band
l= 445 nm, and hence νavrg= 6.74× 1014 Hz, in the G band
l= 464, νavrg= 6.46× 1014 Hz, in the V band l= 551 nm,
νavrg= 5.44× 1014 Hz, and in the R band l= 658 nm,
νavrg= 5.56× 1014 Hz. The conversion is straightforward,

since νavrg(l)= c/l= 3× 108/(l× 10−9) to obtain hertz. This
approximation has an error of about 10% as compared to a
numerical integration. In Figure 8 we show the different
evolutions of the photometric indices as a function of time.
In order to derive the absolute magnitude (AB magnitude),

we remind the reader that it is usually defined as the logarithm
of the spectral flux density, which defines a zero-point value at
3631 Jy. By defining the spectral flux density as  , the AB
magnitude can be calculated in cgs units as

( )m 2.5 log 48.60. 58AB 10= - -

The bandpass AB magnitude spanning across a continuous
range of wavelengths is usually defined in such a way that the
zero-point corresponds to 3631 Jy~ . Hence,

⎡

⎣
⎢

⎤

⎦
⎥

( ) ( )

( ) ( )
( )m

h e

h e
2.5 log

d

3631 d
. 59AB 10

1

1

ò
ò

n n n

n n n
» -

-
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

Figure 7. The spectral power as a function of the frequency ν for the four different values of the nonlinear parameter η taken into consideration. In each of the panels,
the different curves correspond to different moments in the evolution of the expanding cloud after the stellar collision. From the right (higher values of ν) to the left,
we show in dashed lines the first 9/10 of the first month in the evolution, i.e., toward lower frequencies in the first dashed curves there is a time increment of 1/10 of a
month. The first rightmost solid curve corresponds to the spectral power range one month after the event, the second rightmost one, achieving as expected the
maximum value, to the second month, etc. We display eight months in the evolution to show the decrease in spectral power, although we note that 106 MHz
corresponds to the lowest frequency of present instruments.

9

The Astrophysical Journal, 947:8 (32pp), 2023 April 10 Amaro Seoane



In this expression, e(ν) is the filter response function, and the
term (hν)−1 accounts for the photon-counting device.

In Figure 9 we display the AB magnitude for a typical
collision located at a distance of 194.4 Mpc to be able to
compare it to the object ZTF19acboexm from the Zwicky
Transient Facility (ZTF) transient discovery report of Nordin
et al. (2019). If this transient had indeed its origin in a stellar
collision, then the free parameter responsible for the efficiency
of the energy conversion should be of about η = 0.05.

5. Gravitational Waves and Multimessenger Searches

If we calculate the binding energy of the cores of the stars
that initially are on a hyperbolic orbit and compare it to the total
kinetic energy of the system as derived in Section 3.2, we
obtain that the binding energy is about 1 order of magnitude
below the total kinetic energy. This is a natural consequence of
our choice of the problem, since in this work we are focusing
on totally disruptive collisional events, which are the most
energetic ones.

Figure 8. Photometric indices U, B, G, V, and R as a function of time (in months, lower x-axis and days, upper x-axis) for the different values of the parameter η.

Figure 9. Left panel: AB magnitude as calculated from the theoretical model at a distance of 194.4 Mpc. We give the extreme values that we have adopted in this work
for the free parameter η, i.e., 1 and also 0.05. Right panel: Zwicky Transient Facility (ZTF) report for 2019 October 7 corresponding to the object ZTF19acboexm by
Nordin et al. (2019). The data taken with ZTFG are marked with squares, and the data taken with ZTFR are marked with circles. If the transient was the result of a
stellar collision, it would seem to correspond to a value of η  0.05.
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However, for lower relative velocities, of about
Vrel� 2500 km s−1, a fraction of the stellar collisions is such
that the inner cores survive the impact and form a temporary
binary embedded in a gaseous medium. In this section we will
consider a fixed relative velocity of Vrel= 1000 km s−1.

With this new value, when evaluating Equation (32), we find
that the total kinetic energy involved is TK∼ 9.94× 1048 erg,
while the binding energy of the two stars is Ebind∼ 1.57× 1049

erg (i.e., ∼7.6× 1048 erg per star). Therefore, after the
collision, one has a gaseous cloud that is expanding very
quickly plus two surviving pieces of the stars.

If we assume that TK is distributed equally among the two
colliding stars, then each receives an input of
TK/2= 4.97× 1048 erg. This means that after the collision,
there would be a leftover of binding energy per star of
approximately 40% the initial binding energy of one star.

Since the core is the densest part of the star, it stands to
reason that this 40% represents the core that is surviving. The
core of the Sun has a mass of ∼0.34Me. So all we have after
the collision is two cores in a gaseous cloud that is expanding.

The luminosity of a naked core of a Sun-like star radiates at
∼4× 1033 erg, but the total initial kinetic energy radiated right
after the collision is of ∼1049 erg. We could think that the
gaseous cloud will radiate away this energy in such a short
timescale that we are left with the two cores that will continue
radiating. However, as we will see, the cores will merge before
this happens. Therefore, we will neglect this extra luminosity of
the cores when evaluating the properties of such a “flare” in the
following sections.

These kind of collisions are a subfraction of the subset of
almost head-on collisions, i.e., for small impact parameters (M.
Freitag, private communication, as published in his PhD thesis;
but see Freitag & Benz 2005, as well). In this section we will
adopt a representative value of Vrel= 103 km s−1, i.e., 1 order
of magnitude smaller than before, which is of the order of the
velocity dispersion in these environments. We note that the
derivation of the absolute rates, however, as derived pre-
viously, remains the same, since the assumptions we used still
hold for our current choice of Vexp, even if it is 1 order of
magnitude smaller, as explained in Section 2. Nonetheless,
Equation (14) should be multiplied by a fraction number fbin of
those simulations, which lead to the temporary formation of a
core binary. This is the second free parameter of this article (the
first is η, responsible for the nonlinearity), which would require
dedicated numerical simulations since this information is not
contained in Freitag & Benz (2005) or elsewhere to the best of
our knowledge.

In this section we consider a low-velocity disruptive
collision that first leads to a source of electromagnetic
radiation. We rederive the quantities and figures of the previous
sections for this smaller value of Vrel. Later, we derive the
properties of the binary to then address the evolution of the
source of gravitational waves and the prospects for its detection
because, as we will see, it could mimic a binary of two
supermassive black holes in vacuum, although it should be
straightforward to tell them apart.

5.1. Electromagnetic Signature of Low-velocity Collisions

Because we are interested in the electromagnetic precursor of
the gravitational wave, we reproduce the previous figures for
the effective temperature, energy release, power output, and
spectral power for the new value of Vrel= 103 km s−1, because

they change and could be of interest in a search in
observational data.
To derive the time evolution of the released energy and

power, we must note that Equation (36) now is
TE∼ 0.52 yr∼ 6.2 months and that E(0)∼ 1049erg. Hence,
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We can see this graphically in Figure 10. The initial values are
significantly lower but the time in which the source is radiating
is extended to almost 2 yr in the decay. In Figure 11 we depict
the same as in Figure 4 but for the new velocity.
In Figure 12 we display a comparison between the two

different cases we are treating, the high-velocity one and the
low one. As expected, the temperature peak decreases in the
case of low velocity, and lasts longer, so that it is shifted
toward later times.

Figure 10. Same as Figure 2 but for V 10 km sexp
3 1= - .

Figure 11. Same as Figure 4 but for V 10 km sexp
3 1= - .
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As for the emitted power, Equation (42) becomes
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and so, the emitted power in the collision of two stars at low
velocity is
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We can see this in Figure 13. Thanks to this last expression,
as explained in the previous section, we can now derive Teff for
the low-velocity collision,
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Finally, Figure 14 corresponds with Figure 7, showing the
lower value of Vexp. Equation (55) needs no modification, but

we need to take the correct values for Teff and P(t) into account,
i.e., Equations (63) and (62) respectively. We note how the
spectral power is now concentrated over a much shorter span of
frequencies.
The kinetic temperature can be estimated as in

Equation (46), but this time the values are accordingly lower,

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

T
E

t

1.22 10 K
0

10 erg 1

exp
13

2000 1 month
. 64

kin
7

51

2

h
@ ´

´ -

In Figure 15 we depict this evolution. We can see that the
values remain higher at later times.

5.2. Point Particles in Vacuum

Let us now consider the evolution of two point particles in
perfect vacuum with the masses of the cores starting at a given
semimajor axis and evolving only due to the emission of
gravitational radiation. Thanks to the approximation of
nonprecessing but shrinking Keplerian ellipses of Peters
(1964), we can derive an estimate for the associated timescale
for a binary of (point) masses m m m1 2 core= = and semimajor
axis a to shrink only via emission of gravitational radiation,

∣ ∣
( ) ( )T
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5 4

3
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Normalizing to the values we are using,
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where we have chosen the semimajor axis of the cores to be
roughly a d R 2min~ = , from Equation (17). We will
however see that this initial choice has little to no impact on
the merging time when gas is taken into account.
We have chosen m M0.34core = by assuming that the core

radius of the Sun is located at about a distance of
r R0.2core ~ , following the data in Table 3 of Abraham &

Iben (1971), and we note that the correction factor Q to
multiply this timescale introduced by Zwick et al. (2020) can

Figure 12. Comparison of Teff(τ) for the V 10 km sexp
4 1= - case (solid lines,

( )Teff
high t ) and V 10 km sexp

3 1= - ( ( )Teff
low t , dashed curves).

Figure 13. Same as Figure 3 but for V 10 km sexp
3 1= - .
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be neglected, because Q∼ 1 in our case. However, as we will
see later, the final results are to some extent independent of the
choice of initial and final semimajor axes. In the equation we
have introduced

⎛
⎝

⎞
⎠

( ) ( ) ( )F e e e e: 1 1
73

24

37

96
. 672 7 2 2 4= - + +-

For a very eccentric orbit, e= 0.9, ( )F e 2 101 3~ ´- - ; i.e., we
shorten the timescale by 2 orders of magnitude. However, even
if the eccentricity at binary formation is very large, it
circularizes in very few orbits (see the smoothed particle
hydrodynamics, SPH, simulations of Freitag & Benz 2005).
We will hence assume ( )F e 11 =- .
Nevertheless, Equation (66) is nothing but an instantaneous

estimation of the (order of magnitude) time for merger due
solely to the emission of gravitational radiation. This means
that, for a given, fixed, semimajor axis, we obtain a timescale.
Nonetheless, the axis shrinks as a function of time, so that TGW

Figure 14. Same as Figure 7 but forV 10 km sexp
3 1= - . The solid lines now range from the first month to the 24th, and the dashed lines represent the same fraction of

time as in Figure 7. We add a zoom in of each η.

Figure 15. Same as in Figure 6 but for V 10 km sexp
3 1= - .
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will become shorter as well, because it is a function of time.
From Equation (66), and taking into account the original
negative sign of Peters (1964), we can derive that

( )a da
G m

c
dt
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5
. 683

3
core
3

5ò ò= -

Hence,

( )a G m

c
t

4

128

5
constant. 69

4 3
core
3

5
= - +

We can obtain the value of the constant by setting t= 0, which
leads to ( )aconstant 0 44= . Since we have chosen
a(0)≡ a0= Re/2, we derive that the evolution of the
semimajor axis of the binary due only to the emission of
gravitational waves is
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In Figure 16 we show the evolution of Equation (70).
Replacing Equation (70) in Equation (65) leads to
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whose evolution we can see in Figure 17.

5.3. Cores Embedded in a Gaseous Medium

For a stellar object of mass mobj moving through a
homogeneous isothermal gaseous medium of constant density

ρ along a straight line with a velocity Vobj, Ostriker (1999)
derived that for a supersonic motion, the drag force provided by
dynamical friction as derived by Chandrasekhar (1943) must be
modified and is
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4 . 72drag
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2
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Her results have been confirmed numerically by the work of
Sánchez-Salcedo & Brandenburg (1999). Hence, for the
velocity of one of the two cores to be decreased by one
e-folding in the gaseous cloud, the associated timescale is
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where Vcore is the velocity of the core. The last term in the
equation is momentum divided by force, which gives an
estimate of 1 order of magnitude for the characteristic
timescale, the timescale to change Vln core by one dex. We
normalize it to the relevant values for this work as
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This timescale agrees with the results found by Antoni et al.
(2019), in particular their Equation (37). This is about 2 orders
of magnitude shorter than the orbital period of the binary with
the default values in Equation (74), ( )P a G m2 2orb

3
corep= ´ ,
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which means that the binary would not be able to do one orbit
before the cores sink and merge due to the gas. To derive
Equation (74), we have taken as average density that of the
Sun, ρe∼ 1 gr cm−3, which translates into a numerical density
of 1024 cm−3 for the mass of the proton. The amount of gas

Figure 16. Evolution of the semimajor axis of the binary since formation, as
described by Equation (70). The embedded panel allows us to see the evolution
of the last 0.2 Re in units of 108 yr. The semimajor axis reaches 0 (assuming
point particles) at t = 1.42 × 109 months, as can be derived by setting
Equation (70) to zero.

Figure 17. Evolution of the characteristic timescale TGW as a function of time.
The inset allows us to see when it reaches zero. Note that the x-axis in it is in
linear scale.
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contained within the orbit can be easily calculated; this is
important because, should it be larger than the mass of the
cores, then one should use this mass to calculate the orbital
velocity. However, for the kind of semimajor axis that we are
considering, the mass in gas contained in the orbit of the cores
is  ¯M V M m5 10 2gas,orb gas,orb

3
corer= ´ ~ ´ < ´- , with

Vgas,orb the volume inside of the orbit and r̄ the average solar
density in the radiative zone, assumed to be ¯ 10 g cm 3r = - .
This means that the velocity to take into account to derive
Equation (74) is Vcore, as we have done.

Nonetheless, this derivation of Tgas does not take into
account the fact that the cores are not moving into a straight
line, but they form a binary and hence the density wake around
them modifies the drag force (see, e.g., Sanchez-Salcedo &
Brandenburg 2001; Escala et al. 2004; Kim & Kim 2009). If
the semimajor axis is smaller than the Bondi accretion radius,

( )R
Gm

C

2
, 76Bondi

core

s
=

with Cs the sound speed of the cloud, one needs to correct the
gas density around the cores by multiplying n in Equation (74)
by ( )R aBondi

3 2 (as realized by Antoni et al. 2019). Since we
are assuming almost head-on collisions, we have chosen the
semimajor axis for the cores to be of about Re/2, also
motivated by the outcome of the SPH simulations of Freitag &
Benz (2005).

Assuming an ideal gas, we can estimate C Ps ad gg r= , with
γad the adiabatic index of the gas, which we assume to be a fully
ionized plasma, so that γad= 5/3, and P the pressure, and so

( )C T t k ms adg= , with m= 0.6mp= 1.004× 10−27 kg and T
(t) the temperature of the environment. This temperature is not the
effective temperature Teff(t), but the kinetic temperature Tkin(t),
i.e., the temperature around the cores in the environment in which
they are embedded, whose properties we approximate to be those
of the radiative zone in the Sun, in terms of fully ionized matter
but also of density, as we will see later. Since we are interested in
low-velocity collisions, from Equation (15), we derive that
Equation (74) is
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where we have used the value of Cs at Tkin= 5× 102K as an
illustrative example. However, Tkin is a function of time, and
hence Cs as well, so that plugging in Equation (64),
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In Figure 19 we depict its evolution with time. It follows the
trend of Figure 11; i.e., because of the temperature quickly
drops, so does Cs(t) too. We note that this value is in agreement
with the results of Vorontsov (1989; Figure 2) for the Sun at a
radius of about ∼1 Re, with the proviso that the radius is

roughly that of the Sun, i.e., at values of t∼ 0, which is our
departure assumption.
Before we derive the final expression for Tgas(t), we note that

the density around the cores is not constant; it will decrease
with time, since the gaseous cloud is expanding at Vexp. The
SPH simulations of Freitag & Benz (2005) show that when the
cores form a binary, the gaseous density around them is of
about 1 order of magnitude lower than the density in the cores.
To derive the initial value of the density around the cores, i.e.,

at t= 0, we take the Sun as a reference point. Most of its mass is
enclosed in the radiative zone, because the convective zone only
represents about 0.3 R☉ and the density in that region is negligible.
Following the work of Abraham & Iben (1971), we note that for
the mass we have adopted for the cores, M M0.34core = , the
corresponding radius is of R R0.2core ~ and, according to their
Table 3, the corresponding density in that region is of
ρ∼ 150 g cm−3. Therefore, we will assume that the density
around the cores (corresponding to that of the radiative zone)
should be of ρrad∼ 15g cm−3 (and hence use the tag “rad”), which
corresponds to a numerical density of nrad∼ 1025 cm−3. We
therefore only consider a radius of 0.7 Re, because we are
assuming that all mass is in the radiative zone. Taking these
considerations into account, plus assuming that the convective
zone is fully ionised hydrogen, with the mass of the proton mp ∼
1.7 × 10−24 g, the time evolution of the numerical density around
the cores follows the expression

⎡
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We can see this evolution, as well as the evolution of the
physical density, in Figure 18. In a few months, the density
decreases significantly, so that assuming a constant value
would be wrong.
We are now in the position of deriving the time dependency

of Tgas(t) by replacing Equations (78) and (79) in

Figure 18. Evolution of the physical (lower curve) and numerical density
(upper curve) of the radiative zone with time, assuming a total mass of 1 Me

and V 10 km sexp
3 1= - . The values corresponding to the physical density, in

g cm−3, are to be read on the left y-axis, and those to the numerical density on
the right y-axis.
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Equation (77),
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In this result, the power of 2 in the exponential for the time
stems from the cooling of the cloud via the sound speed,
Equation (77). This quickly decays, as we can see in Figure 19,
and is in power law of 3. The power of 3 in the last term reflects
the fact that in our model we assume that the cloud has a
volume expanding at a constant rate over time. These are
competitive effects responsible for the behavior of the curve,
which we can see see in Figure 20, where we display
Equation (80). The function initially increases until about
1.5 yr from the formation of the binary to then decay. The
shape of the curve allows us to estimate when the binary will
merge. Since TGW(t)? Tgas(t), we can ignore the effects of
gravitational radiation in the shrinkage of the binary. By
evaluating Figure 20 we can obtain a rough approximation for
the binary to merge via gas friction when the elapsed time (i.e.,
the abscissa, time since the formation of the binary) is larger
than Tgas and Tgas is not increasing in time. We see in the inset
of the figure that this requirement is met approximately when
t∼ 2.7 yr (for η= 1), which corresponds to Tgas= 1 yr. From
that point, i.e., (x, y)= (2.7, 1) yr, (i) t> Tgas and (ii) Tgas is
only decreasing in time. Hence, if after t∼ 2.7 yr the binary has
not yet merged, it should do so in about Tmrg∼ 1 yr, as an
upper limit, as for all other values of η.

To derive a more accurate value for the merger time Tmrg, we
need to derive the evolution of the semimajor axis of the binary
due to the drag force of the gas. The differential equation can
be derived by taking into account that, for a circular orbit,
V2∝ 1/a, which means that  a a V V2= - . Since we have
identified in Equation (73) V V Tgas= , we have that

a a T2 gas= - , and hence


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since we are integrating from the initial semimajor axis
a0= Re/2 to amrg. This final value of the semimajor axis,
amrg is reached when the separation between the cores reaches
Rcore; i.e., a R0.2mrg core=

⎜ ⎟
⎛
⎝

⎞
⎠




( ) ( )

a R

a R
T t dtln

0.2

2
2 , 82

Tmrg

0 0
gas

1mrg

ò
=

=
= - -

we need to evaluate the right-hand side of the last equation to
find the time t for which a Rmrg core= , although, a priori, from
Figure 20, we already predict that this time is about 1 yr.
Nonetheless, as we already mentioned before, the solution is
relatively independent of the initial and final semimajor axis.
In the integral, Tgas is given by Equation (80) and

Tmrg,m := Tmrg/(month), and we introduce τ := t/(month), so
that dτ= dt/(month). Hence,
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We have introduced α≡ 5684.4 months (see Equation (80)),
b≡ 19/5, and c≡ 39/2000.
The integral given by Equation (83) can be solved

analytically, as we show in Appendix A. The result is
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Figure 19. Evolution of the sound speed in the cloud as a function of time. We
include a zoom in between months 10 and 30, when it drops to zero. The
uppermost curve corresponds to η = 1 and the lowermost to η = 0.1. We add
an inset to show the convergence of the models when the sound speed is zero.

Figure 20. Evolution of Tgas as a function of time; see Equation (80). The
embedded zoom has a linear scale on the x-axis ranging from 2.3 yr after the
formation of the binary to 3 yr. We can see that all four models follow a similar
behavior, but the difference between them is not linearly proportional to η.
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with
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where we have defined x≡ Tmrg for legibility. The solution
agrees with standard numerical Gauss–Kronrod quadrature
methods to evaluate the value of the integral at different values
of τ.

Since
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with I(τ) the integrand of Equation (83), and
( ) ( )a a a aln lnmrg 0 0 mrg= - , we plot ( )log a amrg 0 as a func-

tion of τ and look for the value at which
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, 87
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to find Tmrg,m. In Figure 21 we show the evolution of the right-
hand side of Equation (83). We can see that from the 20th
month, the exponential behavior dominates the evolution of the
function, and the integral reaches values as high as 1070.
Although mathematically correct, this is a result of the infinite
summation of Equation (84), which is physically only realistic
up to the moment at which we consider that the binary forms,
i.e., at the value of τ for which a0= 0.5 Re, which is
τ= 34.3 months. From that moment upwards, the result of
the integral is physically meaningless for our purposes. As a
consequence of the exponential behavior, we note that the
result is relatively independent of the initial semimajor axis.
More precisely, this means that, if we, e.g., multiply the initial
semimajor axis by a factor 3, the result in the x-axis will be
larger by a small factor ò,
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5.4. Supermassive Black Hole Mimickers

The drag force acting on to the cores has a direct impact on
the observation of the mass of the source in gravitational
waves, as shown by Chen & Shen (2019), more precisely on
the chirp mass, as introduced by Cutler & Flanagan (1994)
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which reduces in our case to the following trivial expression,
since m m m1 2 core= = ,
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On the detector, however, the evolution of the gravitational-
wave frequency is affected by the timescale in which the gas
shrinks the binary in such a way that the observed chirp mass is

not given by Equation (89) but for

( ) [ ( )] ( )M t t M1 , 91chirp,obs
3 5

chirp= + L

with Λ(t) := TGW(t)/Tgas(t). This can be seen from Equation
(3) of Chen et al. (2020) and Chen & Shen (2019), and is due to
the fact that the frequency f and its time derivative f now do
not evolve solely because of the gravitational radiation (and see
also Caputo et al. 2020). In our case, however Tgas is a function
of time, given by Equation (80), and TGW(t) is given by
Equation (71). The full expression for Λ(t) is
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From this and Equation (91), we observe in Figure 22 the
increase of the chirp mass as observed by a gravitational-wave
detector such as LIGO/Virgo, the Einstein Telescope or LISA
(depending on the observed chirp mass).
The fact that the chirp mass reaches a minimum to then again

increase again to higher values is due to the fact that we are
taking into account the Bondi radius, Equation (76), since the
cores will be surrounded by a region of overdensity, a “wake”
around them. Since the sound speed decreases over time, as we
can see in Figure 19, RBondi increases. Moreover, the semimajor
axis decreases with time, and since we are multiplying

Figure 21. Evolution of ( ( ) )a aln 2mrg 0a h t as a function of τ (i.e., in
months). In the zoom, with a dashed line, we show the values corresponding to

( )a aln 20 mrgah ´ . This corresponds to Tmrg,m = 34.7 months, i.e., 2.892 yr,
which is off by a value of 0.192 yr from the value predicted by analyzing
Figure 20. We can see that τmrg varies very little as a function of a0 and amrg,
because a big change in distance in the y-axis turns into a small change in the x-
axis. This means that the result does not depend (much) on the choice of the
initial semimajor axis, which was chosen here to be Re/2. We display only the
value η = 1 because the other values are virtually identical.
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Equation (74) by ( )R aBondi
3 2, this translates into an increase

over time of the chirp mass.
An advantage of gravitational-wave data analysis is that the

time evolution of the frequency will be very different as
compared to the vacuum case, as we show in this article, so that
it will become clear that these sources correspond to stellar
collisions. This will be the first evidence. The second one is
that the merger will be very different to that of a binary of two
black holes because there is no event horizon. Last, and also
due to the fact that these objects do have a surface, there will be
an afterglow.

From the work of Chen & Shen (2019) and Chen et al.
(2020), the observed distance in gravitational waves due to the
same effect has the correction

( ) [ ( )] ( )D t t D1 , 93obs = + L

with D the real distance to the source, as derived in Chen et al.
(2020). Assuming a vacuum binary of masses m1=m2=
0.34Me, semimajor axis Re/2, and a particular value of the
eccentricity, e= 0, the horizon distance can be estimated to be
D∼ 108Mpc using the approximate waveform model
IMRPhenomPv2 (Khan et al. 2019), a phenomenological
model for black hole binaries with precessing spins, at a flow
frequency of 10 Hz with PyCBC (Nitz et al. 2020), an open-
source software package designed for use in gravitational-wave
astronomy and gravitational-wave data analysis.

In Figure 23 we can see the evolution of Dobs as given by the
Equation (93) with D∼ 108Mpc. Again, this is a consequence
of f being different from what you expect in vacuum. As with
the chirp mass, the distance will diverge from what is expected
in vacuum very quickly. The big mismatch in the chirp mass
and the too large distance to the source, but in particular the
frequency evolution, represent the identifiers of the actual
physical origin of the source—namely two colliding stars
instead of a binary of two black holes.

5.5. Polarizations in Vacuum and in Gas

We can relate the polarizations of the waveform amplitude to
the chirp mass and the distance to the source in an approximate,
Newtonian way as given by Equations (4.30, 4.31, 4.32) of
Maggiore (2008), which we reproduce here for convenience.
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In these equations, τ is our usual definition of τ= t/month, Mc

is the chirp mass, ς: = (Tmrg− τ), r is the distance to the
source, and ι is the inclination to the source. Finally, the phase
of the gravitational wave Φ(ς) is the following function:
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( ) ( )GM

c
2

5
, 95c
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5 8
5 8

0V VF = - + F
-

with Φ0 the value of Φ(ς= 0), and r is the distance to the
source, D. The value of the constant of Equation (95) can be
derived by setting τ= Tmrg. With this we find that in vacuum,
the value of Φ0 is

( )1.44 10 . 960
8F @ - ´

Hence, replacing Tmrg,m, we have in vacuum

( ) ( ) ( )1.56 10 35 , 977 5 8
0t tF @ - ´ - + F

with Λ(τ) given by Equation (92), we employ our usual
definition of τ≡ t/(1 month).
Taking into account that we have chosen D= 108Mpc and

Equation (89), and setting Tmrg,m= 1.42× 109 months,

Figure 22. The observed chirp mass for a binary of two cores of masses
0.34 Me each in function of time for the usual four values of η (with the highest
value in the lowermost curve), as given by Equation (91). We stop the plot at
Tmrg,m = 2.917 yr, which corresponds to the coalescence time, as derived
previously, and include an embedded zoom corresponding to the range 10−3

months (1.8 minutes) to 6 months.

Figure 23. Evolution of the observed distance to the source, Dobs(t) in
megaparsecs as a function of time, following the same nomenclature as in
Figure 22.
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Equations (94) become
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with Φ(τ) given in Equation (97) and Φ0 in Equation (96).
In Figure 24 we display as an example the plus polarization

of the Equations (98) in vacuum.
In order to derive an expression for the evolution of the

polarizations in the case in which we consider the influence of
the gas, what we have to do is to analyze the evolution of the
semimajor axis of the binary under the influence of the gas,
which is given by Equation (81). In this case, however, we do
not integrate up to the merger, i.e., a= amrg, t= Tmrg, but up to
some semimajor axis â in Re and some time t̂ in units of
months. Therefore, we have
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with I(τ) given by Equation (84). Therefore, for each value of
t̂ , we can derive â and, with it and Equation (65), we can
obtain what is the time ς that we need to use in the set of
Equations (94),

ˆ ( ) ( )c a

G m
F e

5

128
. 100

5 4

3
core
3

1V = -

In other words, we are deriving the characteristic timescale
for an evolution due to gravitational radiation in a case in
which the semimajor axis is shrinking at a rate given by the
friction with the gas. In Figure 25 we show the result, which is
the counterpart of Figure 24. We can see that the time has
significantly reduced, as well as the width of the oscillations.

5.6. Characteristic Strain in Vacuum and in Gas

So as to compare the vacuum case with the one in which the
cores are embedded in the gaseous cloud, we will derive the
characteristic strain as approximated by Equation (10.146) of
Maggiore (2018),

( ) ( )h f
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with dE/df the energy spectrum in the inspiraling phase in the
Newtonian approximation, see, e.g., Equation (4.41) of
Maggiore (2008),
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We have then
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Now, the characteristic strain can be expressed in terms of the
amplitude in frequency A( f ), the frequency itself f, and
its time derivative f as follows (see Equation (16.21) of
Maggiore 2018):


( ) ( ) ( )h f A f

f

f
; 104c 1 2

=

the only thing we need to do is to take the ratio of the
characteristic strain affected by the gas, ( )h fc

g , and that in
vacuum, ( )h fc

v . Since the amplitudes and the frequencies are
the same, we are left with
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with Λ(t) given, as usual, by Equation (92), and f (t) the
associated frequency of the source, which is a function of time
as well and accordingly needs to be evaluated at the same time

Figure 24. Plus polarization of the gravitational wave produced by the cores,
assuming an inclination of ι = 45°. The gray, background curve corresponds to
the vacuum waveform. We add a zoomed image showing the interval
109 months to τ = Tmrg,m = 1.42 × 109 months. We note that both y-axes need
to be multiplied by 10−26, as displayed in the left, uppermost corner. The small
spikes in the waveform are an artifact of the sampling of the plotting program.

Figure 25. Plus polarization for the binary embedded in gas. We note that,
contrary to Figure 24, the X-axis is in linear scale.
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as Λ(t). This expression, Equation (105) gives us the
instantaneous value of [ ( )]h f tc

g at a given moment t.
To derive f (t) we need to take into account two things. First,

the driving mechanism in the evolution of the binary, as we
have seen previously, is the friction of the binary with the gas,
rather than the loss of energy via gravitational radiation, so that
in Equation (105) time derivatives must be done in the context
of gas friction. Second, in our derivation of Equation (81) we
used the fact that  a a V V2= - and a a T2 gas= - . Hence,
the frequency associated to any gravitational-wave source can
be expressed in the Newtonian limit as

( )f
G M
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1
, 106tot

3p
=

where M m2tot core= , and we are omitting the time depend-
ence. The time derivative can be calculated to be
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To derive this expression we have used the chain rule and the
fact that what induces a change in the semimajor axis is the gas,
so that da dt agasº . Thus, the physical process that induces
time changes is the friction with the gas, so that we need to
derivate, with respect to the time, the quantities related to it.
Hence,
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3 . 108gas
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Therefore, we need to solve
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As before, in Equation (83), Tgas is given by Equation (80),
τ := t/(month), so that dτ= dt/(month) and so
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With the same values of α, b, and c. In this equation, f0 is the
initial frequency from which we start to measure the source,
and the ratio is f/f0 because it is a positive integral.

The result of the previous integral is 3× I(τ), with I(τ) given
by Equation (84), and τ is a moment of time in months before
the merger, i.e., at merger τ= Tmrg,m. Therefore, we have that
the integrated characteristic strain from the moment of
formation of the binary at a frequency f0 and an ulterior given
time in months τ is
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with I(τ) given by Equation (84) and Λ(τ) by Equation (92), as
usual. As for f0, we can derive it from the initial semimajor axis
of the binary and the masses of the cores. Since the
gravitational-wave frequency is twice the orbital frequency,
we have that f0≅ 4.7× 10−4 Hz.

We can express the gravitational-wave frequency in vacuum
of a binary with the same chirp mass as a function of time in

months by assuming a Keplerian, circular orbit that shrinks
over time via gravitational loss. In the quadrupole approx-
imation and for circular orbits, the source orbital frequency νs
(given via Kepler’s laws) and the gravitational-wave frequency
νGW are related via νGW= 2 νs. We hence can find from the
orbital energy and the fact that 2π fGW= νGW that
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with ς := (Tmrg− τ). See, e.g., Section 4.1 of Maggiore (2008)
for an explicit derivation of this result. We now substitute this
result in Equation (103) and obtain that
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If we adopt D= 108Mpc, z= 0, Mc= 0.29Me, and introduce
T T: monthm

mrg mrg= and τ, ( ) ( )h t T4.42 10c
m22
mrg

3 48t@ ´ -- .
In Figure 26 we can see the differences in the time evolution

of the different characteristic strains. The vacuum case
corresponds to a straight line as one would expect, since we
are working in the inspiral approximation of the quadrupole for
circular orbits (as is the case). The cores embedded in the stellar
debris, however, evolve in a very different fashion even for the
very short timescales related to the problem (of months). At the
initial time, we see that the strains differ in about 3 orders of
magnitude, as Equation (105) suggests for the default values
given in Equation (92). In a similar way, in Figure 27 we depict
the frequency evolution of the two strains. Again, in the very
short interval of frequencies, the strain in vacuum does not
change significantly, while the one corresponding to the
gaseous case has a completely different behavior.
It is interesting to see the propagation in Figures 26, 27 of

the combined effect of the evolution of the speed of sound and
the fact that the cloud is expanding over time, as we mentioned
in the paragraph following Equation (80).
We present a sketch of a possible strategy to calculate the

mismatch between the vacuum and the gas sources in
Appendix B.

6. Red Giants

So far we have focused on main-sequence stars and looked at
the high-energy emission and the potential production of an
associated gravitational-wave source. A particularly interesting
kind of star for which the previous analysis can be applied,
however, is red giants. This is because their masses are also of
the order of 1Me, even if they have much larger radii. When
the red giants collide, they will also be a powerful source of
high energy. The presence of a degenerate core at the center of
the star makes it more appealing from the point of view of
gravitational radiation, and when the two degenerate cores
collide, this will again turn into a strong source of
electromagnetic radiation, which has been envisaged as a
possible explanation for Type Ia supernova, such as SN 2006gy
(Smith et al. 2007, and see Gal-Yam 2012). We hence would
have a precursor electromagnetic signal announcing the
gravitational-wave event followed by another posterior, very
violent electromagnetic emission.
Contrary to supernovae, red giants come with a different

spectrum of masses and radii, and the total mass of the resulting
degenerate object would not be constrained by the Chandra-
sekhar limit. As a consequence, one cannot use them as
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standard candles. If what is interpreted as Type Ia supernova is
mostly the outcome of two colliding red giants, this would have
important implications, as we will see.

6.1. Event Rate of Collisions between Red Giants

The process of giganterythrotropism, as coined by Peter
Eggleton, means that the kind of main-sequence stars we have
been dealing with in this article will tend to get large and red as
they evolve. The main-sequence stars we are considering here,
of light mass, spend a percentage of their lives in the form of a
red giant.

To derive the amount of time spent in the different phases,
we refer to the work of Vassiliadis & Wood (1993), in which
they estimate that the amount of time spent in the first giant
branch is of ∼3.62× 109 yr, i.e., 24% of the total life of their
one-solar mass star of metallicity Z= 0.016 in their Table 1.

Later, the star will reach the asymptotic giant branch (AGB),
and during this stage the star’s radius can reach as much as

∼215 Re (Vassiliadis & Wood 1993). The amount of time
spent in the AGB, for a solar-like star is τAGB∼ 2.5× 107 yr
according to Vassiliadis & Wood (1993), which in their model
represents 0.17% of the total life of the star.
In order to be conservative on the derivation of the rates, this

means that the event rates, as derived in Equation (14) must be
multiplied by a factor of 10−2 to take this into account, since
we need two stars. We pick up a 1Me main-sequence star,
which, in its red-giant phase and a few numerical time steps
before the triple-alpha process, has a mass of MRG= 0.953Me
and an associated radius of RRG= 25 Re.

5 We choose these as
representative values of our default red giant in the red-giant
branch, where the 1Me main-sequence star will stably fuse
hydrogen in a shell for about 10% of its entire life.
This has a significant impact on the geometrical cross

section. As we can see in Equation (14), this leads to an
enhancement factor of ∼600 without taking into account the
first term enclosed in the square brackets, which is, however,
basically negligible as compared to the second term in the
square brackets as we discussed in that section. We do lose a
small factor in terms of mass but, in total, the rates are
significantly enhanced. In Figure 28 we show the equivalent of
Figure 1 but for the collision of two red giants with the above-
mentioned properties.
It is interesting to note that, even though red giants are fully

convective, the treatment we have derived in the previous
sections regarding the electromagnetic signature still applies to
them because the thermodynamics of the gas will not be
different from that of the main stars after the collision as soon
as the red giants collide, i.e., as soon as they are not in
thermodynamical equilibrium.
The compact binary forming in the collision will be

surrounded by gas in any case. Even if the impact parameter
was exactly zero, there will be gas because the merging time of
the compact cores due to the gas drag is much shorter than the
timescale in which the gas dissipates.
However, it is interesting to address the formation of the

binary that forms because, as we will see in Section 6.2, it is a
particular one.

6.2. Structure of the Red Giants

The nature of the red giant plays a role however in the
evolution of the cores in the resulting gaseous cloud that
emerges as a result of the collision. This is important for us
because we want to understand what source of gravitational
radiation the collision will produce after the collision between
the two red giants has taken place, with the proviso that the
relative speed does not exceed Vrel� 2500 km s−1, as noted in
Section 5. For this we need to know (i) the average density of
the medium in which the cores will be embedded after the
collision, (ii) the density of the H-fusing shell around the cores
(see ahead in the text), (iii) the masses of the cores, and (iv) an
estimate of the initial semimajor axes. We will set the mass of
the red giant to MRG= 0.953Me, which comes from the
numerical simulation of a 1Me main-sequence star before
reaching the helium flash, where it spends most of its life, and
RRG= 25 Re (see previous footnote).
In general, a red giant can be envisaged as a self-gravitating,

degenerate core embedded in an extended envelope. This is a
consequence of the decrease of hydrogen in the inner regions of

Figure 26. Evolution of the characteristic strain in vacuum, hc, and after the
collision, i.e., in a gaseous environment, hc

g. The two curves correspond to the
latter case for two different initial frequencies f0, while the former is depicted
with a dashed, straight line that does not depend on the initial frequency.

Figure 27. Same as Figure 26 but in frequency domain. We include a zoom in
for the characteristic strain of the two cores in the gaseous environment
between the range of frequencies f ä [4.7, 4.70094] × 10−4 Hz.

5 P. Eggleton, private communication.
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the star, so that if a main-sequence star consumes it, the
convective core gives place to an isothermal one. The helium-
filled core collapses after reaching a certain maximum
(Schönberg & Chandrasekhar 1942), which releases energy
that expands the outer layers of the star. However, as proven
analytically in the work of Eggleton & Cannon (1991), it is not
possible to simply add an envelope fusing H at its base on to a
wholly degenerate white dwarf (WD) core. One needs to have
an (almost) isothermal nondegenerate shell below the fusing
shell and above the degenerate core6 The work of Eggleton &
Cannon (1991) proves that the fact that a red giant’s envelope
expands, after shell burning is established, is not related to the
nature of the envelope, and even of the burning shell, but to the
ostensibly small isothermal nondegenerate shell between the
degenerate core and the fusing shell.

Since we are interested in the collision and characteristics of
the cores when they form a binary and eventually merge via
emission of gravitational waves, we need to evaluate the
properties of this shell.

We hence consider a red giant as a star with an He-
degenerate core, and an H-fusing shell around it as the only
energy source, transiting through a thin radiative zone to the
fully convective, extended envelope. Assuming an ideal gas in
the H-fusing shell, the equation of state is

( )P P P T
a

T
3

, 114gas rad sh sh sh
4

m
r= + = +
R

with ρsh the density in the shell and Tsh its temperature, the
radiation density constant a= 7.56× 10−15 erg/(cm3 K4) and
the universal gas constant ( )8.31 10 erg K g7= ´R . Usually
one introduces β := Pgas/P, the constant ratio of gas pressure
Pgas to total pressure P, so that 1− β= Prad/P. We can now

solve for ρsh,
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We hence have to derive an estimate for the temperature to
obtain the density. For this, we follow the derivation of the
gradient of temperature with radius as in, e.g., Kippenhahn &
Weigert (1991, their Section 5.1.2). We consider the flux of
radiative energy F in spherical symmetry in the shell and make
an analogy with heat conduction, so that (see Equation (5.11)
of Kippenhahn & Weigert 1991)
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where we have absorbed the flux into the luminosity,
L= 4πr2F, and κ is considered again to be constant, but in
this case κ= 0.2(1+ X) for electron scattering. Since
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The equation of hydrostatic equilibrium is
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and we approximate ( )m r Mcore~ . Hence

( )dP dP , 119rad= 

with  constant. We integrate this last equation and take
into account that we can neglect the integration constant
deep inside the radiative zone, as noted by Paczyński7, so
that ( ) ( )P P cGM L L L4 1 1rad core Eddp k b= º = - = ,
where L cGM4Edd corep kº is the Eddington luminosity, the
maximum luminosity that the source can achieve in hydro-
dynamical equilibrium (Rybicki & Lightman 1979). If this
luminosity was to be exceeded, then radiation pressure would
drive the outflow. From Equations (117) and (119), we obtain
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Since we have the expression for (1− β),
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We integrate this equation and neglect the constant of
integration for the same reasons as we did previously to find
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Finally, we obtain that the density can be expressed as
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and we note that we have used the radius of the core Rcore to
normalize the last term, although we are referring to the density
in the shell. However, the thickness of the H-fusing shell, Rsh,

Figure 28. Same as in Figure 1 but for red giants of masses MRG ∼ 0.953 Me
and radii RRG = 25 Re, taking into account that we have adopted the
occupation fraction in phase space for the two giants to be of fRG = 10−2.
This stems from the fact that we are only considering giants in the asymptotic
giant branch (AGB), where they spend about 0.17% of their life. We do not
consider the first giant branch, where they spend up to 24% of their lifetime in
order to derive lower-limit quantities.

6 We note here that, although the article has in its title “A Conjecture,” it is in
reality a proper theorem, as demonstrated in the Appendix of their work.

7 This approximation is explained in the unpublished work of Bohdan
Paczyński. See the small note in Appendix B.
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extends only a bit farther than the radius of a white dwarf from
the center (we use here the letter R for the thickness instead of T
because it could be misinterpreted with temperature). This is so
because the shell is not (yet) degenerate, but we will also derive
the value of Rsh later.

We can rewrite Equation (123) because β is constant in the
shell, as we have seen previously, so that it can be approximated
with a polytrope of index n= 3, thanks to Eddington’s quartic
equation (Equation (22) of Eddington 1924), which can be
written as

( ) ( )a G c
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3
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with M the total mass of the stellar object, in our case
M Mcore= , and z := A r (A a constant) the usual dimensionless
variable for the radius introduced to derive the Lane–Emden
equation. The value of z3 (polytrope of index n= 3) has to be
derived numerically, and is z3∼ 6.897 (Chandrasekhar 1939).
Finally, the constant c1 can be obtained thanks to the relation
between central density and average density, which one obtains
from the Lane–Emden equation, e.g., Equation (19.20) of
Kippenhahn & Weigert (1991), c1= 12.93. Therefore,
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and so, Equation (123) becomes
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This result is not unexpected, since the density of a white dwarf
ranges between 104 and 107 g cm−3, and the H-fusing shell
supports pressures very close to that of the degenerate core
itself.

We can obtain the mass enclosed between the radius of the
white dwarf (RWD) and that of the core (Rcore) by integrating
Equation (123),
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From Equation (125) and μ= 0.5 for pure hydrogen, we have
that
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so that Equation (127) can be rewritten as
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The natural logarithm between the two radii and the total
mass means that Rsh is a minor amount that extends beyond the
radius of the degenerate core, approached by a white dwarf in
our work.

Therefore, and to first order, we can consider that the
properties of the two degenerate objects taking place in the
collisions are those of the He core. The numerical code of
Eggleton (1971) allows us to obtain the properties of our

fiducial model, which is a 1Me red giant. In Figure 29 we
show the evolution of the mass and radius of the He core, while
in Figure 30 we depict the evolution of its density.
We can see that in particular the mass (and hence the

density) significantly varies in the lifetime of the star, while the
radius can change by almost 1 order of magnitude. This means
that, when the two degenerate cores form a binary and merge,
the properties of the electromagnetic radiation will consider-
ably change depending on which stage of the evolution the red
giants are in.
In principle we could choose a given mass and radius for the

red giants participating in the collision and repeat the whole
electromagnetic analysis we have done in the first sections,
when we were addressing main-sequence stars. This is so
because, even if from the point of view of the Eddington
standard model of stellar structure a main-sequence star and a
red giant are very different (treated as radiative objects and
fully convective, respectively), the gaseous debris after the
collision will be similar.
However, because the masses and radii change so much, we

decide not to do this exercise just now because we are not
aiming to compare with observational data in this work. It is
likely that in later work, we will follow this idea elsewhere.

7. Stellar Collisions in Globular Clusters

We have focused so far on galactic nuclei. Covering globular
clusters is interesting because the rates are potentially larger
due to the smaller relative velocities between the stars
participating in the collision, which is of the order of the
velocity dispersion, as mentioned in Section 1. Indeed, Table 2
of Baumgardt & Hilker (2018) contains a catalog of velocity
dispersion profiles of 112 Milky Way globular clusters. The
average yields 6.57 km s−1, so that we will fix the relative
velocity of the stars participating in the collision to the average
velocity dispersion of σ= 7 km s−1.

Figure 29. Evolution of the mass and radius of the He core of a red giant that
initially had a 1 Modot. The left y-axis shows the mass of the core inMe, and the
right one shows the radius in Re. We can see that, in its evolution, the mass of
the core can span 3 orders of magnitude.
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7.1. Rates

While it would be straightforward to repeat the calculations
we have presented in Section 2 by assuming the presence of an
intermediate-mass black hole with a given mass at the center of
the globular cluster, we prefer not to do it. The uncertainty
regarding the mass, position (we can no longer assume it to be
fixed at the center of the system, so that the calculations
become more complex), and even existence of such objects
would make the rate determination exercise too unconvincing.

However, to motivate this section, the following is a brief
summary of the most relevant work that has been done in this
context. The problem on the origin of blue stragglers
(Maeder 1987; Leonard 1989; Bailyn 1995) is a good choice
to try to infer the amount of stellar collisions in globular
clusters, since these are very likely the outcome of such
collisions.

Leonard (1989) derived a collisional rate of 10−8 yr−1

assuming that a small fraction of main-sequence stars are in
primordial binaries. If we take the Milky Way as a reference
point, then a galaxy should have of the order of 100 globular
clusters, so that the rate is of 10−6 yr−1 per galaxy. This
number might be larger, because collisions of binaries are more
important (Leonard & Fahlman 1991). It is important to note
here that the average number of globular clusters correlates
with the mass of the central MBH (Burkert & Tremaine 2010)
in early-type galaxies. In their Figure 1, we can see that this
number can go up by many orders of magnitude depending on
the mass of the supermassive black hole. For instance, NGC
4594 has about 2× 103 globular clusters.

A few years later, Sigurdsson & Phinney (1995) carried out a
detailed theoretical and numerical study of stellar collisions,
and their results suggest a rate that ranges between 10−6 and
10−4 main-sequence stellar collisions per year and galaxy
(assuming 100 globular clusters). For the arbitrary reference
distance that we have adopted of the order of 100Mpc, we
have many clusters of galaxies such as the Virgo Cluster, with
about 103 galaxies, the Coma Cluster (A1656), also with over
103 identified galaxies, and superclusters such as the Laniakea
Supercluster (Tully et al. 2014) with about 105 galaxies and the
CfA2 Great Wall (Geller & Huchra 1989), one of the largest
known superstructures, at a mere distance of ∼92Mpc.

Regardless of what the rates are, if we took an average of
1000 clusters and the larger rate of 10−4 of Sigurdsson &
Phinney (1995), the number of collisions would be 1000 times
larger as compared to 100 clusters per galaxy and the rate of
10−6. Although the authors did not address red-giant collisions,
the much larger cross section and the smaller relative velocities
in globular clusters are an evidence that their rates must be, as
in the case of galactic nuclei, much larger.

7.2. Low Relative Velocities and Impact Parameters

Until now we have had the advantage of dealing with
collisions that kinematically are very powerful, so that after the
collision we have no surviving parts of the star (Section 3) or
just the core (Section 5). However, at a typical relative velocity
of 7 km s−1, the collision will have a much lower impact on the
structure of the stars. We are looking at a different scenario.
In Section 2 we mentioned that we neglect gravitational

focusing in the case of galactic nuclei. For globular clusters we
cannot do this anymore because of the low relative velocity.
The probability of having a collision for a parameter dmin, as

introduced in Equation (16) with values ranging between d1
and d2 is

( )
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d d
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where ( ) ( )f d dP d dmin min= is the probability density. If we
consider a range of d d d d2 1 minD = - , then we can
approximate the integral by ( )P f d dd d min1 2 @ D , as we can
see in Figure 31.
When we consider the limit in which Vrel? Vesc, which

corresponds to a galactic nucleus, then ( )f d dmin minµ , which
is shown in Figure 31. We can see that in this case, then, the
probability of having a collision with d dmin < is proportional
to d2 (i.e., it is proportional to the “surface”). On the contrary,
in the case of a globular cluster, Vrel= Vesc, so that all impact
parameters have the same probability.
What this means is that in a galactic nucleus, grazing

collisions are more probable than head-on ones, while in a
globular cluster, a grazing collision and a pure head-on impact
have exactly the same probability.
The parameters we used in the previous two sections remain

the same but for the relative velocity, which allows us to infer
that the kinetic energy deposited on to one star (again,
assuming that it is distributed equally) is of TK/2∼
2.43× 1044 erg. Hence, after the collision, the star receives
an amount of energy equivalent to 3× 10−3% its initial binding
energy. This amount of energy is small enough so that we can
investigate the evolution of one of the stars perturbatively.
We will start exploring this situation in its simplest possible

form. For that, we consider one collision at a dmin =
( )R Rhalf,1 half,2+ such that ò 1, which leads to contact

between the stars after the first close encounter (when they are
not bound). The fact that even if d R Rmin half,1 half,2> + leads to
a potential collision due to the formation of a binary because of
tidal resonances (Fabian et al. 1975).This is so because the
cross section is then as large as 1–2 times that of collisions.
The stars we are considering are main-sequence, Sun-like

ones. If we consider them (1) to be in hydrostatic equilibrium,
(2) to be described by an equation of state of an ideal gas, and
(3) to be spherical symmetric, then our dynamically stable star

Figure 30. Same as Figure 29 but for the density of the core. In its evolution,
the different densities can span over 2 orders of magnitude.
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reacts on a time given by the hydrostatic timescale
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where ñ is the mean density of the star, which we assume to be
like our Sun, so that 30 minhydrt » , orders of magnitude
shorter than the Kelvin–Helmholtz timescale, which in the case
of the Sun is τKH∼ 1.6× 107 yr. This timescale is interesting
because it can be envisaged as an approximation to the
characteristic timescale of a thermal fluctuation, i.e., a thermal
adjustment of the star to a perturbation (in the simplistic
picture, which we are assuming now, since we do not take into
account the internal structure). If we are talking about a red
giant of mass 1Me and a radius 100 Re, then τhydr≈ 18 days.

7.3. Dynamical Stability in the Adiabatic Approach

Let us consider the collision to induce a small perturbation in
the star. After the collision, we will assume for simplification
that the energy is equally distributed over all of the surface of the
star, which therefore becomes denser because it is compressed.
Since we are assuming this compression to be adiabatic and
homologous, the star will abandon its hydrostatic equilibrium.
The pressure in one layer of mass of the star can be obtained by

evaluating the integral ( )P Gm dm r4
m

M 4ò p= / . Because of
homology and adiabaticity, by inspecting both sides of this
equation, we obtain that
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where primes represent the values after the collision; i.e., we
are dealing with Equation (25.24) of Kippenhahn & Weigert
(1991). This expression tells us that after the collision, the star
will be dynamically stable in the adiabatic regime if γad> 4/3
because the pressure’s growth is more important than the
weight’s increase. Since we are assuming that the stars
participating in the collision are Sun-like, we could draw the
conclusion that they are stable after the collision since one can

approach γad= 5/3(> 4/3). Indeed, in the case of the Sun, the
layer affected would be the convective one, located between
0.7 Re and the surface. However, this is a very crude approach
in the evaluation of the dynamical stability, which needs to be
improved because the critical value depends on the simplifica-
tions we have adopted in this section (except for homology,
since the threshold for γad is the same one for nonhomologous
scenarios). Moreover, even if the stars are dynamically stable, it
is not discarded that they will be unstable vibrationally or
secularly. We have addressed the dynamical stability because
timescale associated is the shortest one.

7.4. Adiabatic Pulsations after the Collision and
Considerations about Binary Formation

Since 1638, we have observed that stars pulsate thanks to the
observations of Johannes Phocylides Holwarda of Mira. Arthur
Ritter proposed in 1879 that these variations are due to radial
pulsations (Gautschy 1997), and Shapley (1914) suggested that
the temperature and brightness of Cepheid variables originated
in radial pulsations. Later, Eddington (1917), with his piston
analogy gave a working frame to describe them. In this valve
approximation, the radial pulsation period Πr can be estimated
by calculating the time that a sound wave will need to pass
through the star, i.e., Πr= 2Re/Cs.
We can determine Cs from the pressure P and (mean) density

of the star, C Ps
2

adg=  , where ñ is the average density and
γad is the adiabatic index, the heat capacity ratio or Laplace’s
coefficient. It can be envisaged as a measure of the stiffness of
the configuration (see, e.g., Section 38.3 of Kippenhahn &
Weigert 1991).
Assuming that ñ is the actual value of the density throughout

the whole star and requiring hydrostatic equilibrium, so
that ( )dP dr GM r G r r G r4 3 4 32 3 2 2p p= - = - = -    ,
and requiring that P= 0 at r= 0, we derive that

( ) ( )P r Gp R r2 32 2 2p= - . Therefore we can obtain that
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for ñ∼ 5.9 gr cm−3 after the first collision.
In the adiabatic, spherical approximation, the pulsation is

stable and has an associated timescale of about 45 minutes.
However, it would be interesting to know if more pulsations
can be produced to maintain the rhythm of oscillations typical
of the Cepheids. One possible way is further collisions.

7.5. Maintained Pulsations

In this section we will quantitatively elucidate possible ways
to produce repeated pulsations in a main-sequence star that is
not in the instability strip through dynamical phenomena, i.e.,
collisions.
One first idea is that of recurrent collisions due to the

formation of a binary after the first impact. The amount of
energy loss per collision is 2× δE, with δE= TK∼ 2.44×
1044 erg, as we have estimated before. If we just look at the
energy, the question of whether the two stars will form a binary
seems too simple. If the stars are initially on a parabolic orbit,
the orbital energy of the system, considered as two mass points

Figure 31. Probability and probability density as a function of the impact
parameter. We depict a generic curve and the two limiting cases we are
addressing in this study, namely the cases in which Vrel = Vesc and Vrel ? Vesc.
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(i.e., without taking into account the binding energy of each
star) is zero at the beginning (since the relative velocity at
infinity is zero, as is the gravitational energy). Any collision—
in fact even a close pass without any kind of physical contact
that produces tidal effects—will convert kinetic energy into
thermal energy and thus leave the stars with negative orbital
energy, thus forming a binary.

The real question is how this binary will evolve once it has
formed. And this is not a question that can be solved
analytically in detail. It is worth noting, however, that if there
is a real contact at the first pericenter passage, a collision, this
will make the stars expand, so that further impacts will take
place, probably more violent at each successive orbit. The
possibility that the binary survives for a long time before the
two stars merge is probably low.

These considerations are regarding main-sequence stars,
whose envelopes are rather dense. In the case of red giants, it is
likely that the collisions lead to the ejection of the envelope,
and we are left with a stable binary consisting of the two cores,
which will then follow the previous scheme: evolution via gas
drag, detection via gravitational radiation, and an afterglow
when they eventually collide.

This reasoning is for main-sequence stars, whose envelope is
quite dense. For giants, perhaps the collisions lead to the
ejection of the envelope, and we are left with a stable binary
consisting of the two cores.

A possible first estimate from an energy point of view would
be to look at the binding energy of the envelope of the giant;
i.e., how much energy leads to an ejection of the envelope and
then compare that energy to the orbital energy decrease from
the parabolic trajectory to a circular binary formed by the two
cores. This would allow us to estimate the semimajor axis of
the final binary, but this reasoning does not involve the impact
parameter at all and is hence simplistic.

The binding gravitational energy of stars in isolation is hence
not a useful quantity for studying the formation of binaries. The
interesting point has already been addressed: if the relative
orbital energy of the two stars is smaller than the sum of the
binding energies, it is impossible to destroy both stars
completely.

In a globular cluster, it is unlikely for a completely
destructive collision to occur, because the relative velocities
at infinity are very low. And even if there is enough energy to
destroy the stars, we need also a very small impact parameter.

Therefore, for main-sequence stars in a globular cluster, most
collisions lead to the formation of a binary star that rapidly
merges (in the classical meaning, not the relativistic one). A
smaller subset of collisions, those with small impact para-
meters, produce a direct merger. Very little mass is ejected. But
there is a possibility of noncolliding binaries forming due to
tidal resonances (Fabian et al. 1975).

Hence, it is difficult to assess analytically the duration and
potential periodicity of such pulsations originating from stellar
collisions. If they are vibrationally unstable, then we need to
input a given amount of energy to maintain the pulses, since the
oscillations will damp. The input of energy might (i) come
from further collisions with the other star, if they build a binary,
(ii) from other stars in the cluster, or (iii) internally from the
structure of the star, if we have amplitudes increasing in time
because the vibrational or thermal instability have excited
the star.

Addressing this problem is beyond the scope of this paper,
but it is important to note that pulsating stars are also used as
another rung in the standard candle ladder, as pointed out by
Henrietta Swan Leavitt (Fernie 1969). Since the implications
are potentially important, it would be interesting to investigate
the collisional pulsating nature of stars in globular clusters.
This would not be the first time that the need to revisit the

cosmic ladder argument due to anomalies found in globular
clusters has existed. Indeed, if we consider two stars, one of
Population I (classical Cepheids) and another of Population II
in the instability strip, they will pulsate due to the κ mechanism
(see, e.g., Kippenhahn & Weigert 1991). They have different
masses but the same radii because they are located at the same
place in the Hertzsprung–Russell diagram. The lighter stars
have lower ñ and, hence, in principle, a longer period than
classical Cepheids, even if they have the same luminosity. This
is not correct, and the derivation of the correct periods led to
Baade realizing that the cosmic distance scale was to be
multiplied by a factor of 2 (Baade 1944).

7.6. A Scheme to Study the Injection of Energy into the Star

Because in globular clusters the relative velocity at infinity is
lower than the stellar escape velocity, of the order 500–1000
km s−1, the relative velocity at contact is similar to the thermal
velocity of stellar matter. Hence, such collisions are only
mildly supersonic, and entropy is nearly conserved. The
entropic variable A defined as A P: adr= g (with P the
pressure) of a fluid element is subject to increase because of the
heat produced during the shock. Nonetheless, because the
speed at contact is similar to the speed of sound in the stars
participating in the collision, the shocks must have Mach
numbers of about unity and hence a weak heating production
during the shock. The important point here is that for these
reasons, the considered fluid element will have a constant
entropic variable during the collisional process, as demon-
strated by Lombardi et al. (2002). This allows us to treat the
collision with a semianalytical approach, which is derived by
conservation laws of the process. This scheme yields very good
results when compared to three-dimensional computer simula-
tions, including shock heating, hydrodynamic mixing, mass
ejection, and angular momentum transfer (Lombardi et al 1996,
Lombardi et al. 2002; Lombardi et al. 2003).
In Figure 32 we show the correlation between the initial and

final (i.e., after the collision) entropic index ΔA := Afin− Ain

as a function of the initial pressure of one of the parent stars,
Pin. This finding was already presented in Lombardi et al.
(2002, their Figure 3), using SPH. It is interesting to see that the
fluid sorting algorithm gives a result that is very close to what
three-dimensional computer simulations yield. We can see
that there is a proportion between both quantities such
that ( ) ( )A Plog log 1 inD µ .
We can use this correlation to our benefit to understand how

a collision will add energy to one of the stars after they have
gone through an interaction. In particular,

( ) ( ) ( )A A b Plog log , 134fin in in- = -
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In this equation, b is a constant that contains information
about the properties of the collision. For instance, the larger b
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is, the more energy will be deposited onto the surface of one of
the two stars, and we have defined B = 10b, which has units of
pressure times A (i.e., units of P2 adrg ).

If we consider a weak interaction, we assume that the
entropy will be added instantaneously onto the star, and that the
density profile will not change. The final pressure is hence
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because we have adopted γad= 5/3. Because the density
profile is unchanged, the gravitational potential energy is
unchanged as well, which means that only the thermal energy
changes, since we are neglecting rotation as a first approach.
Therefore, the energy added over the star after the first “hit” is
the following integral evaluated over the entire star:
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because dm= ρ 4 π(r)r2 dr in spherical symmetry, which we
are assuming.

Equation (138) allows us to determine B by evaluating the
unperturbed parent star. Thus, we solve the equation while
setting B= 1, and then we can choose B to be the desired
energy input divided by the result of the equation.

This scheme allows us to then evaluate the propagation of
the energy through the star and the induced pulsations.
Unfortunately, the analytical calculations require solving the
eigenvalue problems of the Sturm–Liouville type to calculate
the overtones if we want to consider nonadiabatic, nonradial
oscillations, although rotation might help with shearing
deformation.

Given that we have seen that any impact parameter has the
same probability, we consider that it is not worth extending this
article any further than we are already doing. We will therefore
study this problem separately in a future publication, either
analytically or numerically with the energy injection scheme
we have outlined in this section.

8. The Cosmic Ladder Argument

The event rate of colliding red giants and their observational
nature is telling us that we might be misinterpreting SNe Ia
observations and be wrong by calling what we observe
“standard” candles. Also, their collisions in globular clusters
might trigger pulsating stars that are also used as reference
points when deriving cosmological scales, as we just pointed
out in Section 7.
There might be ways to tell them apart in the case of the SNe

Ia observations, though. One unique observational signature for
WD-WD collisions is the double-peak profile of cobalt and iron
lines in late-time spectra (also called “nebular spectra”) of SNe
Ia (Dong et al. 2015). At late times, supernova ejecta become
optically thin, so that the line profiles reflect the underlying
velocity distributions. Since both cobalt and iron are decay
products of Ni56, which is synthesized in the WD-WD merger,
the profiles of these Co and Fe nebular lines show the velocity
distribution of Ni56 in the ejecta. The authors studied a sample
of some 20 well-observed SNe Ia with nebular spectra, and
found in the sample three objects showing double peaks and an
additional one with a flat-top profile (i.e., departing from a
single-peak profile).
This bimodal velocity distribution is a feature of WD-WD

mergers (see, e.g., the top panels of their Figure 5). These
results are supported by the work of Kushnir et al. (2013),
which shows from two-dimensional simulations of WD-WD
mergers that the full range of ∼0.1Me–1Me Ni56 can be
produced from (exactly head-on) collisions of WDs with
masses between ∼0.5Me and 1Me. However, other models,
such as that by van Rossum et al. (2016, their Figure 13), do
not predict such double peaks; although, as noted by Dong
et al. (2015), the observed line profiles depend on the view
angle, as well as in other parameters,8 and their data is not
homogeneous, statistically speaking.
Another feature, as shown in Dong et al. (2018), is that for

SNe Ia at the very low end of luminosity function, Ni56 ejecta
show significantly off-center distribution at about
∼1000 km s−1, which can be explained by WD-WD mergers
with significant mass ratios. We note that sub-Chandrasekhar
merger models, the delay detonation model, can also produce a
large off-center distribution, but not a bimodal distribution.
It is interesting to note that Wygoda et al. (2019a, 2019b)

also explored the WD-WD merger scenario of Kushnir et al.
(2013) and they found that the Ni56 column density
distribution of the SNe Ia population can be explained in
terms of it. Also, Livneh & Katz (2020) found that the key
signatures of SNe Ia near the peak, i.e., the diverse distribution
of Si II line width distribution, which is usually referred to as
the so-called “branch plot,” and widely used to classify SNe Ia
population, can be explained by asymmetry in ejecta from WD-
WD mergers.
We note that in supernova searches, galactic nuclei are

usually left out from the survey because they are complex

Figure 32. Difference of the entropic index as a function of the initial pressure
of the stars for the following values of the distance of closest approach:

( )d R Rmin 1 2+ = 0, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.50, 0.55, 0.60i, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99, and 0.999. We
cannot see the different curves because they all follow the same power-law
relation, as given with the black, dashed line. In all of the calculations, we have
assumed M1 = M2 = 0.8 Me, a relative velocity at infinity of 7 km s−1 and an
initial separation normalized to the sum of the parent star radii of 5.

8 Dong Subo, personal communication.
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systems. However, (i) sometimes the whole galaxy is too small
in the data to be able to tell apart the nucleus, and (ii) as we
have mentioned in Section 1, in this work we are focusing on
galactic nuclei to evaluate the lower-number case. In globular
clusters, collisions should happen more frequently due to the
lower velocity dispersion, which approximately corresponds to
the relative velocity of stars in the system. The lower the
relative velocity, the more likely that a gravitational deflection
ends up in a collision due to the larger exchange of energy and
angular momentum.

9. Conclusions

In this work we have made an analytical study of the
electromagnetic and gravitational radiation implications of
stellar collisions between stars in dense stellar systems such as
galactic nuclei and globular clusters, whether main-sequence or
red giants.

In the case of galactic nuclei, we analyze the remaining
gaseous cloud that forms after the impact and its electro-
magnetic features, while taking into account the ulterior
dynamical evolution of the gas, which is expanding and
cooling down. In particular, we address the time evolution of
the released energy and find that it resembles that of a stellar
tidal disruption.

Since we are interested in the observational prospects of
detecting this phenomenon, we also describe the time evolution
of the effective temperature, the evolution of the peak
wavelength of the spectral radiance, as well as the evolution
of the kinetic temperature as the outcome of the collision and
the spectral power as a function of the frequency.

We find that the electromagnetic traces left by these violent
and transient processes strongly resemble over time periods
tidal disruptions but also SNe Ia supernovae.

Our complete analysis depends only on two free parameters,
one appears in the electromagnetic study and the other one in
that on gravitational waves. In the part dedicated to the
electrodynamics, the free parameter is responsible for the
nonlinearity of the collision, i.e., the transmission of the shocks
and hence of the total efficiency conversion of kinetic energy
into radiation. The second one, which is relevant for the total
rates of gravitational-wave sources, is the number fraction of
main-sequence stars whose cores form a binary. We para-
meterize the solution in terms of the nonlinearity parameter and
explore four different values. In order to derive this parameter,
one would need dedicated numerical simulations.

From among the colliding stars, a subgroup of them leads to
the formation of a binary consisting of their cores. This
subgroup is interesting because it leads to the formation of a
binary of two objects that is sufficiently massive and compact
to detectably emit gravitational waves.

We find that the friction exerted by the gas accelerates the
approach of the surviving cores and brings them closer to
eventually merge, with an electromagnetic afterglow such as in
the case of binaries of neutron stars merging. Due to the time-
varying properties of the gas (which our analytical model takes
into account in all calculations), the observed appearance of the
gravitational waves is very different from any known source. In
particular, two nuclei of very low masses, 0.34Me, will be
perceived as two black holes of initially slightly above stellar
masses, which later increase to become, apparently, two
merging supermassive black holes. Something similar happens

to the luminance distance, which apparently decreases and then
increases very significantly.
As noted in Section 5.4, the fact that the frequency evolution

is different from the vacuum one will be the first evidence that
these are not black holes emitting gravitational radiation, but a
stellar collision. Later, the absence of event horizon will make
it obvious and, finally, the electromagnetic afterglow will
confirm this. In this sense, the gravitational waves are a perfect
tool to identify the nature of the source. We sketch in
Appendix C a possible strategy to address the gravitational-
wave data analysis of the collisions.
We calculate analytical characteristic strains and polariza-

tions of the nuclei in vacuum, as a reference point, and then
derive them in the gaseous case, also analytically. The changes
are evident and very pronounced, differing by orders of
magnitude; although the overall behavior in the gas case
captures, or rather tries to mimic, the behavior of gravitational
radiation emission.
As the gravitational merger time is drastically reduced,

electromagnetic and gravitational-wave detection go practically
hand in hand. This means that the collisions of main-sequence
stars and red giants represent two multimessenger probes that
complement each other. This is particularly interesting in the
case of red giants, since the core is a degenerate object that will
be a more interesting source of gravitational radiation.
In the case of red giants, we calculate the importance of the

H-burning shell in the process, as this calculation was not
found in the literature, to the best of our knowledge. This is
important because this layer around the cores could strongly
influence the further evolution of the binary of the two
degenerate objects. However, we derive that the role of this
shell can be disregarded in this study.
According to our results, these degenerated cores, which can

be envisaged as white dwarves, embedded in the host red
giants, have a collisional event rate that can be of up to
hundreds of them per year within a volume of 100Mpc. The
properties of the collision will strongly vary in function of the
mass of the cores and the impact parameter, which depends on
the radii of the cores. The properties of these collisions are very
similar to SNe Ia. In view of the event rate, this could pose a
problem to the interpretations of SNe Ia, which are referred to
as “standard candles” following the idea of Henrietta Swan
Leavitt (Fernie 1969) as a way to derive cosmological distances
following the ladder argument. This is because, as we have just
explained, stellar collisions are not standard at all.
Finally, collisions in globular clusters lead to different

phenomena, in particular they might lead to stellar pulsation
like in the classic problem of the Cepheids. The periodicity of
these pulsations is to be investigated, because the formation of
a binary that is long-lived seems to be unlikely, but collisions
arising from other stars can be a way to sustain the pulsations,
or vibrational or thermal instabilities triggered in the interior of
the star after the first collision. We have shown that their
pulsations are stable in the case of the adiabatic, spherical
special case, but it is worth investigating (i) the nonadiabaticity
of spherical pulsations and (ii) nonradial oscillations, in both
the κ and ò mechanisms. We think this is an interesting
question because these pulsations are considered to be another
rung in the cosmological ladder, and, as noted in Section 7.4, a
misclassification of these has already had an important impact
in the past, also on globular clusters. We have not addressed
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this for the sake of the length of this article, but this is a part of
current work and will be presented elsewhere.

Finally, it is worth mentioning that our Galactic Center is a
known region of heightened cosmic-ray abundance. Naively,
one would have thought that the increase in cosmic-ray
abundance we observe there would be brought about by a
larger abundance of supernovae in this region. However, no
such over-abundance of supernova is observed in this region.
Furthermore, the quiescence level of the supermassive black
hole activity in this region casts doubt on an accretion episode
being responsible for the cosmic rays. Consequently, a
heightened cosmic-ray abundance in galactic nuclei appears
peculiar, demanding the existence of a regular nonthermal
energy source within this region, which seems to be naturally
linked to stellar collisions.
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Appendix A
Analytical Solution of the Integral Associated to Tgas

The integral in Equation (83) to be computed is as follows:
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We simplify the integral In for n� 1 by reducing the power of
the denominator, using the method of integration by parts.
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where we have introduced the polynomial
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Finally, we combine Equations (A4), (A6), and (A15). Note
that all terms apart from the one containing the polynomial Fn

yield elementary functions.
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Appendix B
A Scheme for the Gravitational-wave Analysis

When comparing the polarizations in the evolving gaseous
cloud and vacuum, because of the big difference in Tmrg,m and
Λ(τ), the two polarizations diverge from the beginning. This
leads to a significant mismatch of the waveforms.
The reality is more complex. On the one hand, we have a

real, physical source that is producing the gravitational
radiation. We will refer to this source from now on as the
“real” source and will use the subscript “r” for it. On the other
hand, detectors will receive data for a source that we describe
as the “observed” source for obvious reasons, and use the
subscript “o” for it. Finally, in order to extract parameters from
the observed source, data analysts will use a theoretical model
that assumes that the source is in vacuum. This is our
“putative” source, and we will use the subscript “p” for it. The
connection between these three different sources is displayed in
Figure 33.

Appendix C
Neglection of the Constant of Integration to Derive the

Density of the H-fusing Shell

When trying to define the constants of integration of
Equations (119) and (121), we came across the unpublished
notes of Bohdan Paczyński, where he explains that

The constant (...) can be calculated from the
matching conditions between the radiative zone
and the outer convective envelope, and it is very
important near the radiative—convective
boundary. However, deep inside the radiative
zone the other two terms in the equation (...)
become much larger than the constant, and (it)
may be neglected.

We found this explanation in the notes of Jill Knapp in
Princeton, who told us it was not her work, and after looking
for the origin, she found out that the link to the original notes
written by Paczyński was Jeremy Goodman. In his turn, he
explained that “He (Bohdan Paczyński) taught a class in stellar
structure to graduate students for many years, which I had the
privilege of helping him with in later years.” Unfortunately,
Jeremy could not find a published version of this derivation by
Paczyński, so we acknowledge here the origin of what has led
us to the neglection of the constant of integration, crucial in
defining the analytical expression for the density of the
H-fusing shell.
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