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Abstract: This research study adopts 30 provinces, municipalities and autonomous regions in China 4 

as the research object in order to explore the green total factor productivity (GTFP) of the 5 

construction industry with the prospect of digital transformation. Based on construction industry 6 

panel data from 2011-2017, the CCR model and PCE model evaluation model are used to measure 7 

the GTFP of the construction industry in the context of digital transformation. The results of the 8 

research study identify the following: (A) The PCE model was able to differentiate all decision units 9 

and complete ranking. (B) The GTFP of the construction industry in East, North, South-Central, and 10 

Southwest China is relatively high, while that in Northeast and Northwest China is low. Thus, there 11 

is room for improvement in Northeast and Northwest China to a certain extent. (C) The higher the 12 

optimism of decision makers about the digital transformation of the construction industry is, the 13 

higher the GTFP of the construction industry; additionally, when decision makers become 14 

increasingly more optimistic about the digital transformation of the construction industry, the GTFP 15 

of the construction industry decreases to a certain extent, while when decision makers become 16 

increasingly less optimistic about the digital transformation of the construction industry, the GTFP 17 

of the construction industry increases to a certain extent. 18 
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1 Introduction 23 

Since the reform and opening up more than 40 years ago, China’s economy has developed 24 

rapidly, leading to the emergence of the ‘Chinese economic miracle’[1], which has attracted 25 

worldwide attention. However, this rapid growth of China’s economy has come at the expense of 26 

the environment. The development path of high investment, high consumption and high pollution 27 

has become a "bottleneck" for sustainable economic development. As an important sector of the 28 

national economy, the construction industry is no exception[2]. Moreover, digital and green 29 

development has become an inevitable trend in the development of the construction industry[3]. 30 

With the innovative breakthrough and integrated development of the new generation of information 31 



and communication technology (ICT), digital technologies that build on building information 32 

modelling (BIM) are becoming the driving force behind the transformation, upgrading and 33 

sustainable development of the construction industry[4]. 34 

‘Digital transformation’ is a concept based on harnessing the latest digital technologies (such 35 

as cloud computing, big data, artificial intelligence, Internet-of-Things, robotics, and blockchain) 36 

and related capabilities to drive organizational business model innovation and business ecosystem 37 

reconstruction. Indeed, digital transformation can be viewed as moving beyond more traditional 38 

information technology (IT) implementations focused on process automation and optimization 39 

through enabling changes and resulting implications for products, services, and business models as 40 

a whole[5]. With the development of a new generation of IT and the increase in the availability of 41 

innovative technologies, such as big data, artificial intelligence and cloud computing, digital 42 

transformation is enabling the creation of new value creation paths in order to facilitate 43 

organizational change and concomitantly drive disruptions, such as driving consumer behaviours 44 

and creating new competitive landscapes[6].However, digital transformation in the construction 45 

industry is currently still its infancy and while many have advocated the potential benefits[7-11] 46 

there is now a pressing need to investigate the prospect of digital technologies in the construction 47 

industry. Furthermore, digital transformation has also been viewed as an important emerging enabler 48 

to improve the sustainability of the construction sector[12, 13] and thereby generate improved 49 

performance for the industry across economic, environmental and social outcomes. Therefore, this 50 

research study has adopted the Chinese construction industry as the object of an empirical 51 

investigation of industry panel data from 2011-2017 in order to utilize the prospect cross-efficiency 52 

evaluation model is used to measure the green total factor productivity of the construction industry 53 

with the prospect of digital transformation. 54 

First,the existing articles seldom pay attention to the influence of digitalization on total factor 55 

productivity, so this paper expands the existing research. Second,this paper adopts the PCE model 56 

based on prospect theory, which not only overcomes the disadvantage that some evaluation units can 57 

not be further distinguished because the traditional DEA model always evaluates the efficiency value 58 

from its own perspective, but also solves the problem that the traditional cross-efficiency model does 59 

not fully consider the subjective preference of decision makers in the process of efficiency evaluation, 60 

can not reflect the different risk attitudes of decision makers when they face the benefits and losses, 61 

and is difficult to meet the actual decision-making needs of decision makers. Third,this study 62 



systematically combs the existing research,and concludes that the input index and output index of 63 

total factor productivity improve the reliability of the research as much as possible. Finally, the 64 

results of this study are helpful for the government to evaluate the prospect of GTFP digital 65 

transformation in construction industry. 66 

The paper is organized as follows. Section 2 presents the literature review. Then, methodology 67 

is presented in Section 3. Section 4 shows the empirical results, with Section 5 discussing these 68 

results. Finally, conclusions are made in Section 6. 69 

 70 

2 Literature review 71 

2.1 Digital transformation in the construction industry 72 

In recent years, the topic of digital transformation has aroused the attention of the business 73 

management community [14]. Indeed, industries are actively embracing digital transformation, 74 

including the automotive industry [15], food industry [16], fashion industry[17], aerospace 75 

industry[18] as well as the construction industry [19]. In the case of the construction industry, digital 76 

transformation can be viewed as building on the use of building information modeling (BIM) that 77 

acts as a big data platform in the architecture, engineering, and construction (AEC) industry and to 78 

support the transition to a smart industrial paradigm [20]. 79 

Extending the functionality of BIM usage in the construction sector offers the capability to 80 

provide improved efficiencies across different aspects of the industry and this has also been 81 

articulated in terms of the paradigm of Construction 4.0 [21]. For instance, BIM systems can be 82 

extended through incorporating material databases along with corresponding use of big data, smart 83 

sensors and increasing levels of automation in order to improve the efficiency and safety of the 84 

construction of roads incorporating recycled materials [22]. This extension can also be considered 85 

in terms of moving beyond purely the construction stage, since it has been identified that IoT 86 

(internet-of-things)-BIM systems can be deployed to whole life benefits for FM (facilities 87 

management) and the built environment applications, namely energy management, operations and 88 

maintenance management, space management, FM project management, emergency management 89 

and quality management [23], While yet other options also exist in regard to utilizing BIM to secure 90 

sustainability related benefits, such as improved energy efficiency in the built environment [24]. 91 



In regard to the technological dimension of digital transformation, there are opportunities to 92 

utilize various technologies, such as artificial intelligence [25], IoT and big data [26], augmented 93 

and virtual reality [27], robotics [28] as well as additive manufacturing [29]. There are also a number 94 

of more emerging technologies that can be considered as part of digital transformation in the 95 

construction sector. In this regard, blockchain systems based on distributed ledger technology have 96 

been identified as having a number of potential applications in the construction industry[30]. This 97 

includes enabling higher levels of productivity through adopting situational instances of Payments 98 

in Project Management (PPM) and Procurements in Supply Chain Management (PSCM) as well as 99 

harnessing BIM to underpin using Smart Asset Management (SAM) [31]. Whereas digital twins 100 

have been evaluated as having application to workforce safety in the construction industry [32] and 101 

explored as providing improved capabilities for construction site logistics [33]. 102 

 103 

From an international perspective and in the case of Nigeria, Ezeokoli et al. [34] investigated the 104 

opinions of construction sector professionals on the digital transformation of the construction 105 

industry; the study showed that 69% and 12% of professionals believe that digital transformation is 106 

an opportunity and a threat, respectively, while 19% of professionals believe that it is both. Whereas, 107 

Kraatz et al.[35] have described the productivity benefits in the Australian transport infrastructure 108 

sector through the construction industry adopting BIM, virtual design and construction (VDC) and 109 

integrated project delivery (IPD) systems. Koseoglu et al. [36] carried out research on the BIM-110 

Enabled Digital Transformation of a new airport project in Istanbul, Turkey, finding that the major 111 

challenges involve sustaining continuous monitoring and controlling the project execution phase as 112 

well as managing engineering complexity while remaining aligned with the BIM learning curves of 113 

key stakeholders. The researchers also identified that more strategic level control measures, 114 

incentivized virtual systems to enable collaborative working and ongoing digital delivery 115 

mechanisms can be viewed as enablers of digital transformation on infrastructure projects. Hwang 116 

et al. [37] investigated the implementation status and project performance in the Singapore 117 

construction industry through integrated digital delivery (IDD) and found that IDD implementation 118 

resulted in a number of benefits for the sector, including improved overall project, project cost, 119 

project quality and project schedule performance. In other work, Pfnür and Wagner[38] identified 120 

three impact mechanisms of the digital transformation in the real estate industry in Germany, which 121 

is based on the perspectives of occupiers (concerned with access to more flexible space), service 122 



providers (concerned with increasing the efficiency of traditional processes) and investors 123 

(acknowledging the needs of the occupiers but not necessarily pursuing resulting strategies. 124 

 125 

2.2 Green total factor productivity 126 

In the construction industry, green total factor productivity (GTFP) is an intuitive manifestation 127 

of economic growth through considering energy consumption and carbon emissions. Indeed, it can 128 

be argued that GTFP reflects the real green growth performance indicators of the economic system 129 

during a certain period of time. In this regard, a systematic analysis of the GTFP of the construction 130 

industry enables the evaluation of the development status of the construction industry[39]. Research 131 

on GTFP originated in the middle and late 20th century and was developed during the first ten years 132 

of the 21st century[40].  133 

The current research on this topic focuses on the measurement of GTFP in the construction 134 

industry. The parameter estimation method using the Solow residual value[41], stochastic frontier 135 

analysis (SFA) method[42] and the nonparametric data envelopment analysis (DEA)[43] have all 136 

been widely used. DEA is more popular among scholars due to its advantages in dealing with 137 

multiple inputs and outputs. In 1983, Pittman used DEA for the first time to study GTFP considering 138 

poor output. Ebrahimi and Salehi[39] used DEA to calculate technical efficiency, pure technical 139 

efficiency, scale efficiency, and cross-efficiency to discuss carbon dioxide emission reduction and 140 

improve energy efficiency. Hu et al.[44], based on the Malmquist index of DEA and sequential 141 

benchmark technology, proposed an index for evaluating carbon emission performance in the 142 

framework of TFG. Whereas Xiang et al.[4] used the global Malmquist-Luenberger model to 143 

measure the GTFP of the construction industry. Although scholars have conducted extensive 144 

research on the GTFP of the construction industry, there is a lack of research on the prospect of 145 

digital transformation in this sector. Therefore, empirical research is required on whether digital 146 

transformation can engender greater benefits to the construction industry. Such research also needs 147 

to identify the role that digital transformation can play in resource conservation and whether it can 148 

improve the GTFP of the construction industry. 149 

3 Research methods 150 

3.1 Research strategy 151 

In order to address the gap in the knowledge base identified in the literature review, this research 152 

study uses the prospect cross-efficiency (PCE) model to measure the GTFP of the construction 153 



industry with the prospect of digital transformation. The model deploys a self-evaluation system to 154 

alleviate the drawbacks of the traditional method of relying solely on the self-evaluation system for 155 

the evaluation of decision-making units (DMUs). This approach determines that the globally optimal 156 

DMU has achieved the goal of fully ranking all DMUs. The model has been used to describe the 157 

degree of optimism of decision makers regarding the prospect of the digital transformation of the 158 

construction industry in a cross-efficiency evaluation and analyses the six major regions of China 159 

for the construction industry from 2011 to 2017. This is achieved by changing the parameter value 160 

representing the degree of optimism of decision makers about the prospect of the digital 161 

transformation of the construction industry (excluding the GTFP of Tibet, Hong Kong, Macao and 162 

Taiwan regions) to compare the ranking of the GTFP of the construction industry in various regions 163 

under different parameter values. This study uses a systematic GTFP measurement model to 164 

comprehensively and accurately measure the GTFP of the construction industry. The study thereby 165 

enhances the application of GTFP in the construction industry and provides a reference for research 166 

on GTFP in other industries. Furthermore, the study explores the impact of the prospect of digital 167 

transformation on GTFP in the construction industry. 168 

 169 

3.2 CCR model of self-efficiency evaluation 170 

Assuming that D={𝐷𝑀𝑈1，𝐷𝑀𝑈2，… … 𝐷𝑀𝑈𝑛} is a set of n evaluated DMUs, each DMU 171 

generates s outputs by consuming m inputs. Let N={1,2,3...n}, k∈N; M={1,2,3…m}, i∈M; and 172 

S={1,2,3…s}, r∈S. For 𝐷𝑀𝑈𝑘, k=1, 2, 3…n, input is defined as 𝑋𝑖𝑘 (i=1, 2,…m), and output is 173 

defined as 𝑌𝑟𝑘 (r=1, 2, 3…s); see Table 1. The relative efficiency of 𝐷𝑀𝑈𝑘 is defined as follows: 174 

Ekk = ∑ urk
s
r=1 yrk/ ∑ vik

m
i=1 xik                     （1） 175 

where 𝑢𝑟𝑘  and 𝑣𝑖𝑘 are the nonnegative weights of s outputs and m inputs, respectively. In the 176 

self-efficiency evaluation, the relative efficiency of 3 compared to other DMUs can be measured 177 

with the following Charnes–Cooper–Rhodes (CCR) model: 178 

maxEkk = ∑ urk
s
r=1 yrk/ ∑ vik

m
i=1 xik 179 

s.t.∑ urk
s
r=1 yrj/ ∑ vik

m
i=1 xij ≤ 1，j ∈ N 180 

urk，vik ≥ 0 r∈S，i∈M                       （2） 181 



Model (2) is a nonlinear programming model. To facilitate the solution, this section uses the 182 

CCR model to transform Model (2) into the following linear programming model: 183 

maxEkk = ∑ urk
s
r=1 yrk 184 

s.t. ∑ urk
s
r=1 yrj − ∑ vik

m
i=1 xij ≤ 0，j ∈ N 185 

∑ vik
m
i=1 xik=1 186 

urk ， vik ≥ 0 r∈S，i∈M                         （3） 187 

where 𝑢𝑟𝑘 ∗ and 𝑣𝑖𝑘 ∗ are the optimal output and input weights, respectively, and Ekk ∗ =188 

 ∑ urk
s
r=1 ∗ yrk is the CCR efficiency of 𝐷𝑀𝑈𝑘, which represents the best relative efficiency of 189 

𝐷𝑀𝑈𝑘  calculated through self-evaluation. If Ekk ∗=1 and optimal weights 𝑢𝑟𝑘 ∗ and 𝑣𝑖𝑘 ∗ are 190 

positive, then 6 is valid; otherwise, it is invalid. 191 

Table 1 Input-output value of DMUs 192 

DMUs DMU1 DMU2 ……. DMUn 

Output values 

y11 y12 ……. y1n 

y21 y22 ……. y2n 

……. …… ……. ……. 

ys1 ys2 ……. ysn 

Input values 

x11 x12 ……. x1n 

x21 x22 ……. x2n 

……. ……. ……. ……. 

xm1 xm2 ……. xmn 

 193 

3.3 CCR model of cross-efficiency evaluation 194 

In Model (3), each DMU is evaluated with the optimal weight, which may lead to a CCR 195 

efficiency value of 1 for many DMU self-efficiency evaluations, which cannot be further 196 

distinguished. To compensate for this shortcoming, Sexton et al. [12] proposed a cross-efficiency 197 

evaluation CCR model, which evaluates the overall performance of each DMU by using the total 198 

weight of all DMUs. If 𝑢𝑟𝑘 ∗  and 𝑣𝑖𝑘 ∗  are the optimal weights of the output and input, 199 

respectively, of 𝐷𝑀𝑈𝑘 given by Model (3), then the cross-efficiency score of 𝐷𝑀𝑈𝑑 is as follows: 200 

Edk=∑ Urk
s
r=1 yrd/∑ Vik

m
i=1 Xid，d∈ N，d≠ k              （4） 201 

For each 𝐷𝑀𝑈𝑘 , Model (3) is calculated n times each time, and each DMU obtains n-1 202 

crossover efficiency and optimal self-efficiency. Moreover, n DMUs can obtain n groups of input-203 

output weights using n*n crossover. In terms of the efficiency matrix, the diagonal elements in Table 204 

2 present the CCR efficiency score of self-efficiency evaluation, Ekk ∗. 205 

To evaluate the overall performance of each DMU and calculate the average cross-efficiency of 206 

each row (see Table 2), the cross-efficiency of 𝐷𝑀𝑈𝑑 is defined as follows: 207 



Ed=∑ Edk
n
k=1 /n，d∈ N                        （5） 208 

Cross-efficiency score Ed provides a peer-to-peer evaluation of DMUd, and accordingly, these 209 

n DMUs can be completely compared or ranked. 210 

Table 2 Cross-efficiency matrix of DMUs 211 

DMU 
Target DMU Average cross-

efficiency DMU1 DMU2 …… DMUn 

DMU1 E11 E12 …… E1n ∑ E1k
n
k=1 /n 

DMU2 E21 E22 …… E2n ∑ E2k
n
k=1 /n 

…… …… …… …… …… …… 

DMUn En1 En2 …… En3 ∑ Enk
n
k=1 /n 

 212 

3.4 Prospect theory 213 

In 1979, Kahneman and Tversky proposed the prospect theory [13]. As a descriptive theory about 214 

the decision-making behaviour of risky individuals, prospect theory has been regarded as one of the 215 

most influential behavioural decision-making theories [14]. Moreover, prospect theory involves the 216 

following important principles [13]. 217 

(1) Reference dependence, where a decision maker usually perceives a gain or loss according to 218 

a reference point; therefore, the decision maker's foreground value curve is divided into a gain 219 

domain and a loss domain on the basis of this reference point. 220 

(2) Loss aversion, where a decision maker is more sensitive to loss than to gain. For this reason, 221 

the loss domain of the foreground value curve is steeper than the gain domain. 222 

(3) Sensitivity reduction, where a decision maker shows a profit trend of avoiding risk and a 223 

loss trend of seeking risk. Correspondingly, the foreground value curve is concave in the gain domain 224 

and convex in the loss domain. 225 

The functional aspect of prospect theory is described as follows: 226 

V(∆Z)= {
(∆Z)α，（∆Z ≥ 0）

−θ(−∆Z)β，（∆Z < 0）
                     （6） 227 

∆Z is used to measure the deviation of Z from reference point Z0. If ∆Z≥0, then the result is 228 

regarded as a gain; otherwise, the result is regarded as a loss (∆Z<0). Parameters 0<α<1 and 0<β<1 229 

indicate the convexity of the value function in the gain and loss domains, respectively, θ indicates 230 

the loss avoidance coefficient, and θ>1 indicates that the loss area value function is steeper than the 231 

gain area value function. 232 



Existing cross-efficiency evaluation methods assume that a decision maker is completely 233 

rational and usually belongs to the theoretical framework of expected utility. Noting that prospect 234 

theory is very consistent with the actual decision-making behaviour of human beings, the following 235 

section proposes a new cross-efficiency evaluation model based on prospect theory. 236 

 237 

3.5 PCE model 238 

Prospect theory reveals that a decision maker usually reflects the quality of results according to 239 

a reference point. The selection method for the reference point considers the following points: zero 240 

value, average value, median value, worst value and best value. This study is based on prospect 241 

theory and chooses the best and worst values. The worst DMU usually consumes the most input and 242 

produces the least output, and the best DMU usually consumes the least input and produces the most 243 

output. In prospect theory, if the value of a DMU is higher than that of the worst DMU, then it is 244 

viewed as a return. Relative loss can be regarded as a lower value than the optimal DMU, in which 245 

case, the DMU is regarded as a loss. 246 

If the reference point is the worst DMU, then the foreground gain of the i-th input of 𝐷𝑀𝑈𝑘 247 

and the r-th output is 𝑉𝐼𝑖𝑘

+ = (𝑥𝑖
−

− 𝑥𝑖𝑘)𝛼 and 𝑉𝑂𝑟𝑘

+ = (𝑦𝑟𝑘 − 𝑦𝑟
−)𝛼, respectively, among which 248 

𝑥𝑖
− = max{𝑥𝑖𝑘} and 𝑦𝑟

− =min{𝑦𝑟𝑘}. 249 

If the reference point is the best DMU, then the prospect loss of the i-th input of 𝐷𝑀𝑈𝑘 and the 250 

r-th output is 𝑉𝐼𝑖𝑘

− = −𝜃(𝑥𝑖𝑘 − 𝑥𝑖
+)𝛽 and 𝑉𝑂𝑟𝑘

− = −𝜃(𝑦𝑟
+ − 𝑦𝑟𝑘)𝛽, respectively, among which 251 

𝑥𝑖
+ = min{𝑥𝑖𝑘} and 𝑦𝑟

+ =max{𝑦𝑟𝑘}. 252 

Suppose that N = {1, 2,… , n}, k∈ N, M = {1, 2. . . , m}, i∈ M, and S = {1,2, … ,s}, for r ∈ S, 253 

and that there are n DMUs to be evaluated; the output and input of 𝐷𝑀𝑈𝑘（k∈N）are 𝑦𝑟𝑘（r∈S）254 

and 𝑥𝑖𝑘（i∈M）, respectively. Thus, a PCE model is constructed as follows: 255 

max λ(∑ 𝑢𝑟𝑘
𝑠
𝑟=1 (𝑦𝑟𝑘 − 𝑦𝑟

−)𝛼+∑ 𝑣𝑖𝑘
𝑚
𝑖=1 (𝑥𝑖

− − 𝑥𝑖𝑘)𝛼) 256 

−(1−λ)( ∑ 𝑢𝑟𝑘
𝑠
𝑟=1 𝜃((𝑦𝑟

+ − 𝑦𝑟𝑘)𝛽 + ∑ 𝑣𝑖𝑘
𝑚
𝑖=1 𝜃(𝑥𝑖𝑘 − 𝑥𝑖

+)𝛽) 257 

s.t. ∑ 𝑣𝑖𝑘
𝑚
𝑖=1 𝑥𝑖𝑘=1 258 

∑ 𝑢𝑟𝑘
𝑠
𝑟=1 𝑦𝑟𝑘=𝐸𝑘𝑘 ∗ 259 

∑ 𝑢𝑟𝑘

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑘

𝑚  

𝑖=1

𝑥𝑖𝑗 ≤ 0   j ∈ N 260 

𝑢𝑟𝑘，𝑣𝑖𝑘 ≥ 0 ，r ∈ S  i ∈M                        （7） 261 



Parameter λ represents the relative importance of the gain that satisfies 0≤λ≤1. In the PCE 262 

model, different λ values represent different attitudes of decision makers. If 0≤λ<0.5, then the 263 

decision maker will pay more attention to a loss rather than a gain; if λ=0.5, then the decision maker 264 

will consider the factors of gain and loss equally important; and if 0.5<λ≤1, then the decision maker 265 

will pay great attention to the gain preference. 266 

Parameter α represents the concavity of the value function in the gain area, which indicates the 267 

degree of optimism of the decision maker about the digital transformation of the construction 268 

industry. A larger α value means that the decision maker is very optimistic about the digital 269 

transformation of the construction industry. At this time, the decision maker is looking for risks. 270 

When α tends towards 0, the decision maker avoids risks in the evaluation process, and the evaluation 271 

results of the corresponding PCE model are quite conservative. Parameter β represents the convexity 272 

of the internal value function of the loss area, which represents the degree of the decision maker's 273 

disapproval of the digital transformation of the construction industry. A larger β value means that 274 

the decision maker is very dissatisfied with the digital transformation of the construction industry. 275 

At this time, the decision maker is sensitive to losses. When β tends towards 0, the decision maker 276 

seeks risks in the evaluation process, and the evaluation results of the corresponding PCE model are 277 

quite risky. 278 

 279 

3.6 Data and evaluation index system 280 

The DMUs in the model are the provinces, municipalities and autonomous regions examined in 281 

this study, which selects the construction industry panel data of 30 provinces, municipalities, and 282 

autonomous regions from 2011-2017 in China. The data used in this study mainly come from the 283 

"China Statistical Yearbook", "China Energy Statistical Yearbook", "China Construction Statistical 284 

Yearbook" and the relevant statistical yearbooks of various provinces and regions in China. Other 285 

data come from the following website; http://cyfd.cnki.com.cn/. Due to lack of data availability and 286 

completeness, relevant data for the Tibet Autonomous Region were excluded. 287 

In order to select appropriate indicators, this study refers to the selection of input-output 288 

variables in the existing research on GTFP in the construction industry, as shown in Table 3. 289 

Table 3 Existing GTFP evaluation index system for the construction industry 290 

Author Years Investment index Output indicators 

Li and Liu 2010 (1) Labour (2) Capital (1) Total value added 

Wang et al. 2011 (1) Labour (2) Capital (1) Total value added 

Liu et al. 2013 (1) Labour (2) Capital (1) Value added 

He 2013 
(1) Labour (2) Capital 

(3) Mechanical value of labour per capita 

(1) Total value added (2) Total 

profit and taxes (3) Overall labour 

productivity 



Li et al. 2014 

(1) Labour (2) Capital (3) Number of 

enterprises (4) Mechanical value of 

labour per capita 

(1) Total income of the enterprise 

(2) Completed construction area 

Shi et al. 2016 (1) Capital (2) Operational investment 
(1) Total profit (2) Project settlement 

profit 

Hu and Liu 2016 
(1) Labour (2) Completed construction 

(3) Energy 
(1) Total value added 

Hu and Liu 2017 (1) Labour (2) Completed construction 
(1) Total value added (2) Carbon dioxide 

emissions 

Chen et al. 2018 (1) Labour (2) Equipment 
(1) Value added (2) Total value added 

(3) Total profit and tax 

Hu and Liu 2018 (1) Labour (2) Capital (3) Equipment (1) Total value added 

Huo et al. 2018 
(1) Labour (2) Capital (3) Equipment 

(4) Energy 

(1) Total added value 

(2) Completed construction area 

This study examined the existing evaluation indicators of GTFP in the construction industry. 291 

Subsequently, four input variables as well as two output variables and one undesired output variable 292 

were selected and digital transformation was established. Table 4 presents the prospective evaluation 293 

index system for the GTFP of the construction industry. 294 

Table 4 GTFP Evaluation Index System of the Construction Industry 295 

Index Type Unit 

Number of employees in construction enterprises Input Millions 

Total assets of construction enterprises Input Billions 

Total power of construction machinery Input 104 kw 

Building energy consumption Input Ten thousand tons 

Total output value of the construction industry Expected output Billions 

Total profit of the construction industry Expected output Billions 

Carbon dioxide emissions Undesired output Ten thousand tons 

4 Results and Analysis 296 

This empirical study takes the construction industry of 30 provinces, municipalities and 297 

autonomous regions in China from 2011 to 2017 as the research object.  Taking the digital 298 

transformation of the construction industry as the prospect, the CCR model and the PCE model are 299 

used to measure the GTFP of the construction industry, and the GTFP of the construction industry 300 

with the prospect of digital transformation is measured. The two models are compared and subjected 301 

to sensitivity analysis, and the following conclusions are drawn. 302 

 303 

4.1 Evaluation Results of the CCR Model 304 

It is useful to present an illustrative example of the evaluation results from 2016. The evaluation 305 

results for the other years could be obtained in the same way. Based on the input-output data of the 306 

construction industry in 2016, the efficiency values of 30 DMUs were calculated by the CCR model 307 

(self-efficiency evaluation). The results are provided in last column of Table 5. According to Table 308 



5, the efficiency value of most DMUs is 1, signifying that they are effective and that each DMU 309 

cannot be further distinguished. Therefore, the PCE model was introduced to calculate the cross-310 

efficiency value of each DMU to comprehensively rank all DMUs. 311 

  312 



Table 5 Input-Output of the Construction Industry in 2016 313 

This study followed the research of scholars Zhang et al. [15] through aiming to further reveal 314 

the differences in the spatial distribution of GTFP in the construction industry. Therefore, the 30 315 

provinces and cities were divided into six regions based on their geographical location and economic 316 

DMU 

Input Output 

Efficiency 

of the CCR 

model 

Labours 
Total 

assets 

Total 
power of 
constructi

on 
machinery 

and 
equipment 

Energy 

consump

tion 

Carbon 

dioxide 

emission

s 

Total 

output 

value 

Gross 

profit 

Beijing 58.14 20263.67 366.8 119.47 115.86 8841.19 675.32 1.0000 

Tianjin 73.64 6016.72 521.6 237.24 428.63 4891.81 97.58 1.0000 

Hebei 130.88 4972.68 1028.8 312 234.03 5517.69 154.65 0.9312 

Shanxi 75.43 4845.39 697 163.28 208.91 3318.47 97.21 0.7853 

Inner 

Mongolia 
29.7 1975.86 198.8 367.7 362.22 1220.81 60.63 0.7553 

Liaoning 126.14 5984.5 1011.2 282.81 78.12 3926.71 121.14 0.6984 

Jilin 57.02 2418.51 255.8 144.72 211.28 2283.56 91.15 0.8709 

Heilongjiang 37.36 1957.63 324.1 56.9 28.63 1716.61 51.24 0.9772 

Shanghai 104.02 9049.64 270 236.64 186.3 6046.19 217.74 1.0000 

Jiangsu 763.75 17835.24 3671.8 349.66 78.57 25791.76 992.63 1.0000 

Zhejiang 770.28 12087.88 2188.4 370.69 572.96 24989.37 573.78 1.0000 

Anhui 168 5496.33 753.7 220.69 307.92 6047.29 203.62 0.8583 

Fujian 325.27 4758.45 1047.6 258.58 245.27 8531.45 279.45 1.0000 

Jiangxi 152.57 3447.48 531.6 114.34 64.77 5179.03 186.8 1.0000 

Shandong 293.19 11135.87 2177 472.1 307 10087.43 415.28 0.7864 

Henan 260.9 7043.58 2263.3 263.44 333.61 8807.99 438.53 1.0000 

Hubei 269.64 9853.31 1233.7 367 318.05 11862.4 475.72 1.0000 

Hunan 219.96 4631.92 1009.5 377.91 597.68 7304.22 230.3 0.9643 

Guangdong 228.57 12200.09 1666.9 740.18 233.95 9652.31 418.28 0.8664 

Guangxi 120.02 1898.15 291.8 62.06 6.92 3449.19 67.75 1.0000 

Hainan 7.42 251.5 30.9 47.8 44.78 307.76 12.12 0.9870 

Chongqing 209.08 5325.94 456.3 115.09 191.33 7035.81 326.57 1.0000 

Sichuan 282.87 9858.72 1014.8 548.5 311.99 9959.68 266.44 0.8549 

Guizhou 67.53 3544 341.5 161.07 187.99 2362.95 60.11 0.6807 

Yunnan 115.63 4590.56 508.7 232.01 265.06 3867.22 147.02 0.7439 

Shaanxi 118.32 5344.17 716.5 192.27 116.17 5329.23 163.42 0.9837 

Gansu 56.58 1863.44 372.2 110.68 123.56 1947.24 64.37 0.8158 

Qinghai 11.44 568.09 109 45.63 58.47 410.62 15.51 0.7167 

Ningxia 9.93 747.63 53 89.74 66.67 511.25 19.95 0.8525 

Xinjiang 38.41 2319.34 233.1 202.35 138.61 2258.24 50.15 1.0000 



development level, namely, East, South-Central, North, Northeast, Southwest, and Northwest China. 317 

Specifically, East China includes Shandong, Jiangsu, Anhui, Jiangxi, Zhejiang, Fujian, and Shanghai; 318 

South-Central China refers to Henan, Hubei, Hunan, Guangxi, Guangdong, and Hainan; North China 319 

includes Inner Mongolia, Beijing, Tianjin, Hebei, and Shanxi; Northeast China contains 320 

Heilongjiang, Jilin, and Liaoning; Southwest China includes Sichuan, Chongqing, Yunnan, and 321 

Guizhou; and Northwest China contains Xinjiang, Qinghai, Gansu, Ningxia, and Shaanxi China. See 322 

Fig. 1 for the specific division of regions in China. 323 

 324 

Fig. 1 Division of the Six Regions 325 

Table 6 CCR Efficiency Values of the Regional Construction Industry during 2011-2017 326 
Year 

Area 
2011 2012 2013 2014 2015 2016 2017 Average 

East China 0.907 0.918 0.929 0.924 0.905 0.949 0.894 0.918 

South-Central 

China 
0.919 0.944 0.948 0.956 0.958 0.970 0.956 0.950 

North China 0.951 0.990 0.990 0.971 0.965 0.894 0.968 0.961 

Northeast China 0.931 0.933 0.940 0.920 0.876 0.849 0.866 0.902 

Southwest China 1.000 0.973 0.992 0.998 0.873 0.820 0.848 0.929 

Northwest China 0.786 0.824 0.865 0.852 0.844 0.874 0.817 0.837 

All 0.907 0.918 0.929 0.924 0.905 0.904 0.894 0.912 



 327 
Fig. 2 CCR Average Efficiency Value of the Regional Construction Industry 328 

Table 5 shows the CCR efficiency value of the construction industry in 2016, and similarly such 329 

data can also be obtained for the period 2011-2017，the results are shown in Table 6. In fact, the 330 

CCR efficiency values of the construction industry were analysed for the years 2011-2017 from the 331 

regional perspective (as shown in Fig. 2), which clearly highlights that the average CCR efficiency 332 

during the study period was 0.912. In particular, the average CCR efficiency of East, North, South-333 

Central, and Southwest China was higher than that of the whole country and investment in the 334 

construction industry in these regions is lower than that in other regions. This indicates that during 335 

the study period, the GTFP value of the construction industry in East, North, South-Central and 336 

Southwest China were higher, while those of the construction industry in Northeast and Northwest 337 

China were lower. Thus, there is room for improvement in Northeast and Northwest China to a 338 

certain extent. 339 

 340 

4.2.Evaluation results of the PCE model 341 

It was believed that the digital transformation of the construction industry would arrive 342 

as expected (λ=0.5). Other parameters, α, β and θ, in the model were 0.89, 0.92 and 2.25, 343 

respectively. The input-output weight of the construction industry was calculated in 344 

accordance with the CCR efficiency of self-evaluation in the first step and the PCE model, as 345 

shown in Table 7. 346 

 347 
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Table 7 Input-Output Weights of the Construction Industry 349 

DMU 

Weight of Input Weight of Output 

Labour Total assets 

Total power of 

construction 

machinery and 

equipment 

Energy 

consumption 

Carbon 

dioxide 

emissions 

Total output 

value 
Gross profit 

Beijing 1.720E-02 0 0 0 0 0 1.481E-03 

Tianjin 8.219E-03 6.561E-05 0 0 0 2.044E-04 0 

Hebei 3.950E-03 9.060E-05 0 2.646E-08 1.390E-04 1.688E-04 0 

Shanxi 6.824E-03 8.076E-05 0 2.410E-04 2.615E-04 2.367E-04 0 

Inner 

Mongolia 
1.689E-02 2.522E-04 0 0 0 4.878E-04 2.634E-03 

Liaoning 4.527E-03 5.909E-05 0 0 9.648E-04 1.778E-04 0 

Jilin 7.400E-03 1.420E-04 9.168E-04 0 0 3.476E-04 8.468E-04 

Heilongji

ang 
1.449E-02 1.891E-04 0 0 3.088E-03 5.693E-04 0 

Shanghai 0 1.302E-05 3.267E-03 0 0 1.654E-04 0 

Jiangsu 0 0 0 0 1.273E-02 0 1.007E-03 

Zhejiang 0 1.38E-05 0 2.25E-03 0 4.00E-05 0 

Anhui 3.385E-03 7.536E-05 0 7.782E-05 0 1.419E-04 0 

Fujian 0 2.102E-04 0 0 0 6.518E-05 1.588E-03 

Jiangxi 3.815E-03 6.467E-05 2.127E-04 1.822E-04 9.427E-04 1.896E-04 9.600E-05 

Shandon

g 
1.984E-03 2.590E-05 0 0 4.229E-04 7.795E-05 0 

Henan 1.598E-03 6.929E-05 0 3.604E-04 0 0 2.280E-03 

Hubei 1.747E-03 2.908E-05 1.742E-04 7.496E-05 0 8.425E-05 1.151E-06 

Hunan 2.226E-03 1.102E-04 0 0 0 9.486E-05 1.178E-03 

Guangdo

ng 
2.285E-03 2.982E-05 0 0 4.870E-04 8.976E-05 0 

Guangxi 0 0 0 0 1.445 E-01 2.899E-04 0 

Hainan 5.985E-02 1.302E-03 7.397E-03 0 0 3.003E-03 5.172E-03 

Chongqi

ng 
0 1.915E-05 5.953E-04 5.442E-03 0 1.421E-04 0 

Sichuan 1.707E-03 2.982E-05 1.837E-04 0 1.173E-04 8.583E-05 0 

Guizhou 5.974E-03 9.931E-05 5.940E-04 2.567E-04 2.280E-06 2.881E-04 0 

Yunnan 3.749E-03 7.195E-05 4.644E-04 4.128E-08 0 1.761E-04 4.289E-04 

Shaanxi 4.698E-03 6.133E-05 0 0 1.001E-03 1.846E-04 0 

Gansu 9.629E-03 2.443E-04 0 -2.456E-09 0 4.058E-04 3.974E-04 

Qinghai 5.020E-02 7.493E-04 0 0 0 1.450E-03 7.827E-03 

Ningxia 3.242E-02 6.223E-04 4.016E-03 0 0 1.523E-03 3.709E-03 

Xinjiang 1.683E-02 1.441E-04 0 0 1.394E-04 4.428E-04 0 

According to Table 7 (input-output weights) and Table 5 (construction industry input-output), 350 

the cross-efficiency matrix of the construction industry can be obtained. The average cross-efficiency 351 

of each row of the matrix is calculated, reflecting the overall efficiency of the construction industry. 352 



Moreover, this study explored the cross-efficiency value in six regions and obtained their ranking 353 

order. 354 

Table 8 Regional Efficiency Value of the Construction Industry during 2011-2017 355 
    Year 

Area 
2011 2012 2013 2014 2015 2016 2017 Average 

East China 0.609 0.636 0.667 0.673 0.696 0.690 0.697 0.667 

South-Central 

China 
0.652 0.681 0.680 0.700 0.751 0.751 0.772 0.712 

North China 0.624 0.670 0.703 0.701 0.729 0.728 0.762 0.703 

Northeast China 0.575 0.615 0.672 0.659 0.673 0.670 0.662 0.647 

Southwest China 0.792 0.756 0.762 0.757 0.641 0.626 0.625 0.708 

Northwest China 0.513 0.553 0.617 0.625 0.665 0.650 0.648 0.610 

All 0.609 0.636 0.667 0.673 0.696 0.690 0.697 0.600 

 356 
Fig. 3 Regional Average Efficiency Value of the Construction Industry 357 

The PCE model was applied to measure the efficiency values of China’s construction industry 358 

during 2011-2017, which are provided in Table 5. First and foremost, this study analysed the 359 

efficiency value during the period 2011-2017 from the regional perspective (as shown in Fig. 3). 360 

According to the Fig. 3, the average efficiency is 0.600 across the entire nation. However, in South-361 

Central, Southwest and North China, the efficiency value is the highest because these regions are the 362 

most developed and actively promote the construction industry. In contrast, the value is the lowest 363 

in Northeast and Northwest China, and consequently there is scope for these regions to encourage 364 

greater levels of capital investment and thereby enhance the construction industry. As indicated by 365 

the analysis, the results calculated by the PCE model are consistent with those calculated by the CCR 366 

model. 367 
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4.3. Comparison of the CCR and PCE models 368 

In this part of the study, the construction industry in 2016 is taken as an illustrative example, 369 

and the impact of the CCR and PCE models on the efficiency value of the construction industry in 370 

the six regions studied are compared and analysed. Additionally, the sensitivity of the evaluation 371 

results is analysed. Table 9 provides the efficiency values of the 30 provinces and cities in these six 372 

regions in 2016. In order to more intuitively display the efficiency values calculated by the CCR and 373 

PCE models, this study adopted a line graph to show the changes in these values, as shown in Fig. 374 

4. It is clearly shown from Fig. 4 that the efficiency value calculated by the PCE model is lower than 375 

that calculated by the CCR model because the PCE model evaluates the efficiency value in two 376 

stages and performs self-evaluation with a set of the best weighting coefficients. At the same time, 377 

the weighting coefficients of other DMUs are used for peer evaluation. Furthermore, the efficiency 378 

values of East, South-Central, and North China are higher, signifying that the economic growth of 379 

the construction industry in these regions has changed from traditional extensive economic growth 380 

to intensive, more efficient economic growth. However, lower efficiency values are found in 381 

Northeast and Southwest China, where related countermeasures and suggestions should be proposed 382 

to enable suitable improvements in the future. 383 

Table 9 Regional CCR and PCE Efficiency Values of the Construction Industry in 2016 384 

Number Area Province 
Efficiency of the 

CCR model 
Rank 

Efficiency of 

the PCE model 
Rank 

1 East China 

Shanghai, Jiangsu, 

Zhejiang, Anhui, 

Fujian, Jiangxi, Shandong 

0.949 2 0.751 1 

2 

South-

Central 

China 

Henan, Hubei, Hunan, 

Guangdong, Guangxi, 

Hainan 

0.970 1 0.728 2 

3 North China 
Beijing, Tianjin, Hebei, 

Shanxi, Inner Mongolia 
0.894 3 0.670 3 

4 
Northeast 

China 

Liaoning, Jilin, 

Heilongjiang 
0.849 5 0.626 6 

5 
Southwest 

China 

Sichuan, Chongqing, 

Yunnan, Guizhou 
0.820 6 0.650 4 

6 
Northwest 

China 

Xinjiang, Qinghai, Gansu, 

Ningxia, Shaanxi 
0.874 4 0.648 5 

 385 



 386 
Fig. 4 Comparison of the CCR and PCE Models 387 

 388 

4.4 Sensitivity Analysis 389 

Sensitivity analysis is to evaluate the influence of one parameter (independent variable) on the 390 

value of another parameter (dependent variable) from the perspective of quantitative analysis. In this 391 

part, a discussion is provided on how the GTFP of the construction industry was affected by the 392 

decision maker’s optimism about the digital transformation prospect of the construction industry 393 

(that is, parameters α, β, θ, and λ). 394 

The efficiency values of the regional construction industry when parameter λ is set with 395 

different values, such as 0, 0.2, 0.4, 0.6, 0.8, and 1, are calculated (see Table 9 for the detailed results). 396 

Table 10 Efficiency Value of the Regional Construction Industry with Different λ Values 397 

Area 
λ= 0 λ= 0.2 λ= 0.4 λ= 0.6 λ= 0.8 λ= 1 

Result Rank Result Rank Result Rank Result Rank Result Rank Result Rank 

East China 0.789 1 0.753 1 0.753 1 0.751 1 0.747 1 0.749 1 

South-

Central 

China 

0.774 2 0.738 2 0.736 2 0.728 2 0.727 2 0.732 2 

North China 0.672 5 0.666 3 0.666 3 0.671 3 0.670 3 0.677 3 

Northeast 

China 
0.647 6 0.627 6 0.625 6 0.626 6 0.623 6 0.313 6 

Southwest 

China 
0.680 3 0.649 5 0.650 5 0.650 4 0.647 4 0.504 5 

Northwest 

China 
0.673 4 0.653 4 0.652 4 0.648 5 0.645 5 0.652 4 

0,4
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When λ is assigned values of 0, 0.2, and 0.4, the decision maker is optimistic about the prospect 398 

of digital transformation in the construction industry. However, when the values are 0.6, 0.8 and 1, 399 

the decision maker is pessimistic about this prospect. According to Table 9, when λ is set with 400 

different values, the efficiency value in each region also changes accordingly, but there are no 401 

significant changes as a whole. Regardless of the value assigned to λ, East China and South-Central 402 

China are always the regions with the most effective efficiency values. The region with the lowest 403 

value is Northeast China, and slight changes are also found in North, Southwest and Northwest China. 404 

This study, by changing the values representing optimistic and pessimistic attitudes (that is, 405 

parameters α, β, and θ) towards the prospect of the digital transformation of the construction industry, 406 

explored how the different attitudes of the decision maker affected the efficiency value of the 407 

regional construction industry. Here, the original values of α, β and θ were assumed to be 0.5, 0.3, 408 

and 3, respectively. Consequently, Figs. 3, 4, and 5 show the impact of changed parameters α, β and 409 

θ on the efficiency value, respectively. 410 

 411 
Fig. 5 Influence of α on the Efficiency Values of the Regional Construction Industry 412 

Fig. 5 shows the change in efficiency value when the degree of the decision maker’s optimism 413 

about digital transformation of the construction industry (parameter α) is changed. The value of 414 

parameter α is set to 0.1-0.6. As shown in the figure, the higher the value of α is, the more optimistic 415 

the decision maker is about the digital transformation of the construction industry. However, analysis 416 

indicates that with the continuous increase in α, the overall efficiency of the construction industry in 417 

various regions changes steadily first and then declines. Fig. 5 identifies that although the decision 418 

maker is more optimistic about digital transformation, this optimism fails to improve the GTFP of 419 

the entire construction industry. 420 
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 421 
Fig. 6 Influence of β on the Efficiency Values of the Regional Construction Industry 422 

Fig. 6 shows the change in efficiency value when the degree of the decision maker’s pessimism 423 

about digital transformation of the construction industry (parameter β) is changed. The value of 424 

parameter β is set to 0.1-0.6. As shown in Fig. 6, the higher the value of β is, the more pessimistic 425 

the decision maker is about the digital transformation of the construction industry.However, analysis 426 

indicates that with the continuous increase in β, the overall efficiency of the construction industry in 427 

various regions changes steadily first and then rises. Fig. 6 shows that although the decision maker 428 

is more pessimistic about digital transformation, this pessimism improves the GTFP of the entire 429 

construction industry to some extent.  430 

 431 
Fig. 7 Influence of θ on the Efficiency Values of the Regional Construction Industry 432 

Parameter θ indicates the degree of the decision maker’s pessimism about digital transformation. 433 

Specifically, a larger value signifies that the construction industry suffers from greater loss during 434 

digital transformation. Fig. 7 shows the change in the regional efficiency value when parameter θ is 435 

0,600

0,620

0,640

0,660

0,680

0,700

0,720

0,740

0,760

0,780

0,800

0,820

0,1 0,2 0,3 0,4 0,5 0,6

North China Northeast China East China

South-Central China southwest The northwest

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

0,76

0,78

1 2 3 4 5 6

North China Northeast China East China

South-Central China Southwest China Northwest China



changed, with θ set between 1 and 6. As shown in Fig. 7, the higher the value of θ is, the more 436 

optimistic the decision maker is about digital transformation of the construction industry. However, 437 

analysis indicates that with the continuous increase in θ, the overall efficiency rises steadily. In other 438 

words, Fig. 7 shows that although the decision maker is more pessimistic about digital transformation, 439 

this pessimism improves the GTFP of the entire construction industry to some extent. 440 

The appeal showes that the decision maker is increasingly optimistic about the digital 441 

transformation of the construction industry (parameter α), but the GTFP of the construction industry 442 

has not improved. Further, the decision maker is increasingly less optimistic about the digital 443 

transformation of the construction industry (parameters β and θ), and the GTFP of the construction 444 

industry has been improved to some extent. 445 

5 Discussion 446 

The research and analysis in this paper provides a new perspective on the relationship between 447 

regional differences in the construction industry, the preference of decision makers for digital 448 

transformation and Total factor productivity in the context of digital transformation, this paper fills 449 

the blank of the research on the digital transformation prospect of the construction industry, and 450 

makes an empirical study on whether the digital transformation can bring more benefits to the 451 

construction industry. 452 

According to the results of PCE model and CCR model, there are obvious differences between 453 

regions in the green Total factor productivity of construction industry. The results are consistent with 454 

those of Xiang Pengcheng et al [45].The regional differences of China’s construction industry show 455 

that the GTFP values are higher in the east, north, south-central and south-west, while the GTFP 456 

values are lower in the northeast and northwest, the difference of digital transformation degree 457 

between different regions is verified; Feng Yahong et al [46] believe that there are also regional 458 

differences in the transformation rate of green economy in the construction industry. The green 459 

economy output benefit of the construction industry in Eastern and central China is far higher than 460 

that in Western and northeastern China, showing a trend of polarization, behind the trend of 461 

polarization, there is a tendency for the inter-regional output benefit to shrink, which may be due to 462 

the implementation of our overall regional development strategy, the “Belt and Road”, the 463 

coordinated development of Beijing, Tianjin and Hebei, the Yangtze River Economic Belt and other 464 

new national-level regional development strategies have narrowed the regional economic gap and 465 

promoted the digital transformation of the construction industry, increased Green Total factor 466 

productivity in regional construction; Zhou Yong et al [47] believe that the GTFP in various regions 467 

of China is on the rise, and that the growth rate in the Eastern Region is obviously higher than that 468 



in the western and northeastern regions, showing an imbalance in the region, fan Jianshuang et al 469 

[48] think there are some differences in the growth of TFP in the regional construction industry. 470 

Generally speaking, the growth of TFP in the construction industry is slow, the growth of 471 

Midwestern Sectional Figure Skating Championships is low, and the growth of TFP in the eastern 472 

region is high, the coupling degree distribution of TFP growth and regional economic growth 473 

basically conforms to the law of spatial differentiation in the East, middle and West, which is closely 474 

related to the economic situation at that time, but in recent years, with the implementation of the 475 

strategy of national rejuvenation of Central Plain, the proposal of the regional development strategy 476 

of the Yangtze River Economic Belt makes the central region grow rapidly, which also drives the 477 

development of the construction industry and makes the central region’s TFP grow rapidly.  478 

In the context of digital transformation, the change of GTFP in the construction industry is also 479 

closely related to the attitude of decision makers towards digital transformation, the study is a ground 480 

breaking analysis of how decision makers’ expectations of the digital transformation of the 481 

construction industry affect Total factor productivity. The results show that policymakers are 482 

increasingly optimistic about the digital transformation of the construction industry, but the 483 

construction industry’s GTFP has not improved. In addition, the digital transformation of the 484 

construction industry is becoming less and less favored by policy makers, and the GTFP of the 485 

construction industry has been improved to a certain extent. 486 

6 Conclusions 487 

At present, it is the initial stage of construction industry digital transformation. Due to the 488 

phenomenon of high investment cost in digital transformation, the input-output ratio of China's 489 

construction industry digital transformation is not high in the short term, and the impact of digital 490 

transformation on green total factor productivity of construction industry is not obvious, so it fails 491 

to improve the growth of green total factor productivity of construction industry in the short term. 492 

This study provides some practical implications for managers and policy makers to better understand 493 

the impact of digitization on the construction industry. Based on the above analysis, the following 494 

policy suggestions are proposed: 495 

(1) Chinese manufacturing managers should fully understand and accept the positive impact of 496 

digital transformation on the construction industry. Digital transformation, as a means to transform 497 

the green development of the construction industry, will improve the green total factor productivity 498 

of the construction industry to a certain extent. Through the use of digital technology and application, 499 

managers should constantly improve the level of building product planning and design, create green 500 

building construction standards, so as to improve the quality of building products. 501 

(2) On the one hand, Chinese policy makers should formulate differentiated policies based on 502 

the actual regional development situation to stimulate the growth of GTFP in construction industry. 503 



Especially in the northeast and northwest regions, the government should guide the industry to 504 

improve the GTFP by means of economic stimulus or financial support. On the other hand, Chinese 505 

policymakers should pay attention to high-quality development in the digital transformation of the 506 

construction industry. They should focus on the digital technological innovation of construction 507 

industry, formulate and issue relevant fiscal policies, laws, standards and evaluation systems, so as 508 

to form a good environment for digital innovation of construction industry in the whole society, and 509 

improve the input-output ratio of digital transformation of construction industry in this way. 510 

This study has some limitations. First, the research on green total factor productivity under the 511 

prospect of digital transformation is limited to the construction industry and has not been extended 512 

to other industries. Second, sample data of construction industry in different countries or regions 513 

should be included and compared with China’s data, so as to fully understand the development of 514 

green total factor productivity under the prospect of digital transformation. 515 
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