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Abstract: A set D V G( )⊆ is a super dominating set of a graphG if for every vertex u V G D( )∈ ⧹ , there exists a
vertex v D∈ such that N v D u( ) { }⧹ = . The super domination number ofG, denoted by γ Gsp( ), is the minimum

cardinality among all super dominating sets of G. In this article, we show that if G is a cactus graph with
k G( ) cycles, then γ G γ G k Gsp 2( ) ( ) ( )≤ + , where γ G2( ) is the 2-domination number of G. In addition, and as

a consequence of the previous relationship, we show that if T is a tree of order at least three, then
γ T α T s T 1sp( ) ( ) ( )≤ + − and characterize the trees attaining this bound, where α T( ) and s T( ) are the

independence number and the number of support vertices of T , respectively.
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1 Introduction

Throughout this article, we consider G V G E G,( ( ) ( ))= as a connected simple graph of order n G V G( ) ∣ ( )∣=

and size m G E G( ) ∣ ( )∣= . Given a vertex v of G, N v( ) represents the open neighbourhood of v, i.e. N v( ) =

u V G uv E G:{ ( ) ( )}∈ ∈ , and the degree of v is the cardinality of N v( ). A leaf of G is a vertex of degree 1.
Moreover, a support vertex ofG is a vertex adjacent to a leaf. The set of leaves is denoted by G�( ), and the set
of support vertices is denoted by G�( ). The values l G( ) and s G( ) represent the number of leaves and the
number of support vertices ofG, respectively, i.e. l G G�( ) ∣ ( )∣= and s G G�( ) ∣ ( )∣= . For any two vertices u and
v ofG, the distance d u v,( ) between u and v is the length of a shortest u–v path inG. The diameter ofG is the
maximum distance among pairs of vertices in G. A diametral path in G is a shortest path whose length
equals the diameter of the graph. If D is a set of vertices of G, then the open neighbourhood of D is
N D N vv D( ) ( )= ∪ ∈ . The graph obtained from G by removing all the vertices in D V G( )⊆ (and all the edges
incident with a vertex in D) will be denoted byG D− . Analogously, the graph obtained fromG by removing
all the edges in U E G( )⊆ will be denoted by G U− . For any other terminology, we follow the books [1]
and [2].

A set D V G( )⊆ is a super dominating set of G if for every vertex u V G D( )∈ ⧹ , there exists a vertex v D∈

such that N v D u( ) { }⧹ = . The super domination number of G, denoted by γ Gsp( ), is the minimum cardinality

among all super dominating sets of G. A γ Gsp( )-set is a super dominating set of G of cardinality γ Gsp( ). This

concept was introduced by Lemańska et al. in [3] and studied further in [4–9]. Moreover, a set S V G( )⊆ is
a 2-dominating set of G if N v S 2∣ ( ) ∣∩ ≥ for every vertex v V G S( )∈ ⧹ . The minimum cardinality among all
2-dominating sets ofG, denoted by γ G2( ), is the 2-domination number ofG. A γ G2( )-set is a 2-dominating set ofG
of cardinality γ G2( ). For more information about 2-domination in graphs, we suggest the recent works [10–13].
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To illustrate the previous parameters, we consider the cactus graph (connected graph where each edge is
contained in at most one cycle) shown in Figure 1.

In general, these two previous parameters are incomparable. For instance, for the double star S n1, 3−

(a tree obtained from a star of order n 1− by subdividing one edge exactly once) and the complete graph Kn
of order n 4≥ , it follows that γ S n n γ S2 1sp n n1, 3 2 1, 3( ) ( )= − < − =− − and γ K n γ K1 2sp n n2( ) ( )= − > = , respec-
tively. In such a sense, it is desirable to find specific families of graphs for which these parameters are
comparable. In this article, the previous problem is addressed for the case of cactus graphs. In particular,
we first show that for trees, the super domination number is bounded above by the 2-domination number,
and as a consequence, we show that if T is a tree of order at least three, then γ T α T s T 1sp( ) ( ) ( )≤ + − and

characterize the trees attaining this bound, where α T( ) represents the independence number of T . Finally,
we extended the first previous relationship for the family of cactus graphs. For instance, we show that if G
is a cactus graph with k G( ) cycles, then γ G γ G k Gsp 2( ) ( ) ( )≤ + .

2 Trees

We begin with the following useful lemma.

Lemma 2.1. If G is a graph obtained from any graphG′ by adding a star K r1, 1− (r 2≥ ) with the support vertex v
attached by an edge vu at a vertex u V G( )∈ ′ , then the following statements hold:
(i) γ G γ G r 1sp sp( ) ( )≤ ′ + − .

(ii) γ G γ G r 12 2( ) ( )′ ≤ − + .

Proof. Let G be a graph obtained from G′ by adding the star K r1, 1− and the edge vu, where v K r1, 1�( )∈ − and
u V G( )∈ ′ . Now, let D′ be a γ Gsp( )′ -set and let h V K vr1, 1( ) { }∈ ⧹− . From D′, we define a set D V G( )⊆ as follows:

D
D V K h u D
D V K v u D

if ,
if .

r

r

1, 1

1, 1

⎧

⎨
⎩

( ) { }

( ) { }
=

′ ∪ ⧹ ∈ ′

′ ∪ ⧹ ∉ ′

−

−

By the previous definition, and considering that D′ is a γ Gsp( )′ -set, it is easy to deduce that D is a super

dominating set of G. Hence, γ G D γ G r 1sp sp( ) ∣ ∣ ( )≤ = ′ + − , which completes the proof of (i).
Now, we proceed to prove (ii). Let S be a γ G2( )-set such that S V K r1, 1∣ ( )∣∩ − is minimum. By the fact that

G S�( ) ⊆ and the minimality of S V K r1, 1∣ ( )∣∩ − , it follows that V K v Sr1, 1( ) { }⧹ ⊆− and v S∉ . This implies
that S V G( )∩ ′ is a 2-dominating set of G′ of cardinality S V K vr1, 1∣ ∣ ∣ ( ) { }∣− ⧹− . Hence, γ G S V G2( ) ∣ ( )∣′ ≤ ∩ ′ =

γ G r 12( ) − + , which completes the proof. □

Next, we introduce some basic and well-known definitions commonly used in trees. A rooted treeT is a
tree with a distinguished special vertex r, called the root. A descendant of a vertex v of T is a vertex u v≠

such that the unique r u− path contains v. The set of descendants of v is denoted by D v( ). The maximal
subtree at v, denoted by Tv, is the subtree of T induced by D v v( ) { }∪ .

Now, we are ready to show that, for any tree, the super domination number is bounded above by the
2-domination number.

Figure 1: The set of black-coloured vertices forms a γ Gsp( )-set (a) and a γ G2( )-set (b).
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Theorem 2.2. If T is a tree, then γ T γ Tsp 2( ) ( )≤ .

Proof. LetT be a tree. We proceed by induction on the order ofT . If n T 1, 2, 3( ) { }∈ , then it is easy to check
the relationship γ T γ Tsp 2( ) ( )≤ . These particular cases establish the base cases. We assume that n T 4( ) ≥

and that γ T γ Tsp 2( ) ( )′ ≤ ′ for each tree T′ of order n T n T( ) ( )′ < . Let u u ud d1 1⋯ + be a diametral path in T , and

consider that T is a rooted tree with root u1. If d 1= , then T is a star and it is straightforward that
γ T γ Tsp 2( ) ( )= , as desired. From now on, we assume that d 2≥ . Note that u Td �( )∈ and that the subgraph

induced byV Tud( ) is isomorphic to a star. LetT T V Tud( )′ = − . Observe thatT′ is a tree of order n T n T( ) ( )′ < .
Hence, by Lemma 2.1(i), the induction hypothesis, and Lemma 2.1(ii) we deduce the following inequality
chain:

γ T γ T N u T γ T N u T γ T ,sp sp d d2 2� �( ) ( ) ∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣ ( )≤ ′ + ∩ ≤ ′ + ∩ ≤

which completes the proof. □

A set I V T( )⊆ is an independent set ofT if the subgraph induced by I is isomorphic to a graph with no
edges. The independence number ofT , denoted by α T( ), is the maximum cardinality among all independent
sets of T . The next result was established by Chellali in 2006 [14].

Theorem 2.3. [14] If T is a tree of order at least three, then γ T α T s T 12( ) ( ) ( )≤ + − .

As an immediate consequence of Theorems 2.2 and 2.3, it follows that γ T α T s T 1sp( ) ( ) ( )≤ + − for

any tree T of order at least three. In the following result, we characterize the trees attaining this
previous relationship. Note that the next characterization guarantees the tightness of the bound given
in Theorem 2.2.

Theorem 2.4. If T is a tree of order at least three, then

γ T α T s T 1.sp( ) ( ) ( )≤ + −

In addition, γ T α T s T 1sp( ) ( ) ( )= + − if and only if T is a star.

Proof. The inequality γ T α T s T 1sp( ) ( ) ( )≤ + − holds by Theorems 2.2 and 2.3. We proceed to prove the
equivalence. It is straightforward that if T is a star, then γ T α T s T 1sp( ) ( ) ( )= + − . Now, we suppose that T
is a tree different from a star. We only need to prove that γ T α T s T 1sp( ) ( ) ( )< + − . For this, we proceed

by induction on the order ofT . Observe that n T 4( ) ≥ . If n T 4( ) = , thenT is the path P4 and it is straightfor-
ward that γ T α T s T2 3 1sp( ) ( ) ( )= < = + − . This particular case establishes the base case. From now on,

we assume that n T 5( ) ≥ and that γ T α T s T 1sp( ) ( ) ( )′ < ′ + ′ − for each tree T′ different from a star such that

n T n T4 ( ) ( )≤ ′ < . Let u u ud d1 1⋯ + be a diametral path in T , and consider that T is a rooted tree with root
u1. Let T T V Tud( )′ = − . If T′ is a star, then T is either a double star or a tree obtained from a double star
in which its central edge is subdivided once. In both cases, it follows that γ T n T n T2 1sp( ) ( ) ( )= − < − =

α T s T 1( ) ( )+ − , as desired. From now on, we can assume that T′ is a tree different from a star of order at
least four. Since n T n T( ) ( )′ < , it follows that γ T α T s T 1sp( ) ( ) ( )′ < ′ + ′ − by the induction hypothesis. More-
over, we observe that the subgraph induced by V Tud( ) is isomorphic to a star. Hence, by Lemma 2.1-(i),
the previous inequality, and the fact that s T s T( ) ( )′ ≤ and α T α T N u Td �( ) ( ) ∣ ( ) ( )∣≥ ′ + ∩ , we deduce
the following inequality chain:

γ T γ T N u T α T s T N u T α T s T1 1,sp sp d d� �( ) ( ) ∣ ( ) ( )∣ ( ) ( ) ∣ ( ) ( )∣ ( ) ( )≤ ′ + ∩ < ′ + ′ − + ∩ ≤ + −

which completes the proof. □
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3 Cactus graphs

A connected graph G is a cactus graph if each edge of G is contained in at most one cycle. If G does not
contain any cycles, then it is a tree. Moreover, if G contains exactly one cycle, then it is a unicyclic graph.
A particular case of unicyclic graph is the cycle graph Cn of order n. For this specific graph, we have
that γ C n 2n2( ) = ⌈ ∕ ⌉ (this value is easy to compute) and its super domination number was obtained in [3].

Proposition 3.1. [3] For any integer n 3≥ ,

γ C
if n

otherwise

0, 3 mod 4 ,

.
sp n

n

n

2

1
2

( )
⎧

⎨

⎩

⎡⎢ ⎤⎥
( )

⎡⎢ ⎤⎥

=

≡

+

Next, we introduce some necessary definitions given in [15]. Let Cl1 and Cl2 be two cycles in the cactus
graph. We define

d C C d u v u V C v V C, min , : , .l l l l1 2 1 2( )( ) { ( ) ( )}= ∈ ∈

Let u V Cl
1 1( )∈ and u V Cl

2 2( )∈ be two vertices such that d u u d C C, ,l l
1 2 1 2( ) ( )= . Then, we call u1 and u2 exit-

vertices of cycles Cl1 andCl2, respectively. A cycle is said to be an outer cycle if it has at most one exit-vertex.
If a cactus graph is not a tree, then by definition it must contain at least one outer cycle. Figure 2 shows
a cactus graph through which the previously exposed definitions are exemplified.

Now, we present the main result of this article.

Theorem 3.2. If G is a cactus graph with k G( ) cycles, then

γ G γ G k G .sp 2( ) ( ) ( )≤ +

Proof. To prove the result, we will use the function g G n G m G( ) ( ) ( )= + defined on every finite graph G
(recall that n G V G( ) ∣ ( )∣= and m G E G( ) ∣ ( )∣= ). Observe that g is strictly monotone in the sense that if G′ is a
proper subgraph of G, then g G g G( ) ( )′ < . Let G be a cactus graph. We proceed by induction on the value of
function g G 1( ) ≥ . If g G 3( ) ≤ , then G is the path P1 or P2, and γ G γ G k Gsp 2( ) ( ) ( )≤ + , as required. These

particular cases establish the base cases. We assume that g G 5( ) ≥ (observe that there is no connected
graphG with g G 4( ) = ) and that γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′ for each cactus graphG′ such that g G g G( ) ( )′ < . IfG
is a tree, then by Theorem 2.2, the result follows. On the other side, if G is a cycle, then by Proposition 3.1
and the fact that γ C n 2n2( ) = ⌈ ∕ ⌉, the required inequality holds. From now on, we consider that G is neither a

tree nor a cycle. Thus, G contains at least one cycle as a proper subgraph. We denote with Cl an outer cycle
ofG, where V C l 3l∣ ( )∣ = ≥ . Hence,Cl has at most one exit vertex. If it has one, let u V Cl( )∈ be the exit vertex
of Cl. Otherwise, we consider that u V Cl( )∈ is a vertex of degree at least three. We now proceed with the
following claims.

Claim I. If there exist two adjacent vertices vi and vi 1+ from V C ul( ) { }⧹ with N v N v 2i i 1∣ ( )∣ ∣ ( )∣= =+ ,
then γ G γ G k Gsp 2( ) ( ) ( )≤ + .

Figure 2: A cactus graph G with three cycles. The black-coloured vertices are exit vertices and the cycles Cl1 and Cl3 are outer
cycles.

4  Abel Cabrera-Martínez and Andrea Conchado Peiró



Proof of Claim I. Let S be a γ G2( )-set. Observe that S v v,i i 1{ }∩ ≠ ∅+ . Without loss of generality, we can
assume that v Si 1 ∈+ . Next, we analyse the following two cases.

Case 1: v Si ∈ . LetG G vvi i 1{ }′ = − + . Since v v S,i i 1 ∈+ , it is straightforward that S is also a 2-dominating set
of G′. Hence, γ G S γ G2 2( ) ∣ ∣ ( )′ ≤ = . Now, we observe that G′ is a cactus graph with k G k G 1( ) ( )′ = − and that
g G g G( ) ( )′ < . This implies that γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′ by the induction hypothesis. Now, we proceed to

prove that γ G γ G 1sp sp( ) ( )≤ ′ + . Let D′ be a γ Gsp( )′ -set. Next, we define a set D V G( )⊆ as follows:

D D v v D
D v v D

if ,
if .

i i

i i

1

1 1

⎧

⎨
⎩

{ }

{ }
=

′ ∪ ∈ ′

′ ∪ ∉ ′

+

+ +

By the previous definition, and considering that D′ is a γ Gsp( )′ -set and that v Gi 1 �( )∈ ′+ , it is easy to deduce
that D is a super dominating set of G. Hence, γ G D γ G 1sp sp( ) ∣ ∣ ( )≤ ≤ ′ + , as desired. Thus, by the previous
inequalities, we obtain that

γ G γ G γ G k G γ G k G1 1 .sp sp 2 2( ) ( ) ( ) ( ) ( ) ( )≤ ′ + ≤ ′ + ′ + ≤ +

Case 2: v Si ∉ . Let G G vi{ }′ = − . Observe that G′ is a cactus graph with k G k G 1( ) ( )′ = − and that
g G g G( ) ( )′ < , which implies that γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′ by the induction hypothesis. In addition, we

have that S is also a 2-dominating set of G′. Hence, γ G S γ G2 2( ) ∣ ∣ ( )′ ≤ = . Now, we proceed to prove that
γ G γ G 1sp sp( ) ( )≤ ′ + . Let D′ be a γ Gsp( )′ -set. Observe that v Gi 1 �( )∈ ′+ , and let N v v vi i i1 1( ) { } { }⧹ =+ − . Next,

we define a set D V G( )⊆ as follows:

D D v D v v
D v D v v

if , ,
if , .

i i i

i i i

1 1

1 1 1

⎧

⎨
⎩

{ } { }

{ } { }
=

′ ∪ ′ ∩ ≠ ∅

′ ∪ ′ ∩ = ∅

− +

+ − +

By the previous definition, and considering that D′ is a γ Gsp( )′ -set, we deduce that D is a super dominating
set of G. Hence, γ G D γ G 1sp sp( ) ∣ ∣ ( )≤ ≤ ′ + , as desired. Thus, by the previous inequalities, we obtain that

γ G γ G γ G k G γ G k G1 1 .sp sp 2 2( ) ( ) ( ) ( ) ( ) ( )≤ ′ + ≤ ′ + ′ + = +

Therefore, the proof of Claim I is complete.

By Claim I, we may henceforth assume that N v N v 5i i 1∣ ( )∣ ∣ ( )∣+ ≥+ for any two adjacent vertices vi and vi 1+

in V C ul( ) { }⧹ . As a consequence, there exists at least one vertex from V C ul( ) { }⧹ of degree at least three.

Claim II. If there exists a vertex u V C ul
1 ( ) { }∈ ⧹ such that N u 31∣ ( )∣ ≥ and N u V C Gl

1 �( ) ( ) ( )⧹ ⊈ , then
γ G γ G k Gsp 2( ) ( ) ( )≤ + .

Proof of Claim II. SinceCl is an outer cycle, there exists a subgraph ofG V C ul
1( ( ) { })− ⧹ that is isomorphic

to a tree T rooted at u1. Let h T d u y y V Tmax , :1( ) { ( ) ( )}= ∈ . Since N u V C Gl
1 �( ) ( ) ( )⧹ ⊈ , it follows that

h T 2( ) ≥ . Let u wxy1 ⋯ be the path in T such that d u y h T,1( ) ( )= (if h T 2( ) = , then u w1 = ). Note that
x T�( )∈ and N x w T�( ) { } ( )⧹ ⊆ . This implies that the subgraph induced by V Tx( ) is isomorphic to a star.
Let G G V Tx( )′ = − . Observe thatG′ is a cactus graph such that g G g G( ) ( )′ < . Hence, γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′

by the induction hypothesis. Thus, by Lemma 2.1-(i), the previous inequality, Lemma 2.1-(ii), and the fact
that k G k G( ) ( )= ′ , we obtain that

γ G γ G N x T γ G k G N x T γ G k G .sp sp 2 2� �( ) ( ) ∣ ( ) ( )∣ ( ) ( ) ∣ ( ) ( )∣ ( ) ( )≤ ′ + ∩ ≤ ′ + ′ + ∩ ≤ +

Therefore, the proof of Claim II is complete.

Let u u V C u, , t
l

1 ( ) { }… ∈ ⧹ (t l 1≤ − ) be the vertices in Cl with degree at least three. By Claim II, we may

also henceforth assume that N x V C Gl �( ) ( ) ( )⧹ ⊆ for every vertex x u u, , t1{ }∈ … .

Claim III. If there exist two adjacent vertices ui and ui 1+ from u u, , t1{ }… , then γ G γ G k Gsp 2( ) ( ) ( )≤ + .

Relating the super domination and 2-domination numbers in cactus graphs  5



Proof of Claim III. Recall that N u V C Gj
l �( ) ( ) ( )⧹ ⊆ for any j i i, 1{ }∈ + . Let N u G h h, ,i r1�( ) ( ) { }∩ = …

and N u V C u vi
l

i i1 1( ( ) ( )) { } { }∩ ⧹ =+ − . Create G′ by removing the leaves adjacent to vertex ui. Create G″ by
removing the edge between vi 1− and ui in G′. That is,

G G h h G G v u, , and .r i i1 1{ } { }′ = − … ″ = ′ − −

Observe that G″ is a cactus graph with k G k G 1( ) ( )″ = − and g G g G( ) ( )″ < . Thus, γ G γ G k Gsp 2( ) ( ) ( )″ ≤ ″ + ″

by the induction hypothesis. Let D″ be a γ Gsp( )″ -set. Since u N u Gi i 1 �( ) ( )∈ ∩ ″
+ , it follows that

N u G D N u G 1 1i i1 1� �∣ ( ) ( ) ∣ ∣ ( ) ( )∣∩ ″ ∩ ″ ≥ ∩ ″ − ≥+ + . Hence, we can assume, without loss of generality, that
u Di ∈ ″. So, D D h h, , r1{ }= ″ ∪ … is a super dominating set ofG, which implies that γ G D γ G rsp sp( ) ∣ ∣ ( )≤ = ″ + .
Now, we proceed to prove that γ G γ G r 12 2( ) ( )″ ≤ − + . Let S be a γ G2( )-set. Observe that h h S, , r1{ }… ⊆ . Next,
we define a set S V G( )″ ⊆ ″ as follows:

S
S h h v u S
S h h u u S

, , if ,
, , if .

r i i

r i i

1 1

1

⎧

⎨
⎩

( { }) { }

( { }) { }
″ =

⧹ … ∪ ∈

⧹ … ∪ ∉

−

From the previous definition, it follows that S″ is a 2-dominating set of G″. Hence, γ G S S2( ) ∣ ∣ ∣ ∣″ ≤ ″ ≤ −

r γ G r1 12( )+ = − + , as desired. By the previous inequalities, we obtain that

γ G γ G r γ G k G r γ G k G .sp sp 2 2( ) ( ) ( ) ( ) ( ) ( )≤ ″ + ≤ ″ + ″ + ≤ +

Therefore, the proof of Claim III is complete.

By Claim III, we may also henceforth assume that if vi and vi 1+ are adjacent vertices in V C ul( ) { }⧹ ,
then v v u u, , , 1i i t1 1∣{ } { }∣∩ … =+ .

Claim IV. If there exist three consecutive vertices v v v V C u, ,i i i
l

1 1 ( ) { }∈ ⧹− + such that v v v, ,i i i1 1{ } ∩− +

u u v, , t i1{ } { }… = , then γ G γ G k Gsp 2( ) ( ) ( )≤ + .

Proof of Claim IV. Let G G h h, , r1{ }′ = − … , where h h N v G, , r i1 �{ } ( ) ( )… = ∩ . Observe that G′ is a cactus
graph with k G k G( ) ( )′ = and g G g G( ) ( )′ < . Hence, γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′ by the induction hypothesis.

Now, we observe that if D′ is a γ Gsp( )′ -set, then D D h h, , r1{ }= ′ ∪ … is a super dominating set of G.

Hence, γ G D γ G rsp sp( ) ∣ ∣ ( )≤ = ′ + . Moreover, let S be a γ G2( )-set. It is straightforward that h h S, , r1{ }… ⊆ .

We claim that S S h h, , r1{ }′ = ⧹ … is a 2-dominating set of G′. If v Si ∈ , then we are done. Now, we consider
that v Si ∉ . Since vi 1− and vi 1+ have degree two, and both are adjacent to vi, it follows that v v S,i i1 1 ∈− + . This
implies that S′ is a 2-dominating set ofG′, as desired. Hence, γ G S γ G r2 2( ) ∣ ∣ ( )′ ≤ ′ = − . Thus, and considering
the previous inequalities, we obtain that

γ G γ G r γ G k G r γ G k G .sp sp 2 2( ) ( ) ( ) ( ) ( ) ( )≤ ′ + ≤ ′ + ′ + ≤ +

Therefore, the proof of Claim IV is complete.

By Claim IV, we also may henceforth assume that if v u u, , t1{ }∈ … , then u N v( )∈ .

Considering all the assumptions derived from the previous claims, it only remains to consider the cases
where the outer cycleCl is either C3 or C4 (in this last case, under the condition that N u V C u u,l

1 2( ) ( ) { }∩ = ).
We can assume that Claims I and III do not hold. So if l 3= , then t 1= . Similarly, if l 4= , then t 1= or t 2= .
However, we can assume that Claim IV does not hold, so t 2= .

Claim V. If Cl is either C3 or C4 (in the last case, under the condition that N u V C u u,l
1 2( ) ( ) { }∩ = ),

then γ G γ G k Gsp 2( ) ( ) ( )≤ + .

Proof of Claim V. Recall that u u, , t1{ }… is the non-empty set of vertices inV C ul( ) { }⧹ with degree at least

three. If l 3= (resp. l 4= ), then t 1= (resp. t 2= ). In addition, we observe that u u N u V C, , t
l

1{ } ( ) ( )… ⊆ ∩ . Let
G G u h h, , , r1 1{ }′ = − … , where h h N u G, , r1 1 �{ } ( ) ( )… = ∩ . Note thatG′ is a cactus graph with k G k G 1( ) ( )′ = −
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and g G g G( ) ( )′ < . Thus, γ G γ G k Gsp 2( ) ( ) ( )′ ≤ ′ + ′ by the induction hypothesis. Moreover, from any γ Gsp( )′ -set D′,

the set D D u h h, , , r1 1{ }= ′ ∪ … is a super dominating set of G. Hence, γ G D γ G r 1sp sp( ) ∣ ∣ ( )≤ = ′ + + .

Now, we proceed to prove that γ G γ G r2 2( ) ( )′ ≤ − . Let S be a γ G2( )-set. Clearly, h h S, , r1{ }… ⊆ . Let

N u V C u vl
1 2( ) ( ) { } { }∩ ⧹ = . Observe that N v 22∣ ( )∣ = . Now, let us define a set S V G( )′ ⊆ ′ as follows:

S
S h h u S
S u h h u v u S

, , if ,
, , , , if .

r

r

1 1

1 1 2 1

⎧

⎨
⎩

{ }

( { }) { }
′ =

⧹ … ∉

⧹ … ∪ ∈

It is left to the reader to verify that S S r∣ ∣ ∣ ∣′ ≤ − . In addition, by the definition of S′ and the fact that
N v 22∣ ( )∣ = , we can deduce that S′ is a 2-dominating set of G′. Hence, γ G S S r γ G r2 2( ) ∣ ∣ ∣ ∣ ( )′ ≤ ′ ≤ − = − ,
as desired. By the previous inequalities, we obtain that

γ G γ G r γ G k G r γ G k G1 1 .sp sp 2 2( ) ( ) ( ) ( ) ( ) ( )≤ ′ + + ≤ ′ + ′ + + ≤ +

Therefore, the proof of Claim V is complete, which concludes the proof. □

Observe that the bound given in Theorem 3.2 is sharp. For instance, it is attained when G is a star or
a cycle graph Cn with n 2 mod 4( )≡ .
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