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Abstract 

Scheduling often involves making decisions in presence of uncertainty, which governs 

the pricing of raw materials, energy, resource availability, demands, etc. A common 

approach to incorporate uncertainty in the decision-making process is using two-stage 

stochastic formulations. Unfortunately, the mathematical complexity of the resulting 

problems grows exponentially with the number of uncertainty scenarios, which is further 

complicated by the presence of binary variables The authors have recently proposed a 

method using the so-called Similarity Index for discrete-time two-stage scheduling 

problems that enable scenario-based decomposition. This paper extends this method for 

scheduling problems formulated on a continuous-time basis. The fundamental idea is to 

use the Similarity Index to meet non-anticipation in the binary variables and Progressive 

Hedging on the continuous ones. The proposal is tested on a literature case study that 

consists of a multiproduct plant with a single processing unit. The combined SI-PH 

decomposition managed to solve the problem much faster than its monolithic 

counterpart. 

Keywords: Similarity Index, Progressive Hedging, Optimization under uncertainty. 

1. Introduction

The authors recently presented a decomposition method based on the idea of the 

Similarity Index (SI) to efficiently solve two-stage stochastic scheduling problems 

(TSSP) formulated using a discrete-time basis (Montes et al., 2022a, 2022b). TSSP 

handles uncertainty by discretizing the underlying probability distribution of uncertain 

parameters in a set of scenarios with associated probabilities. Then, the decision 

variables of the problem are grouped into two sets: first-stage and second-stage ones. In 

the first stage, the actual value that uncertain parameters will have is still unknown, 

but some decisions must be made regardless. Hence, the schedule within this first stage 

cannot be tailored to each scenario, as the uncertainty is not revealed yet. This is 

known as non-anticipation, i.e., decisions in the first stage must be unique. In the second 

stage, the values of the uncertain parameters are realized and assumed known, so the 

decisions can be adjusted to each realization accordingly. 

Two-stage formulations are challenging to solve, as the problem size grows 

exponentially with the number of scenarios considered. This fact is further complicated 

by the presence of many binary variables, usual in scheduling formulations. One 

approach to tackle this 
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issue is to solve each scenario as an independent subproblem of reduced size, but the non-

anticipation criterion for the first stage must be satisfied. The Progressive Hedging 

Algorithm (PHA) was originally proposed for convex problems involving only 

continuous variables and has convergence and optimality guarantees (Rockafellar & 

Wets, 1991). However, although the assumptions and guarantees vanish in presence of 

discrete variables, this method has been used successfully as a heuristics for mixed-

integer problems (Bashiri et al., 2021; Peng et al., 2019). In the PHA, the non-anticipation 

constraints are relaxed, which enables scenario decomposition. Non-anticipation is then 

progressively enforced by penalizing the deviation from the average schedule in the first 

stage, i.e., the decision-variables average values computed from the subproblems 

solutions in a previous iteration. 

Likewise, the Similarity-Index decomposition also enables scenario decomposition by 

approximating, or estimating, the degree of non-anticipation in the discrete decisions of 

the first stage. The scenario subproblems are solved independently and the similarity 

among their solutions is then measured using the SI. A weighing parameter is used to 

progressively increase the importance of maximizing the similarity. Eventually, all 

scenario solutions are equal in the first stage so non-anticipation is met. However, the SI 

decomposition was originally devised for discrete-time scheduling formulations. In this 

work, the authors aim to combine the SI decomposition with Progressive Hedging to 

decompose TSSP based on continuous-time formulations. The SI handles the binary 

variables of the problem, while Progressive Hedging handles the continuous ones. The 

proposal is tested successfully on a literature case study. 

The paper is organized as follows: Section 2 presents a summary of the SI concept and 

its extension to continuous-time scheduling formulations. Section 3 describes the 

proposed SI-PH decomposition algorithm. The case study is presented in Section 4. A 

comparison between the proposed approach and the standard monolithic approach is 

summarized in Section 5. Conclusions and open issues are outlined in Section 6. 

2. Similarity Index in Continuous-Time Formulations

In discrete-time basis, the Similarity Index is relies on the idea of fuzzifying the binary 

decision variables along the surrounding time periods. The generated areas from the 

fuzzification for each scenario are compared and their overlap is used as a measure of 

similarity. Consequently, even if the decisions are not made in the same period among 

scenarios, one could quantify their similarity by temporal proximity. As the non-

anticipation constraints (NAC) require the scenario schedules to be equal in the first stage, 

the SI can be used to remove the NACs from the formulation, enabling scenario 

decomposition. The SI is can be pushed up through adding it to the objective function. 

Two main difficulties arise for extending the Similarity-Index Decomposition to 

continuous-time TSSP: Time synchronization of decisions among scenarios; and 

weighing the slot duration as part of the SI computation. To get around these limitations, 

we propose: 1) not to consider the slot duration in the fuzzification process, and 2) to 

fuzzify in a slots basis instead of time periods. Then, the SI formula becomes: 

𝑆𝐼: = ∑
min𝑒∈ℰ‖𝑦𝑙𝑒 + 0.5𝑦(𝑙+1)𝑒 + 0.5𝑦(𝑙−1)𝑒‖

1

2|ℒ| − 1
𝑙∈ℒ1

(1)
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Where the time slots 𝑙 belong to an ordered set ℒ. The subset ℒ1 ⊂ ℒ implies that the

Similarity Index is only computed for the decisions made in the first stage of the problem. 

𝑦𝑙𝑒  are the decision variables indexed by the slots and the scenarios 𝑒 ∈ ℰ. In essence, the

Similarity Index is computed as the intersection of the generated areas from fuzzifying 

the decisions divided by the maximum intersection possible. Formula (1) implies that the 

similarity is only weighed in the two surrounding slots. As in the time-basis case (Montes 

et al., 2022b), this formula can be generalized for different fuzzification lengths. 

Note that (1) does not cover the slot duration and other continuous variables that might 

be present in the problem (such as inventory levels, production levels, etc.). We propose 

to use Progressive Hedging (PH) to handle these variables, which results in a hybrid SI-

PH method. Incorporating both the SI and the PH in a general TSSP, each subproblem 

formulation is given by: 

min
𝑥,𝑦

𝐽𝑒 − 𝜆 𝑆𝐼𝑒 + ∑ (𝜔𝑙𝑒𝑥𝑙𝑒 +
𝜌

2
(

𝑥𝑙𝑒 − �̅�𝑙

�̅�𝑙

)
2

)

𝑙∈ℒ1

 

s. t. ∶
Specific process constraints

𝑆𝐼𝑒 =
∑ |𝑠𝑙𝑒|1𝑙∈ℒ1

2|ℒ| − 1
𝑠𝑙𝑒 ≤ 𝑦𝑙𝑒 + 0.5𝑦(𝑙+1)𝑒 + 0.5𝑦(𝑙−1)𝑒    ∀𝑙 ∈ ℒ1 

𝑠𝑙𝑒 ≤ 𝑦
𝑙

+ 0.5𝑦
𝑙+1

+ 0.5𝑦
𝑙−1

   ∀𝑙 ∈ ℒ1

𝑥 ∈ ℝ, 𝑦 ∈ {0,1} 

(2) 

Note that the exact/global SI cannot be computed inside the subproblems to be solved 

independently, and that the element-wise operator min {∙} in (1) is non-linear, so it cannot 

be used in the usual MILP scheduling formulations. Thus, the SI is estimated locally in 

each subproblem (2) by replacing the intersection of the fuzzified variables with a set of 

slack variables that are upper-bounded. The slack variables 𝑠𝑙𝑒  are maximized in the

objective function so this bound is tight. The 𝑆𝐼𝑒 is then an approximatin of the local SI

by scenario, computed as the similarity of the scenario schedule with a reference schedule 

defined by fixed values 𝑦𝑙 . For details about this estimation refer to (Montes et al.,

2022b). 𝜆 and 𝜔𝑙𝑒  are the weighing parameters for the SI and the PH. They are updated

in each iteration 𝑘 from the scenario solutions, as follows, where �̅�𝑙  is the expected value

of x, using probabilities 𝑝𝑒, in the first stage:

λ(𝑘+1) = λ(𝑘) − α(𝑆𝐼 − 1);  ω𝑙𝑒
(𝑘+1)

= ω𝑙𝑒
(𝑘)

+ 𝜌 (
𝑥𝑙𝑒 − �̅�𝑙

�̅�𝑙

) ∀𝑙 ∈ ℒ1, 𝑒 ∈ ℰ 

�̅�𝑙 = ∑ 𝑝𝑒𝑥𝑙𝑒

𝑒∈ℰ

 ∀𝑙 ∈ ℒ1 
(3) 

The parameters α and 𝜌 are the step-size for 𝜆 and 𝜔. They greatly influence the algorithm 

behavior, both in terms of optimality and convergence, as discussed later. 

3. SI-PH Decomposition

Non-anticipation can be enforced progressively using the SI and PH ideas. Hence, the 

original problem can be decomposed into scenario subproblems (2) by dropping the non-

anticipation constraints. Each subproblem is solved independently and in parallel. The 

subproblems solutions are later used to update the required parameters for the SI and PH 
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with (3). The procedure is repeated until either the convergence criteria are met, or the 

maximum number of iterations is reached. Algorithm 1 below shows the pseudo-code for 

the SI-PH decomposition. 

 

Algorithm 1 

Require 𝛼, 𝜌, 𝑘max, Δ, tol 

1: 𝑘 ← 0, 𝜆(0) ← 0, 𝜔𝑙𝑒
(0)

← 0, 𝑦�̅� ← 0, 𝑥𝑙 ← 0 

2: repeat 
3:    for 𝑒 ∈ ℰ do 

4:       𝑦𝑙𝑒
∗ , 𝑥𝑙𝑒

∗ ← arg min
𝑦𝑙𝑒,𝑥𝑙𝑒,𝑠𝑙𝑒

𝐽𝑒 − 𝜆(𝑘)𝑆𝐼𝑒 + ∑ (𝜔𝑙𝑒
(𝑘)

𝑥𝑙𝑒 +
𝜌

2
‖𝑥𝑙𝑒 − 𝑥𝑙

(𝑘)
‖

2

2
)𝑙∈ℒ1

 

5:     𝑆𝐼𝑒
∗ ← 𝑆𝐼𝑒(𝑠𝑙𝑒

∗ )   
6:    end for 
7:    𝑆𝐼 ← 𝑆𝐼(𝑦𝑙𝑒

∗ ) using (1) 

8:    𝑦�̅� ← arg min
𝑦𝑙𝑒

∗
𝑆𝐼𝑒

∗ 

9:    λ(𝑘+1) ← λ(𝑘) − α(𝑆𝐼(𝑘) − 1) 

10:    𝑥𝑙
(𝑘+1)

← ∑ pe
𝑒∈ℰ

𝑥𝑙𝑒
(𝑘)

 ∀𝑙 ∈ ℒ1 

11:    ω𝑙𝑒
(𝑘+1)

← ω𝑙𝑒
(𝑘)

+ ρ (𝑥𝑙𝑒
(𝑘)

− 𝑥𝑙
(𝑘+1)

)  ∀𝑙 ∈ ℒ1, 𝑒 ∈ ℰ 

12:    𝑘 ← 𝑘 +  1 

13: until (𝑆𝐼 = 1 ∧ ‖𝑥𝑙𝑒
(𝑘)

− 𝑥𝑙
(𝑘+1)

‖
2

≤ tol) ∨ 𝑘 = k𝑚𝑎𝑥 

14: return 𝑦𝑙𝑒
∗ , 𝑥𝑙𝑒

∗  

 

The convergence criteria need to check that non-anticipation is met. For binary variables, 

that is easy to verify, as the SI needs to reach the value of 1. For continuous variables, 

non-anticipation can be confirmed if the 2-norm of the difference between the scenario 

solutions and the reference value is beyond a small enough tolerance. 

4. Case Study 

The SI-PH decomposition was tested on a case study originally presented by Dogan & 

Grossmann (2006). The model uses a continuous-time representation for simultaneously 

integrating both the scheduling and planning of a continuous multiproduct plant with a 

single processing unit. The planning horizon is divided into fixed-duration time periods 

𝑡 ∈ 𝒯 (weeks), which are further subdivided into variable-duration time slots 𝑙 ∈ ℒ. 

Products i ∈ ℐ are committed to each slot using binary variables 𝑊𝑖𝑙𝑡 . Only the 

modifications to the original formulations are listed in this work for brevity and not the 

original equations.  

 

The original formulation of  Dogan & Grossmann (2006) is here extended to consider the 

production rates 𝑟𝑖 as uncertain. Consequently, an additional index 𝑒 ∈ ℰ, corresponding 

to the set of uncertainty realization scenarios, is added to all variables and equations of 

their model. As the time horizon is divided into both weeks and slots, additional variables 

𝑊𝑖𝑗𝑒
aux, with an additional auxiliary slot index 𝑗, are introduced to compute the Similarity 

Index as in (1). This variable is equal to the product assignment 𝑊𝑖𝑙𝑡𝑒  but indexed by 𝑗. 

The index 𝑗 enumerates the slots from 1 to 𝑁 ∙ |𝒯1|. Where 𝑁 is the number of slots per 

time period and 𝒯1 is the subset of time periods belonging to the first stage. For instance, 
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given time periods made up of three slots, the first slot of the second time period 

corresponds 𝑗 = 4. 

𝑊𝑖𝑗𝑒
aux = 𝑊𝑖𝑙𝑡𝑒  ∀𝑗 = 𝑙 + |ℒ| ∙ (𝑡 − 1), 𝑙, 𝑡, 𝑒 (4) 

The original formulation of the problem did not explicitly consider the slot duration ϕ𝑙𝑡𝑒.

As the non-anticipation criterion of the two-stage formulation requires the slot duration 

variables to be equal among the scenarios in the first stage, some additional constraints 

are added to compute them from the starting time of the slots 𝑇𝑠𝑙𝑡𝑒:

ϕ𝑙𝑡𝑒 = 𝑇𝑠𝑙+1,𝑡𝑒 − 𝑇𝑠𝑙𝑡𝑒      ∀𝑙 ≠ 𝑙𝑁 , 𝑡 ∈ 𝒯1, 𝑒 (5) 

ϕ𝑙𝑁𝑡𝑒 = HTt − 𝑇𝑠𝑙𝑁𝑡𝑒  ∀𝑡 ∈ 𝒯1, 𝑒 (6) 

Where HTt is the elapsed time (in hours) from the beginning of the time horizon, at the

end of each time period. 

In addition to the economic function of the problem 𝑧𝑃, the objective function shall

include the terms corresponding to the SI and the PH. The SI is computed for the product 

assignment variables 𝑊𝑖𝑗𝑒
aux while the PH is applied to the slot duration 𝜙𝑙𝑡𝑒, and the

inventory levels 𝐼𝑁𝑉𝑖𝑡𝑒. The objective function to minimize in each subproblem is:

𝐽𝑒 ≔ 𝑧𝑒
𝑃 − λ𝑆𝐼𝑒 + ∑ ω𝑖𝑡𝑒

𝐼𝑁𝑉𝑖𝑡𝑒

INV𝑖𝑡𝑖,𝑡∈𝒯1,𝑒

+ ∑ μ𝑙𝑡𝑒

ϕ𝑙𝑡𝑒

ϕ
𝑙𝑡𝑙,𝑡∈𝒯1,𝑒

+
ρ1

2
∑ (

𝐼𝑁𝑉𝑖𝑡𝑒 − INV𝑖𝑡

INV𝑖𝑡

)

2

𝑖,𝑡∈𝒯1,𝑒

+
ρ2

2
∑ (

ϕ𝑙𝑡𝑒 − ϕ
𝑙𝑡

ϕ
𝑙𝑡

)

2

𝑙,𝑡∈𝒯1,𝑒

�̅�𝑙  
(7) 

After solving each subproblem, the multipliers λ, ω𝑖𝑡𝑒  and μ𝑙𝑡𝑒 , and the expected values

INV𝑖𝑡 and ϕ
𝑙𝑡

 need to be updated, as follows:

λ(𝑘+1) = λ(𝑘) − α(𝑆𝐼 − 1) ; INV𝑖𝑡 = ∑ 𝑝𝑒𝐼𝑁𝑉𝑖𝑡𝑒

𝑒∈ℰ

 ∀𝑖, 𝑡 ∈ 𝒯1; 

ω𝑖𝑡𝑒
(𝑘+1)

= ω𝑖𝑡𝑒
(𝑘)

+ ρ1

𝐼𝑁𝑉𝑖𝑡𝑒 − 𝐼𝑁𝑉𝑖𝑡

INV𝑖𝑡

∀𝑖, 𝑡 ∈ 𝒯1, 𝑒;  ϕ
𝑙𝑡

= ∑ π𝑒ϕ𝑙𝑡𝑒

𝑒∈ℰ

 ∀𝑙, 𝑡 ∈ 𝒯1; 

μ𝑙𝑡𝑒
(𝑘+1)

= μ𝑙𝑡𝑒
(𝑘)

+ ρ2

ϕ𝑙𝑡𝑒 − ϕ
𝑙𝑡

ϕ
𝑙𝑡

 ∀𝑙, 𝑡 ∈ 𝒯1, 𝑒 (8) 

Values α, ρ1, and ρ2 are the tuning parameters of the algorithm.

5. Preliminary results

The combined SI-PH decomposition algorithm was tested on a case study instance of five 

products (A, B, C, D, E), eight weeks, and five slots. A total of eight uncertainty 

realization scenarios were considered. Problem 2a parameters from (Dogan & 

Grossmann, 2006) were used as a basis for the instance. The resulting problem had 17601 

variables, 2240 of which were binary, and 17827 equations. GAMS 40.2.0 was used to 

code the model, and Gurobi 10.0 to solve it. All calculations were performed on a 2-CPU 

Xeon Gold 6130 computer. The optimality gap for Gurobi was set to 0.5% in all cases. 

The monolithic instance was assigned 32 threads. The solver failed to provide an optimal 

solution after 10 hours of computation. The reported objective value of the best feasible 

solution found till that moment was 𝑧𝑃 = 57643, reporting a 6.06% optimality gap.
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Each of the subproblems in the decomposed instance was assigned 8 threads. Note that 

although the machine only has 32 cores, some scenarios are solved much faster than 

others, which frees cores for other threads. Note that, if too few threads are assigned per 

subproblem, the overall CPU capacity may be underutilized.  

The tuning parameters greatly affected the quality of the solution. The values 𝜌1 = 95,

𝜌2 = 120, and 𝛼 = 190 provided the highest quality solution. The decomposition

approach arrived at an objective value of 𝑧𝑃 = 54682 in 1552 seconds. Compared to the

objective value of the monolithic approach, this solution is around 5% worse. However, 

just setting 𝜌2 = 115 reaches a much suboptimal 𝑧𝑃 = 48717, and with 𝜌2 = 125 the

algorithm did not converge after 2000 iterations. 

6. Summary

This paper presented a hybrid decomposition method for TSSPs formulated on a 

continuous-time basis. The non-anticipation constraints are replaced by a combination of 

the Similarity Index and Progressive Hedging. This allows decomposing the original 

problem into smaller subproblems that are easier to solve. Their solutions are combined 

to iteratively build a high-quality feasible solution to the original problem. 

Unfortunately, tuning the algorithm is not smooth due to the PH part, and small parameter 

variations lead to very different objective values. Some reported solutions are even far 

from optimality. Future work will focus on rethinking the PH decomposition strategy. 
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