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Abstract. We present a new family of fourth-order splitting methods with
positive coefficients especially tailored for the time integration of linear
parabolic problems and, in particular, for the time dependent Schrödinger
equation, both in real and imaginary time. They are based on the use of
a double commutator and a modified processor, and are more efficient
than other widely used schemes found in the literature. Moreover, for
certain potentials, they achieve order six. Several examples in one, two
and three dimensions clearly illustrate the computational advantages of
the new schemes.
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1 Introduction

The eigenvalue problem for the stationary Schrödinger equation constitutes an
important part in the understanding of basic atomic and molecular phenom-
ena. It is defined by (h̄=m=1)

Ĥϕj(x)=Ejϕj(x), j=0,1,2,.. .,

Ĥ= T̂+V̂(x)=−1
2

∆+V̂(x),
(1.1)
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where V̂ is the potential energy operator and ∆ is the Laplacian, an unbounded
differential operator. Since the Hamiltonian Ĥ is Hermitian, then its eigenval-
ues Ej are real, and the corresponding eigenfunctions ϕj can be chosen to form
a real orthonormal basis on their domain. By an appropriate election of the
origin of the potential we can guarantee that V̂(x)≥0 in the region of interest,
so that 0≤E0≤E1≤ . . .. Given the time-dependent Schrödinger equation

i
∂

∂t
ψ(x,t)= Ĥψ(x,t), ψ0(x)=ψ(x,0), (1.2)

if the initial wave function ψ0(x) is expanded in the orthonormal basis of
eigenfunctions ϕj,

ψ0(x)=∑
j≥0

cj ϕj(x), cj =
〈
ϕj(x)|ψ(x,0)

〉
,

where ⟨·|·⟩ is the usual L2-scalar product, then the solution is given by [22]

ψ(x,t)=e−itĤψ(x,0)=∑
j≥0

e−itEj cj ϕj(x) (1.3)

and, in particular, the norm of the solution is preserved for any value of t.
Very often, the so-called imaginary time propagation (ITP) method is the

preferred option for solving the eigenvalue problem (1.1) [3, 5, 19] as well as
for carrying out path integral simulations in condensed phase quantum sys-
tems [16]. By considering the time transformation t =−iτ, equation (1.2) is
transformed into

∂

∂τ
ψ(x,τ)=−Ĥψ(x,τ), ψ0(x)=ψ(x,0). (1.4)

In this case the solution reads

ψ(x,τ)=e−τĤψ(x,0)=∑
j≥0

e−τEj cj ϕj(x). (1.5)

Notice that, in contrast with (1.3), for sufficiently large τ one gets ψ(x,τ)→
e−τE0 c0ϕ0, since the other exponentials decay more rapidly. In other words,
any given wave function at τ=0 in which c0 ̸=0 converges towards the ground
state solution when τ → ∞. Once an accurate approximation to ϕ0 is ob-
tained, the associated eigenvalue E0 can be easily obtained by computing E0=
⟨ϕ0(x)| Ĥ|ϕ0(x)⟩. Other functions ϕj can also be approximated, e.g., by propa-
gating different wave functions simultaneously in time [2].

To carry out practical computations, it is assumed that x ∈ [a1,b1]×···×
[ak,bk] with each interval [aj,bj] sufficiently large so that the wave function and
all its derivatives of interest vanish at the boundaries. In this case, we can
safely consider periodic boundary conditions and use a pseudo-spectral space
discretization. When this is done, one ends up with a finite-dimensional vec-
tor u(τ) approximating the wave function, in the sense that its components
uj(τ)≈ψ(xj,τ). Then, the problem to be solved corresponds to the linear ODE{

u′(τ)=−
(
T+V

)
u(τ), τ∈ [0,τf ],

u(0) given,
(1.6)
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with solution
u(τ)=e−τ(T+V)u(0), t∈ [0,τf ]. (1.7)

Here T and V are the matrices obtained after space discretization approximat-
ing the kinetic energy T̂ and potential V̂, respectively.

A common approach for the time integration of the linear evolution equa-
tion (1.6) in the interval [0,τf ] is to compute approximations to the exact solu-
tion values at certain time grid points by a one-step recurrence:

0=τ0<τ1< ···<τN =τf ,

un+1=S(hn)un ≈ u(τn+1)=e−hn(T+V)u(τn), n=0,1,2,.. .,

where hn =τn+1−τn. For simplicity, we assume that τj = j∆τ. In other words,
we use a constant step size hn = h ≡ ∆τ along the integration. Notice that,
since V is diagonal, the computation of e−τV is trivial, whereas e−τT can be
done efficiently with the Fast Fourier Transform (FFT). It makes sense, then,
to consider splitting methods to approximate the exact evolution, the Strang
splitting being a prototypical example:

S [2](h)u0≡e−
h
2 V e−hT e−

h
2 V u0. (1.8)

It is verified that S [2](h)= e−h(T+V)+O(h3). Since the problem is assumed to
be periodic, each operator (or exponential) satisfies the boundary conditions
and no order reduction occurs. Moreover, this scheme can be used for integrat-
ing the Schrödinger equation both in real time and in imaginary time because
∥e−

h
2 V∥≤1 and ∥e−hT∥≤1.
Higher order approximations (say, of order p ≥ 3) can be achieved by a

more general composition of the form

S [p](h)u0=e−hbs+1V e−has+1T ···e−hb1V e−ha1T u0, (1.9)

where the coefficients aj, bj are chosen so that S [p](h) = e−h(T+V)+O(hp+1).
Splitting methods of this form have also been recently applied in different ar-
eas, as shown e.g. in the contributions [1, 11, 14].

Notice that ∥e−aihT∥ is bounded only if ai>0, whereas ∥e−bihV∥ is bounded
in the domain of interest even if bi<0, although in regions where the potential
takes large values it can take exponentially large values and significant round-
off errors may occur. It is therefore desirable to have all coefficients bi > 0,
otherwise one has to incorporate an upper cut off of the potential to reduce
such errors.

In this respect, a well known result establishes that there are no splitting
methods of the form (1.9) of order greater than two (i.e., p> 2) with all their
coefficients being real and positive. Thus, if one is interested in applying split-
ting methods of order 3 or higher with real coefficients, then at least one aj
and one bk have to be negative [15, 28, 30] (a simple proof can be found in [6]).
Whereas this is usually not a problem if the splitting method is applied to the
Schrödinger equation in real time (1.2), the presence of negative ai coefficients
makes the ITP algorithm badly conditioned. This feature can be traced back
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to the fact that (1.4) is a parabolic equation involving unbounded negative
definite operators, and therefore the solution evolves in a semigroup. On the
other hand, when the methods are applied to the usual Schrödinger equation
in real time, the presence of only positive coefficients leads to methods with
very good stability properties.

One possible way to overcome this order barrier consists in including the
gradient of the potential, ∇V(x), in the composition. In fact, several fourth-
order forward methods involving the gradient of the potential exist in the liter-
ature and some of them have been successfully used in this context [12,17,23].
Not all of them, however, can be used for parabolic equations or have good
stability properties and/or efficiency.

In this work we propose new splitting methods involving ∇V(x) in their
formulation and only positive coefficients. They are primarily aimed to be ap-
plied in the ITP algorithm, but are also valid for the numerical integration in
time of the initial value problem originated when discretizing more general
linear parabolic problems in space. The paper is structured as follows. In sec-
tion 2 we review the most efficient 4th-order splitting methods with modified
potentials and positive coefficients we have found in the literature. In partic-
ular, the authors of [24] present a large collection of schemes involving up to
five stages. Whereas their main objective was just getting efficient schemes,
irrespective of the sign of the coefficients, it turns out that most of the integra-
tors do contain only positive coefficients. Here we collect and test the most
efficient among them.

Typically, when one increases the number of exponentials in a splitting
method it is possible to reduce the leading error terms in such as way that
this reduction makes up for the extra cost involved. In this case, however,
due to the existing order barrier for methods with positive coefficients, the
overall improvement in accuracy hardly compensates the extra cost when ad-
ditional stages are included. To deal with this problem, we present in section
3 a novel procedure leading to more efficient schemes. It is based on a conve-
niently modified processing of a basic method involving a reduced number of
stages. The new splitting methods are tested in section 4 on several numerical
examples in comparison with the most efficient integrators from the literature.
Finally, section 5 contains some concluding remarks.

2 A review of operator splitting methods

2.1 Standard splitting methods

The general splitting method (1.9)

S [p](h)=
s+1

∏
j=1

e−hbjV e−hajT, (2.1)

will be written here in a more abbreviated form just by enumerating the se-
quence of its coefficients,

[bs+1as+1 . . .b2a2b1a1]. (2.2)
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Moreover, we will only consider time-symmetric methods, corresponding to
left-right palindromic compositions. In other words, we have in (2.2) either

bs+1=0 and as+2−j = aj, bs+1−j =bj (2.3)

or
a1=0 and bs+2−j =bj, as+2−j = aj+1. (2.4)

j=1,2,.. .,s. In the first case the compact form of the method reads

[a1b1a2b2 . . .b2a2b1a1], (2.5)

whereas a method verifying (2.4) will be denoted for simplicity by†

[b1a1b2a2 . . .a2b2a1b1]. (2.6)

Thus, in particular, the Strang splitting (1.8) reads [ 1
2 1 1

2 ].
In both cases, s is referred to as the number of stages of the integrator‡. No-

tice that, due to the different character of the operators T and V, the role of
e−hT and e−hV is not interchangeable in (2.1), and thus these two different or-
derings have to be analyzed. We will refer to (2.5) and (2.6) as methods of type
ABA and BAB, respectively.

2.2 Modified splitting methods

An essential observation with respect to the operators T̂ and V̂ in (1.1) is that
they verify the relation

[V̂,[T̂,V̂]]ψ= |∇V̂|2ψ (2.7)

for any ψ, where [T̂,V̂] = T̂V̂−V̂T̂. Since the double commutator [V̂,[T̂,V̂]] is
only a function of V̂, it is usually referred to as a modified potential. Further-
more, [V̂,[V̂,[T̂,V̂]]] = 0. Similar relations hold for the matrices T and V re-
sulting from the (sufficiently accurate) space discretization of T̂ and V̂, respec-
tively, with [V,[T,V]] diagonal if the derivatives of the potential are computed
first and then evaluated on the corresponding space grid. In consequence, we
can replace the terms exp(−hbjV) in the scheme (2.1) by the more general op-
erator exp(−hbjV−h3cj[V,[T,V]]), involving two parameters. More formally,
we can take compositions of the form

Smod(h)u0=
s+1

∏
j=1

e−hbjV−h3cj[V,[T,V]]e−hajTu0. (2.8)

Such integrators are called modified operator splitting methods, and will be de-
noted as

ABA: [as+1(bs,cs) . . .(b2,c2)a2(b1,c1)a1]

BAB: [(bs+1,cs+1)as . . .(b2,c2)a1(b1,c1)].

†Strictly speaking, the sequence is [b1a2b2a3 . . .a3b2a2b10], but we remove the zero coefficient
and shift the index of the ai coefficients for clarity.
‡The last map can be concatenated with the first one in the following step and so it is not
counted for the cost of the method.
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Methods of this class have been used in different situations, starting from the
pioneering work of Ruth [26]. Early references also include [25, 31–33, 35].
It is indeed possible to get fourth-order methods with positive coefficients
[12, 17, 24], and in fact one of the most popular schemes corresponds to the
composition [12, 17]

S [4](h)≡e−
h
6 V e−

h
2 T e−

2h
3 V− h3

72 [V,[T,V]]e−
h
2 T e−

h
6 V . (2.9)

Although methods up to order eight have been designed [24], they involve
some negative coefficients ai when the order is higher than 4. It has been ar-
gued that the maximal order one can achieve with all aj real and positive is
indeed 4 [4, 13]. On the other hand, there are some 6th-order methods with
all bi coefficients positive. In any case, these methods cannot be applied in the
context of parabolic equations involving the Laplacian.

When analyzing operator splitting methods, and in particular their trun-
cation errors and efficiencies, it is a common practice to express compositions
(2.1) and (2.8) as S(h)=exp(F(h)) by means of the Baker–Campbell–Hausdorff
formula [34]. Specifically,

F(h)=h( f1,1T+ f1,2V)+h3( f3,1E3,1+ f3,2E3,2
)
+h5

4

∑
j=1

f5,jE5,j+O(h7) (2.10)

when the compositions are palindromic. Here the fk,j are polynomial functions
depending on the coefficients of the scheme and Ek,j denote the elements of
a basis of the homogeneous subspace Lk(T,V) of grade k of the Lie algebra
L(T,V) generated by the operators T and V with the commutator as the Lie
bracket. The specific basis for k≤5 used in this work is given in Table 1.

k=1 E1,1=T E1,2=V
k=2 E2,1=[T,V]
k=3 E3,1=[T,[T,V]] E3,2=[V,[T,V]]
k=4 E4,1=[T,E3,1] E4,2=[T,E3,2]

k=5
E5,1=[T,E4,1] E5,2=[V,E4,1] E5,3=−[T,E4,2]
E5,4=[V,E4,2]

Table 1: Elements Ek,j of the basis of the homogeneous subspace Lk(T,V) for k≤5.

A method is of order four if f1,1= f1,2=1 (for consistency) and f3,1= f3,2=0,

whereas the quantity
(

∑4
j=1 f 2

5,j

)1/2
is usually taken as a measure of its error.

This is multiplied by the number of stages s to take also into account the com-
putational cost, so that one can compare the efficiency of methods with differ-
ent stages by taking

E f = s4 ·
(

4

∑
j=1

f 2
5,j

)1/2

(2.11)

as an estimate of the effective error of a 4th-order scheme.
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As stated before, there are in the literature a number of 4th-order integra-
tors with positive coefficients within the family (2.8). Among them, we have
identified those with the smallest truncation error terms. They are collected ac-
cording to the number stages they involve, whereas the corresponding values
of | f5,j| and their effective errors E f are gathered in Table 2.

s= 1. The simplest scheme is of course obtained by incorporating the double
commutator [V,[T,V]] into the Strang splitting method (1.8), namely

SR1(h)=e−
h
2 V− h3

48 E3,2 e−hT e−
h
2 V− h3

48 E3,2 (2.12)

for a BAB method and

SR2(h)=e−
h
2 T e−hV− h3

24 E3,2 e−
h
2 T (2.13)

for an ABA scheme. Methods (2.12) and (2.13) do not contain enough param-
eters to achieve order four, but in both cases the parameter multiplying the
double commutator is chosen so as to satisfy the condition f3,1 = f3,2. This,
as we will see, leads to schemes of effective order four, in the sense that, by
applying an appropriate near-identity transformation, one gets a method of
order 4 [25, 33, 35].

s = 2. Scheme (2.9) belongs indeed to this class. In our compact notation, it
reads

[b1 a2(b2,c2)a2 b1]≡
[

1
6

1
2

(
2
3

,
1

72

)
1
2

1
6

]
. (2.14)

A similar ABA composition exists,

[a1(b1,c1)a2(b1,c1)a1] (2.15)

with

a1=
1
2
− 1

2
√

3
, b1=

1
2

, c1=− 1
24

+

√
3

48
, a2=

1√
3

,

but it exhibits a slightly worse performance in practice, and c1<0.
More efficient schemes can be achieved by introducing additional stages.

Thus, in reference [24] different compositions with 3, 4 and 5 stages of types
(2.3) and (2.4) are presented, many of them having all coefficients aj>0. Among
them, we collect those recommended in [24] as the most efficient.

s= 3. Specifically, the coefficients of the ABA and BAB methods are, respec-
tively

[a1(b1,c1)a2(b2,c2)a2(b1,c1)a1] [(b1,c1)a1 (b2,c2)a2(b2,c2)a1(b1,c1)]
=================== ======================
a1=0.1159953608486416 b1=0.08002565306418866,
b1=0.2825633404177051 c1=0.0002725753410753895
c1=0.001226088989536361 a1=0.2728983001988755,
a2=

1
2 −a1 b2=

1
2 −b1,

b2=1−2b1 c2=0.002960781208329478,
c2=0.003035236056708454 a2=1−2a1

(2.16)
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s=4. The coefficients of the most efficient ABA and BAB methods are

[a1(b1,c1)a2(b2,c2)a3(b2,c2)a2(b1,c1)a1] [(b1,c1)a1 b2 a2(b3,c3)a2 b2 a1(b1,c1)]
======================== =====================
a1=0.09325912861071900 b1=0.05851872613455621,
b1=0.2247800288685984 c1=0.4339598806816256·10−3

c1=0.0005562281089130940 a1=0.1921125277429464,
a2=0.2791634819768266 b2=0.2852162240687091,
b2=

1
2 −b1 a2=

1
2 −a1,

c2=0.0008405927247441154 b3=1−2(b1+b2),
a3=1−2(a1+a2), c3=0.2427475259663050·10−2

(2.17)
Several methods with 5 stages have also been reported but either they have

larger effective error or at least one of the aj coefficients is negative.
For special classes of problems, such as near-integrable systems, there are

particularly efficient schemes within this class when the perturbation is small.
Some examples can be found in [5, 21, 29], but they will not be considered in
this work.

Type s | f5,1| | f5,2| | f5,3| | f5,4| E f

2 2.31·10−4 1.57·10−4 4.58·10−4 4.71·10−4 1.14·10−2

ABA 3 8.82·10−6 7.05·10−6 3.59·10−6 3.17·10−6 9.94·10−4

4 2.07·10−6 1.96·10−6 8.87·10−7 8.61·10−7 7.97·10−4

2 3.47·10−4 4.63·10−4 3.47·10−4 2.31·10−4 1.14·10−2

BAB 3 1.09·10−5 1.13·10−5 4.29·10−6 3.71·10−6 1.35·10−3

4 2.46·10−6 2.67·10−6 4.08·10−7 3.84·10−7 9.42·10−4

Table 2: Main truncation error terms and e�ective error for standard splitting operator
methods of order 4 with positive coe�cients and s stages.

3 Modified processed splitting methods

3.1 Methods with processing

Given a method S(h), one may consider a near-to-identity transformation,
P(h)=I+O(hq) with q≥1, so that the composition

Ŝ(h)=P(h)−1 ·S(h)·P(h) (3.1)

is more accurate than S(h), for instance by increasing its order, whereas still
possessing the same stability as S(h). This is the case, in particular, of method
(2.13): by taking P(h) = e

1
24 h2[T,V] one ends up with a 4th-order integrator.

In this setting, S(h) is called the kernel of the processed method Ŝ(h), and
P(h) is the processor or corrector [8–10]. Notice that N consecutive steps of the
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processed integrator correspond to the transformation

Ŝ(h)N =

N times︷ ︸︸ ︷
Ŝ(h) ··· Ŝ(h)=

N times︷ ︸︸ ︷
(P(h)−1 ·S(h)·P(h) ···P(h)−1 ·S(h)·P(h)

=P(h)−1 ·S(h)N ·P(h).

(3.2)

Thus, to perform N steps of the processed method, one successively (i) applies
once the map P(h) (preprocessing), (ii) takes N steps of the kernel S(h) and fi-
nally (iii) applies the map P(h)−1 (postprocessing). Since P(h) and its inverse
are applied only once, the computational complexity of Ŝ(h) corresponds es-
sentially to that of S(h) if N is sufficiently large. The kernel S(h) is said to be
of effective order p if a processor can be constructed leading to a method of
genuine order p.

When the kernel is time-symmetric, the processor leading to a minimum
main order truncation error must be such that P(−h) =P(h). With this re-
quirement, the whole method is also time-symmetric, i.e. Ŝ(h)−1= Ŝ(−h) [7].

Of course, this “ideal” processor (e.g. P(h)=e
1
24 h2[T,V] in the previous case)

is, in general, computationally involved and it will only be approximated in
practical applications. This is done once again with a product of the form [7]

Π(h)=
ℓ

∏
j=1

e−hβ jV e−hαjT (3.3)

for certain coefficients αj, β j, j=1,.. .,ℓ, chosen so that

Π(h)=P(h)+O(hr)

with r≥ p, the order of the method itself. In this way, the overall method

Π(h)−1 ·S(h)·Π(h) (3.4)

has the same structure as the kernel, since

Π(h)−1=ehα1T ehβ1V ···ehαℓT ehβℓV .

Notice, however, that the resulting scheme (3.4) is no longer time-symmetric
(since the composition is not palindromic. Notice also that Π(−h) ̸= Π(h)
while the ideal one satisfies that P(−h)=P(h)) and in addition involves neg-
ative coefficients: they must verify

α1+···+αℓ=0, β1+···+βℓ=0

for consistency (as well as the fact that the coefficients ±αi,±βi appear either
in the pre-processor or in the post-processor).

The first drawback can be overcome by using in (3.4) the adjoint of Π(h)
instead of its inverse. Let us recall that the adjoint Π(h)∗ is defined as the map
such that Π(−h)∗=Π(h)−1 [27]. It is then clear that

Π(h)∗=e−hα1T e−hβ1V ···e−hαℓT e−hβℓV ,
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so that
Π(h)∗=Π(−h)−1=P(−h)−1+O(hr)=P(h)−1+O(hr)

if the processor satisfies P(−h)=P(h). In this way we propose to apply, in-
stead of (3.4), the scheme

S̃N(h)=Π(h)∗ ·S(h)N ·Π(h). (3.5)

Since
(S̃N(h))−1=Π(h)−1 ·(S(h)N)−1 ·(Π(h)∗)−1

and

S̃N(−h)=Π(−h)∗ ·S(−h)N ·Π(−h)=Π(h)−1 ·S(−h)N ·(Π(h)∗)−1,

then the modified processed integrator (3.5) is also time-symmetric if S(h) is
time-symmetric.

On the other hand, the second difficulty can be dealt with the idea of
starter. It proceeds essentially as follows. Suppose that our kernel S(h) is
time-symmetric and one is interested in applying N≥2 steps of the processed
scheme. If we set

Π̂(h)≡S(h)·Π(h),

then eq. (3.5) can be rewritten as

S̃N(h)= Π̂(h)∗ ·S(h)N−2 ·Π̂(h),

and finally the map Π̂(h) is approximated as

Π̂(h)≃e−hβnV e−hαnT ···e−hβ1V e−hα1T, (3.6)

for another set of coefficients αi, βi. Now consistency requires instead

α1+···+αn =1, β1+···+βn =1,

and these relations may in principle be satisfied with αi,βi ≥ 0, i= 1,.. .,n, for
specific kernels.

It is also clear that we can replace exp(−hβ jV) in the previous procedure
by the more general operator exp(−hβ j−h3cjE3,2) when necessary.

Since Π̂(h) can also be seen as a one step method, then the order barrier
also applies to this family of methods and only methods up to order four with
ai >0 can be obtained.

3.2 Order conditions

To construct specific methods within this class we have to find and solve the
corresponding order conditions. This can be done as in standard compositions,
i.e., by expressing both the kernel and the processor as the exponential of just
one operator. Thus, for the kernel, one has S(h)=exp(K(h)), with

K(h)=h(T+V)+h3(k3,1E3,1+k3,2E3,2
)
+h5

4

∑
j=1

k5,jE5,j+O(h7) (3.7)
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and the order conditions to achieve a method of effective order 6 are [8]

N3,1 = k3,1−k3,2=0

N5,1 = k5,2−k5,1−
1
2

k2
3,1=0 (3.8)

N5,2 = k53+k5,4−k3,1k3,2=0.

With respect to the processor Π(h), it can be expressed as Π(h)= exp(P(h)),
with

P(h)=h2 p2,1E2,1+h4(p4,1E4,1+p4,2E4,2
)
+O(h6).

Notice that, for the ideal processor, p2k+1,j = 0 for k ≥ 0. In consequence, the
processed method reads

Π(h)−1 ·S(h)·Π(h)=exp(F(h))

where now

F(h)=h(T+V)+h3( f3,1E3,1+ f3,2E3,2
)
+h5

4

∑
j=1

f5,jE5,j+O(h7) (3.9)

and

f3,1= k3,1+p2,1, f3,2= k3,2+p2,1, f5,1= k5,1+p4,1

f5,2= k5,2+k3,1 p2,1+
1
2

p2
2,1+p4,1, f5,3= k5,3+k3,1 p2,1+

1
2

p2
2,1−p4,2

f5,4= k5,4+k3,2 p2,1+
1
2

p2
2,1 p4,2.

Accordingly, if N3,1=0 and p2,1=−k3,1 (in addition to the conditions p1,j=p3,j=
0), then the processed method is of order four. This is precisely what happens
with the methods with one stage (2.12) and (2.13).

Unfortunately, conditions N5,1 = 0 and N5,2 = 0 cannot be simultaneously
verified by kernels with positive coefficients: one can still find coefficients cj
such that N5,2=0 with positive coefficients, whereas the processor can be used
to vanish f5,3 and f5,4 simultaneously. However, the constraint aj > 0 in the
kernel implies that N5,1 ̸=0 and then

f5,1=0, f5,2=0

cannot be simultaneously satisfied with the processor.
In view of the situation, our proposal here is to choose coefficients for the

kernel verifying N3,1 = N5,2 = 0 and take p4,1 such that one of the following
requirements is satisfied:

(a) f5,1=−N5,1, f5,2=0;

(b) f5,1=0, f5,2=N5,1;

(c) f5,1=
1
2 N5,1, f5,2=− 1

2 N5,1,
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with N5,1 as small as possible. In this way the effective error achieves the min-
imum value in all cases. Alternatives (a) and (b) can be relevant depending on
the type of potential and wave function one is considering. For instance, with-
out loss of generality, suppose one is dealing with a one-dimensional problem

and denote V(k) ≡ dkV̂(x)
dxk , and ψ(k) ≡ ∂kψ(x,t)

∂xk , k ≥ 1. Then, a straightforward
computation shows that

Ê5,1ψ=V(8)ψ+8V(7)ψ(1)+24V(6)ψ(2)+32V(5)ψ(3)+8V(4)ψ(4),

Ê5,2ψ=
(
−6V(5)V(1)−12V(4)V(2)+8(V(3))2)ψ+24

(
V(3)V(2)−V(4)V(1))ψ(1)

+24V(3)V(1)ψ(2),

where Ê5,j denotes the corresponding element of Table 1 obtained with the
operators T̂ and V̂. Now, if V̂(x) is at most cubic, then Ê5,1ψ= 0. In fact, the
contribution of this term to the error is almost negligible for smooth potentials
or wave functions describing the system near the ground state, or evolving
near the minimum of the potential. Then, the choice (a) would lead to a 6th-
order method with positive coefficients for cubic potentials.

With respect to the starter, one has

Π̂(h)=exp(K(h))·exp(P(h))=exp

(
∑
k,j

hk tk,j Ek,j

)
,

and the previous conditions for the processor to achieve order four lead to

t1,1 = 1, t1,2=1
t2,1 = k3,1 (3.10)

t3,1 =
1
2

k3,1, t3,2=
1
2

k3,1,

whereas additional restrictions are necessary for t4,j and t5,j according to the
options (a), (b) or (c) above. Thus, in case (a) it is required that

t4,1=
1
12

k3,1−
1
2

k2
3,1+k5,2, t4,2=

1
6
(k3,1+3k2

3,1−6k5,3)

t5,1= k5,1+
1
4
(k2

3,1−2k5,2), t5,2=
1
6
(−k2

3,1+3k5,2)

t5,3=
1
6
(−k2

3,1+3k5,3), t5,4=
1
6
(2k2

3,1−3k5,3).

(3.11)

We will take then a composition involving at least 11 parameters to solve
all the conditions. In summary, the procedure to construct operator splitting
methods with starter is the following:

1. Obtain the coefficients aj, bj, cj of time-symmetric kernels (with aj > 0,
bj >0) by solving N3,1=N5,2=0 and minimizing N5,1.

2. Determine the values of the relevant terms ki,j for this kernel and from
them, the terms ti,j of the starter.

3. Obtain the coefficients αj, β j, γj of the composition (3.6) defining the
starter (again with αj > 0, β j > 0) according with the chosen alternative
(a), (b) or (c).
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3.3 Specific methods

We have obtained kernels of type (2.3) and (2.4) involving up to s=4 stages by
applying the previous methodology. In Table 3 we collect the corresponding
values of |N5,1| and, to take into account the computational cost, also the value
of s4 1√

2
|N5,1| in each case. This last quantity is closely related with the overall

effective error of the processed method.

Type s |N5,1| s4
√

2
|N5,1|

1 6.94·10−4 4.91·10−4

ABA 2 6.06·10−4 6.85·10−3

3 8.57·10−6 4.90·10−4

4 3.17·10−6 5.73·10−4

1 6.94·10−4 4.91·10−4

BAB 2 4.44·10−5 5.02·10−4

3 8.59·10−6 4.91·10−4

4 2.71·10−6 4.90·10−4

Table 3: Error terms for the kernel of processed splitting operator methods. When s= 1,
N5,2=−N5,1.

We see that, although the value of |N5,1| can be reduced by increasing the
number of stages, this reduction is hardly compensated by the higher compu-
tational cost required. For this reason, we restrict ourselves to kernels with
only one and two stages.

s=1. In the particular case of kernel (2.13), one has N3,1 =0, but neither N5,1
nor N5,2 vanish, so that we apply a different strategy to construct a cheaper
starter leading to a method of order 4. It turns out that this can be achieved
with

Π̂(h)=
[
(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.12)

In fact, only 2 modified potentials are required and still one has a 1-parameter
family of solutions. Among them we choose

α1=0.015910816538916105477, α2=0.52240758893355298829
β1=0.16194613148158516891, β2=0.82805386851841483109
γ1=0.0061470397523367318641, γ2=0.018617166558200649744
α3=0.46168159452753090624, β3=

1
100

γ3=0.

The overall scheme reads

S̃N(h) =
[
α1(β1,γ1)α2(β2,γ2)α3(β3,γ3)

]
·
[

1
2
(1,

1
24

)
1
2

]N−2

·[
(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.13)

We should remark that the modified processor has not been chosen to optimize
the truncation error, since N5,2 ̸= 0 anyway. Moreover, the method has to be
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used with N ≥ 2 and the total number of stages is N+4. In consequence, for
small values of N, this extra cost can be significant with respect to the cost of
the kernel.

s=2. The kernels read respectively

ABA: SABA(h)=
[
a1(b1,c1)a2(b1,c1)a1

]
(3.14)

and
BAB: SBAB(h)=

[
(b1,c1)a2(b2,c2)a2(b1,c1)

]
. (3.15)

Once the kernel has been chosen, the starter can be determined according
with the previous alternatives (a), (b) and (c), so that one ends up with

Π̂(h)=
[
(β4,γ4)α4(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.16)

Notice that, in all cases, we have one free parameter. Nevertheless, it is not
always possible to get solutions with all αj > 0, β j > 0, in particular for kernel
(3.14). In fact, in that case there are no solutions with all αj >0 for alternative
(a), whereas for (b) and (c) one of the β j has to be necessarily negative.

For kernel (3.15) we have, by contrast, 1-parameter families of solutions
involving only positive coefficients. Particular choices are collected in Table 4.
We recall that in this case the overall method for N integration steps reads

S̃N(h) =
[
α1(β1,γ1)α2(β2,γ2)α3(β3,γ3)α4(β4,γ4)

]
·(SBAB(h))N−2 ·[

(β4,γ4)α4(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1
]
.

4 Numerical comparisons

In this section we compare the new 4th-order modified processed splitting
methods with respect to the most efficient schemes also involving modified
potentials and positive coefficients we have found in the literature.

4.1 Imaginary time propagation in 1-d

As a first illustration we apply the previous methods to the numerical inte-
gration of the one-dimensional Schrödinger equation in imaginary time for
three different potentials: the harmonic oscillator, a double well such that the
minima of the potential can be approximated by cubic functions, and finally a
potential where higher derivatives are relevant near the minimum.

As stated in the introduction, in this diffusive problem the solution con-
verges to the ground state which is mainly concentrated around the minimum
of the potential. We measure the error in the normalized solution at the final
time as

Er ≡
∥∥∥∥ u(τf )

∥u(τf )∥
−

uapp(τf )

∥uapp(τf )∥

∥∥∥∥
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Type Kernel Starter
α1=0.085901112008607587690928693459 (a)
β1=0.212698346714285489082694412338
γ1=1/20000
α2=0.344269607777567701053555680439
β2=0.477571645650134700450689457043
γ2=0.0063563342058890792786107143464
α3=0.49916059713055403489220577869
β3=0.107615382576486586889760168322
γ3=0.00152095461887095859855736273454
α4=0.070668683083270676363309847409
β4=0.20211462505909322357685596230
γ4=0.000439633064716702370928763003143
α1=0.081400719358833550685242298084 (b)
β1=0.213974166240535023746064422594

b1=
27
100 γ1=0

c1=
1597

1440000 α2=0.359973312089188663628848658435
BAB a2=

1
2 β2=0.489218997657784225611758847163

b2=
23
50 γ2=0.0063839418286807493996690114472

c2=
6047

720000 α3=0.533271252488022531567730572505
β3=0.170371266269132266613375096529
γ3=0.0102467951708793774222822918119
α4=0.0253547160639552541181784709748
β4=0.12643556983254848402880163371
γ4=−0.0077029603723780256365999686550
α1=0.085835304465630711824262626400 (c)
β1=0.217482775489438674951915790962
γ1=1/10000
α2=0.353863857161384364666360893974
β2=0.482376576131251183368714037601
γ2=0.0062211703953627366195938119902
α3=0.531192662483216027224466133435
β3=0.174369958075879961757677904504
γ3=0.0072626937935484396739173709272
α4=0.0291081758897688962849103461909
β4=0.12577069030343017992169226693
γ4=−0.00483527451093132570395371566179

Table 4: Coe�cients of processed splitting methods with kernel of type BAB with 2 stages
and all positive coe�cients. The di�erent processors are chosen according with criteria (a),
(b) and (c).

and depict this error as a function of the computational cost measured as the
number of fast Fourier transforms (FFTs) and inverses of FFTs computed.

First we analyze the performance of the best 4th-order methods from the
literature with modified potentials. Next, we analyze the performance of the
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1-stage and the new 2-stage kernels with processors that are obtained applying
different optimization criteria. Finally, we collect the best processed and non-
processed methods to illustrate their relative performance taking the Strang
method as a reference. Specifically, we test the following integrators:

• S[2,a]
1 : the Strang splitting of type ABA, used here as a reference method;

• Sm[4,a]
2 , Sm[4,b]

2 : the 2-stage ABA and BAB methods (2.15) and (2.14), with
positive coefficients and modified potentials;

• Sm[4,a]
3 , Sm[4,b]

3 : the most efficient 3-stage methods of type ABA and BAB
proposed in [24] and collected in (2.16);

• Sm[4,a]
4 , Sm[4,b]

4 : the most efficient 4-stage methods of type ABA and BAB
proposed in [24] and collected in (2.17);

• SP[4]
1 : the modified processed scheme with a 1-stage kernel of type ABA

with symmetric processor and positive coefficients (3.13);

• SP[4]
2,α: the 2-stage BAB methods with symmetric processor built accord-

ing to criterion (a), (b) or (c) (α= a,b,c) and positive coefficients, as col-
lected in Table 4.

Notice that the previous notation indicates the order of the scheme (super-
script), the number of stages (subscript), the particular composition type (a:
ABA, b: BAB), the presence of modified potentials without processor (m) and
the presence of modified potentials with processor (P).

Harmonic oscillator potential. We first take

V̂(x)=
1
2

x2

and the initial wave function ψ0(x) = σ|cos(x)|e−(x−2)2
, where σ is the nor-

malizing constant. Since the solution decays rapidly, we can safely truncate
the infinite spatial domain to the periodic interval [−L,L], provided L is suffi-
ciently large. Specifically, we take L=10 and set up a uniform grid x1,. . .,xN in
the interval, with N=128, and integrate until the final time τf =2. Notice that
for this problem the error terms E5,1 = E5,2 = 0, so that the error is dominated
by f5,3 and f5,4.

Figure 1 contains three diagrams collecting, in a log-log scale, the error Er
vs. the number of FFTs for the different integrators. Specifically, the top left
diagram shows the results achieved by the 4th-order conventional methods of
type ABA and BAB with 2, 3 and 4 stages, modified potentials and positive
coefficients. We observe an improvement in the accuracy with the number of
stages per step (number of free parameters in the scheme) at the cost of an
slightly worst performance at low accuracies. Among them, we choose the 4-
stage BAB scheme as the most efficient one. The top right panel collects the
results obtained by the new processed methods. Since all methods using the
2-stage kernel have been designed so that f5,3 = f5,4 = 0, then they achieve in



17

practice order 6. For this problem, all three methods with the 2-stage kernel
show a very similar performance. At low accuracies (low number of FFTs)
the cost of the pre- and post-processor is not negligible. Finally, in the bot-
tom diagram we compare the most efficient schemes from the previous graphs
together with the results obtained by the Strang method. We observe an im-
provement of the new processed 2-stage kernel scheme with respect to the
most efficient conventional integrators involving modified potentials at high
accuracies. As mentioned, the performance at low accuracies is reduced due to
the cost of the processor (this cost would not be considered in problems where
e.g. one is only interested in the trace of the transition matrix).
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Figure 1: Harmonic oscillator potential. Top left: the 4th-order non-processed methods
for the 2, 3 and 4-stage ABA and BAB methods with modi�ed potentials; Top right: the
4th-order 1-stage and 2-stage processed methods; Bottom �gure: the best methods among
the previous ones jointly with the Strang method (used as a reference method).

Double well potential. The same set of experiments is carried out for the
quartic oscillator

V̂(x)=10− 1
2

x2+
1

160
x4=

1
160

(x2−40)2

with initial condition ψ0(x)=σ|cos(x)|e−(x−6)2
. Here again σ is the normaliz-

ing constant and the initial wave function is allocated near one of the minima
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of the potential. In this case we take as the spatial interval the periodic do-
main [−13,13] and N=128 grid points for the Fourier semidiscretization. The
final integration time is τf =2. The results are collected in Figure 2, where the
same pattern in the top left diagram can be observed. In the top right diagram
we see, as expected, a small improvement by the scheme SP[4]

2,a which would
correspond to a sixth-order method for a cubic potential (this is essentially the
case near the minimum of the potential). In the bottom diagram we compare
the most efficient schemes from the previous graphs, where the superiority of
the new method is visible for high accuracy. As in the previous case, at low
accuracies the relative cost of the pre- and post-processors is significant.
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Figure 2: Same as Fig. 1 but for the double well potential.

Pöschl–Teller potential. As a third illustration in the context of the ITP algo-
rithm we take the potential

V̂(x)=
λ(λ+1)

2
(1−sech(x)2)

with λ = 5 and initial condition ψ0(x) = σ|cos(x)|e−x2
. Our spatial interval

is [−10,10], the uniform grid has N = 128 points and the final time is τf = 2.
Figure 3 shows the results from the methods which where previously chosen
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as the most efficient ones. In this case, all choices of the processor for the 2-
stage kernel lead essentially to the same results, but now the 1-stage kernel
shows the best performance.

It is important to remark the superiority of all the methods with modi-
fied potentials with respect to the frequently used second order Strang method
and that this superiority increases with the desired accuracy. The 4-stage BAB
method Sm[4,b]

4 shows, in general, a better performance than the frequently
used 2-stage BAB method Sm[4,b]

2 and the new processed methods are even su-
perior when high accuracy is desired (and also at low accuracies if the cost of
the pre- and post-processor can be neglected).
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Figure 3: Same as Fig. 1 but for the Pöschl�Teller potential.

4.2 1-d, 2-d and 3d linear evolution problems

As further test problems, we consider linear parabolic equations of the form

∂

∂t
u(x,t)= 1

2 ∆u(x,t)+V̂(x)u(x,t), t∈ [0,τf ], u(x,0)=u0(x)

in one, two and three dimensions, to study how the relative performance of the
methods change with the dimension. On the one hand, we prescribe periodic
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problem data for d=1,2,3

u0(x)=u0(x1,. . .,xd)= c
d

∏
j=1

sin2( xj+a
a π

)
,

V̂(x)= c
d

∏
j=1

(
1−cos2( xj+a

2a π
))

,

x∈ [−L,L]d, L=10, c=10, d=1,2,3, τf =10.

On the other hand, we study the time evolution of a localized initial state un-
der a standard quadratic potential

u0(x)=e−5∥x∥2
, V(x)=−∥x∥2 , x∈ [−10,10]d, d=1,2,3, τf =1.

We take a uniform grid xj,1,. . .,xj,N , j=1,.. .,d, with N=512 for d=1 leading
to a system of dimension M = 512, N = 128 for d = 2 leading to a system of
dimension M= 1282 = 16384, and finally with N = 64 for d= 3, so M= 643 =
262144.

The time integration is performed with the methods which were previ-
ously selected as the most efficient, and also include for comparison the clas-
sical second-order Strang splitting. In Figure 4, and for simplicity, we denote
them as follows:

• S[2,a]
1 , referred to as Order 2 (Strang);

• Sm[4,b]
2 , called here Order 4 (Chin);

• Sm[4,b]
4 , referred to as Order 4 (Omelyan);

• SP[4]
1 , denoted by Order 4 (Rowland); and

• SP[4]
2a , called Order 4 (Novel).

With regard to the spatial discretization, we apply as before the Fourier pseudo-
spectral method on an equidistant mesh and measure the computational effort
by the total number of fast Fourier transforms and inverse fast Fourier trans-
forms. In order to determine the global errors at the final time, a numerical
reference solution is computed by dividing the smallest time stepsize in half.
The obtained results, given in Figure 4, are consistent with our former observa-
tions and confirm the high accuracy of the novel scheme SP[4]

2a at a reasonable
computational cost in different settings.

5 Conclusions

We have presented a novel class of splitting methods for numerically solving
linear parabolic problems that appear in many physical problems, such as the
imaginary time propagation of the Schrödinger equation. Splitting methods
are especially useful in this context, due to their simple structure and good
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Figure 4: Time integration of a linear evolution equation of parabolic type involving a
periodic potential (left) or a standard quadratic potential (right). The Fourier pseudo-
spectral space discretization in dimension d is based on a total number of M equidistant
grid points. For the classical Strang splitting method and di�erent fourth-order schemes,
we depict the global errors at �nal time τf versus the computational cost, measured by the

number of FFTs and their inverse.

performance. For periodic problems or when the solution vanishes far from
the region of interest, the order reduction of the methods usually does not oc-
cur and higher order schemes can be of interest. Splitting methods of order
greater than two necessarily have negative coefficients and thus can not be
used to propagate the unbounded operator associated to the Laplacian. This
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problem can be partially solved by incorporating into the scheme some ap-
propriated modified potentials, thus leading to fourth-order integrators with
positive coefficients. In fact, order four constitutes the upper limit for this fam-
ily of methods.

We have carried out a search in the literature of methods of order four that
incorporate modified potentials in their formulation and have positive coef-
ficients. We have observed the limitations to improve their performance by
applying the standard strategy of augmenting the number of stages to reduce
the error, and we have proposed a generalization of the processing technique
to achieve higher accuracy and better stability with a reduced computational
cost. Methods with processors, in general, have negative coefficients in the
pre- and post-processors due to consistency and also because one has to com-
pute a scheme to start and its inverse to conclude the integration. Both draw-
backs are resolved by considering symmetric processors with a starter, so that
new families of fourth-order integrators with modified potentials and positive
coefficients can be generated. An error analysis is carried indicating that the
new methods possess smaller errors. We thus end up with new schemes with
a similar complexity as previous splitting methods with modified potentials,
but with a superior efficiency, as shown by the numerical examples collected
here.

The new proposed methods can also be safely applied in any situation
where the schemes of [12] and [24] are used, and in particular to the numerical
integration of the Schrödinger equation in real time. Since they have small
and positive coefficients, one can expect to be highly efficient in situations
where low to medium accuracies are required (usually, higher order methods
are preferable when very high accuracy is desired).

The generalization of the proposed methods to nonlinear both parabolic
and Schrödinger equations is one of our objective in current research investi-
gation. In [18] it is proven that methods with modified potentials retain their
classical order of accuracy provided the solution is sufficiently regular. In the
case of low regularity problems an order reduction is expected and different
techniques should be used (see e.g. [20]).
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